1
|
Zhang S, Zhang Z, Wang F, Huang X, Chen X, Wang Y, Li C, Li H. Advancing the comprehensive understanding of soil organic carbon priming effect: definitions, mechanisms, influencing factors, and future perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:201. [PMID: 40343583 DOI: 10.1007/s10653-025-02516-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
The soil carbon (C) priming effect (PE), an important phenomenon in soil C cycle research, has garnered extensive attention in recent years. Soil C PE refers to the stimulation or inhibition of the original soil organic C (SOC) decomposition rate by newly added organic matter in the soil. Its mechanism of action involves the activity of soil microorganisms. Fresh organic matter input provides an additional source of energy and nutrients for soil microorganisms, prompting changes in microbial community structure and activity, which in turn affects SOC decomposition. Easily decomposable organic matter may stimulate rapid microbial growth and metabolic activity of microorganisms, thereby the decomposition accelerating of original SOC and producing a positive PE, whereas recalcitrant organic matter may lead microorganisms to preferentially utilise the newly added C source, thereby inhibiting original SOC decomposition and producing a negative PE. There are numerous factors influencing soil C PE, including organic matter properties such as chemical composition, C:N ratio, and lignin content; soil environmental factors such as temperature, humidity, and pH value; and land-use patterns and vegetation types. Research on soil C PE is crucial for an in-depth understanding of the soil C cycle, the accurate assessment of dynamic changes in the soil C pool, and the development of sustainable soil management strategies. This study introduces the definition, change mechanism, influencing factors, and research methods of soil C PE and elaborates on the status and deficiencies of PE research, which is helpful for predicting soil C responses to global climate change and provides a scientific basis for improving soil fertility and reducing greenhouse gas emissions.
Collapse
Affiliation(s)
- Shengman Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Ziyuan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xiangfeng Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Institute of Carbon Neutrality, Tongji University, Shanghai, 200092, China
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Chunyang Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Hui Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
2
|
He M, Fang K, Tang M, Feng X, Qin S, Chen L, Yang Y. Weakened priming effect along soil profile in alpine grasslands on the Tibetan Plateau. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2898-x. [PMID: 40347214 DOI: 10.1007/s11427-024-2898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/05/2025] [Indexed: 05/12/2025]
Abstract
Subsoils hold a substantial reservoir of organic carbon (C), and its dynamics can be greatly influenced by fresh C inputs through priming effect, potentially altering the magnitude of soil C-climate feedback. Despite the importance of soil C dynamics in regulating this feedback, our understanding of how soil C release and the priming effect vary along the soil profile remains limited, especially in alpine grasslands on the Tibetan Plateau. In particular, the relative importance of abiotic and biotic factors, such as soil physicochemical properties, aggregate and mineral protection, substrate quantity and quality, and plant and microbial properties (e.g., microbial biomass and diversity), in mediating vertical variations in soil C release and the priming effect is still unclear. Using 1-meter-deep soil profiles from five sites on the plateau, our 13C isotope labeling incubation experiments revealed a significant decline in both C release and the priming effect with increasing soil depth. We found that variations in soil C release along the profile were primarily influenced by soil properties (soil moisture and pH), mineral protection (the molar ratios of amorphous Fe/Al oxides to soil organic C (SOC) and soil mineral specific surface area), and hydrolase activity. In addition, vertical variations in the priming effect were dominantly affected by soil properties (soil moisture and pH), mineral and aggregate protection (the molar ratio of exchangeable Ca to SOC and the proportion of C occluded in clay+silt fractions), and microbial properties (oxidase activity and the copy number of bacterial ribosomal RNA gene operons). These findings provide valuable insights into the complex soil C cycling across profiles and its feedback to climate change.
Collapse
Affiliation(s)
- Mei He
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Kai Fang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Coastal Forestry Research Center of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Meng Tang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuehui Feng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Wang K, Ding W, Yang X, Lü W, Ren H, Jiang X. The components and aromaticity of dissolved organic matter derived from aquatic plants determine the CO 2 and CH 4 emission potential. WATER RESEARCH 2025; 281:123685. [PMID: 40288249 DOI: 10.1016/j.watres.2025.123685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/13/2025] [Accepted: 04/19/2025] [Indexed: 04/29/2025]
Abstract
Lakes are integral to the carbon cycle through the processing of dissolved organic matter (DOM). However, the specific contributions of various aquatic plants to carbon emissions during their decomposition remain inadequately understood. In this study, decomposition experiments were performed on three aquatic plants-algae, Phragmites australis (PA), and Potamogeton crispus L. (PC)-using advanced techniques, including FT-ICR-MS and metagenomics, to investigate the mechanisms of carbon dioxide (CO2) and methane (CH4) emissions. The results indicate that algae exhibit a substantial potential for CO2 emissions, with emissions reaching up to 2193 μmol·g-1. Conversely, PA contributes the highest CH4 emissions, reaching up to 2397 μmol·g-1. Factors such as the protein-like content and aromaticity of DOM molecules significantly influence emission levels. DOM with lower aromaticity undergoes easier decomposition in the first 6 days, leading to increased CO2 production. Elevated C/N and C/P ratios in plants enhance the abundance of methanogenic bacteria and genes. Surplus carbon will be mineralized under anaerobic conditions, giving rise to mineralization of organics to CH₄. These findings elucidate the mechanisms underlying CO2 and CH4 emissions during the decomposition of different aquatic plants and provide valuable insights for lake water environment management.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Wanchang Ding
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weiwei Lü
- School of Geography and Environment, Liaocheng University, Liaocheng, China
| | - Haoyu Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory of Lake Water Pollution Control and Ecological Restoration Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
4
|
Yang R, Guo S, Huo L, Yang G, Tian S. Impact of watershed-scale land restoration on soil microbial communities and their functions: Insights from metagenomic analysis. ENVIRONMENTAL RESEARCH 2025; 277:121609. [PMID: 40252793 DOI: 10.1016/j.envres.2025.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/30/2025] [Accepted: 04/12/2025] [Indexed: 04/21/2025]
Abstract
Land restoration in the gully regions of China's Loess Plateau has significantly altered soil conditions and farming practices, yet its impact on soil microbes remains unclear. This study applied metagenomic sequencing and correlation analysis to examine microbial community shifts and key genes involved in carbon, nitrogen, and phosphorus cycling. Results show increased biodiversity and microbial activity, especially downstream, enhancing carbon metabolism and ecosystem resilience. Phosphorus activation improved, with related gene abundance rising by 27.45 %-52.57 %, facilitating phosphorus availability. Nitrogen cycling showed enhanced nitrification and nitrogen fixation, with reduced denitrification, promoting nitrogen retention. Soil organic carbon, total nitrogen, ammonium nitrogen, and available phosphorus (AP), particularly AP, strongly influenced microbial dynamics. These findings highlight the positive role of land restoration in improving soil health and nutrient cycling, supporting sustainable agriculture.
Collapse
Affiliation(s)
- Rui Yang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China.
| | - Shaoqing Guo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Lijuan Huo
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Gaiqiang Yang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| | - Shuting Tian
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, PR China
| |
Collapse
|
5
|
Grace JB, Huntington‐Klein N, Schweiger EW, Martinez M, Osland MJ, Feher LC, Guntenspergen GR, Thorne KM. Causal Effects Versus Causal Mechanisms: Two Traditions With Different Requirements and Contributions Towards Causal Understanding. Ecol Lett 2025; 28:e70029. [PMID: 40261134 PMCID: PMC12013535 DOI: 10.1111/ele.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 04/24/2025]
Abstract
The scientific aspiration of building causal knowledge has received little explicit discussion in ecology despite its fundamental importance. When methods are described as 'causal', emphasis is increasingly placed on statistical techniques for isolating associations so as to quantify causal effects. In contrast, natural scientists have historically approached the pursuit of causal knowledge through the investigation of mechanisms that interconnect the components of systems. In this paper, we first summarise a recently published multievidence paradigm for causal studies meant to reconcile conflicting viewpoints. We then describe some of the basic principles of causal statistics and the challenge of estimating pure causal effects. We follow that by describing basic principles related to causal mechanistic investigations, which focus on characterising the structures and processes conveying causal effects. While causal statistics focuses on estimating effect sizes, mechanistic investigations focus on characterising the attributes of the underlying structures and processes linking causative agents to responses. There are important differences between how one approaches each endeavour, as well as differences in what is obtained from each type of investigation. Finally, the case is made that an explicit assessment of existing mechanistic knowledge should be an initial step in causal investigations.
Collapse
Affiliation(s)
- James B. Grace
- U.S. Geological Survey, Wetland and Aquatic Research CenterLafayetteLouisianaUSA
| | | | | | - Melinda Martinez
- U.S. Geological Survey, Eastern Ecological Science CenterLaurelMarylandUSA
| | - Michael J. Osland
- U.S. Geological Survey, Wetland and Aquatic Research CenterLafayetteLouisianaUSA
| | - Laura C. Feher
- National Park Service, Northeastern Coastal and Barrier NetworkKingstonRhode IslandUSA
| | | | - Karen M. Thorne
- U.S. Geological Survey, Western Ecological Research CenterDavisCaliforniaUSA
| |
Collapse
|
6
|
Qi X, Liang X, Chai B, Jia T. Vertical fungal community distribution patterns along a stratified soil profile in subalpine Larix principis-rupprechtii plantations on China's Luya mountain. Fungal Biol 2024; 128:2285-2294. [PMID: 39643395 DOI: 10.1016/j.funbio.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Soil microorganisms play important roles in the biogeochemical cycling of terrestrial ecosystems. Recent studies found that soil fungal composition and diversity varied significantly with soil depth. However, little is known about the vertical distribution patterns of soil fungal communities and their associated drivers. For this study, we collected soil samples from six soil layers (i.e., litter layer (P), humus layer (P0), 0-10 cm layer (P1), 10-20 cm layer (P2), 20-40 cm layer (P3), and 40-80 cm layer (P4)) within Larix principis-rupprechtii plantations to investigate fungal community composition, diversity, and associated drivers using Illumina MiSeq high-throughput sequencing. Results showed that the top 10 dominant genera with the highest relative abundance belonged to Ascomycota, Basidiomycota, and Mortierellomycota. A decreasing α-diversity trend was observed along with soil depth. Moreover, correlation analysis showed that ammonia nitrogen (NH4+-N), pH, total carbon (TC), and total nitrogen (TN) content markedly correlated with fungal α-diversity. Significant β-diversity differences were found in soil fungal communities. Additionally, TN and total phosphorus (TP) content were the main environmental drivers that influenced the spatial distribution pattern of fungal communities. The βNTI showed a gradual increase with soil depth. In the surface layers of soil, the dominant factor of fungal community assembly was homogeneous selection, while in the deep layers of soil, it was variable selection. Co-occurrence network analysis showed that fungal community interactions in the deepest soil layer (40-80 cm) were more complex and were more positive. Results from this study provide a theoretical basis and data support to understand the mechanisms of soil fungal community assembly processes more deeply in L. principis-rupprechtii plantations.
Collapse
Affiliation(s)
- Xiaojun Qi
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Xiaoxia Liang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Baofeng Chai
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Tong Jia
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
7
|
Jiang Y, Lin X, Lin W. Effects of intercropping with legume forage on the rhizosphere microbial community structure of tea plants. Front Microbiol 2024; 15:1474941. [PMID: 39654675 PMCID: PMC11625550 DOI: 10.3389/fmicb.2024.1474941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Context Intercropping in agriculture is crucial for addressing challenges in intensive tea farming. Forage legumes reduce fertilizer dependence and significantly boost productivity. Currently, intercropping with legumes enhances the environmental conditions of tea plantations and improves tea quality. Objective However, the comprehension of the rhizosphere's impact on the associated microbes and the community structure of tea plants is still somewhat constrained. Methods Hence, four distinct planting methodologies were examined: Monoculture cultivation of Tieguanyin tea plants (MT), Laredo forage soybean (Glycine max Linn.) without partitioning in conjunction with tea (IT), intercropping with tea using plastic partitions (PPIT), and intercropping with tea facilitated by net partitions (NPIT). An absolute quantitative analysis of soil phospholipid fatty acids, labeled with the rhizosphere microbial characteristics of tea plants, was conducted through multi-ion reaction monitoring (MRM). The bacterial and fungal communities were anticipated utilizing the FAPROTAX and FUNG databases, respectively. Gas chromatography was employed to ascertain greenhouse gas emissions across diverse root interaction cultivation systems. Results and conclusion The rhizospheric influence culminated in a 44.6% increase in total phospholipid fatty acids (PLFAs) and a remarkable 100.9% escalation in the ratio of unsaturated to saturated fatty acids. This rhizospheric enhancement has significantly potentiated the ecological functionalities within the bacterial community, including xylanolysis, ureolysis, nitrogen respiration, nitrogen fixation, nitrite respiration, nitrite ammonification, and nitrate reduction. Mycorrhizomonas, encompassing both ectomycorrhizal and arbuscular forms, has notably colonized the rhizosphere. The interspecific mutualistic interactions within the rhizosphere have resulted in a significant enhancement of plant growth-promoting bacteria, including allorhizobium, bradyrhizobium, rhizobium, burkholderia, gluconacetobacter, and gluconobacter, while concurrently reducing the prevalence of pathogenic microorganisms such as xanthomonas, ralstonia, fusarium, and opportunistic fungi responsible for white and soft rot. The intercropping system showed lower total greenhouse gas emissions than monocultured tea plants, particularly reducing soil CO2 emissions due to complex interspecific rhizosphere interactions. This tea/legume intercropping approach promotes a sustainable ecosystem, enhancing microbial biomass and vitality, which helps suppress rhizospheric pathogens. Significance These findings are instrumental in enhancing our comprehension of the pivotal practical implications of rhizosphere intercropping, thereby optimizing the structure of rhizosphere communities and alleviating the impact of greenhouse gases within croplands.
Collapse
Affiliation(s)
- Yuhang Jiang
- College of Life Science, Longyan University, Longyan, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, College of Life Sciences, Fuzhou, China
| | - Xiaoqin Lin
- School of Resource Engineering, Longyan University, Longyan, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, Fujian Agriculture and Forestry University, College of Life Sciences, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, College of Life Sciences, Fuzhou, China
| |
Collapse
|
8
|
Zhang L, Zhao X, Wang J, He L, Ren C, Wang J, Guo Y, Wang N, Zhao F. Antarctic Soils Select Copiotroph-Dominated Bacteria. Microorganisms 2024; 12:1689. [PMID: 39203535 PMCID: PMC11357078 DOI: 10.3390/microorganisms12081689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The life strategies of bacterial communities determine their structure and function and are an important driver of biogeochemical cycling. However, the variations in these strategies under different soil resource conditions remain largely unknown. We explored the bacterial life strategies and changes in structure and functions between Antarctic soils and forest (temperate, subtropical, and tropical) soils. The results showed that the weighted mean rRNA operon copy number in temperate soils was 19.5% lower than that in Antarctic soils, whereas no significant differences were observed among Antarctic, subtropical, and tropical soils. An unexpected result was that bacterial communities in Antarctic soils tended to be copiotrophs, such as Actinobacteriota and Bacteroidota, whereas those in temperate soils tended to be oligotrophs, such as Acidobacteriota and Chloroflexi. Functional predictions showed that in comparison to copiotrophs in Antarctic soils, temperate-inhabiting oligotrophic bacteria exhibited an 84.2-91.1% lower abundance of labile C decomposition genes (hemicellulose, cellulose, monosaccharides, and disaccharides), whereas a 74.4% higher abundance of stable C decomposition (lignin). Genes involved in N cycling (nitrogen fixation, assimilatory nitrate reduction, and denitrification) were 24.3-64.4% lower in temperate soils than in Antarctic soils. Collectively, our study provides a framework for describing the life strategies of soil bacteria, which are crucial to global biogeochemical cycles.
Collapse
Affiliation(s)
- Lujie Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| | - Xue Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| | - Jieying Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| | - Liyuan He
- Oak Ridge National Laboratory, Environmental Sciences Division and Climate Change Science Institute, Oak Ridge, TN 37831, USA
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi’an 710127, China
| | - Yaoxin Guo
- The College of Life Sciences, Northwest University, Xi’an 710072, China
| | - Ninglian Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi’an 710127, China
- College of Urban and Environmental Sciences, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi’an 710127, China
| |
Collapse
|
9
|
Zhang M, Yu X, Jiang G, Zhou L, Liu Z, Li X, Zhang T, Wen J, Xia L, Liu X, Yin H, Meng D. Response of bacterial ecological and functional properties to anthropogenic interventions during maturation of mine sand soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173354. [PMID: 38796007 DOI: 10.1016/j.scitotenv.2024.173354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/27/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Soil formation is a complex process that starts from the biological development. The ecological principles and biological function in soil are of great importance, whereas their response to anthropogenic intervention has been poorly understood. In this study, a 150-day microcosmic experiment was conducted with the addition of sludge and/or fermented wood chips (FWC) to promote the soil maturation. The results showed that, compared to the control (natural development without anthropogenic intervention), sludge, FWC, and their combination increased the availability of carbon, nitrogen, and potassium, and promoted the soil aggregation. They also enhanced the cellulase activity, microbial biomass carbon (MBC) and bacterial diversity, indicating that anthropogenic interventions promoted the maturation of sand soil. Molecular ecology network and functional analyses indicated that soil maturation was accomplished with the enhancement of ecosystem functionality and stability. Specifically, sludge promoted a transition in bacterial community function from denitrification to nitrification, facilitated the degradation of easily degradable organic matter, and enhanced the autotrophic nutritional mode. FWC facilitated the transition of bacterial function from denitrification to ammonification, promoted the degradation of recalcitrant organic matter, and simultaneously enhanced both autotrophic and heterotrophic nutritional modes. Although both sludge and FWC promoted the soil functionality, they showed distinct mechanistic actions, with sludge enhancing the physical structure, and FWC altering chemical composition. It is also worth emphasizing that sludge and FWC exhibited a synergistic effect in promoting biological development and ecosystem stability, thereby providing an effective avenue for soil maturation.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Guoping Jiang
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Wen
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Shenzhen Zhongrui Construction Engineering Co., Ltd, Shenzhen 518126, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Ling Xia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wenzhi Street 34, Wuhan, Hubei 430070, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biohydrometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
10
|
Ren C, Zhou Z, Delgado-Baquerizo M, Bastida F, Zhao F, Yang Y, Zhang S, Wang J, Zhang C, Han X, Wang J, Yang G, Wei G. Thermal sensitivity of soil microbial carbon use efficiency across forest biomes. Nat Commun 2024; 15:6269. [PMID: 39054311 PMCID: PMC11272934 DOI: 10.1038/s41467-024-50593-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Understanding the large-scale pattern of soil microbial carbon use efficiency (CUE) and its temperature sensitivity (CUET) is critical for understanding soil carbon-climate feedback. We used the 18O-H2O tracer method to quantify CUE and CUET along a north-south forest transect. Climate was the primary factor that affected CUE and CUET, predominantly through direct pathways, then by altering soil properties, carbon fractions, microbial structure and functions. Negative CUET (CUE decreases with measuring temperature) in cold forests (mean annual temperature lower than 10 °C) and positive CUET (CUE increases with measuring temperature) in warm forests (mean annual temperature greater than 10 °C) suggest that microbial CUE optimally operates at their adapted temperature. Overall, the plasticity of microbial CUE and its temperature sensitivity alter the feedback of soil carbon to climate warming; that is, a climate-adaptive microbial community has the capacity to reduce carbon loss from soil matrices under corresponding favorable climate conditions.
Collapse
Affiliation(s)
- Chengjie Ren
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Zhenghu Zhou
- School of ecology, Northeast Asia Biodiversity Research Center, Northeast Forestry University, Harbin, Heilongjiang, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, Sevilla, Spain
| | - Felipe Bastida
- CEBAS-CSIC, Department of Soil and Water Conservation, Campus Universitario de Espinardo, Murcia, Spain
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shuohong Zhang
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Jieying Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinhui Han
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi, China
| | - Gaihe Yang
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling, Shaanxi, China.
| | - Gehong Wei
- State key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
11
|
Zhang Z, Zhu X, Su JQ, Zhu S, Zhang L, Ju F. Metagenomic Insights into Potential Impacts of Antibacterial Biosynthesis and Anthropogenic Activity on Nationwide Soil Resistome. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134677. [PMID: 38795484 DOI: 10.1016/j.jhazmat.2024.134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/25/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
The presence of antibiotic resistance genes (ARGs) in soils has received extensive attention regarding its impacts on environmental, animal, and human systems under One Health. However, the health risks of soil ARGs and microbial determinants of soil resistomes remain poorly understood. Here, a nationwide metagenomic investigation of ARGs in cropland and forest soils in China was conducted. The findings indicated that the abundance and richness of high-risk (i.e., mobilizable, pathogen-carriable and clinically relevant) ARGs in cropland soils were 25.7 times and 8.4 times higher, respectively, compared to those identified in forest soils, suggesting the contribution of agricultural practices to the elevated risk level of soil resistomes. The biosynthetic potential of antibacterials best explained the total ARG abundance (Mantel's r = 0.52, p < 0.001) when compared with environmental variables and anthropogenic disturbance. Both microbial producers' self-resistance and antagonistic interactions contributed to the ARG abundance, of which self-resistance ARGs account for 14.1 %- 35.1 % in abundance. With the increased biosynthetic potential of antibacterials, the antagonistic interactions within the microbial community were greatly enhanced, leading to a significant increase in ARG abundance. Overall, these findings advance our understanding of the emergence and dissemination of soil ARGs and provide critical implications for the risk control of soil resistomes.
Collapse
Affiliation(s)
- Zhiguo Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China; Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China
| | - Xinyu Zhu
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Lu Zhang
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources Research of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Center of Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang Province, China; Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China.
| |
Collapse
|
12
|
Mo J, Song Z, Che Y, Li J, Liu T, Feng J, Wang Z, Rong J, Gu S. Effects of aeolian deposition on soil properties and microbial carbon metabolism function in farmland of Songnen Plain, China. Sci Rep 2024; 14:14791. [PMID: 38926449 PMCID: PMC11208439 DOI: 10.1038/s41598-024-65578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
The effects of wind erosion, one of the crucial causes of soil desertification in the world, on the terrestrial ecosystem are well known. However, ecosystem responses regarding soil microbial carbon metabolism to sand deposition caused by wind erosion, a crucial driver of biogeochemical cycles, remain largely unclear. In this study, we collected soil samples from typical aeolian deposition farmland in the Songnen Plain of China to evaluate the effects of sand deposition on soil properties, microbial communities, and carbon metabolism function. We also determined the reads number of carbon metabolism-related genes by high-throughput sequencing technologies and evaluated the association between sand deposition and them. The results showed that long-term sand deposition resulted in soil infertile, roughness, and dryness. The impacts of sand deposition on topsoil were more severe than on deep soil. The diversity of soil microbial communities was significantly reduced due to sand deposition. The relative abundances of Nitrobacteraceae, Burkholderiaceae, and Rhodanobacteraceae belonging to α-Proteobacteria significantly decreased, while the relative abundances of Streptomycetaceae and Geodermatophilaceae belonging to Actinobacteria increased. The results of the metagenomic analysis showed that the gene abundances of carbohydrate metabolism and carbohydrate-activity enzyme (GH and CBM) significantly decreased with the increase of sand deposition amount. The changes in soil microbial community structure and carbon metabolism decreased soil carbon emissions and carbon cycling in aeolian deposition farmland, which may be the essential reasons for land degradation in aeolian deposition farmland.
Collapse
Affiliation(s)
- Jixian Mo
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Ziwei Song
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Yanjing Che
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jie Li
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Tianyi Liu
- College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, 161006, China
| | - Jingyi Feng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ziying Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiandong Rong
- Qiqihar Experimental Station, Heilongjiang Province Hydraulic Research Institute, Qiqihar, 161006, China
| | - Siyu Gu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
13
|
Zhang Y, Ren Y, Zhou S, Ning X, Wang X, Yang Y, Sun S, Vinay N, Bahn M, Han J, Liu Y, Xiong Y, Liao Y, Mo F. Spatio-temporal microbial regulation of aggregate-associated priming effects under contrasting tillage practices. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171564. [PMID: 38460685 DOI: 10.1016/j.scitotenv.2024.171564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Tillage intensity significantly influences the heterogeneous distribution and dynamic changes of soil microorganisms, consequently shaping spatio-temporal patterns of SOC decomposition. However, little is known about the microbial mechanisms by which tillage intensity regulates the priming effect (PE) dynamics in heterogeneous spatial environments such as aggregates. Herein, a microcosm experiment was established by adding 13C-labeled straw residue to three distinct aggregate-size classes (i.e., mega-, macro-, and micro-aggregates) from two long-term contrasting tillage histories (no-till [NT] and conventional plow tillage [CT]) for 160 days to observe the spatio-temporal variations in PE. Metagenomic sequencing and Fourier transform mid-infrared techniques were used to assess the relative importance of C-degrading functional genes, microbial community succession, and SOC chemical composition in the aggregate-associated PE dynamics during straw decomposition. Spatially, straw addition induced a positive PE for all aggregates, with stronger PE occurring in larger aggregates, especially in CT soil compared to NT soil. Larger aggregates have more unique microbial communities enriched in genes for simple C degradation (e.g., E5.1.3.6, E2.4.1.7, pmm-pgm, and KduD in Nitrosospeera and Burkholderia), contributing to the higher short-term PE; however, CT soils harbored more genes for complex C degradation (e.g., TSTA3, fcl, pmm-pgm, and K06871 in Gammaproteobacteria and Phycicoccus), supporting a stronger long-term PE. Temporally, soil aggregates played a significant role in the early-stage PEs (i.e., < 59 days after residue addition) through co-metabolism and nitrogen (N) mining, as evidenced by the increased microbial biomass C and dissolved organic C (DOC) and reduced inorganic N with increasing aggregate-size class. At a later stage, however, the legacy effect of tillage histories controlled the PEs via microbial stoichiometry decomposition, as suggested by the higher DOC-to-inorganic N and DOC-to-available P stoichiometries in CT than NT. Our study underscores the importance of incorporating both spatial and temporal microbial dynamics for a comprehensive understanding of the mechanisms underlying SOC priming, especially in the context of long-term contrasting tillage practices.
Collapse
Affiliation(s)
- Yeye Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yunfei Ren
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Shenglin Zhou
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiaoyu Ning
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an 716000, PR China
| | - Yanming Yang
- College of Agronomy, Inner Mongolia Agricultural University, Hohhot 010019, PR China
| | - Shikun Sun
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Nangia Vinay
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299-10112, Rabat, Morocco
| | - Michael Bahn
- Department of Ecology, University of Innsbruck, Innsbruck 6020, Austria
| | - Juan Han
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Youcai Xiong
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, PR China
| | - Yuncheng Liao
- Collage of Agronomy, Shanxi Agricultural University, Taigu, Jinzhong, 030800, PR China
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
14
|
Yang L, Canarini A, Zhang W, Lang M, Chen Y, Cui Z, Kuzyakov Y, Richter A, Chen X, Zhang F, Tian J. Microbial life-history strategies mediate microbial carbon pump efficacy in response to N management depending on stoichiometry of microbial demand. GLOBAL CHANGE BIOLOGY 2024; 30:e17311. [PMID: 38742695 DOI: 10.1111/gcb.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/22/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
The soil microbial carbon pump (MCP) is increasingly acknowledged as being directly linked to soil organic carbon (SOC) accumulation and stability. Given the close coupling of carbon (C) and nitrogen (N) cycles and the constraints imposed by their stoichiometry on microbial growth, N addition might affect microbial growth strategies with potential consequences for necromass formation and carbon stability. However, this topic remains largely unexplored. Based on two multi-level N fertilizer experiments over 10 years in two soils with contrasting soil fertility located in the North (Cambisol, carbon-poor) and Southwest (Luvisol, carbon-rich), we hypothesized that different resource demands of microorganism elicit a trade-off in microbial growth potential (Y-strategy) and resource-acquisition (A-strategy) in response to N addition, and consequently on necromass formation and soil carbon stability. We combined measurements of necromass metrics (MCP efficacy) and soil carbon stability (chemical composition and mineral associated organic carbon) with potential changes in microbial life history strategies (assessed via soil metagenomes and enzymatic activity analyses). The contribution of microbial necromass to SOC decreased with N addition in the Cambisol, but increased in the Luvisol. Soil microbial life strategies displayed two distinct responses in two soils after N amendment: shift toward A-strategy (Cambisol) or Y-strategy (Luvisol). These divergent responses are owing to the stoichiometric imbalance between microbial demands and resource availability for C and N, which presented very distinct patterns in the two soils. The partial correlation analysis further confirmed that high N addition aggravated stoichiometric carbon demand, shifting the microbial community strategy toward resource-acquisition which reduced carbon stability in Cambisol. In contrast, the microbial Y-strategy had the positive direct effect on MCP efficacy in Luvisol, which greatly enhanced carbon stability. Such findings provide mechanistic insights into the stoichiometric regulation of MCP efficacy, and how this is mediated by site-specific trade-offs in microbial life strategies, which contribute to improving our comprehension of soil microbial C sequestration and potential optimization of agricultural N management.
Collapse
Affiliation(s)
- Liyang Yang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Alberto Canarini
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Wushuai Zhang
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Ming Lang
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Yuanxue Chen
- College of Resources and Environment, Sichuan Agricultural University, Chengdu, China
| | - Zhenling Cui
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, University of Göttingen, Göttingen, Germany
| | - Andreas Richter
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Science, Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Fusuo Zhang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Jing Tian
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Liu Y, Liu R, Feng Z, Hu R, Zhao F, Wang J. Regulation of wheat growth by soil multifunctionality and metagenomic-based microbial functional profiles under mulching treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170881. [PMID: 38360319 DOI: 10.1016/j.scitotenv.2024.170881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Soil microbial functional genes play key roles in biogeochemical processes that are closely related to crop development. However, the regulation of crop growth by the composition and potential interactions of metagenomic-based functional genes is poorly understood. Therefore, in a long-term mulching experiment, the regulation of wheat growth by soil multifunctionality, microbial functional profiles driven by soil properties and microbial activity was studied. Soil properties and microbial activity were significantly separated into distinct mulching treatments, and were significantly declined by plastic film mulching treatment, similar to soil multifunctionality. Only carbon (C) and phosphorus (P) cycling gene compositions were divided significantly into distinct mulching treatments to varying degrees. Similarly, intra- and inter-connected sub-networks associated with C and P cycling genes were more complex and stable than the sub-networks containing nitrogen cycling genes. Despite core functional genes being located in the middle of each network, they were rarely observed in the metagenomic assembly genomes. Subsequently, the dominant soil properties and microbial activity had greater effects on C cycling gene composition and network, which played essential roles in wheat growth regulation. Overall, wheat yield and biomass were affected differently by straw and plastic film mulching treatments, and were mainly regulated by C cycling gene network and soil multifunctionality, respectively. The results of the present study provide novel insights into wheat growth regulation by soil microbial functional profiles, with potential implications for sustainable crop production in mulching conservation agroecosystems.
Collapse
Affiliation(s)
- Yang Liu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| | - Rui Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Zhen Feng
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Rong Hu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China.
| |
Collapse
|
16
|
Cui H, He C, Zheng W, Jiang Z, Yang J. Effects of nitrogen addition on rhizosphere priming: The role of stoichiometric imbalance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169731. [PMID: 38163589 DOI: 10.1016/j.scitotenv.2023.169731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Nitrogen (N) input has a significant impact on the availability of carbon (C), nitrogen (N), and phosphorus (P) in the rhizosphere, leading to an imbalanced stoichiometry in microbial demands. This imbalance can result in energy or nutrient limitations, which, in turn, affect C dynamics during plant growth. However, the precise influence of N addition on the C:N:P imbalance ratio and its subsequent effects on rhizosphere priming effects (RPEs) remain unclear. To address this gap, we conducted a 75-day microcosm experiment, varying N addition rates (0, 150, 300 kg N ha-1), to examine how microbes regulate RPE by adapting to stoichiometry and maintaining homeostasis in response to N addition, using the 13C natural method. Our result showed that N input induced a stoichiometric imbalance in C:N:P, leading to P or C limitation for microbes during plant growth. Microbes responded by adjusting enzymatic stoichiometry and functional taxa to preserve homeostasis, thereby modifying the threshold element ratios (TERs) to cope with the C:N:P imbalance. Microbes adapted to the stoichiometric imbalance by reducing TER, which was attributed to a reduction in carbon use efficiency. Consequently, we observed higher RPE under P limitation, whereas the opposite trend was observed under C or N limitation. These results offer novel insights into the microbial regulation of RPE variation under different soil nutrient conditions and contribute to a better understanding of soil C dynamics.
Collapse
Affiliation(s)
- Hao Cui
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao He
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weiwei Zheng
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhenhui Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| | - Jingping Yang
- Institute of Environment Pollution Control and Treatment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
17
|
Nazir MJ, Hussain MM, Albasher G, Iqbal B, Khan KA, Rahim R, Li G, Du D. Glucose input profit soil organic carbon mineralization and nitrogen dynamics in relation to nitrogen amended soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119715. [PMID: 38064981 DOI: 10.1016/j.jenvman.2023.119715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 01/14/2024]
Abstract
Exogenous carbon (C) inputs stimulate soil organic carbon (SOC) decomposition, strongly influencing atmospheric concentrations and climate dynamics. The direction and magnitude of C decomposition depend on the C and nitrogen (N) addition, types and pattern. Despite the importance of decomposition, it remains unclear whether organic C input affects the SOC decomposition under different N-types (Ammonium Nitrate; AN, Urea; U and Ammonium Sulfate; AS). Therefore, we conducted an incubation experiment to assess glucose impact on N-treated soils at various levels (High N; HN: 50 mg/m2, Low N; LN: 05 mg/m2). The glucose input increased SOC mineralization by 38% and 35% under HN and LN, respectively. Moreover, it suppressed the concentration of NO3--N by 35% and NH4+-N by 15% in response to HN and LN soils, respectively. Results indicated higher respiration in Urea-treated soils and elevated net total nitrogen content (TN) in AS-treated soils. AN-amended soil exhibited no notable rise in C mineralization and TN content compared to other N-type soils. Microbial biomass carbon (MBC) was higher in glucose treated soils under LN conditions than control. This could result that high N suppressed microbial N mining and enhancing SOM stability by directing microbes towards accessible C sources. Our results suggest that glucose accelerated SOC mineralization in urea-added soils and TN contents in AS-amended soils, while HN levels suppressed C release and increased TN contents in all soil types except glucose-treated soils. Thus, different N-types and levels play a key role in modulating the stability of SOC over C input.
Collapse
Affiliation(s)
- Muhammad Junaid Nazir
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Muhammad Mahroz Hussain
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Gadah Albasher
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Babar Iqbal
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Khalid Ali Khan
- Applied College and Unit of Bee Research and Honey Production, Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Riffat Rahim
- Forschungszentrum Jülich GmbH, Agrosphere Institute (IBG-3), Wilhelm Johnen Strasse, Jülich, 52428, Germany
| | - Guanlin Li
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
18
|
Ma T, Zhan Y, Chen W, Hou Z, Chai S, Zhang J, Zhang X, Wang R, Liu R, Wei Y. Microbial traits drive soil priming effect in response to nitrogen addition along an alpine forest elevation gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167970. [PMID: 37866590 DOI: 10.1016/j.scitotenv.2023.167970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Priming effect is a critical process affecting soil organic carbon (SOC) cycle, however, its drivers and patterns responding to nutrient addition are still unclear in alpine forests. Here, we conducted a 28-day incubation experiment based on the collected soils along an elevational gradient (3500-4300 m) on the southeastern Tibetan Plateau with adding carbon and nitrogen sources. The priming effect and microbial traits were analyzed based on 13C-stable glucose and bioinformatics methods. Results revealed that the carbon priming effect (PEC) ranged from 0.45 to 1.63 mg C g-1 SOC along the altitude, which was significantly associated with both soil organic carbon and total nitrogen. The addition of nitrogen inhibited the PEC and showed a positive correlation with the activities of β-1,4-glucosidase, β-1,4-N-acetyl-glucosaminnidase, β-cellobiosidase and β-xylosidase, while microbial community network became more complex and stable in respond to nitrogen addition. Structural equation modeling indicated that microbial communities, especially fungal communities in alpine regions drove PEC in response to nitrogen addition. Soil enzymes were the important intermediaries which drove the mineralization of soil carbon by microorganisms after adding nitrogen. Microorganisms were more sensitive to nitrogen rather than carbon due to the specific climate of alpine regions. Collectively, our works revealed the response pattern of soil carbon decomposition to nutrient addition in alpine ecosystem, clarifying the contribution of soil microorganisms in regulating carbon decomposition and nutrient cycle along high-elevation gradients in the context of global environmental change.
Collapse
Affiliation(s)
- Tiantian Ma
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Yabin Zhan
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Shengyang Chai
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China
| | - Junling Zhang
- Centre for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Ministry of Education, Beijing, China
| | - Xinjun Zhang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China.
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yuquan Wei
- Institute of Tibet Plateau Ecology, Tibet Agricultural & Animal Husbandry University, and Key Laboratory of Forest Ecology in Tibet Plateau (Tibet Agricultural & Animal Husbandry University), Ministry of Education, Nyingchi, Tibet 860000, China; Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
19
|
Wang J, Xu X, Liu Y, Wang W, Ren C, Guo Y, Wang J, Wang N, He L, Zhao F. Unknown bacterial species lead to soil CO 2 emission reduction by promoting lactic fermentation in alpine meadow on the Qinghai-Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167610. [PMID: 37804990 DOI: 10.1016/j.scitotenv.2023.167610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Highly variable soil microbial respiration among grasslands has been identified as a major cause of uncertainty in regional carbon (C) budget estimation in the Qinghai-Tibetan Plateau; microbial metabolism mechanisms might explain this variation, but remain elusive. Therefore, we investigated soil CO2 production in incubated soils and detected the associated functional genes at four sampling sites from two major alpine grasslands on the Qinghai-Tibetan Plateau. The results showed that the cumulative CO2 emissions from alpine meadow soils were 71 %-83 % lower than those from alpine steppe soils. Both the enriched genes abundance encoding fermentation and glycolysis (Embden-Meyerhof pathway (EMP)) and the diminished genes encoding tricarboxylic acid cycle (TCA) and phosphate pentose pathway (PPP) explained the CO2 emission reduction in the alpine meadow soils. The EMP: PPP and fermentation: TCA cycle ratios in alpine meadow soils were 1.45- and 1.50-fold higher than those in alpine steppe soils, respectively. Such shifts in metabolic pathways were primarily caused by the increasing dominance of an unknown species of Desulfobacteraceae with high glycolytic potential, carrying a higher abundance of ldh genes during fermentation. These unknown species were promoted by warmer temperatures and higher precipitation in the alpine meadows. Further studies on the unknown species would enhance our understanding and predictability of C cycling in alpine grasslands.
Collapse
Affiliation(s)
- Jieying Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China
| | - Xiaofeng Xu
- Department of Biology, San Diego State University, San Diego 92182, USA
| | - Yanfang Liu
- Center of Physics and Chemistry, Department of Science and Technology, Qinghai Normal University, Xining 810008, China
| | - Wenying Wang
- Center of Physics and Chemistry, Department of Science and Technology, Qinghai Normal University, Xining 810008, China
| | - Chengjie Ren
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yaoxin Guo
- The College of Life Sciences, Northwest University, Xi'an 710072, Shaanxi, China
| | - Jun Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; Carbon Neutrality College (Yulin), Northwest University, Xi'an, Shaanxi 710127, China
| | - Ninglian Wang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China
| | - Liyuan He
- Department of Biology, San Diego State University, San Diego 92182, USA.
| | - Fazhu Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an, Shaanxi 710127, China; College of Urban and Environmental Sciences, Northwest University, Xi'an, Shaanxi 710127, China; Carbon Neutrality College (Yulin), Northwest University, Xi'an, Shaanxi 710127, China.
| |
Collapse
|
20
|
Zhang T, Tang H, Peng P, Ge S, Liu Y, Feng Y, Wang J. Sugarcane/soybean intercropping with reduced nitrogen addition promotes photosynthesized carbon sequestration in the soil. FRONTIERS IN PLANT SCIENCE 2023; 14:1282083. [PMID: 38107008 PMCID: PMC10722189 DOI: 10.3389/fpls.2023.1282083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023]
Abstract
Introduction Sugarcane/soybean intercropping with reduced nitrogen (N) addition has improved soil fertility and sustainable agricultural development in China. However, the effects of intercropping pattern and N fertilizer addition on the allocation of photosynthesized carbon (C) in plant-soil system were far less understood. Methods In this study, we performed an 13CO2 pulse labeling experiment to trace C footprints in plant-soil system under different cropping patterns [sugarcane monoculture (MS), sugarcane/soybean intercropping (SB)] and N addition levels [reduced N addition (N1) and conventional N addition (N2)]. Results and discussion Our results showed that compared to sugarcane monoculture, sugarcane/soybean intercropping with N reduced addition increased sugarcane biomass and root/shoot ratio, which in turn led to 23.48% increase in total root biomass. The higher root biomass facilitated the flow of shoot fixed 13C to the soil in the form of rhizodeposits. More than 40% of the retained 13C in the soil was incorporated into the labile C pool [microbial biomass C (MBC) and dissolved organic C (DOC)] on day 1 after labeling. On day 27 after labeling, sugarcane/soybean intercropping with N reduced addition showed the highest 13C content in the MBC as well as in the soil, 1.89 and 1.14 times higher than the sugarcane monoculture, respectively. Moreover, intercropping pattern increased the content of labile C and labile N (alkaline N, ammonium N and nitrate N) in the soil. The structural equation model indicated that the cropping pattern regulated 13C sequestration in the soil mainly by driving changes in labile C, labile N content and root biomass in the soil. Our findings demonstrate that sugarcane/soybean intercropping with reduced N addition increases photosynthesized C sequestration in the soil, enhances the C sink capacity of agroecosystems.
Collapse
Affiliation(s)
- Tantan Zhang
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hu Tang
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Peng Peng
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Shiqiang Ge
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yali Liu
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Yuanjiao Feng
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environments in Tropics, Ministry of Agriculture and Rural Affairs, South China Agriculture University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agriculture University, Guangzhou, China
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Yang J, He J, Jia L, Gu H. Integrating metagenomics and metabolomics to study the response of microbiota in black soil degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165486. [PMID: 37442461 DOI: 10.1016/j.scitotenv.2023.165486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
As the largest commercial food production base and ecological security barrier, land degradation in black soil areas seriously threatens the global food supply and natural ecosystems. Therefore, determining the response of soil microbiota is crucial to restoring degraded soils. This study combined metagenomics and metabolomics to investigate the effect of different degrees of soil degradation on microbial community composition and metabolic function in black soils. It was found that alpha diversity in degraded soils (Shannon: 22.3) was higher than in nondegraded soil (ND) (Shannon: 21.8), and the degree of degradation significantly altered the structure and composition of soil microbial communities. The results of LEfSe analysis obtained 9 (ND), 7 (lightly degraded, LD), 10 (moderately degraded, MD), and 1 (severely degraded, SD) biomarkers in four samples. Bradyrhizobium, Sphingomonas, and Ramlibacter were significantly affected by soil degradation and can be considered biomarkers of ND, MD, and SD, respectively. Soil nutrient and enzyme activities decreased significantly with increasing black soil degradation, soil organic matter (SOM) content decreased from 11.12 % to 1.97 %, and Sucrase decreased from 23.53 to 6.59 mg/g/d. In addition, C was the critical driver affecting microbial community structure, contributing 61.2 % to differences in microbial community distribution, and microbial altering relative abundance which participle in the carbon cycle to respond to soil degradation. Metabolomic analyses indicated that soil degradation significantly modified the soil metabolite spectrum, and the metabolic functions of most microorganisms responding to soil degradation were adversely affected. The combined multi-omics analysis further indicated that biomarkers dominate in accumulating metabolites. These findings confirmed that due to their role in the composition and functioning of these degraded soils, these biomarkers could be employed in strategies for managing and restoring degraded black soils.
Collapse
Affiliation(s)
- Jia Yang
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jianhu He
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Lin Jia
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Huiyan Gu
- School of Forestry, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
22
|
Huang F, Zhang Q, Wang L, Zhang C, Zhang Y. Are biodegradable mulch films a sustainable solution to microplastic mulch film pollution? A biogeochemical perspective. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132024. [PMID: 37572603 DOI: 10.1016/j.jhazmat.2023.132024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 08/14/2023]
Abstract
Mulch film residue contributes significantly to global plastic pollution, and consequently biodegradable mulch films (BDMs) are being adopted as a solution. BDMs decompose relatively quickly, but their complete biodegradation requires suitable conditions that are difficult to achieve in nature, causing biodegradable microplastics (bio-MPs) to be more likely to accumulate in soil than traditional microplastics (MPs). If BDMs are to be considered as a sustainable solution, long-term and in-depth studies to investigate the impact of bio-MPs on the biogeochemical processes are vital to agroecosystems operation and ecosystem services supply. Although bio-MP-derived carbon can potentially convert into biomass during decomposition, its contribution to soil carbon stocks is insignificant. Instead, given their biodegradability, bio-MPs can result in greater alterations of soil biodiversity and community composition. Their high carbon-nitrogen ratios may also significantly regulate various processes involved in the natural decomposition and transformation of soil organic matter, including the reduction of nutrient availability and increase in greenhouse gas emissions. Soil ecosystems are complex organic entities interconnected by disturbance-feedback mechanisms. Given the prevailing knowledge gaps regarding the impact of bio-MPs on soil biogeochemical cycles and ecosystem balance, this study emphasized the safety and sustainability assessment of bio-MPs and the prevailing comprehensive challenges.
Collapse
Affiliation(s)
- Fuxin Huang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Qiyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
23
|
Zhang M, Xiong J, Zhou L, Li J, Fan J, Li X, Zhang T, Yin Z, Yin H, Liu X, Meng D. Community ecological study on the reduction of soil antimony bioavailability by SRB-based remediation technologies. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132256. [PMID: 37567138 DOI: 10.1016/j.jhazmat.2023.132256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/27/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Sulfate-reducing bacteria (SRB) were effective in stabilizing Sb. However, the influence of electron donors and acceptors during SRB remediation, as well as the ecological principles involved, remained unclear. In this study, Desulfovibrio desulfuricans ATCC 7757 was utilized to stabilize soil Sb within microcosm. Humic acid (HA) or sodium sulfate (Na2SO4) were employed to enhance SRB capacity. The SRB+HA treatment exhibited the highest Sb stabilization rate, achieving 58.40%. Bacterial community analysis revealed that SRB altered soil bacterial diversity, community composition, and assembly processes, with homogeneous selection as the predominant assembly processes. When HA and Na2SO4 significantly modified the stimulated microbial community succession trajectories, shaped the taxonomic composition and interactions of the bacterial community, they showed converse effect in shaping bacterial community which were both helpful for promoting dissimilatory sulfate reduction. Na2SO4 facilitated SRB-mediated anaerobic reduction and promoted interactions between SRB and bacteria involved in nitrogen and sulfur cycling. The HA stimulated electron generation and storage, and enhanced the interactions between SRB and bacteria possessing heavy metal tolerance or carbohydrate degradation capabilities.
Collapse
Affiliation(s)
- Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Jing Xiong
- Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China
| | - Lei Zhou
- Beijing Research Institute of Chemical Engineering and Metallurgy, Beijing 101148, China
| | - Jingjing Li
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Jianqiang Fan
- Technology Center, China Tobacco Fujian Industrial Co., Ltd., Xiamen, Fujian 361000, China
| | - Xing Li
- Hunan HIKEE Environmental Technology CO., LTD, Changsha 410221, China
| | - Teng Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Hunan urban and Rural Environmental Construction Co., Ltd, Changsha 410118, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Zhuzhong Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; Key laboratory of Biometallurgy, Ministry of Education, Changsha 410083, China.
| |
Collapse
|
24
|
Lei J, Cao Y, Wang J, Chen Y, Peng Y, Shao Q, Dan Q, Xu Y, Chen X, Dang P, Yan W. Soil Nutrients, Enzyme Activities, and Microbial Communities along a Chronosequence of Chinese Fir Plantations in Subtropical China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1931. [PMID: 37653848 PMCID: PMC10221965 DOI: 10.3390/plants12101931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 09/02/2023]
Abstract
Forests undergo a long-term development process from young to mature stages, yet the variations in soil nutrients, enzyme activities, microbial diversity, and community composition related to forest ages are still unclear. In this study, the characteristics of soil bacterial and fungal communities with their corresponding soil environmental factors in the young, middle, and mature stages (7, 15, and 25-year-old) of Chinese fir plantations (CFP) in the subtropical region of China were investigated in 2021. Results showed that the alpha diversity indices (Chao1 and Shannon) of soil bacteria and fungi were higher in 15 and 25-year-old stands than in 7-year-old stand of CFP, while the soil pH, soil water content, soil organic carbon, total nitrogen, total phosphorus, sucrase, urease, acid phosphatase, catalase, and microbial biomass carbon, nitrogen, and phosphorus showed higher in 7-year-old stand than other two stands of CFP. The nonmetric multidimensional scaling analysis revealed that the soil microbial species composition was significantly different in three stand ages of CFP. The redundancy and canonical correspondence analysis indicated that the soil urease and microbial biomass nitrogen were the main factors affecting soil bacterial and fungal species composition. Our findings suggested that soil microbial diversity and community structure were inconsistent with changes in soil nutrients and enzyme activities during CFP development, and enhancing stand nurturing and soil nutrient accumulation in the mid-development stage were beneficial to the sustainable management of CFP.
Collapse
Affiliation(s)
- Junjie Lei
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yixuan Cao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Jun Wang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yazhen Chen
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yuanying Peng
- College of Arts and Sciences, Saint Xavier University, Chicago, IL 60655, USA
| | - Qiwen Shao
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Qing Dan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Yichen Xu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| | - Xiaoyong Chen
- College of Arts and Sciences, Governors State University, University Park, IL 60484, USA
| | - Peng Dang
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wende Yan
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| |
Collapse
|
25
|
Wang S, Abalori TA, Wang W, Deng X, Liu W, Wang J, Cao W. Response of soil microbial compositional and functional heterogeneity to grazing exclusion in alpine shrub and meadows in the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:1038805. [PMID: 36532507 PMCID: PMC9748428 DOI: 10.3389/fmicb.2022.1038805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 11/04/2023] Open
Abstract
Soil microorganisms found in shrub-meadow ecosystems are highly heterogeneous and extremely sensitive to grazing, but changes in microbial compositional and functional heterogeneity during grazing exclusion (GE) have been largely overlooked compared to community diversity. We collected soil samples from heavily grazed plots (6.0 sheep/ha) and GE plots (matrix and patch areas in both), and used a combination of next-generation sequencing, vegetation features, and the associated soil property data to investigate the effect of GE on the composition and function of microbial communities (bacteria fungi, and archaea) in 0-10 cm soils. Regarding community composition, the proportions of species in bacteria, fungi, and archaea were 97.3, 2.3, and 0.4%, respectively. GE significantly affected the species diversity of fungi and archaea but not that of bacteria. GE decreased the heterogeneity of bacteria (2.9% in matrix and 6.2% in patch) and archaea (31.1% in matrix and 19.7% in patch) but increased that of fungi by 1.4% in patch. Regarding community function, enzyme diversity and heterogeneity were increased by 10.4 and 9.4%, respectively, in patch after 6 years of fencing, exemplifying a high level of microbial functional redundancy. The Kyoto Encyclopedia of Genes and Genome pathways-cell growth and death, translation, digestive system, and nucleotide metabolism-were functional biomarkers (linear discriminant analysis effect size method) in matrix-non-grazed plots, whereas lipid metabolism, xenobiotics biodegradation and metabolism, and metabolism of terpenoids and polyketides, cell motility, cancer: overview, endocrine system, and membrane transport were biomarkers in patch-non-grazed plots. Additionally, GE improved the capacity for fatty acid metabolism but decreased the abundance of methane-producing archaea by 42.9%. Redundancy analysis revealed that the factors that affected microbial composition the most were soil aggregates, soil moisture, and the number of plant species, whereas those that affected microbial function the most were soil available phosphorus, soil temperature, and shrub canopy diameter. Our results quantified soil microbial heterogeneity, emphasizing the different responses of the composition and function of bacteria, fungi, and archaea to GE in alpine shrubs and meadows.
Collapse
Affiliation(s)
- Shilin Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, China
| | | | - Wenhu Wang
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Xiuxia Deng
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Wanting Liu
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
| | - Jinlan Wang
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Wenxia Cao
- College of Pratacultural Science, Gansu Agricultural University, Lanzhou, China
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Lanzhou, China
| |
Collapse
|
26
|
Yang Y, Shi G, Liu Y, Ma L, Zhang Z, Jiang S, Pan J, Zhang Q, Yao B, Zhou H, Feng H. Experimental Warming Has Not Affected the Changes in Soil Organic Carbon During the Growing Season in an Alpine Meadow Ecosystem on the Qinghai-Tibet Plateau. FRONTIERS IN PLANT SCIENCE 2022; 13:847680. [PMID: 35371126 PMCID: PMC8971846 DOI: 10.3389/fpls.2022.847680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
The effects of climate warming and season on soil organic carbon (SOC) have received widespread attention, but how climate warming affects the seasonal changes of SOC remains unclear. Here, we established a gradient warming experiment to investigate plant attributes and soil physicochemical and microbial properties that were potentially associated with changes in SOC at the beginning (May) and end (August) of the growing season in an alpine meadow ecosystem on the Qinghai-Tibet Plateau. The SOC of August was lower than that of May, and the storage of SOC in August decreased by an average of 18.53 million grams of carbon per hectare. Warming not only failed to alter the content of SOC regardless of the season but also did not affect the change in SOC during the growing season. Among all the variables measured, microbial biomass carbon was highly coupled to the change in SOC. These findings indicate that alpine meadow soil is a source of carbon during the growing season, but climate warming has no significant impact on it. This study highlights that in the regulation of carbon source or pool in alpine meadow ecosystem, more attention should be paid to changes in SOC during the growing season, rather than climate warming.
Collapse
Affiliation(s)
- Yue Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Guoxi Shi
- Key Laboratory of Utilization of Agriculture Solid Waste Resources in Gansu Province, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Yongjun Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Ma
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhonghua Zhang
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Shengjing Jiang
- State Key Laboratory of Grassland and Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jianbin Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Qi Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Buqing Yao
- Key Laboratory of Utilization of Agriculture Solid Waste Resources in Gansu Province, College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, China
| | - Huakun Zhou
- Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Huyuan Feng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
27
|
Bernard L, Basile‐Doelsch I, Derrien D, Fanin N, Fontaine S, Guenet B, Karimi B, Marsden C, Maron P. Advancing the mechanistic understanding of the priming effect on soil organic matter mineralisation. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laetitia Bernard
- IRD UMR Eco&Sols INRAE, CIRAD Institut Agro Univ Montpellier 2 place Viala Bt12 34060 Montpellier France
| | | | | | - Nicolas Fanin
- INRAE UMR 1391 ISPA, Bordeaux Sciences Agro 71 Avenue Edouard Bourlaux, CS 20032 Villenave‐d’Ornon Cedex F33882 France
| | - Sébastien Fontaine
- INRAE Université Clermont Auvergne VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
| | - Bertrand Guenet
- Laboratoire de Géologie Ecole Normale Supérieure/CNRS UMR8538 IPSL PSL Research University Paris France
| | | | - Claire Marsden
- Institut Agro UMR Eco&Sols, IRD, INRAE, CIRAD Univ Montpellier 2 place Viala Bt12 34060
| | - Pierre‐Alain Maron
- INRAE UMR AgroEcologie AgroSup Dijon, BP 87999, CEDEX 21079 Dijon France
| |
Collapse
|