1
|
Koinuma S, Miyaji M, Akiyama S, Ito Y, Takemura H, Wada N, Igarashi M, Nakamura T. TC10 on endosomes regulates the local balance between microtubule stability and dynamics through the PAK2-JNK pathway and promotes axon outgrowth. J Cell Sci 2025; 138:JCS263636. [PMID: 40008675 DOI: 10.1242/jcs.263636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
The neuronal cytoskeleton comprises microtubules, actin filaments and neurofilaments, and plays a crucial role in axon outgrowth and transport. Microtubules and actin filaments have attracted considerable attention in axon regeneration studies. We have previously shown that TC10 (also known as RhoQ), a Rho family GTPase that promotes axon outgrowth through membrane addition, is required for efficient axon regeneration. This study demonstrates that TC10 on recycling endosomes, but not on the plasma membrane, balances microtubule stability and dynamics in the axons, thereby counteracting axon retraction. TC10 ablation reduced the phosphorylation of SCG10 (also known as STMN2) and MAP1B, which are neuronal microtubule-binding proteins and JNK substrates. Consistent with this, JNK phosphorylation was decreased in TC10-knockout neurons compared to in wild-type neurons. Furthermore, TC10 deletion significantly reduced PAK2 autophosphorylation. PAK2 was found on Rab11-positive endosomes in cell bodies and axons, and its localization to endosomes was reduced by TC10 loss. PAK inhibition reduced tubulin acetylation and JNK phosphorylation in axons. Furthermore, MKK4 and MKK7 (also known as MAP2K4 and MAP2K7, respectively) were found to mediate signaling from TC10-activated PAK to JNK on JIP1-positive endosomes. Overall, TC10 transmits a microtubule-regulatory signal from PAK2 to SCG10 and MAP1B via JNK on axonal endosomes.
Collapse
Affiliation(s)
- Shingo Koinuma
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Misa Miyaji
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Suzuka Akiyama
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yasuyuki Ito
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Hiroshi Takemura
- Department of Mechanical and Aerospace Engineering, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, Graduate School of Medical and Dental Sciences, Niigata University, Chuo-ku, Niigata 951-8510, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
2
|
Zeng Q, Xiao Y, Zeng X, Xiao H. Implications of the SNHG10/miR-665/RASSF5/NF-κB pathway in dihydromyricetin-mediated ischemic stroke protection. PeerJ 2024; 12:e18754. [PMID: 39726744 PMCID: PMC11670760 DOI: 10.7717/peerj.18754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Ischemic stroke (IS) remains a leading cause of disability and mortality worldwide, and inflammation and oxidative stress play significant roles in its pathogenesis. This study investigates the effects of dihydromyricetin (DHM) on IS using RT-qPCR and western blot with SH-SY5Y cells, focusing on its effects on the small nucleolar RNA host gene 10 (SNHG10)/microRNA (miR)-665/Ras association domain family member 5 (RASSF5) axis and nuclear factor-kappa B (NF-κB) signaling. In addition, the effects of the SNHG10/miR-665/RASSF5 axis on SH-SY5Y cell activity, apoptosis, oxidative stress, and inflammatory markers were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays. Our results showed that, in response to oxygen-glucose deprivation/reperfusion (OGD/R), DHM treatment improved cell viability, reduced apoptosis, and attenuated neuroinflammation and oxidative stress in a dose-dependent manner (p < 0.05). Interestingly, lncRNA SNHG10 was overexpressed during OGD/R and suppressed by DHM. Through bioinformatics analysis and experimental validation, we identified miR-665 as a direct target of SNHG10 and RASSF5 as a direct target of miR-665. The protective effect of DHM against OGD/R injury was partially reversed by SNHG10 overexpression and further enhanced by co-transfection with the miR-665 mimic and si-RASSF5 (p < 0.05). This study identifies a novel mechanism of DHM against IS, which may act via modulation of the SNHG10/miR-665/RASSF5 axis and inactivation of NF-κB signaling, and offers a promising therapeutic target for IS.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Ultrasound, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yan Xiao
- Department of Cardiovasology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xueliang Zeng
- Department of Pharmacology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hai Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou, China
- Department of Pathology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
Urrutia PJ, González-Billault C. A Role for Second Messengers in Axodendritic Neuronal Polarity. J Neurosci 2023; 43:2037-2052. [PMID: 36948585 PMCID: PMC10039749 DOI: 10.1523/jneurosci.1065-19.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Neuronal polarization is a complex molecular process regulated by intrinsic and extrinsic mechanisms. Nerve cells integrate multiple extracellular cues to generate intracellular messengers that ultimately control cell morphology, metabolism, and gene expression. Therefore, second messengers' local concentration and temporal regulation are crucial elements for acquiring a polarized morphology in neurons. This review article summarizes the main findings and current understanding of how Ca2+, IP3, cAMP, cGMP, and hydrogen peroxide control different aspects of neuronal polarization, and highlights questions that still need to be resolved to fully understand the fascinating cellular processes involved in axodendritic polarization.
Collapse
Affiliation(s)
- Pamela J Urrutia
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- School of Medical Technology, Faculty of Medicine and Science, Universidad San Sebastián, Santiago, Chile 7510157
| | - Christian González-Billault
- Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile 7800003
- Department of Neurosciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile 8380453
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile 7800003
- Buck Institute for Research on Aging, Novato, California 94945
| |
Collapse
|
4
|
Yasuoka A, Nagai T, Lee S, Miyaguchi H, Saito Y, Abe K, Asakura T. Mastication stimuli enhance the learning ability of weaning-stage rats, altering the hippocampal neuron transcriptome and micromorphology. Front Behav Neurosci 2022; 16:1006359. [PMID: 36263297 PMCID: PMC9574334 DOI: 10.3389/fnbeh.2022.1006359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Mastication stimuli are known to relieve senile dementia in human and animal studies. However, few studies have focused on its effect on weaning-stage animals and the underlying molecular processes. In this study, 3-week-old male rats were raised on a powdered (P-group) or chow (C-group) diet for 8 days, and their behavior was examined using the Y-maze and novel object recognition tests. In the Y-maze test, the C-group rats showed a larger alternation ratio than the P-group rats. In the novel object recognition test, the C-group rats exhibited a significantly larger discrimination index for novel objects than for familiar objects, but the P-group rats did not. We then compared the hippocampal neuron morphology and transcriptome between the groups. C-group rats exhibited larger dendrite branch numbers in the apical dendrites of pyramidal cells in the cornu ammonis 1 (CA1) region and a larger spine density in the basal dendrites of CA1 neurons than the P-group rats. Using DNA microarray analysis, we identified 621 (P < C) and 96 (P > C) genes that were differentially expressed between the groups. These genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the C-group. These results suggest that the mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth.
Collapse
Affiliation(s)
- Akihito Yasuoka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Human Nutrition, Seitoku University, Chiba, Japan
| | - Toshitada Nagai
- Department of Applied Biological Science, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Seonmi Lee
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hitonari Miyaguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Saito
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiko Abe
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
| | - Tomiko Asakura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- *Correspondence: Tomiko Asakura,
| |
Collapse
|
5
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Quiroga S, Bisbal M, Cáceres A. Regulation of plasma membrane expansion during axon formation. Dev Neurobiol 2017; 78:170-180. [PMID: 29090510 DOI: 10.1002/dneu.22553] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/28/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022]
Abstract
Here, will review current evidence regarding the signaling pathways and mechanisms underlying membrane addition at sites of active growth during axon formation. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 170-180, 2018.
Collapse
Affiliation(s)
- Santiago Quiroga
- Dpto. de Química Biológica Ranwel Caputto y Centro de Investigaciones en Química Biológica Córdoba (CIQUIBIC-CONICET) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina
| | - Mariano Bisbal
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| | - Alfredo Cáceres
- Universidad Nacional de Córdoba (UNC) Av. Haya de la Torre s/n Ciudad Universitaria, Córdoba, Argentina.,Instituto Mercedes y Martín Ferreyra (INIMEC-CONICET) Av. Friuli 2434, 5016, Córdoba, Argentina.,Instituto Universitario Ciencias Biomédicas de Córdoba (IUCBC), Av. Friuli 2786, 5016, Córdoba, Argentina
| |
Collapse
|
7
|
The functions of Reelin in membrane trafficking and cytoskeletal dynamics: implications for neuronal migration, polarization and differentiation. Biochem J 2017; 474:3137-3165. [PMID: 28887403 DOI: 10.1042/bcj20160628] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/06/2023]
Abstract
Reelin is a large extracellular matrix protein with relevant roles in mammalian central nervous system including neurogenesis, neuronal polarization and migration during development; and synaptic plasticity with its implications in learning and memory, in the adult. Dysfunctions in reelin signaling are associated with brain lamination defects such as lissencephaly, but also with neuropsychiatric diseases like autism, schizophrenia and depression as well with neurodegeneration. Reelin signaling involves a core pathway that activates upon reelin binding to its receptors, particularly ApoER2 (apolipoprotein E receptor 2)/LRP8 (low-density lipoprotein receptor-related protein 8) and very low-density lipoprotein receptor, followed by Src/Fyn-mediated phosphorylation of the adaptor protein Dab1 (Disabled-1). Phosphorylated Dab1 (pDab1) is a hub in the signaling cascade, from which several other downstream pathways diverge reflecting the different roles of reelin. Many of these pathways affect the dynamics of the actin and microtubular cytoskeleton, as well as membrane trafficking through the regulation of the activity of small GTPases, including the Rho and Rap families and molecules involved in cell polarity. The complexity of reelin functions is reflected by the fact that, even now, the precise mode of action of this signaling cascade in vivo at the cellular and molecular levels remains unclear. This review addresses and discusses in detail the participation of reelin in the processes underlying neurogenesis, neuronal migration in the cerebral cortex and the hippocampus; and the polarization, differentiation and maturation processes that neurons experiment in order to be functional in the adult brain. In vivo and in vitro evidence is presented in order to facilitate a better understanding of this fascinating system.
Collapse
|
8
|
Hansen AH, Duellberg C, Mieck C, Loose M, Hippenmeyer S. Cell Polarity in Cerebral Cortex Development-Cellular Architecture Shaped by Biochemical Networks. Front Cell Neurosci 2017; 11:176. [PMID: 28701923 PMCID: PMC5487411 DOI: 10.3389/fncel.2017.00176] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/12/2017] [Indexed: 11/15/2022] Open
Abstract
The human cerebral cortex is the seat of our cognitive abilities and composed of an extraordinary number of neurons, organized in six distinct layers. The establishment of specific morphological and physiological features in individual neurons needs to be regulated with high precision. Impairments in the sequential developmental programs instructing corticogenesis lead to alterations in the cortical cytoarchitecture which is thought to represent the major underlying cause for several neurological disorders including neurodevelopmental and psychiatric diseases. In this review article we discuss the role of cell polarity at sequential stages during cortex development. We first provide an overview of morphological cell polarity features in cortical neural stem cells and newly-born postmitotic neurons. We then synthesize a conceptual molecular and biochemical framework how cell polarity is established at the cellular level through a break in symmetry in nascent cortical projection neurons. Lastly we provide a perspective how the molecular mechanisms applying to single cells could be probed and integrated in an in vivo and tissue-wide context.
Collapse
Affiliation(s)
- Andi H Hansen
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | | - Christine Mieck
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | - Martin Loose
- Institute of Science and Technology AustriaKlosterneuburg, Austria
| | | |
Collapse
|
9
|
Shah B, Püschel AW. Regulation of Rap GTPases in mammalian neurons. Biol Chem 2017; 397:1055-69. [PMID: 27186679 DOI: 10.1515/hsz-2016-0165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022]
Abstract
Small GTPases are central regulators of many cellular processes. The highly conserved Rap GTPases perform essential functions in the mammalian nervous system during development and in mature neurons. During neocortical development, Rap1 is required to regulate cadherin- and integrin-mediated adhesion. In the adult nervous system Rap1 and Rap2 regulate the maturation and plasticity of dendritic spine and synapses. Although genetic studies have revealed important roles of Rap GTPases in neurons, their regulation by guanine nucleotide exchange factors (GEFs) that activate them and GTPase activating proteins (GAPs) that inactivate them by stimulating their intrinsic GTPase activity is just beginning to be explored in vivo. Here we review how GEFs and GAPs regulate Rap GTPases in the nervous system with a focus on their in vivo function.
Collapse
|
10
|
Mazel T. Crosstalk of cell polarity signaling pathways. PROTOPLASMA 2017; 254:1241-1258. [PMID: 28293820 DOI: 10.1007/s00709-017-1075-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/02/2017] [Indexed: 06/06/2023]
Abstract
Cell polarity, the asymmetric organization of cellular components along one or multiple axes, is present in most cells. From budding yeast cell polarization induced by pheromone signaling, oocyte polarization at fertilization to polarized epithelia and neuronal cells in multicellular organisms, similar mechanisms are used to determine cell polarity. Crucial role in this process is played by signaling lipid molecules, small Rho family GTPases and Par proteins. All these signaling circuits finally govern the cytoskeleton, which is responsible for oriented cell migration, cell shape changes, and polarized membrane and organelle trafficking. Thus, typically in the process of cell polarization, most cellular constituents become polarized, including plasma membrane lipid composition, ion concentrations, membrane receptors, and proteins in general, mRNA, vesicle trafficking, or intracellular organelles. This review gives a brief overview how these systems talk to each other both during initial symmetry breaking and within the signaling feedback loop mechanisms used to preserve the polarized state.
Collapse
Affiliation(s)
- Tomáš Mazel
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague 2, Czech Republic.
- State Institute for Drug Control, Šrobárova 48, 100 41, Prague 10, Czech Republic.
| |
Collapse
|
11
|
Neuronal polarization: From spatiotemporal signaling to cytoskeletal dynamics. Mol Cell Neurosci 2017; 84:11-28. [PMID: 28363876 DOI: 10.1016/j.mcn.2017.03.008] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/24/2017] [Accepted: 03/26/2017] [Indexed: 12/20/2022] Open
Abstract
Neuronal polarization establishes distinct molecular structures to generate a single axon and multiple dendrites. Studies over the past years indicate that this efficient separation is brought about by a network of feedback loops. Axonal growth seems to play a major role in fueling those feedback loops and thereby stabilizing neuronal polarity. Indeed, various effectors involved in feedback loops are pivotal for axonal growth by ultimately acting on the actin and microtubule cytoskeleton. These effectors have key roles in interconnecting actin and microtubule dynamics - a mechanism crucial to commanding the growth of axons. We propose a model connecting signaling with cytoskeletal dynamics and neurite growth to better describe the underlying processes involved in neuronal polarization. We will discuss the current views on feedback loops and highlight the current limits of our understanding.
Collapse
|
12
|
Guo W, Shang DM, Cao JH, Feng K, He YC, Jiang Y, Wang S, Gao YF. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6132436. [PMID: 28255556 PMCID: PMC5309434 DOI: 10.1155/2017/6132436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients' personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR) algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Wei Guo
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dong-Mei Shang
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jing-Hui Cao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yi-Chun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Fei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
13
|
Xue Q, Yu C, Wang Y, Liu L, Zhang K, Fang C, Liu F, Bian G, Song B, Yang A, Ju G, Wang J. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a. Sci Rep 2016; 6:26781. [PMID: 27221778 PMCID: PMC4879704 DOI: 10.1038/srep26781] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/06/2016] [Indexed: 12/20/2022] Open
Abstract
A single microRNA (miRNA) can regulate expression of multiple proteins, and expression of an individual protein may be controlled by numerous miRNAs. This regulatory pattern strongly suggests that synergistic effects of miRNAs play critical roles in regulating biological processes. miR-9 and miR-124, two of the most abundant miRNAs in the mammalian nervous system, have important functions in neuronal development. In this study, we identified the small GTP-binding protein Rap2a as a common target of both miR-9 and miR-124. miR-9 and miR-124 together, but neither miRNA alone, strongly suppressed Rap2a, thereby promoting neuronal differentiation of neural stem cells (NSCs) and dendritic branching of differentiated neurons. Rap2a also diminished the dendritic complexity of mature neurons by decreasing the levels of pAKT and pGSK3β. Our results reveal a novel pathway in which miR-9 and miR-124 synergistically repress expression of Rap2a to sustain homeostatic dendritic complexity during neuronal development and maturation.
Collapse
Affiliation(s)
- Qian Xue
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Caiyong Yu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Yan Wang
- Oral and maxillofacial surgery, Stomatology Hospital of Xi'an Jiaotong University, 710004, China
| | - Ling Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Kun Zhang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Chao Fang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Fangfang Liu
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Ganlan Bian
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Bing Song
- Cardiff Institute of Tissue Engineering &Repair, School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Angang Yang
- Department of Immunology, the Fourth Military Medical University, Xi'an 710032, China
| | - Gong Ju
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| | - Jian Wang
- Institute of Neurosciences, the Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
14
|
Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015; 16:24302-24318. [PMID: 26473853 PMCID: PMC4632751 DOI: 10.3390/ijms161024302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. In addition, previous studies concluded that microRNAs (miRNAs or miRs) are closely related to the pathological process of ischemic and hypoxic disease. Therefore, the aims of this study were to quantify the altered expression levels of miRNAs in the infarct region 6 h after middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in mice using a large-scale miRNAs microarray. Firstly, MCAO-induced cerebral ischemic injuries were investigated by observing the changes of neurological deficits, infarct volume and edema ratio. One hundred and eighteen differentially expressed miRNAs were identified in the infarct region of mice following the MCAOs compared with sham group (p<0.05 was considered as significant). Among these 118 significantly expressed microRNAs, we found that 12 miRNAs were up-regulated with fold changes lager than two, and 18 miRNAs were down-regulated with fold changes less than 0.5 in the infarct region of mice following the 6 h MCAOs, compared with the sham group. Then, these 30 miRNAs with expression in fold change larger than two or less than 0.5 was predicted, and the functions of the target genes of 30 miRNAs were analyzed using a bioinformatics method. Finally, the miRNA-gene network was established and the functional miRNA-mRNA pairs were identified, which provided insight into the roles of the specific miRNAs that regulated specified genes in the ischemic injuries. The miRNAs identified in this study may represent effective therapeutic targets for stroke, and further study of the role of these targets may increase our understanding of the mechanisms underlying ischemic injuries.
Collapse
Affiliation(s)
- Cuiying Liu
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Lei Zhao
- Department of Anesthesiology Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Dongguo Li
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
15
|
Namba T, Funahashi Y, Nakamuta S, Xu C, Takano T, Kaibuchi K. Extracellular and Intracellular Signaling for Neuronal Polarity. Physiol Rev 2015; 95:995-1024. [PMID: 26133936 DOI: 10.1152/physrev.00025.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neurons are one of the highly polarized cells in the body. One of the fundamental issues in neuroscience is how neurons establish their polarity; therefore, this issue fascinates many scientists. Cultured neurons are useful tools for analyzing the mechanisms of neuronal polarization, and indeed, most of the molecules important in their polarization were identified using culture systems. However, we now know that the process of neuronal polarization in vivo differs in some respects from that in cultured neurons. One of the major differences is their surrounding microenvironment; neurons in vivo can be influenced by extrinsic factors from the microenvironment. Therefore, a major question remains: How are neurons polarized in vivo? Here, we begin by reviewing the process of neuronal polarization in culture conditions and in vivo. We also survey the molecular mechanisms underlying neuronal polarization. Finally, we introduce the theoretical basis of neuronal polarization and the possible involvement of neuronal polarity in disease and traumatic brain injury.
Collapse
Affiliation(s)
- Takashi Namba
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yasuhiro Funahashi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinichi Nakamuta
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Chundi Xu
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tetsuya Takano
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
16
|
Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S. RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett 2014; 588:2671-84. [DOI: 10.1016/j.febslet.2014.02.041] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
|