1
|
Huang W, Chen J, Yang E, Meng L, Feng Y, Chen Y, Huang Z, Tan R, Xiao Z, Zhou Y, Xu M, Yu K. Heat-tolerant subtropical Porites lutea may be better adapted to future climate change than tropical one in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 962:178381. [PMID: 39799646 DOI: 10.1016/j.scitotenv.2025.178381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/28/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025]
Abstract
Coral reefs are degrading at an accelerating rate owing to climate change. Understanding the heat stress tolerance of corals is vital for their sustainability. However, this tolerance varies substantially geographically, and information regarding coral responses across latitudes is lacking. In this study, we conducted a high temperature (34 °C) stress experiment on Porites lutea from tropical Xisha Islands (XS) and subtropical Daya Bay (DY) in the South China Sea (SCS). We compared physiological levels, antioxidant activities, and transcriptome sequencing to explore heat tolerance mechanisms and adaptive potential. At 34 °C, both XS and DY corals experienced significant bleaching and the physiological/biochemical index decreased, with XS corals exhibiting greater changes than DY corals. Transcriptome analysis revealed that coral hosts respond to heat stress mainly by boosting metabolic activity. The subtle transcriptional responses of zooxanthellae C15 underscored the host's pivotal role in thermal stress responses. DY coral hosts showed lower bleaching, stronger physiological plasticity, and higher temperature tolerance thresholds than XS, indicating superior heat tolerance. This superiority is linked to negative feedback transcriptional regulation strategies, including active environmental stress response and genetic information damage repair. The differences in thermal adaptability between tropical and subtropical P. lutea in the SCS may be attributed to their genetic differences and native habitat environments, suggesting that subtropical P. lutea may have the potential to adapt to future climate change. This study provides novel insights for predicting the fate of corals at different latitudes in terms of global warming and provides instructive guidance for coral reef ecological restoration.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| | - Jinlian Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yi Feng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinmin Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zhihua Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Zunyong Xiao
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yupeng Zhou
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Mingpei Xu
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
2
|
Armstrong KC, Lippert M, Hanson E, Nestor V, Cornwell B, Walker NS, Golbuu Y, Palumbi SR. Fine-Scale Geographic Variation of Cladocopium in Acropora hyacinthus Across the Palauan Archipelago. Ecol Evol 2024; 14:e70650. [PMID: 39691438 PMCID: PMC11650750 DOI: 10.1002/ece3.70650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/02/2024] [Accepted: 11/14/2024] [Indexed: 12/19/2024] Open
Abstract
Symbiont genotype plays a vital role in the ability of a coral host to tolerate rising ocean temperatures, with some members of the family Symbiodiniaceae possessing more thermal tolerance than others. While existing studies on genetic structure in symbiont populations have focused on broader scales of 10-100 s of km, there is a noticeable gap in understanding the seascape genetics of coral symbionts at finer-yet ecologically and evolutionarily relevant-scales. Here, we mapped short reads from 271 holobiont genome libraries of individual Acropora hyacinthus colonies to protein coding genes from the chloroplast genome to identify patterns of symbiont population genetic structure. Utilizing this low-pass method, we assayed over 13,000 bases from every individual, enabling us to discern genetic variation at a finer geographic scale than previously reported at the population level. We identified five common Cladocopium chloroplast SNP profiles present across Palau, with symbiont structure varying between Northern, mid-lagoon, and Southern regions, and inshore-offshore gradients. Although symbiont populations within reefs typically contained significant genetic diversity, we also observed genetic structure between some nearby reefs. To explore whether coral hosts retain their symbionts post-transplantation, we experimentally moved 79 corals from their native reefs to transplant sites with both different and similar chloroplast SNP profiles. Over 12 months, we observed 12 instances where transplanted corals changed profiles, often transitioning to a profile present in adjacent corals. Symbiont genetic structure between reefs suggests either low dispersal of symbionts or environmental selection against dispersers, both resulting in the potential for significant adaptive differentiation across reef environments. The extent to which local corals and their symbionts are co-adapted to environments on a reef-by-reef scale is currently poorly known. Chloroplast sequences offer an additional tool for monitoring symbiont genetics and coral-symbiont interactions when assisted migration is used in restoration.
Collapse
Affiliation(s)
- Katrina C. Armstrong
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Marilla Lippert
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Erik Hanson
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Brendan Cornwell
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | - Nia S. Walker
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| | | | - Stephen R. Palumbi
- Department of BiologyHopkins Marine Station of Stanford UniversityPacific GroveCaliforniaUSA
| |
Collapse
|
3
|
Gantt SE, Kemp KM, Colin PL, Hoadley KD, LaJeunesse TC, Warner ME, Kemp DW. Influence of reef habitat on coral microbial associations. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e70051. [PMID: 39517101 PMCID: PMC11549029 DOI: 10.1111/1758-2229.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Corals have complex symbiotic associations that can be influenced by the environment. We compare symbiotic dinoflagellate (family: Symbiodiniaceae) associations and the microbiome of five scleractinian coral species from three different reef habitats in Palau, Micronesia. Although pH and temperature corresponded with specific host-Symbiodiniaceae associations common to the nearshore and offshore habitats, bacterial community dissimilarity analyses indicated minimal influence of these factors on microbial community membership for the corals Coelastrea aspera, Psammocora digitata, and Pachyseris rugosa. However, coral colonies sampled close to human development exhibited greater differences in microbial community diversity compared to the nearshore habitat for the coral species Coelastrea aspera, Montipora foliosa, and Pocillopora acuta, and the offshore habitat for Coelastrea aspera, while also showing less consistency in Symbiodiniaceae associations. These findings indicate the influence that habitat location has on the bacterial and Symbiodiniaceae communities comprising the coral holobiont and provide important considerations for the conservation of coral reef communities, especially for island nations with increasing human populations and development.
Collapse
Affiliation(s)
- Shelby E. Gantt
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Keri M. Kemp
- Department of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | | | - Kenneth D. Hoadley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
- Dauphin Island Sea LabDauphin IslandAlabamaUSA
| | - Todd C. LaJeunesse
- Department of BiologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Mark E. Warner
- School of Marine Science and PolicyUniversity of DelawareLewesDelawareUSA
| | - Dustin W. Kemp
- Department of BiologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
4
|
Nitschke MR, Abrego D, Allen CE, Alvarez-Roa C, Boulotte NM, Buerger P, Chan WY, Fae Neto WA, Ivory E, Johnston B, Meyers L, Parra V C, Peplow L, Perez T, Scharfenstein HJ, van Oppen MJH. The use of experimentally evolved coral photosymbionts for reef restoration. Trends Microbiol 2024; 32:1241-1252. [PMID: 38942718 DOI: 10.1016/j.tim.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
The heat tolerance of corals is largely determined by their microbial photosymbionts (Symbiodiniaceae, colloquially known as zooxanthellae). Therefore, manipulating symbiont communities may enhance the ability of corals to survive summer heatwaves. Although heat-tolerant and -sensitive symbiont species occur in nature, even corals that harbour naturally tolerant symbionts have been observed to bleach during summer heatwaves. Experimental evolution (i.e., laboratory selection) of Symbiodiniaceae cultures under elevated temperatures has been successfully used to enhance their upper thermal tolerance, both in vitro and, in some instances, following their reintroduction into corals. In this review, we present the state of this intervention and its potential role within coral reef restoration, and discuss the next critical steps required to bridge the gap to implementation.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David Abrego
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Corinne E Allen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | | | | | - Patrick Buerger
- Australian Institute of Marine Science, Townsville, QLD, Australia; Applied BioSciences, Macquarie University, Sydney, NSW, Australia
| | - Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia; Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | | | - Elizabeth Ivory
- Australian Institute of Marine Science, Townsville, QLD, Australia; Faculty of Science and Engineering, Southern Cross University, East Lismore, NSW, Australia
| | - Bede Johnston
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Luka Meyers
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Catalina Parra V
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Lesa Peplow
- Australian Institute of Marine Science, Townsville, QLD, Australia
| | - Tahirih Perez
- Australian Institute of Marine Science, Townsville, QLD, Australia; College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Hugo J Scharfenstein
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, QLD, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
5
|
Burgess SC, Turner AM, Johnston EC. Niche breadth and divergence in sympatric cryptic coral species ( Pocillopora spp.) across habitats within reefs and among algal symbionts. Evol Appl 2024; 17:e13762. [PMID: 39100752 PMCID: PMC11294925 DOI: 10.1111/eva.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/05/2024] [Accepted: 07/10/2024] [Indexed: 08/06/2024] Open
Abstract
While the presence of morphologically cryptic species is increasingly recognized, we still lack a useful understanding of what causes and maintains co-occurring cryptic species and its consequences for the ecology, evolution, and conservation of communities. We sampled 724 Pocillopora corals from five habitat zones (the fringing reef, back reef, and fore reef at 5, 10, and 20 m) at four sites around the island of Moorea, French Polynesia. Using validated genetic markers, we identified six sympatric species of Pocillopora, most of which cannot be reliably identified based on morphology: P. meandrina (42.9%), P. tuahiniensis (25.1%), P. verrucosa (12.2%), P. acuta (10.4%), P. grandis (7.73%), and P. cf. effusa (2.76%). For 423 colonies (58% of the genetically identified hosts), we also used psbA ncr or ITS2 markers to identify symbiont species (Symbiodiniaceae). The relative abundance of Pocillopora species differed across habitats within the reef. Sister taxa P. verrucosa and P. tuahiniensis had similar niche breadths and hosted the same specialist symbiont species (mostly Cladocopium pacificum) but the former was more common in the back reef and the latter more common deeper on the fore reef. In contrast, sister taxa P. meandrina and P. grandis had the highest niche breadths and overlaps and tended to host the same specialist symbiont species (mostly C. latusorum). Pocillopora acuta had the narrowest niche breadth and hosted the generalist, and more thermally tolerant, Durusdinium gynnii. Overall, there was a positive correlation between reef habitat niche breadth and symbiont niche breadth-Pocillopora species with a broader habitat niche also had a broader symbiont niche. Our results show how fine-scale variation within reefs plays an important role in the generation and coexistence of cryptic species. The results also have important implications for how niche differences affect community resilience, and for the success of coral restoration practices, in ways not previously appreciated.
Collapse
Affiliation(s)
- Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Alyssa M. Turner
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
- Present address:
Hawai‘i Institute of Marine BiologyKāne‘oheHawaiiUSA
| |
Collapse
|
6
|
Deore P, Tsang Min Ching SJ, Nitschke MR, Rudd D, Brumley DR, Hinde E, Blackall LL, van Oppen MJH. Unique photosynthetic strategies employed by closely related Breviolum minutum strains under rapid short-term cumulative heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4005-4023. [PMID: 38636949 PMCID: PMC11233414 DOI: 10.1093/jxb/erae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
The thermal tolerance of symbiodiniacean photo-endosymbionts largely underpins the thermal bleaching resilience of their cnidarian hosts such as corals and the coral model Exaiptasia diaphana. While variation in thermal tolerance between species is well documented, variation between conspecific strains is understudied. We compared the thermal tolerance of three closely related strains of Breviolum minutum represented by two internal transcribed spacer region 2 profiles (one strain B1-B1o-B1g-B1p and the other two strains B1-B1a-B1b-B1g) and differences in photochemical and non-photochemical quenching, de-epoxidation state of photopigments, and accumulation of reactive oxygen species under rapid short-term cumulative temperature stress (26-40 °C). We found that B. minutum strains employ distinct photoprotective strategies, resulting in different upper thermal tolerances. We provide evidence for previously unknown interdependencies between thermal tolerance traits and photoprotective mechanisms that include a delicate balancing of excitation energy and its dissipation through fast relaxing and state transition components of non-photochemical quenching. The more thermally tolerant B. minutum strain (B1-B1o-B1g-B1p) exhibited an enhanced de-epoxidation that is strongly linked to the thylakoid membrane melting point and possibly membrane rigidification minimizing oxidative damage. This study provides an in-depth understanding of photoprotective mechanisms underpinning thermal tolerance in closely related strains of B. minutum.
Collapse
Affiliation(s)
- Pranali Deore
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | | | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington 6102, New Zealand
| | - David Rudd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Douglas R Brumley
- School of Mathematics and Statistics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Elizabeth Hinde
- School of Physics, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Linda L Blackall
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
| | - Madeleine J H van Oppen
- School of BioSciences, The University of Melbourne, Parkville 3010, Victoria, Australia
- Australian Institute of Marine Science, Townsville 4810, Queensland, Australia
| |
Collapse
|
7
|
Huang W, Meng L, Xiao Z, Tan R, Yang E, Wang Y, Huang X, Yu K. Heat-tolerant intertidal rock pool coral Porites lutea can potentially adapt to future warming. Mol Ecol 2024; 33:e17273. [PMID: 38265168 DOI: 10.1111/mec.17273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
The growing threat of global warming on coral reefs underscores the urgency of identifying heat-tolerant corals and discovering their adaptation mechanisms to high temperatures. Corals growing in intertidal rock pools that vary markedly in daily temperature may have improved heat tolerance. In this study, heat stress experiments were performed on scleractinian coral Porites lutea from subtidal habitat and intertidal rock pool of Weizhou Island in the northern South China Sea. Thermotolerance differences in corals from the two habitats and their mechanisms were explored through phenotype, physiological indicators, ITS2, 16S rRNA, and RNA sequencing. At the extremely high temperature of 34°C, rock pool P. lutea had a stronger heat tolerance than those in the subtidal habitat. The strong antioxidant capacity of the coral host and its microbial partners was important in the resistance of rock pool corals to high temperatures. The host of rock pool corals at 34°C had stronger immune and apoptotic regulation, downregulated host metabolism and disease-infection-related pathways compared to the subtidal habitat. P. lutea, in this habitat, upregulated Cladocopium C15 (Symbiodiniaceae) photosynthetic efficiency and photoprotection, and significantly increased bacterial diversity and coral probiotics, including ABY1, Ruegeria, and Alteromonas. These findings indicate that rock pool corals can tolerate high temperatures through the integrated response of coral holobionts. These corals may be 'touchstones' for future warming. Our research provides new insights into the complex mechanisms by which corals resist global warming and the theoretical basis for coral reef ecosystem restoration and selection of stress-resistant coral populations.
Collapse
Affiliation(s)
- Wen Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Linqing Meng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zunyong Xiao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Ronghua Tan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Enguang Yang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yonggang Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
8
|
McQuagge A, Pahl KB, Wong S, Melman T, Linn L, Lowry S, Hoadley KD. Cellular traits regulate fluorescence-based light-response phenotypes of coral photosymbionts living in-hospite. Front Physiol 2023; 14:1244060. [PMID: 37885802 PMCID: PMC10598705 DOI: 10.3389/fphys.2023.1244060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Diversity across algal family Symbiodiniaceae contributes to the environmental resilience of certain coral species. Chlorophyll-a fluorescence measurements are frequently used to determine symbiont health and resilience, but more work is needed to refine these tools and establish how they relate to underlying cellular traits. We examined trait diversity in symbionts from the generas Cladocopium and Durusdinium, collected from 12 aquacultured coral species. Photophysiological metrics (ΦPSII, σPSII, ρ, τ1, τ2, antenna bed quenching, non-photochemical quenching, and qP) were assessed using a prototype multi-spectral fluorometer over a variable light protocol which yielded a total of 1,360 individual metrics. Photophysiological metrics were then used to establish four unique light-response phenotypic variants. Corals harboring C15 were predominantly found within a single light-response phenotype which clustered separately from all other coral fragments. The majority of Durusdinium dominated colonies also formed a separate light-response phenotype which it shared with a few C1 dominated corals. C15 and D1 symbionts appear to differ in which mechanisms they use to dissipate excess light energy. Spectrally dependent variability is also observed across light-response phenotypes that may relate to differences in photopigment utilization. Symbiont cell biochemical and structural traits (atomic C:N:P, cell size, chlorophyll-a, neutral lipid content) was also assessed within each sample and differ across light-response phenotypes, linking photophysiological metrics with underlying primary cellular traits. Strong correlations between first- and second-order traits, such as Quantum Yield and cellular N:P content, or light dissipation pathways (qP and NPQ) and C:P underline differences across symbiont types and may also provide a means for using fluorescence-based metrics as biomarkers for certain primary-cellular traits.
Collapse
Affiliation(s)
- Audrey McQuagge
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - K. Blue Pahl
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sophie Wong
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
- Department of Environmental Science, University of Virginia, Charlottesville, VA, United States
| | - Todd Melman
- Reef Systems Coral Farm, New Albany, OH, United States
| | - Laura Linn
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Sean Lowry
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| | - Kenneth D. Hoadley
- Department of Biology, University of Alabama, Tuscaloosa, AL, United States
- Dauphin Island Sea Lab, Dauphin Island, AL, United States
| |
Collapse
|
9
|
Kemp DW, Hoadley KD, Lewis AM, Wham DC, Smith RT, Warner ME, LaJeunesse TC. Thermotolerant coral-algal mutualisms maintain high rates of nutrient transfer while exposed to heat stress. Proc Biol Sci 2023; 290:20231403. [PMID: 37727091 PMCID: PMC10509592 DOI: 10.1098/rspb.2023.1403] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Symbiotic mutualisms are essential to ecosystems and numerous species across the tree of life. For reef-building corals, the benefits of their association with endosymbiotic dinoflagellates differ within and across taxa, and nutrient exchange between these partners is influenced by environmental conditions. Furthermore, it is widely assumed that corals associated with symbionts in the genus Durusdinium tolerate high thermal stress at the expense of lower nutrient exchange to support coral growth. We traced both inorganic carbon (H13CO3-) and nitrate (15NO3-) uptake by divergent symbiont species and quantified nutrient transfer to the host coral under normal temperatures as well as in colonies exposed to high thermal stress. Colonies representative of diverse coral taxa associated with Durusdinium trenchii or Cladocopium spp. exhibited similar nutrient exchange under ambient conditions. By contrast, heat-exposed colonies with D. trenchii experienced less physiological stress than conspecifics with Cladocopium spp. while high carbon assimilation and nutrient transfer to the host was maintained. This discovery differs from the prevailing notion that these mutualisms inevitably suffer trade-offs in physiological performance. These findings emphasize that many host-symbiont combinations adapted to high-temperature equatorial environments are high-functioning mutualisms; and why their increased prevalence is likely to be important to the future productivity and stability of coral reef ecosystems.
Collapse
Affiliation(s)
- Dustin W. Kemp
- Department of Biology, University of Alabama at Birmingham, AL, USA
| | | | - Allison M. Lewis
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Drew C. Wham
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, VI, USA
| | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Wang C, Zheng X, Kvitt H, Sheng H, Sun D, Niu G, Tchernov D, Shi T. Lineage-specific symbionts mediate differential coral responses to thermal stress. MICROBIOME 2023; 11:211. [PMID: 37752514 PMCID: PMC10521517 DOI: 10.1186/s40168-023-01653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
BACKGROUND Ocean warming is a leading cause of increasing episodes of coral bleaching, the dissociation between coral hosts and their dinoflagellate algal symbionts in the family Symbiodiniaceae. While the diversity and flexibility of Symbiodiniaceae is presumably responsible for variations in coral response to physical stressors such as elevated temperature, there is little data directly comparing physiological performance that accounts for symbiont identity associated with the same coral host species. Here, using Pocillopora damicornis harboring genotypically distinct Symbiodiniaceae strains, we examined the physiological responses of the coral holobiont and the dynamics of symbiont community change under thermal stress in a laboratory-controlled experiment. RESULTS We found that P. damicornis dominated with symbionts of metahaplotype D1-D4-D6 in the genus Durusdinium (i.e., PdD holobiont) was more robust to thermal stress than its counterpart with symbionts of metahaplotype C42-C1-C1b-C1c in the genus Cladocopium (i.e., PdC holobiont). Under ambient temperature, however, the thermally sensitive Cladocopium spp. exhibited higher photosynthetic efficiency and translocated more fixed carbon to the host, likely facilitating faster coral growth and calcification. Moreover, we observed a thermally induced increase in Durusdinium proportion in the PdC holobiont; however, this "symbiont shuffling" in the background was overwhelmed by the overall Cladocopium dominance, which coincided with faster coral bleaching and reduced calcification. CONCLUSIONS These findings support that lineage-specific symbiont dominance is a driver of distinct coral responses to thermal stress. In addition, we found that "symbiont shuffling" may begin with stress-forced, subtle changes in the rare biosphere to eventually trade off growth for increased resilience. Furthermore, the flexibility in corals' association with thermally tolerant symbiont lineages to adapt or acclimatize to future warming oceans should be viewed with conservative optimism as the current rate of environmental changes may outpace the evolutionary capabilities of corals. Video Abstract.
Collapse
Affiliation(s)
- Chenying Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
- Observation and Research Station of Wetland Ecosystem in the Beibu Gulf, Ministry of Natural Resources, Beihai, 536015, China.
| | - Hagit Kvitt
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel
- Israel Oceanographic and Limnological Research, National Center for Mariculture, 88112, Eilat, Israel
| | - Huaxia Sheng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Danye Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Gaofeng Niu
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Tuo Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- Marine Genomics and Biotechnology Program, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510000, China.
| |
Collapse
|
11
|
Starko S, Fifer JE, Claar DC, Davies SW, Cunning R, Baker AC, Baum JK. Marine heatwaves threaten cryptic coral diversity and erode associations among coevolving partners. SCIENCE ADVANCES 2023; 9:eadf0954. [PMID: 37566650 PMCID: PMC10421036 DOI: 10.1126/sciadv.adf0954] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected. Here, we tracked the symbiotic associations of reef-building corals for 6 years through a prolonged heatwave, including known survivorship for 79 of 315 colonies. Coral genetics strongly predicted survival of the ubiquitous coral, Porites (massive growth form), with variable survival (15 to 61%) across three morphologically indistinguishable-but genetically distinct-lineages. The heatwave also disrupted strong associations between these coral lineages and their algal symbionts (family Symbiodiniaceae), with symbiotic turnover in some colonies, resulting in reduced specificity across lineages. These results highlight how heatwaves can threaten cryptic genotypes and decouple otherwise tightly coevolved relationships between hosts and symbionts.
Collapse
Affiliation(s)
- Samuel Starko
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- UWA Oceans Institute and School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - James E. Fifer
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Danielle C. Claar
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Washington Department of Natural Resources, Olympia, WA 98504, USA
| | - Sarah W. Davies
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, 1200 South Lake Shore Drive, Chicago, IL 60605, USA
| | - Andrew C. Baker
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Causeway, Miami, FL 33149, USA
| | - Julia K. Baum
- Department of Biology, University of Victoria, PO Box 1700 Station CSC, Victoria, British Columbia V8W 2Y2, Canada
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI 96744, USA
| |
Collapse
|
12
|
Butler CC, Turnham KE, Lewis AM, Nitschke MR, Warner ME, Kemp DW, Hoegh-Guldberg O, Fitt WK, van Oppen MJH, LaJeunesse TC. Formal recognition of host-generalist species of dinoflagellate (Cladocopium, Symbiodiniaceae) mutualistic with Indo-Pacific reef corals. JOURNAL OF PHYCOLOGY 2023; 59:698-711. [PMID: 37126002 DOI: 10.1111/jpy.13340] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/01/2023]
Abstract
The existence of widespread species with the capacity to endure diverse, or variable, environments are of importance to ecological and genetic research, and conservation. Such "ecological generalists" are more likely to have key adaptations that allow them to better tolerate the physiological challenges of rapid climate change. Reef-building corals are dependent on endosymbiotic dinoflagellates (Family: Symbiodiniaceae) for their survival and growth. While these symbionts are biologically diverse, certain genetic types appear to have broad geographic distributions and are mutualistic with various host species from multiple genera and families in the order Scleractinia that must acquire their symbionts through horizontal transmission. Despite the considerable ecological importance of putative host-generalist symbionts, they lack formal species descriptions. In this study, we used molecular, ecological, and morphological evidence to verify the existence of five new host-generalist species in the symbiodiniacean genus Cladocopium. Their geographic distribution and prevalence among host communities corresponds to prevailing environmental conditions at both regional and local scales. The influence that each species has on host physiology may partially explain regional differences in thermal sensitivities among coral communities. The potential increased prevalence of a generalist species that endures environmental instability is a consequential ecological response to warming oceans. Large-scale shifts in symbiont dominance could ensure reef coral persistence and productivity in the near term. Ultimately, these formal designations should advance scientific communication and generate informed research questions on the physiology and ecology of coral-dinoflagellate mutualisms.
Collapse
Affiliation(s)
- Caleb C Butler
- Penn State University, University Park, Pennsylvania, USA
| | - Kira E Turnham
- Penn State University, University Park, Pennsylvania, USA
| | - Allison M Lewis
- Penn State University, University Park, Pennsylvania, USA
- Lawrence Berkeley National Laboratory, Berkely, California, USA
| | - Matthew R Nitschke
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | | |
Collapse
|
13
|
Turnham KE, Aschaffenburg MD, Pettay DT, Paz-García DA, Reyes-Bonilla H, Pinzón J, Timmins E, Smith RT, McGinley MP, Warner ME, LaJeunesse TC. High physiological function for corals with thermally tolerant, host-adapted symbionts. Proc Biol Sci 2023; 290:20231021. [PMID: 37465983 PMCID: PMC10354691 DOI: 10.1098/rspb.2023.1021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The flexibility to associate with more than one symbiont may considerably expand a host's niche breadth. Coral animals and dinoflagellate micro-algae represent one of the most functionally integrated and widespread mutualisms between two eukaryotic partners. Symbiont identity greatly affects a coral's ability to cope with extremes in temperature and light. Over its broad distribution across the Eastern Pacific, the ecologically dominant branching coral, Pocillopora grandis, depends on mutualisms with the dinoflagellates Durusdinium glynnii and Cladocopium latusorum. Measurements of skeletal growth, calcification rates, total mass increase, calyx dimensions, reproductive output and response to thermal stress were used to assess the functional performance of these partner combinations. The results show both host-symbiont combinations displayed similar phenotypes; however, significant functional differences emerged when exposed to increased temperatures. Negligible physiological differences in colonies hosting the more thermally tolerant D. glynnii refute the prevailing view that these mutualisms have considerable growth tradeoffs. Well beyond the Eastern Pacific, pocilloporid colonies with D. glynnii are found across the Pacific in warm, environmentally variable, near shore lagoonal habitats. While rising ocean temperatures threaten the persistence of contemporary coral reefs, lessons from the Eastern Pacific indicate that co-evolved thermally tolerant host-symbiont combinations are likely to expand ecologically and spread geographically to dominate reef ecosystems in the future.
Collapse
Affiliation(s)
- Kira E. Turnham
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | | | - D. Tye Pettay
- Department of Natural Sciences, University of South Carolina Beaufort, 801 Carteret Street, Beaufort, SC 29902,USA
| | - David A. Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. IPN 195, La Paz, Baja California Sur 23096, México
| | - Héctor Reyes-Bonilla
- Universidad Autónoma de Baja California Sur, Carretera al Sur 5.5, La Paz, C.P 23080, Mexico
| | - Jorge Pinzón
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Ellie Timmins
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| | - Robin T. Smith
- Center for Marine and Environmental Studies, University of the Virgin Islands, St. Thomas, US Virgin Islands
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Todd C. LaJeunesse
- Department of Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Tanvet C, Camp EF, Sutton J, Houlbrèque F, Thouzeau G, Rodolfo‐Metalpa R. Corals adapted to extreme and fluctuating seawater pH increase calcification rates and have unique symbiont communities. Ecol Evol 2023; 13:e10099. [PMID: 37261315 PMCID: PMC10227177 DOI: 10.1002/ece3.10099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Ocean acidification (OA) is a severe threat to coral reefs mainly by reducing their calcification rate. Identifying the resilience factors of corals to decreasing seawater pH is of paramount importance to predict the survivability of coral reefs in the future. This study compared corals adapted to variable pHT (i.e., 7.23-8.06) from the semi-enclosed lagoon of Bouraké, New Caledonia, to corals adapted to more stable seawater pHT (i.e., 7.90-8.18). In a 100-day aquarium experiment, we examined the physiological response and genetic diversity of Symbiodiniaceae from three coral species (Acropora tenuis, Montipora digitata, and Porites sp.) from both sites under three stable pHNBS conditions (8.11, 7.76, 7.54) and one fluctuating pHNBS regime (between 7.56 and 8.07). Bouraké corals consistently exhibited higher growth rates than corals from the stable pH environment. Interestingly, A. tenuis from Bouraké showed the highest growth rate under the 7.76 pHNBS condition, whereas for M. digitata, and Porites sp. from Bouraké, growth was highest under the fluctuating regime and the 8.11 pHNBS conditions, respectively. While OA generally decreased coral calcification by ca. 16%, Bouraké corals showed higher growth rates than corals from the stable pH environment (21% increase for A. tenuis to 93% for M. digitata, with all pH conditions pooled). This superior performance coincided with divergent symbiont communities that were more homogenous for Bouraké corals. Corals adapted to variable pH conditions appear to have a better capacity to calcify under reduced pH compared to corals native to more stable pH condition. This response was not gained by corals from the more stable environment exposed to variable pH during the 100-day experiment, suggesting that long-term exposure to pH fluctuations and/or differences in symbiont communities benefit calcification under OA.
Collapse
Affiliation(s)
- Clément Tanvet
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Univ Brest, CNRS, IRD, Ifremer, LEMARPlouzanéFrance
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| | - Emma F. Camp
- Climate Change ClusterUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Jill Sutton
- Univ Brest, CNRS, IRD, Ifremer, LEMARPlouzanéFrance
| | - Fanny Houlbrèque
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| | | | - Riccardo Rodolfo‐Metalpa
- Centre IRD NouméaUMR ENTROPIE (IRD, Université de la Réunion, Université de la Nouvelle‐Calédonie, Ifremer)NouméaNew Caledonia
- Labex ICONA, International CO2 Natural Analogues NetworkShimodaJapan
| |
Collapse
|
15
|
Matias AMA, Popovic I, Thia JA, Cooke IR, Torda G, Lukoschek V, Bay LK, Kim SW, Riginos C. Cryptic diversity and spatial genetic variation in the coral Acropora tenuis and its endosymbionts across the Great Barrier Reef. Evol Appl 2023; 16:293-310. [PMID: 36793689 PMCID: PMC9923489 DOI: 10.1111/eva.13435] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/20/2022] [Accepted: 05/29/2022] [Indexed: 11/26/2022] Open
Abstract
Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.
Collapse
Affiliation(s)
- Ambrocio Melvin A. Matias
- Institute of BiologyUniversity of the Philippines DilimanQuezon CityPhilippines
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Iva Popovic
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Joshua A. Thia
- Bio21 Institute, School of BioSciencesThe University of MelbourneParkevilleVictoriaAustralia
| | - Ira R. Cooke
- College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Gergely Torda
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
| | - Vimoksalehi Lukoschek
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia
- Gold Coast University HospitalQLD HealthSouthportQueenslandAustralia
| | - Line K. Bay
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Sun W. Kim
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| | - Cynthia Riginos
- School of Biological SciencesThe University of QueenslandSt. LuciaQueenslandAustralia
| |
Collapse
|
16
|
Symbiotic dinoflagellates divert energy away from mutualism during coral bleaching recovery. Symbiosis 2023. [DOI: 10.1007/s13199-023-00901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Ashley IA, Kitchen SA, Gorman LM, Grossman AR, Oakley CA, Suggett DJ, Weis VM, Rosset SL, Davy SK. Genomic conservation and putative downstream functionality of the phosphatidylinositol signalling pathway in the cnidarian-dinoflagellate symbiosis. Front Microbiol 2023; 13:1094255. [PMID: 36777026 PMCID: PMC9909359 DOI: 10.3389/fmicb.2022.1094255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.
Collapse
Affiliation(s)
- Immy A. Ashley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Sheila A. Kitchen
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX, United States
| | - Lucy M. Gorman
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Arthur R. Grossman
- Department of Plant Biology, The Carnegie Institution, Stanford, CA, United States
| | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - David J. Suggett
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, Broadway, NSW, Australia
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Sabrina L. Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand,*Correspondence: Simon K. Davy,
| |
Collapse
|
18
|
Similarities in biomass and energy reserves among coral colonies from contrasting reef environments. Sci Rep 2023; 13:1355. [PMID: 36693980 PMCID: PMC9873650 DOI: 10.1038/s41598-023-28289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Coral reefs are declining worldwide, yet some coral populations are better adapted to withstand reductions in pH and the rising frequency of marine heatwaves. The nearshore reef habitats of Palau, Micronesia are a proxy for a future of warmer, more acidic oceans. Coral populations in these habitats can resist, and recover from, episodes of thermal stress better than offshore conspecifics. To explore the physiological basis of this tolerance, we compared tissue biomass (ash-free dry weight cm-2), energy reserves (i.e., protein, total lipid, carbohydrate content), and several important lipid classes in six coral species living in both offshore and nearshore environments. In contrast to expectations, a trend emerged of many nearshore colonies exhibiting lower biomass and energy reserves than colonies from offshore sites, which may be explained by the increased metabolic demand of living in a warmer, acidic, environment. Despite hosting different dinoflagellate symbiont species and having access to contrasting prey abundances, total lipid and lipid class compositions were similar in colonies from each habitat. Ultimately, while the regulation of colony biomass and energy reserves may be influenced by factors, including the identity of the resident symbiont, kind of food consumed, and host genetic attributes, these independent processes converged to a similar homeostatic set point under different environmental conditions.
Collapse
|
19
|
Davies SW, Gamache MH, Howe-Kerr LI, Kriefall NG, Baker AC, Banaszak AT, Bay LK, Bellantuono AJ, Bhattacharya D, Chan CX, Claar DC, Coffroth MA, Cunning R, Davy SK, del Campo J, Díaz-Almeyda EM, Frommlet JC, Fuess LE, González-Pech RA, Goulet TL, Hoadley KD, Howells EJ, Hume BCC, Kemp DW, Kenkel CD, Kitchen SA, LaJeunesse TC, Lin S, McIlroy SE, McMinds R, Nitschke MR, Oakley CA, Peixoto RS, Prada C, Putnam HM, Quigley K, Reich HG, Reimer JD, Rodriguez-Lanetty M, Rosales SM, Saad OS, Sampayo EM, Santos SR, Shoguchi E, Smith EG, Stat M, Stephens TG, Strader ME, Suggett DJ, Swain TD, Tran C, Traylor-Knowles N, Voolstra CR, Warner ME, Weis VM, Wright RM, Xiang T, Yamashita H, Ziegler M, Correa AMS, Parkinson JE. Building consensus around the assessment and interpretation of Symbiodiniaceae diversity. PeerJ 2023; 11:e15023. [PMID: 37151292 PMCID: PMC10162043 DOI: 10.7717/peerj.15023] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/17/2023] [Indexed: 05/09/2023] Open
Abstract
Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.
Collapse
Affiliation(s)
- Sarah W. Davies
- Department of Biology, Boston University, Boston, MA, United States
| | - Matthew H. Gamache
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| | | | | | - Andrew C. Baker
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Line Kolind Bay
- Australian Institute of Marine Science, Townsville, Australia
| | - Anthony J. Bellantuono
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Danielle C. Claar
- Nearshore Habitat Program, Washington State Department of Natural Resources, Olympia, WA, USA
| | | | - Ross Cunning
- Daniel P. Haerther Center for Conservation and Research, John G. Shedd Aquarium, Chicago, IL, United States
| | - Simon K. Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Javier del Campo
- Institut de Biologia Evolutiva (CSIC - Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | | | - Jörg C. Frommlet
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Lauren E. Fuess
- Department of Biology, Texas State University, San Marcos, TX, United States
| | - Raúl A. González-Pech
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
- Department of Biology, Pennsylvania State University, State College, PA, United States
| | - Tamar L. Goulet
- Department of Biology, University of Mississippi, University, MS, United States
| | - Kenneth D. Hoadley
- Department of Biological Sciences, University of Alabama—Tuscaloosa, Tuscaloosa, AL, United States
| | - Emily J. Howells
- National Marine Science Centre, Faculty of Science and Engineering, Southern Cross University, Coffs Harbour, NSW, Australia
| | | | - Dustin W. Kemp
- Department of Biology, University of Alabama—Birmingham, Birmingham, Al, United States
| | - Carly D. Kenkel
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Sheila A. Kitchen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Todd C. LaJeunesse
- Department of Biology, Pennsylvania State University, University Park, PA, United States
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Mansfield, CT, United States
| | - Shelby E. McIlroy
- Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ryan McMinds
- Center for Global Health and Infectious Disease Research, University of South Florida, Tampa, FL, United States
| | | | - Clinton A. Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Raquel S. Peixoto
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Carlos Prada
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - Hollie M. Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | | | - Hannah G. Reich
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, United States
| | - James Davis Reimer
- Department of Biology, Chemistry and Marine Sciences, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | | - Stephanie M. Rosales
- The Cooperative Institute For Marine and Atmospheric Studies, Miami, FL, United States
| | - Osama S. Saad
- Department of Biological Oceanography, Red Sea University, Port-Sudan, Sudan
| | - Eugenia M. Sampayo
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Scott R. Santos
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Edward G. Smith
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Michael Stat
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, Australia
| | - Timothy G. Stephens
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, United States
| | - Marie E. Strader
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - David J. Suggett
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy D. Swain
- Department of Marine and Environmental Science, Nova Southeastern University, Dania Beach, FL, United States
| | - Cawa Tran
- Department of Biology, University of San Diego, San Diego, CA, United States
| | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, United States
| | | | - Mark E. Warner
- School of Marine Science and Policy, University of Delaware, Lewes, DE, United States
| | - Virginia M. Weis
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| | - Rachel M. Wright
- Department of Biological Sciences, Southern Methodist University, Dallas, TX, United States
| | - Tingting Xiang
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hiroshi Yamashita
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Ishigaki, Okinawa, Japan
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen (Germany), Giessen, Germany
| | | | - John Everett Parkinson
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
20
|
Keshavmurthy S, Chen TR, Liu PJ, Wang JT, Chen CA. Learning from the past is not enough to survive present and future bleaching threshold temperatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158379. [PMID: 36055494 DOI: 10.1016/j.scitotenv.2022.158379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, the frequency of mass coral bleaching events has increased due to seawater temperature anomalies persisting for longer periods. Coral survival from temperature anomalies has been based on how each species in each location responds to stress, which is unique to individual species and may be due to the way stressful experiences accumulate through time in the form of ecological and physiological memory. A deeper understanding of ecological and physiological memory in corals is necessary to understand their survival strategies into the future. Laboratory experiments can help us simulate seawater temperatures experienced by corals in the past and compare their responses to those of the present and future. In this study, we sampled corals with different life history traits from one location perturbed by seawater temperature incursions (variable site) and from a second, relatively undisturbed location (stable site). We sampled across two seasons to observe the responses to bleaching threshold temperatures in the past (1998-29 °C), present (2018-31 °C), and future (2050-33 °C). Corals were healthy at 29 °C and 31 °C, but a fast-growing, temperature-susceptible coral species experienced high mortality at 33 °C compared to a slow-growing, temperature-resistant coral species. Moreover, corals from the variable site and during the spring season fared better under temperature stress. The results of this study provide insight into the possible role of life-history traits on coral's response to seasons and locations in terms of memory to long-term and short-term thermal anomalies and climate change.
Collapse
Affiliation(s)
| | - Ting-Ru Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Jen Liu
- Institute of Marine Biology, National Dong Hwa University, Hualien 974, Taiwan
| | - Jih-Terng Wang
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Chaolun Allen Chen
- Biodiversity Research Centre, Academia Sinica, Nangang, Taipei 115, Taiwan; Department of Life Science, National Taiwan Normal University, Taipei 106, Taiwan; Department of Life Science, Tunghai University, Taichung 404, Taiwan.
| |
Collapse
|
21
|
McWilliam M, Madin JS, Chase TJ, Hoogenboom MO, Bridge TCL. Intraspecific variation reshapes coral assemblages under elevated temperature and acidity. Ecol Lett 2022; 25:2513-2524. [PMID: 36209480 PMCID: PMC9828647 DOI: 10.1111/ele.14114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/01/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023]
Abstract
Insights into assemblages that can persist in extreme environments are still emerging. Ocean warming and acidification select against species with low physiological tolerance (trait-based 'filtering'). However, intraspecific trait variation can promote species adaptation and persistence, with potentially large effects on assemblage structure. By sampling nine coral traits (four morphological, four tissue and one skeletal) along an offshore-inshore gradient in temperature and pH, we show that distantly related coral species undergo consistent intraspecific changes as they cross into warm, acidic environments. Intraspecific variation and species turnover each favoured colonies with greater tissue biomass, higher symbiont densities and reduced skeletal investments, indicating strong filtering on colony physiology within and across species. Physiological tissue traits were highly variable within species and were independent of morphology, enabling morphologically diverse species to cross into sites of elevated temperature and acidity. Widespread intraspecific change can therefore counter the loss of biodiversity and morphological structure across a steep environmental gradient.
Collapse
Affiliation(s)
- Mike McWilliam
- Hawai'i Institute of Marine BiologyUniversity of Hawaiʻi at MānoaKāne'oheHawaiiUSA,Centre for Biological Diversity, Scottish Oceans InstituteUniversity of St AndrewsSt AndrewsUK
| | - Joshua S. Madin
- Hawai'i Institute of Marine BiologyUniversity of Hawaiʻi at MānoaKāne'oheHawaiiUSA
| | - Tory J. Chase
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia,College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia,Department of Geography and the EnvironmentVillanova UniversityVillanovaPennsylvaniaUSA
| | - Mia O. Hoogenboom
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia,College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
| | - Tom C. L. Bridge
- ARC Centre of Excellence for Coral Reef StudiesJames Cook UniversityTownsvilleQueenslandAustralia,Biodiversity and Geosciences ProgramMuseum of Tropical Queensland, Queensland MuseumTownsvilleQueenslandAustralia
| |
Collapse
|
22
|
Johnston EC, Cunning R, Burgess SC. Cophylogeny and specificity between cryptic coral species (Pocillopora spp.) at Mo'orea and their symbionts (Symbiodiniaceae). Mol Ecol 2022; 31:5368-5385. [PMID: 35960256 PMCID: PMC9805206 DOI: 10.1111/mec.16654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/30/2022] [Accepted: 08/08/2022] [Indexed: 01/09/2023]
Abstract
The congruence between phylogenies of tightly associated groups of organisms (cophylogeny) reflects evolutionary links between ecologically important interactions. However, despite being a classic example of an obligate symbiosis, tests of cophylogeny between scleractinian corals and their photosynthetic algal symbionts have been hampered in the past because both corals and algae contain genetically unresolved and morphologically cryptic species. Here, we studied co-occurring, cryptic Pocillopora species from Mo'orea, French Polynesia, that differ in their relative abundance across depth. We constructed new phylogenies of the host Pocillopora (using complete mitochondrial genomes, genomic loci, and thousands of single nucleotide polymorphisms) and their Symbiodiniaceae symbionts (using ITS2 and psbAncr markers) and tested for cophylogeny. The analysis supported the presence of five Pocillopora species on the fore reef at Mo'orea that mostly hosted either Cladocopium latusorum or C. pacificum. Only Pocillopora species hosting C. latusorum also hosted taxa from Symbiodinium and Durusdinium. In general, the Cladocopium phylogeny mirrored the Pocillopora phylogeny. Within Cladocopium species, lineages also differed in their associations with Pocillopora haplotypes, except those showing evidence of nuclear introgression, and with depth in the two most common Pocillopora species. We also found evidence for a new Pocillopora species (haplotype 10), that has so far only been sampled from French Polynesia, that warrants formal identification. The linked phylogenies of these Pocillopora and Cladocopium species and lineages suggest that symbiont speciation is driven by niche diversification in the host, but there is still evidence for symbiont flexibility in some cases.
Collapse
Affiliation(s)
- Erika C. Johnston
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| | - Ross Cunning
- Daniel P. Haerther Center for Conservation and ResearchJohn G. Shedd AquariumChicagoIllinoisUSA
| | - Scott C. Burgess
- Department of Biological ScienceFlorida State UniversityTallahasseeFloridaUSA
| |
Collapse
|
23
|
Nitschke MR, Rosset SL, Oakley CA, Gardner SG, Camp EF, Suggett DJ, Davy SK. The diversity and ecology of Symbiodiniaceae: A traits-based review. ADVANCES IN MARINE BIOLOGY 2022; 92:55-127. [PMID: 36208879 DOI: 10.1016/bs.amb.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.
Collapse
Affiliation(s)
- Matthew R Nitschke
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia.
| | - Sabrina L Rosset
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Clinton A Oakley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Stephanie G Gardner
- Center for Marine Science and Innovation, University of New South Wales Sydney, Kensington, NSW, Australia
| | - Emma F Camp
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - David J Suggett
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, Australia
| | - Simon K Davy
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
24
|
Barnett J, Jarillo S, Swearer SE, Lovelock CE, Pomeroy A, Konlechner T, Waters E, Morris RL, Lowe R. Nature-based solutions for atoll habitability. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210124. [PMID: 35574851 PMCID: PMC9108937 DOI: 10.1098/rstb.2021.0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Atoll societies have adapted their environments and social systems for thousands of years, but the rapid pace of climate change may bring conditions that exceed their adaptive capacities. There is growing interest in the use of ‘nature-based solutions' to facilitate the continuation of dignified and meaningful lives on atolls through a changing climate. However, there remains insufficient evidence to conclude that these can make a significant contribution to adaptation on atolls, let alone to develop standards and guidelines for their implementation. A sustained programme of research to clarify the potential of nature-based solutions to support the habitability of atolls is therefore vital. In this paper, we provide a prospectus to guide this research programme: we explain the challenge climate change poses to atoll societies, discuss past and potential future applications of nature-based solutions and outline an agenda for transdisciplinary research to advance knowledge of the efficacy and feasibility of nature-based solutions to sustain the habitability of atolls. This article is part of the theme issue ‘Nurturing resilient marine ecosystems’.
Collapse
Affiliation(s)
- Jon Barnett
- Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sergio Jarillo
- Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Catherine E Lovelock
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew Pomeroy
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Teresa Konlechner
- School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia.,Wildlife Consultants Ltd, 7A Vulcan Place, Middleton, Christchurch 8024, New Zealand
| | - Elissa Waters
- Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rebecca L Morris
- National Centre for Coasts and Climate, School of BioSciences, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ryan Lowe
- Oceans Graduate School, and School of Earth Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| |
Collapse
|
25
|
Hose GC, Chariton A, Daam MA, Di Lorenzo T, Galassi DMP, Halse SA, Reboleira ASPS, Robertson AL, Schmidt SI, Korbel KL. Invertebrate traits, diversity and the vulnerability of groundwater ecosystems. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- G. C. Hose
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - A. Chariton
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| | - M. A. Daam
- CENSE ‐ Center for Environmental and Sustainability Research NOVA School of Science and Technology NOVA University Lisbon, 2829‐516 Caparica Portugal
| | - T. Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the National Research Council Via Madonna del Piano 10, 50019, Sesto Fiorentino Firenze Italy
- Emil Racovita Institute of Speleology Romanian Academy, Clinicilor 5, Cluj Napoca 400006 Romania
| | - D. M. P. Galassi
- Department of Life, Health and Environmental Sciences University of L'Aquila Via Vetoio, Coppito, 67100 L'Aquila Italy
| | - S. A. Halse
- Bennelongia Environmental Consultants, Jolimont WA 6014 Australia
| | - A. S. P. S. Reboleira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa Lisbon Portugal
- Natural History Museum of Life and Health Sciences Denmark and University of Copenhagen Universitetsparken 15, 2100 Copenhagen Denmark
| | - A. L. Robertson
- School of Life and Health Sciences University of Roehampton, Holybourne Avenue, London SW15 4JD UK
| | - S. I. Schmidt
- Biology Centre of the Czech Academy of Sciences Institute of Hydrobiology Na Sádkách 7, 37005 České Budějovice Czech Republic
- Present address: Department of Lake Research, Helmholtz Centre for Environmental Research Magdeburg Germany
| | - K. L. Korbel
- Department of Biological Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|