1
|
Samoilys M, Osuka KE, Roche R, Koldewey H, Chabanet P. Effects of protection on large-bodied reef fishes in the western Indian Ocean. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2025:e14430. [PMID: 39853835 DOI: 10.1111/cobi.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/22/2024] [Accepted: 10/16/2024] [Indexed: 01/26/2025]
Abstract
Predatory and large-bodied coral reef fishes have fundamental roles in the functioning and biodiversity of coral reef ecosystems, but their populations are declining, largely due to overexploitation in fisheries. These fishes include sharks, groupers, Humphead wrasse (Cheilinus undulatus), and Green Humphead parrotfish (Bolbometopon muricatum). In the western Indian Ocean, this situation is exacerbated by limited population data on these fishes, including from conventional visual census methods, which limit the surface area surveyed. We developed a rapid timed scuba swim survey approach for application over large areas for estimation of the abundance of large-bodied reef fishes and assessment of the effectiveness of marine protected areas (MPAs) in maintaining these species' populations. Using this method, we sampled 7 regions in the western central Indian Ocean and Gulf of Aden, including 2 remote reference locations where fishing is prohibited. Eight families were selected for the surveys from across 3 categories: pelagic, demersal, and large-bodied single species. Sharks (Carcharhinidae) were absent in 5 of the 7 regions, observed only in Mozambique and the Chagos Archipelago. Tunas (Scombridae) and barracudas (Sphyraenidae) were rarely observed (none in Madagascar, Djibouti, and Iles Glorieuses). The Giant grouper (Epinephelus lanceolatus) was absent in all regions, Humphead wrasse was absent in Comoros and Iles Glorieuses, and Green Humphead parrotfish was observed at only one site in Tanzania. The MPAs were not effective in protecting these single large-bodied species or the 4 pelagic families, except for sharks in the highly protected reference locations. However, MPAs with medium levels of protection were effective in maintaining the abundance of some demersal families, notably large-bodied groupers. Our results support the hypothesis of local extirpation of these large-bodied fishes on many coral reefs in the western Indian Ocean.
Collapse
Affiliation(s)
- Melita Samoilys
- CORDIO East Africa, Mombasa, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | - Kennedy E Osuka
- CORDIO East Africa, Mombasa, Kenya
- School of Environmental Science, University of Liverpool, Liverpool, UK
| | - Ronan Roche
- Department of Earth, Oceans and Ecological Science, University of Bangor, Bangor, UK
| | - Heather Koldewey
- Zoological Society of London, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | - Pascale Chabanet
- UMR ENTROPIE (IRD, UR, CNRS, IFREMER, UNC), CS 41096, La Reunion, France
| |
Collapse
|
2
|
Moustaka M, Robbins WD, Wilson SK, Wakefield C, Cuttler MV, O'Leary MJ, Evans RD. Seascape effects on the nursery function of macroalgal habitats. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106767. [PMID: 39368155 DOI: 10.1016/j.marenvres.2024.106767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/05/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Understanding how seascape configuration influences nursery function is important for spatial management and conservation of essential habitats. Here, we examine how local habitat, seascape, and environmental factors influence demographic metrics of juvenile Lethrinus punctulatus and assess spatial variation in macroalgae nursery function. We quantified abundance, biomass, and productivity of juvenile L. punctulatus over three years and estimated size-at-age and condition from collected fish. Abundance, biomass, productivity, and size-at-age exhibited significant spatial variation, although each pattern was best explained by different factors. Lethrinus punctulatus were most abundant in macroalgae-rich seascapes, whereas biomass and productivity peaked where macroalgal cover and water temperatures were high. Conversely, fish exhibited the greatest average daily growth at sites near coral reefs. Processes contributing to spatial variation in size-at-age occur prior to fish reaching ∼5 cm in length and may be due to differences in resource availability, size at settlement, or size-selective mortality. Our findings suggest habitat and resource availability constrain L. punctulatus abundance and productivity, while size-at-age is influenced by size-selective mortality and prey quality. Thus, while seascape configuration can affect nursery function, the degree of influence will depend on the processes involved, emphasising the value of considering multiple metrics when identifying nurseries.
Collapse
Affiliation(s)
- Molly Moustaka
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia; The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia.
| | - William D Robbins
- Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia; Wildlife Marine, Perth, WA, 6019, Australia
| | - Shaun K Wilson
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Australian Institute of Marine Science, Indian Ocean Marine Research Centre, Perth, WA, 6009, Australia
| | - Corey Wakefield
- Western Australian Fisheries and Marine Research Laboratories, Department of Primary Industries and Regional Development, Government of Western Australia, North Beach, WA, 6020, Australia
| | - Michael Vw Cuttler
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Oceans Graduate School, The University of Western Australia, Perth, WA, 6009, Australia
| | - Michael J O'Leary
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Centre for Energy Geoscience, School of Earth Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Richard D Evans
- The Oceans Institute, The University of Western Australia, Perth, WA, 6009, Australia; Marine Science Program, Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, WA, 6151, Australia
| |
Collapse
|
3
|
Maire E, Robinson JPW, McLean M, Arif S, Zamborain-Mason J, Cinner JE, Ferse SCA, Graham NAJ, Hoey AS, MacNeil MA, Mouillot D, Hicks CC. Managing nutrition-biodiversity trade-offs on coral reefs. Curr Biol 2024; 34:4612-4622.e5. [PMID: 39293442 DOI: 10.1016/j.cub.2024.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
Coral reefs support an incredible abundance and diversity of fish species, with reef-associated fisheries providing important sources of income, food, and dietary micronutrients to millions of people across the tropics. However, the rapid degradation of the world's coral reefs and the decline in their biodiversity may limit their capacity to supply nutritious and affordable seafood while meeting conservation goals for sustainability. Here, we conduct a global-scale analysis of how the nutritional quality of reef fish assemblages (nutritional contribution to the recommended daily intake of calcium, iron, and zinc contained in an average 100 g fish on the reef) relates to key environmental, socioeconomic, and ecological conditions, including two key metrics of fish biodiversity. Our global analysis of more than 1,600 tropical reefs reveals that fish trophic composition is a more important driver of micronutrient concentrations than socioeconomic and environmental conditions. Specifically, micronutrient density increases as the relative biomass of herbivores and detritivores increases at lower overall biomass or under high human pressure. This suggests that the provision of essential micronutrients can be maintained or even increase where fish biomass decreases, reinforcing the need for policies that ensure sustainable fishing, and that these micronutrients are retained locally for nutrition. Furthermore, we found a negative association between micronutrient density and two metrics of fish biodiversity, revealing an important nutrition-biodiversity trade-off. Protecting reefs with high levels of biodiversity maintains key ecosystem functions, whereas sustainable fisheries management in locations with high micronutrient density could sustain the essential supply of micronutrients to coastal human communities.
Collapse
Affiliation(s)
- Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK; MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.
| | - James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Matthew McLean
- Department of Biology and Marine Biology, Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28403, USA
| | - Suchinta Arif
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Jessica Zamborain-Mason
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Joshua E Cinner
- Thriving Oceans Research Hub, School of Geosciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Marine Ecology Department, Faculty of Biology and Chemistry, University of Bremen, 28359 Bremen, Germany; Faculty of Fisheries and Marine Sciences, Bogor Agricultural University, Bogor 16680, Indonesia
| | | | - Andrew S Hoey
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - M Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France; Institut Universitaire de France, Paris, France
| | - Christina C Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
4
|
Rogers A. Coral reefs: Fishing smarter for optimal nutrition and biodiversity. Curr Biol 2024; 34:R929-R931. [PMID: 39437731 DOI: 10.1016/j.cub.2024.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
One of humanity's biggest challenges is to ensure food and nutrition for the growing population, in the face of global change. A new study offers hope, showing how altered coral reefs with reduced fish biomass can offer some of the most nutritious fish.
Collapse
Affiliation(s)
- Alice Rogers
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand.
| |
Collapse
|
5
|
Gong Y, Zhang J, Chen Z, Cai Y, Yang Y. Taxonomic Diversity and Interannual Variation of Fish in the Lagoon of Meiji Reef (Mischief Reef), South China Sea. BIOLOGY 2024; 13:740. [PMID: 39336167 PMCID: PMC11428282 DOI: 10.3390/biology13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Coral reef fish are important groups of coral reefs, which have great economic and ecological value. Meiji Reef is a representative tropical semi-enclosed atoll in the South China Sea, with rich fish resources. Based on the data from hand-fishing, line-fishing, and gillnet surveys of fish in Meiji Reef from 1998 to 2018, this study summarized the fish species list of Meiji Reef and analyzed the species composition, inclusion index at the taxonomic level (TINCL), genus-family diversity index (G-F index), average taxonomic distinctness index (Δ+), and variation in taxonomic distinctness (Λ+) and their changes. The results revealed that from 1998 to 2018, there were 166 reef-dwelling fish species on Meiji Reef, belonging to 69 genera, 33 families, and 11 orders, of which 128 species were from 20 families of Perciformes, accounting for 77.10% of the total cataloged species. Regarding the dependence of fish on coral reefs, there were 155 reef-dependent species or resident species (accounting for 93.37%) and 11 reef-independent species or wandering species (accounting for 6.63%). The TINCL of the order, families, and genus of fish in Meiji Reef were very high. The genus diversity index (G index), family diversity index (F index), and G-F index of fish in Meiji Reef were very high, and the G index of fish in Meiji Reef in 1998-1999 was higher than that in 2016-2018. The Δ+ and Λ+ values of fish in Meiji Reef from 1998 to 2018 were 56.1 and 148.5, respectively. Compared with 1998-1999, Δ+ and Λ+ of fish increased during 2016-2018, reflecting that the relatives of fish in Meiji Reef became further distant, and the uniformity of taxonomic relationships among species decreased. The research findings indicated that fish exhibited a high taxonomic diversity in Meiji Reef; however, it also revealed significant fluctuations in the fish diversity of Meiji Reef over an extended period, emphasizing the urgent need for timely protection measures. This investigation significantly contributes to our comprehension of the intricate dynamics governing fish species within Meiji Reef and holds broader implications for biodiversity conservation in tropical marine ecosystems.
Collapse
Affiliation(s)
- Yuyan Gong
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Jun Zhang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Zuozhi Chen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Yancong Cai
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| | - Yutao Yang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory for Sustainable Utilization of Open-Sea Fishery, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, China
| |
Collapse
|
6
|
Robinson JPW, Benkwitt CE, Maire E, Morais R, Schiettekatte NMD, Skinner C, Brandl SJ. Quantifying energy and nutrient fluxes in coral reef food webs. Trends Ecol Evol 2024; 39:467-478. [PMID: 38105132 DOI: 10.1016/j.tree.2023.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The movement of energy and nutrients through ecological communities represents the biological 'pulse' underpinning ecosystem functioning and services. However, energy and nutrient fluxes are inherently difficult to observe, particularly in high-diversity systems such as coral reefs. We review advances in the quantification of fluxes in coral reef fishes, focusing on four key frameworks: demographic modelling, bioenergetics, micronutrients, and compound-specific stable isotope analysis (CSIA). Each framework can be integrated with underwater surveys, enabling researchers to scale organismal processes to ecosystem properties. This has revealed how small fish support biomass turnover, pelagic subsidies sustain fisheries, and fisheries benefit human health. Combining frameworks, closing data gaps, and expansion to other aquatic ecosystems can advance understanding of how fishes contribute to ecosystem functions and services.
Collapse
Affiliation(s)
- James P W Robinson
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK.
| | | | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Renato Morais
- Université Paris Sciences et Lettres, École Pratique des Hautes Études, USR 3278 CRIOBE, Perpignan 66860, France
| | | | - Christina Skinner
- School of the Environment, University of Queensland, St Lucia 4072, QLD, Australia
| | - Simon J Brandl
- Department of Marine Science, The University of Texas at Austin, Marine Science Institute, Port Aransas, TX 78373, USA
| |
Collapse
|
7
|
Galligan BP, McClanahan TR. Tropical fishery nutrient production depends on biomass-based management. iScience 2024; 27:109420. [PMID: 38510133 PMCID: PMC10952041 DOI: 10.1016/j.isci.2024.109420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The need to enhance nutrient production from tropical ecosystems to feed the poor could potentially create a new framework for fisheries science and management. Early recommendations have included targeting small fishes and increasing the species richness of fish catches, which could represent a departure from more traditional approaches such as biomass-based management. To test these recommendations, we compared the outcomes of biomass-based management with hypothesized factors influencing nutrient density in nearshore artisanal fish catches in the Western Indian Ocean. We found that enhancing nutrient production depends primarily on achieving biomass-based targets. Catches dominated by low- and mid-trophic level species with smaller body sizes and faster turnover were associated with modest increases in nutrient densities, but the variability in nutrient density was small relative to human nutritional requirements. Therefore, tropical fishery management should focus on restoring biomass to achieve maximum yields and sustainability, particularly for herbivorous fishes.
Collapse
Affiliation(s)
- Bryan P. Galligan
- Jesuit Justice and Ecology Network Africa, Karen, Nairobi 00502, Kenya
- Loyola University Chicago, Department of Biology, Chicago, IL 60660, USA
| | | |
Collapse
|
8
|
Robinson JPW, Darling ES, Maire E, Hamilton M, Hicks CC, Jupiter SD, Aaron MacNeil M, Mangubhai S, McClanahan T, Nand Y, Graham NAJ. Trophic distribution of nutrient production in coral reef fisheries. Proc Biol Sci 2023; 290:20231601. [PMID: 37788704 PMCID: PMC10547557 DOI: 10.1098/rspb.2023.1601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/30/2023] [Indexed: 10/05/2023] Open
Abstract
Coral reef fisheries supply nutritious catch to tropical coastal communities, where the quality of reef seafood is determined by both the rate of biomass production and nutritional value of reef fishes. Yet our understanding of reef fisheries typically uses targets of total reef fish biomass rather than individual growth (i.e. biomass production) and nutrient content (i.e. nutritional value of reef fish), limiting the ability of management to sustain the productivity of nutritious catches. Here, we use modelled growth coefficients and nutrient concentrations to develop a new metric of nutrient productivity of coral reef fishes. We then evaluate this metric with underwater visual surveys of reef fish assemblages from four tropical countries to examine nutrient productivity of reef fish food webs. Species' growth coefficients were associated with nutrients that vary with body size (calcium, iron, selenium and zinc), but not total nutrient density. When integrated with fish abundance data, we find that herbivorous species typically dominate standing biomass, biomass turnover and nutrient production on coral reefs. Such bottom-heavy trophic distributions of nutrients were consistent across gradients of fishing pressure and benthic composition. We conclude that management restrictions that promote sustainability of herbivores and other low trophic-level species can sustain biomass and nutrient production from reef fisheries that is critical to the food security of over 500 million people in the tropics.
Collapse
Affiliation(s)
| | - Emily S. Darling
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Eva Maire
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Mark Hamilton
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Christina C. Hicks
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Stacy D. Jupiter
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - M. Aaron MacNeil
- Ocean Frontier Institute, Department of Biology, Dalhousie University, Canada B3H 4R2
| | - Sangeeta Mangubhai
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
| | - Tim McClanahan
- Wildlife Conservation Society, Global Marine Program, Bronx, NY 10460, USA
| | - Yashika Nand
- Melanesia Program, Wildlife Conservation Society, 11 Ma'afu St, Suva, Fiji
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
9
|
Stefanoudis PV, Fassbender N, Samimi-Namin K, Adam PA, Ebrahim A, Harlay J, Koester A, Samoilys M, Sims H, Swanborn D, Talma S, Winter S, Woodall LC. Trait-based approaches reveal that deep reef ecosystems in the Western Indian Ocean are functionally distinct. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162111. [PMID: 36773924 DOI: 10.1016/j.scitotenv.2023.162111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Tropical deep reefs (>30 m) are biologically and ecologically unique ecosystems with a higher geographic reach to shallow (<30 m) reefs. Yet they are poorly understood and rarely considered in conservation practices. Here, we characterise benthic and fish communities across a depth gradient (10-350 m) in remote coral atolls in Seychelles, Western Indian Ocean. Using taxonomic and trait-based approaches we present the taxonomic and functional composition of shallow and deep reef communities, with distinct communities and traits dominating different depths. Depth-related changes in community metrics (taxa richness, abundance and biomass) and functional diversity metrics (richness, dispersion, and evenness) indicate complex relationships across different biological components (fish, benthos) that differ between shallow and deep reefs. These in turn translate into different patterns of reef resilience against disturbance or species invasions with depth. Notably, deep reefs host on average fewer and less abundant taxa but with higher functional contribution and originality scores, some of which are of conservation concern. Overall, the results highlight the unique nature of deep reefs that requires their explicit consideration in conservation and management activities.
Collapse
Affiliation(s)
- Paris V Stefanoudis
- Department of Biology, University of Oxford, Oxford, United Kingdom; Nekton Foundation, Oxford, United Kingdom.
| | | | - Kaveh Samimi-Namin
- Department of Biology, University of Oxford, Oxford, United Kingdom; Nekton Foundation, Oxford, United Kingdom; Taxonomy and Systematics Group, Naturalis Biodiversity Center, Leiden, Netherlands; Natural History Museum, London, United Kingdom
| | | | | | - Jerome Harlay
- Blue Economy Research Institute, University of Seychelles, Mahé, Seychelles
| | - Anna Koester
- Seychelles Islands Foundation, Victoria, Seychelles
| | - Melita Samoilys
- CORDIO East Africa, Mombasa, Kenya; Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Helena Sims
- The Nature Conservancy, Victoria, Seychelles
| | - Denise Swanborn
- Department of Biology, University of Oxford, Oxford, United Kingdom; Nekton Foundation, Oxford, United Kingdom
| | | | | | - Lucy C Woodall
- Department of Biology, University of Oxford, Oxford, United Kingdom; Nekton Foundation, Oxford, United Kingdom
| |
Collapse
|
10
|
Ghilardi M, Salter MA, Parravicini V, Ferse SCA, Rixen T, Wild C, Birkicht M, Perry CT, Berry A, Wilson RW, Mouillot D, Bejarano S. Temperature, species identity and morphological traits predict carbonate excretion and mineralogy in tropical reef fishes. Nat Commun 2023; 14:985. [PMID: 36813767 PMCID: PMC9947118 DOI: 10.1038/s41467-023-36617-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Anthropogenic pressures are restructuring coral reefs globally. Sound predictions of the expected changes in key reef functions require adequate knowledge of their drivers. Here we investigate the determinants of a poorly-studied yet relevant biogeochemical function sustained by marine bony fishes: the excretion of intestinal carbonates. Compiling carbonate excretion rates and mineralogical composition from 382 individual coral reef fishes (85 species and 35 families), we identify the environmental factors and fish traits that predict them. We find that body mass and relative intestinal length (RIL) are the strongest predictors of carbonate excretion. Larger fishes and those with longer intestines excrete disproportionately less carbonate per unit mass than smaller fishes and those with shorter intestines. The mineralogical composition of excreted carbonates is highly conserved within families, but also controlled by RIL and temperature. These results fundamentally advance our understanding of the role of fishes in inorganic carbon cycling and how this contribution will change as community composition shifts under increasing anthropogenic pressures.
Collapse
Affiliation(s)
- Mattia Ghilardi
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany.
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany.
| | | | - Valeriano Parravicini
- PSL Université Paris: EPHE-UPVD-CNRS, USR3278 CRIOBE, University of Perpignan, 66860, Perpignan, France
- Institut Universitaire de France, Paris, France
| | - Sebastian C A Ferse
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany
| | - Tim Rixen
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Christian Wild
- Department of Marine Ecology, Faculty of Biology and Chemistry, University of Bremen, Leobener Straße UFT, 28359, Bremen, Germany
| | - Matthias Birkicht
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| | - Chris T Perry
- Geography, University of Exeter, Exeter, EX4 4RJ, UK
| | - Alex Berry
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - David Mouillot
- Institut Universitaire de France, Paris, France
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 34095, Montpellier, France
| | - Sonia Bejarano
- Leibniz Centre for Tropical Marine Research (ZMT), Fahrenheitstraße 6, 28359, Bremen, Germany
| |
Collapse
|
11
|
Collins WP, Bellwood DR, Morais RA. The role of nocturnal fishes on coral reefs: A quantitative functional evaluation. Ecol Evol 2022; 12:e9249. [PMID: 36052298 PMCID: PMC9412246 DOI: 10.1002/ece3.9249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/25/2022] Open
Abstract
The ecological functions of nocturnal coral reef fishes are poorly known. Yet, nocturnal resources for coral reef consumers are theoretically as abundant and productive, if not more so, than their diurnal counterparts. In this study, we quantify and contrast the energetic dynamics of nocturnal and diurnal fishes in a model coral reef ecosystem, evaluating whether they attain similar levels of biomass production. We integrated a detailed dataset of coral reef fish counts, comprising diurnal and nocturnal species, in sites sheltered and exposed to wave action. We combined somatic growth and mortality models to estimate rates of consumer biomass production, a key ecosystem function. We found that diurnal fish assemblages have a higher biomass than nocturnal fishes: 104% more in sheltered sites and 271% more in exposed sites. Differences in productivity were even more pronounced, with diurnal fishes contributing 163% more productivity in sheltered locations, and 558% more in exposed locations. Apogonidae dominated biomass production within the nocturnal fish assemblage, comprising 54% of total nocturnal fish productivity, which is proportionally more than any diurnal fish family. The substantially lower contributions of nocturnal fishes to biomass and biomass production likely indicate constraints on resource accessibility. Taxa that overcome these constraints may thrive, as evidenced by apogonids. This study highlights the importance of nocturnal fishes in underpinning the flow of energy and nutrients from nocturnal resources to reef communities; a process driven mainly by small, cryptic fishes.
Collapse
Affiliation(s)
- William P. Collins
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| |
Collapse
|
12
|
Baynes J, Neale A, Hultgren T. Improving intelligent dasymetric mapping population density estimates at 30 m resolution for the conterminous United States by excluding uninhabited areas. EARTH SYSTEM SCIENCE DATA 2022; 14:2833-2849. [PMID: 36213148 PMCID: PMC9534036 DOI: 10.5194/essd-14-2833-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Population change impacts almost every aspect of global change from land use, to greenhouse gas emissions, to biodiversity conservation, to the spread of disease. Data on spatial patterns of population density help us understand patterns and drivers of human settlement and can help us quantify the exposure we face to natural disasters, pollution, and infectious disease. Human populations are typically recorded by national or regional units that can vary in shape and size. Using these irregularly sized units and ancillary data related to population dynamics, we can produce high-resolution gridded estimates of population density through intelligent dasymetric mapping (IDM). The gridded population density provides a more detailed estimate of how the population is distributed within larger units. Furthermore, we can refine our estimates of population density by specifying uninhabited areas which have impacts on the analysis of population density such as our estimates of human exposure. In this study, we used various geospatial datasets to expand the existing specification of uninhabited areas within the United States (US) Environmental Protection Agency's (EPA) EnviroAtlas Dasymetric Population Map for the conterminous United States (CONUS). When compared to the existing definition of uninhabited areas for the EnviroAtlas dasymetric population map, we found that IDM's population estimates for the US Census Bureau blocks improved across all states in the CONUS. We found that IDM performed better in states with larger urban areas than in states that are sparsely populated. We also updated the existing EnviroAtlas Intelligent Dasymetric Mapping toolbox and expanded its capabilities to accept uninhabited areas. The updated 30 m population density for the CONUS is available via the EPA's Environmental Dataset Gateway (Baynes et al., 2021, https://doi.org/10.23719/1522948) and the EPA's EnviroAtlas https://www.epa.gov/enviroatlas, last access: 15 June 2022; Pickard et al., 2015).
Collapse
Affiliation(s)
- Jeremy Baynes
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Anne Neale
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Torrin Hultgren
- EPA National Geospatial Support Team, ITS-EPA III Infrastructure Support and Application Hosting Contract, Research Triangle Park, NC 27711, USA
| |
Collapse
|
13
|
Biological trade-offs underpin coral reef ecosystem functioning. Nat Ecol Evol 2022; 6:701-708. [PMID: 35379939 DOI: 10.1038/s41559-022-01710-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 02/20/2022] [Indexed: 11/08/2022]
Abstract
Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.
Collapse
|
14
|
Anderson L, Houk P, Miller MGR, Cuetos-Bueno J, Graham C, Kanemoto K, Terk E, McLeod E, Beger M. Trait groups as management entities in a complex, multispecies reef fishery. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13866. [PMID: 34811801 DOI: 10.1111/cobi.13866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Localized stressors compound the ongoing climate-driven decline of coral reefs, requiring natural resource managers to work with rapidly shifting paradigms. Trait-based adaptive management (TBAM) is a new framework to help address changing conditions by choosing and implementing management actions specific to species groups that share key traits, vulnerabilities, and management responses. In TBAM maintenance of functioning ecosystems is balanced with provisioning for human subsistence and livelihoods. We first identified trait-based groups of food fish in a Pacific coral reef with hierarchical clustering. Positing that trait-based groups performing comparable functions respond similarly to both stressors and management actions, we ascertained biophysical and socioeconomic drivers of trait-group biomass and evaluated their vulnerabilities with generalized additive models. Clustering identified 7 trait groups from 131 species. Groups responded to different drivers and displayed divergent vulnerabilities; human activities emerged as important predictors of community structuring. Biomass of small, solitary reef-associated species increased with distance from key fishing ports, and large, solitary piscivores exhibited a decline in biomass with distance from a port. Group biomass also varied in response to different habitat types, the presence or absence of reported dynamite fishing activity, and exposure to wave energy. The differential vulnerabilities of trait groups revealed how the community structure of food fishes is driven by different aspects of resource use and habitat. This inherent variability in the responses of trait-based groups presents opportunities to apply selective TBAM strategies for complex, multispecies fisheries. This approach can be widely adjusted to suit local contexts and priorities.
Collapse
Affiliation(s)
- Louise Anderson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter Houk
- Marine Laboratory, University of Guam, Mangilao, Guam
| | - Mark G R Miller
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Javier Cuetos-Bueno
- Marine Laboratory, University of Guam, Mangilao, Guam
- The Nature Conservancy, Mangilao, Guam
| | - Curtis Graham
- Department of Marine Resources, Weno, Federated States of Micronesia
| | - Kriskitina Kanemoto
- FSM Ridge to Reef Program, Department of Marine Resources, Weno, Federated States of Micronesia
| | - Elizabeth Terk
- The Nature Conservancy, Kolonia, Federated States of Micronesia
| | | | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Centre for Biodiversity and Conservation Science, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
15
|
Carlot J, Rouzé H, Barneche DR, Mercière A, Espiau B, Cardini U, Brandl SJ, Casey JM, Pérez‐Rosales G, Adjeroud M, Hédouin L, Parravicini V. Scaling up calcification, respiration, and photosynthesis rates of six prominent coral taxa. Ecol Evol 2022; 12:e8613. [PMID: 35342609 PMCID: PMC8933251 DOI: 10.1002/ece3.8613] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 11/10/2022] Open
Abstract
Coral reefs provide a range of important services to humanity, which are underpinned by community-level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species-specific abundances in the field. For colonial animals such as reef-building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates - calcification, respiration, and photosynthesis - considering the colony size for six prominent, reef-building coral taxa in Mo'orea, French Polynesia. After a seven-day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area-specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony-size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef-building coral physiology not only improves our understanding of community-level coral reef functioning but it may also explain species-specific responses to disturbances.
Collapse
Affiliation(s)
- Jeremy Carlot
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
- CESAB ‐ FRBMontpellierFrance
| | - Héloïse Rouzé
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
| | - Diego R. Barneche
- Australian Institute of Marine ScienceCrawleyWestern AustraliaAustralia
- Oceans InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Alexandre Mercière
- Laboratoire d’Excellence “CORAIL”ParisFrance
- PSL Université ‐ EPHE‐UPVD‐CNRSUSR 3278 CRIOBEPapetoaiFrench Polynesia
| | - Benoit Espiau
- Laboratoire d’Excellence “CORAIL”ParisFrance
- PSL Université ‐ EPHE‐UPVD‐CNRSUSR 3278 CRIOBEPapetoaiFrench Polynesia
| | - Ulisse Cardini
- Integrative Marine Ecology DepartmentStazione Zoologica Anton DohrnNational Institute of Marine Biology, Ecology and BiotechnologyNapoliItaly
- Marine Research InstituteUniversity of KlaipedaKlaipedaLithuania
| | - Simon J. Brandl
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
- CESAB ‐ FRBMontpellierFrance
- Department of Marine ScienceThe University of Texas at AustinMarine Science InstitutePort AransasTexasUSA
| | - Jordan M. Casey
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
- Department of Marine ScienceThe University of Texas at AustinMarine Science InstitutePort AransasTexasUSA
| | - Gonzalo Pérez‐Rosales
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
- PSL Université ‐ EPHE‐UPVD‐CNRSUSR 3278 CRIOBEPapetoaiFrench Polynesia
| | - Mehdi Adjeroud
- Laboratoire d’Excellence “CORAIL”ParisFrance
- CESAB ‐ FRBMontpellierFrance
- ENTROPIE, IRDUniversité de la Réunion, Université de la Nouvelle‐CalédonieCNRS, IfremerPerpignanFrance
| | - Laetitia Hédouin
- Laboratoire d’Excellence “CORAIL”ParisFrance
- PSL Université ‐ EPHE‐UPVD‐CNRSUSR 3278 CRIOBEPapetoaiFrench Polynesia
| | - Valeriano Parravicini
- PSL Université ParisUSR 3278 CRIOBE ‐ EPHE‐UPVD‐CNRSPerpignanFrance
- Laboratoire d’Excellence “CORAIL”ParisFrance
- CESAB ‐ FRBMontpellierFrance
| |
Collapse
|
16
|
A Risk Screening of Potential Invasiveness of Alien and Neonative Marine Fishes in the Mediterranean Sea: Implications for Sustainable Management. SUSTAINABILITY 2021. [DOI: 10.3390/su132413765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biological invasions have posed a major threat to global and regional biodiversity. The Mediterranean Sea, one of the major biodiversity hotspots in the world, has long suffered multiple and frequent invasion events. This paper represents the screening results of the potential invasiveness of 23 introduced marine fish species, which are classified as neonative and alien. To predict the invasiveness potential of species under current and predicted climate conditions, the Aquatic Species Invasiveness Screening Kit (AS-ISK) is applied. Thresholds have been constituted to classify low, medium and high-risk species by receiver operative characteristic curve analysis (ROC). The calibrated basic and climate-change threshold assessment scores used to classify species from low, to medium to high risk were computed between 27.5 and 33.0 respectively. Based on these thresholds, under current climatic conditions, 15 species were high risk, while the remaining species were medium risk, and the Chaetodipterus faber and the Holocentrus adscensionis switched from the medium-risk to the high-risk group under future climatic conditions. The highest score belonged to Fistularia petimba, followed by Siganus fuscescens, Abudefduf spp., Acanthurus monroviae and Lutjanus argentimaculatus. This study focused on the species that have not been assessed for their invasiveness potential, and the results can provide important insights into their sustainable management in the future.
Collapse
|
17
|
Morais RA, Siqueira AC, Smallhorn-West PF, Bellwood DR. Spatial subsidies drive sweet spots of tropical marine biomass production. PLoS Biol 2021; 19:e3001435. [PMID: 34727097 PMCID: PMC8562822 DOI: 10.1371/journal.pbio.3001435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 10/04/2021] [Indexed: 11/18/2022] Open
Abstract
Spatial subsidies increase local productivity and boost consumer abundance beyond the limits imposed by local resources. In marine ecosystems, deeper water and open ocean subsidies promote animal aggregations and enhance biomass that is critical for human harvesting. However, the scale of this phenomenon in tropical marine systems remains unknown. Here, we integrate a detailed assessment of biomass production in 3 key locations, spanning a major biodiversity and abundance gradient, with an ocean-scale dataset of fish counts to predict the extent and magnitude of plankton subsidies to fishes on coral reefs. We show that planktivorous fish-mediated spatial subsidies are widespread across the Indian and Pacific oceans and drive local spikes in biomass production that can lead to extreme productivity, up to 30 kg ha-1 day-1. Plankton subsidies form the basis of productivity "sweet spots" where planktivores provide more than 50% of the total fish production, more than all other trophic groups combined. These sweet spots operate at regional, site, and smaller local scales. By harvesting oceanic productivity, planktivores bypass spatial constraints imposed by local primary productivity, creating "oases" of tropical fish biomass that are accessible to humans.
Collapse
Affiliation(s)
- Renato A. Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Alexandre C. Siqueira
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| | - Patrick F. Smallhorn-West
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
- WorldFish, Bayan Lepas, Malaysia
| | - David R. Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering, James Cook University, Townsville, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
18
|
Chee SY, Firth LB, Then AYH, Yee JC, Mujahid A, Affendi YA, Amir AA, Lau CM, Ooi JLS, Quek YA, Tan CE, Yap TK, Yeap CA, McQuatters-Gollop A. Enhancing Uptake of Nature-Based Solutions for Informing Coastal Sustainable Development Policy and Planning: A Malaysia Case Study. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.708507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nature-based Solutions (NbS) have been advocated to protect, sustainably manage, and restore natural or modified ecosystems, simultaneously providing human well-being and biodiversity benefits. The uptake of NbS differs regionally with some countries exhibiting greater uptake than others. The success of NbS also differs regionally with varying environmental conditions and social-ecological processes. In many regions, the body of knowledge, particularly around the efficacy of such efforts, remains fragmented. Having an “inventory” or “tool box” of regionally-trialed methods, outcomes and lessons learnt can improve the evidence base, inform adaptive management, and ultimately support the uptake of NbS. Using Malaysia as a case study, we provide a comprehensive overview of trialed and tested NbS efforts that used nature to address societal challenges in marine and coastal environments (here referring to mangroves, seagrass, coral reefs), and detailed these efforts according to their objectives, as well as their anticipated and actual outcomes. The NbS efforts were categorized according to the IUCN NbS approach typology and mapped to provide a spatial overview of IUCN NbS effort types. A total of 229 NbS efforts were collated, representing various levels of implementation success. From the assessment of these efforts, several key actions were identified as a way forward to enhance the uptake of Nature-based Solutions for informing coastal sustainable development policy and planning. These include increasing education, training, and knowledge sharing; rationalizing cooperation across jurisdictions, laws, and regulations; enhancing environmental monitoring; leveraging on existing policies; enabling collaboration and communication; and implementing sustainable finance instruments. These findings can be used to inform the improved application and uptake of NbS, globally.
Collapse
|
19
|
Tebbett SB, Morais RA, Goatley CHR, Bellwood DR. Collapsing ecosystem functions on an inshore coral reef. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 289:112471. [PMID: 33812145 DOI: 10.1016/j.jenvman.2021.112471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Ecosystem functions underpin productivity and key services to humans, such as food provision. However, as the severity of environmental stressors intensifies, it is becoming increasingly unclear if, and to what extent, critical functions and services can be sustained. This issue is epitomised on coral reefs, an ecosystem at the forefront of environmental transitions. We provide a functional profile of a coral reef ecosystem, linking time-series data to quantified processes. The data reveal a prolonged collapse of ecosystem functions in this previously resilient system. The results suggest that sediment accumulation in algal turfs has led to a decline in resource yields to herbivorous fishes and a decrease in fish-based ecosystem functions, including a collapse of both fish biomass and productivity. Unfortunately, at present, algal turf sediment accumulation is rarely monitored nor managed in coral reef systems. Our examination of functions through time highlights the value of directly assessing functions, their potential vulnerability, and the capacity of algal turf sediments to overwhelm productive high-diversity coral reef ecosystems.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - Renato A Morais
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| | - Christopher H R Goatley
- Function, Evolution and Anatomy Research Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales, 2351, Australia; Australian Museum Research Institute, Australian Museum, 1 William Street, Sydney, New South Wales, 2010, Australia
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
20
|
Tebbett SB, Bellwood DR. Algal turf productivity on coral reefs: A meta-analysis. MARINE ENVIRONMENTAL RESEARCH 2021; 168:105311. [PMID: 33798994 DOI: 10.1016/j.marenvres.2021.105311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/14/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
Algal turfs are an abundant and highly productive component of coral reef ecosystems. However, our understanding of the drivers that shape algal turf productivity across studies and among reefs is limited. Based on published studies we considered how different factors may shape turf productivity and turnover rates. Of the factors considered, depth was the primary driver of turf productivity rates, while turnover was predominantly related to turf biomass. We also highlight shortcomings in the available data collected on turf productivity to-date; most data were collected prior to global coral bleaching events, within a limited geographic range, and were largely from experimental substrata. Despite the fact turfs are a widespread benthic covering on most coral reefs, and one of the major sources of benthic productivity, our understanding of their productivity is constrained by both a paucity of data and methodological limitations. We offer a potential way forward to address these challenges.
Collapse
Affiliation(s)
- Sterling B Tebbett
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia.
| | - David R Bellwood
- Research Hub for Coral Reef Ecosystem Functions, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, 4811, Australia
| |
Collapse
|
21
|
Fraser KM, Lefcheck JS, Ling SD, Mellin C, Stuart-Smith RD, Edgar GJ. Production of mobile invertebrate communities on shallow reefs from temperate to tropical seas. Proc Biol Sci 2020; 287:20201798. [PMID: 33352078 PMCID: PMC7779515 DOI: 10.1098/rspb.2020.1798] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/27/2020] [Indexed: 11/12/2022] Open
Abstract
Primary productivity of marine ecosystems is largely driven by broad gradients in environmental and ecological properties. By contrast, secondary productivity tends to be more variable, influenced by bottom-up (resource-driven) and top-down (predatory) processes, other environmental drivers, and mediation by the physical structure of habitats. Here, we use a continental-scale dataset on small mobile invertebrates (epifauna), common on surfaces in all marine ecosystems, to test influences of potential drivers of temperature-standardized secondary production across a large biogeographic range. We found epifaunal production to be remarkably consistent along a temperate to tropical Australian latitudinal gradient of 28.6°, spanning kelp forests to coral reefs (approx. 3500 km). Using a model selection procedure, epifaunal production was primarily related to biogenic habitat group, which explained up to 45% of total variability. Production was otherwise invariant to predictors capturing primary productivity, the local biomass of fishes (proxy for predation pressure), and environmental, geographical, and human impacts. Highly predictable levels of epifaunal productivity associated with distinct habitat groups across continental scales should allow accurate modelling of the contributions of these ubiquitous invertebrates to coastal food webs, thus improving understanding of likely changes to food web structure with ocean warming and other anthropogenic impacts on marine ecosystems.
Collapse
Affiliation(s)
- K. M. Fraser
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - J. S. Lefcheck
- Tennenbaum Marine Observatories Network, MarineGEO, Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - S. D. Ling
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - C. Mellin
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
- The Environment Institute and School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R. D. Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| | - G. J. Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, Tasmania 7053, Australia
| |
Collapse
|
22
|
Heather FJ, Blanchard JL, Edgar GJ, Trebilco R, Stuart‐Smith RD. Globally consistent reef size spectra integrating fishes and invertebrates. Ecol Lett 2020; 24:572-579. [DOI: 10.1111/ele.13661] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Freddie J. Heather
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Graham J. Edgar
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| | - Rowan Trebilco
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
- CSIRO Oceans and Atmosphere Battery Point Hobart TAS7004Australia
| | - Rick D. Stuart‐Smith
- Institute for Marine and Antarctic Studies University of Tasmania 20 Castray Esplanade, Battery Point Hobart TAS7004Australia
| |
Collapse
|
23
|
Morais RA, Depczynski M, Fulton C, Marnane M, Narvaez P, Huertas V, Brandl SJ, Bellwood DR. Severe coral loss shifts energetic dynamics on a coral reef. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Renato A. Morais
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Martial Depczynski
- Australian Institute of Marine Science Indian Ocean Marine Research Centre University of Western Australia, Crawley WA Australia
- Oceans Institute University of Western Australia, Crawley WA Australia
| | - Christopher Fulton
- Research School of Biology The Australian National University Canberra ACT Australia
| | | | - Pauline Narvaez
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture James Cook University Townsville Qld Australia
| | - Victor Huertas
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Simon J. Brandl
- Department of Biological Sciences Simon Fraser University Burnaby BC Canada
- PSL Université Paris: CNRS‐EPHE‐UPVD USR3278 CRIOBE Université de Perpignan Perpignan France
| | - David R. Bellwood
- College of Science and Engineering James Cook University Townsville Qld Australia
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| |
Collapse
|