1
|
Wen J, Li Z, Tan Y, Tey HL, Yu N, Wang X. Endothelial Dysfunction in Keloid Formation and Therapeutic Insights. J Invest Dermatol 2025:S0022-202X(25)00295-7. [PMID: 40100176 DOI: 10.1016/j.jid.2025.02.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Keloids are benign fibroproliferative tumors that cause significant physical and mental morbidity owing to their disfiguring appearance, chronic symptoms, and resistance to treatment. Although fibroblast hyperproliferation and excessive extracellular matrix deposition have been extensively studied, less attention has been paid to the role of vascular dysregulation and endothelial dysfunction (ED) in keloid pathogenesis. Emerging evidence highlights abnormal angiogenesis, vascular irregularities, and endothelial injury as critical drivers of fibrosis in keloids. This review explores the direct and indirect mechanisms of ED in keloid progression, including endothelial-to-mesenchymal transition, inflammation, immune cell crosstalk, and hypoxia. In addition, various treatment strategies targeting angiogenesis and ED, such as drugs, radiotherapy, hyperbaric oxygen therapy, compression, and laser treatments, are comprehensively reviewed. This review explores keloids through the lens of vasculature and endothelium, emphasizing the critical roles of vascular dysregulation and ED. It aims to provide insights into the mechanisms of keloid formation and serve as a reference for developing future therapeutic strategies.
Collapse
Affiliation(s)
- Junxian Wen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; National Skin Centre, Singapore, Singapore
| | - Zhijin Li
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China
| | - Yingrou Tan
- National Skin Centre, Singapore, Singapore; Skin Research Institute of Singapore, Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nanze Yu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China; Department of International Medical Service, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| | - Xiaojun Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, Republic of China.
| |
Collapse
|
2
|
Liu M. Cytokines, chemokines and growth factors involved in keloids pathogenesis. An Bras Dermatol 2025; 100:300-307. [PMID: 39799030 PMCID: PMC11963030 DOI: 10.1016/j.abd.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/15/2024] [Indexed: 01/15/2025] Open
Abstract
Keloid is a common fibrotic disease, which is difficult to treat. It often causes itching and pain, which greatly disturbs patients in their work and daily life and causing difficulties in social interaction. Its pathogenesis is not clear, but may be related to several aspects: genetic susceptibility, environmental, immunological and endocrine factors, trauma and tension. The central point of its pathogenesis is the excessive proliferation of fibroblasts, with excessive synthesis and secretion of extracellular matrix such as collagen. However, the cause of fibroblast excessive proliferation and differentiation is not clear. Immune abnormalities may play an important role, with cytokines, chemokines, growth factors, and other important immune molecules acting on fibroblasts. This paper presents a detailed and comprehensive literature review on this subject.
Collapse
Affiliation(s)
- Mengguo Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Latoni DI, McDaniel DC, Tsao H, Tsao SS. Update on the Pathogenesis of Keloid Formation. JID INNOVATIONS 2024; 4:100299. [PMID: 39247523 PMCID: PMC11378114 DOI: 10.1016/j.xjidi.2024.100299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 09/10/2024] Open
Abstract
Keloids are abnormal skin growths occurring in a significant portion of the global population. Despite their pervasiveness, the underlying pathophysiology of this scarring process is yet to be fully understood. In this review article, we delve into the current literature on the pathophysiological mechanisms of keloids. We take a top-down approach, first looking at host factors such as genetics and endocrine factors and then taking a more granular approach describing specific control factors such as germline keloid predisposition variants, epigenetics and transcriptomics, inflammatory and immune dysregulation, and the role of profibrotic and angiogenic cell signaling pathways. We then discuss current knowledge gaps, propose further research avenues, and explore potential future treatment options considering our increased understanding of keloid pathogenesis.
Collapse
Affiliation(s)
- David I Latoni
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Danica C McDaniel
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hensin Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sandy S Tsao
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Han X, Ju L, Saengow C, Ren W, Ewoldt R, Fan T, Irudayaraj J. Nano oxygen chamber by cascade reaction for hypoxia mitigation and reactive oxygen species scavenging in wound healing. Bioact Mater 2024; 35:67-81. [PMID: 38312517 PMCID: PMC10835133 DOI: 10.1016/j.bioactmat.2024.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/26/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
Hypoxia, excessive reactive oxygen species (ROS), and impaired angiogenesis are prominent obstacles to wound healing following trauma and surgical procedures, often leading to the development of keloids and hypertrophic scars. To address these challenges, a novel approach has been proposed, involving the development of a cascade enzymatic reaction-based nanocarriers-laden wound dressing. This advanced technology incorporates superoxide dismutase modified oxygen nanobubbles and catalase modified oxygen nanobubbles within an alginate hydrogel matrix. The oxygen nano chamber functions through a cascade reaction between superoxide dismutase and catalase, wherein excessive superoxide in the wound environment is enzymatically decomposed into hydrogen peroxide, and this hydrogen peroxide is subsequently converted into oxygen by catalase. This enzymatic cascade effectively controls wound inflammation and hypoxia, mitigating the risk of keloid formation. Concurrently, the oxygen nanobubbles release oxygen continuously, thus providing a sustained supply of oxygen to the wound site. The oxygen release from this dynamic system stimulates fibroblast proliferation, fosters the formation of new blood vessels, and contributes to the overall wound healing process. In the rat full-thickness wound model, the cascade reaction-based nano oxygen chamber displayed a notable capacity to expedite wound healing without scarring. Furthermore, in the pilot study of porcine full-thickness wound healing, a notable acceleration of tissue repair was observed in the conceived cascade reaction-based gel treated group within the 3 days post-surgery, which represents the proliferation stage of healing process. These achievements hold significant importance in ensuring the complete functional recovery of tissues, thereby highlighting its potential as a promising approach for enhancing wound healing outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Leah Ju
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Chai Saengow
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wen Ren
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
| | - Randy Ewoldt
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Timothy Fan
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, 1102 Everitt Lab, 1406 W. Green St., University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Beckman Institute, Urbana, IL, 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
5
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Zhang M, Chen H, Qian H, Wang C. Characterization of the skin keloid microenvironment. Cell Commun Signal 2023; 21:207. [PMID: 37587491 PMCID: PMC10428592 DOI: 10.1186/s12964-023-01214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/02/2023] [Indexed: 08/18/2023] Open
Abstract
Keloids are a fibroproliferative skin disorder that develops in people of all ages. Keloids exhibit some cancer-like behaviors, with similar genetic and epigenetic modifications in the keloid microenvironment. The keloid microenvironment is composed of keratinocytes, fibroblasts, myofibroblasts, vascular endothelial cells, immune cells, stem cells and collagen fibers. Recent advances in the study of keloids have led to novel insights into cellular communication among components of the keloid microenvironment as well as potential therapeutic targets for treating keloids. In this review, we summarized the nature of genetic and epigenetic regulation in keloid-derived fibroblasts, epithelial-to-mesenchymal transition of keratinocytes, immune cell infiltration into keloids, the differentiation of keloid-derived stem cells, endothelial-to-mesenchymal transition of vascular endothelial cells, extracellular matrix synthesis and remodeling, and uncontrolled angiogenesis in keloids with the aim of identifying new targets for therapeutic benefit. Video Abstract.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Hailong Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huan Qian
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Chen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
7
|
Hu P, Armato U, Freddi G, Chiarini A, Dal Prà I. Human Keratinocytes and Fibroblasts Co-Cultured on Silk Fibroin Scaffolds Exosomally Overrelease Angiogenic and Growth Factors. Cells 2023; 12:1827. [PMID: 37508492 PMCID: PMC10378127 DOI: 10.3390/cells12141827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Objectives: The optimal healing of skin wounds, deep burns, and chronic ulcers is an important clinical problem. Attempts to solve it have been driving the search for skin equivalents based on synthetic or natural polymers. Methods: Consistent with this endeavor, we used regenerated silk fibroin (SF) from Bombyx mori to produce a novel compound scaffold by welding a 3D carded/hydroentangled SF-microfiber-based nonwoven layer (C/H-3D-SFnw; to support dermis engineering) to an electrospun 2D SF nanofiber layer (ESFN; a basal lamina surrogate). Next, we assessed-via scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, differential scanning calorimetry, mono- and co-cultures of HaCaT keratinocytes and adult human dermal fibroblasts (HDFs), dsDNA assays, exosome isolation, double-antibody arrays, and angiogenesis assays-whether the C/H-3D-SFnws/ESFNs would allow the reconstitution of a functional human skin analog in vitro. Results: Physical analyses proved that the C/H-3D-SFnws/ESFNs met the requirements for human soft-tissue-like implants. dsDNA assays revealed that co-cultures of HaCaTs (on the 2D ESFN surface) and HDFs (inside the 3D C/H-3D-SFnws) grew more intensely than did the respective monocultures. Double-antibody arrays showed that the CD9+/CD81+ exosomes isolated from the 14-day pooled growth media of HDF and/or HaCaT mono- or co-cultures conveyed 35 distinct angiogenic/growth factors (AGFs). However, versus monocultures' exosomes, HaCaT/HDF co-cultures' exosomes (i) transported larger amounts of 15 AGFs, i.e., PIGF, ANGPT-1, bFGF, Tie-2, Angiogenin, VEGF-A, VEGF-D, TIMP-1/-2, GRO-α/-β/-γ, IL-1β, IL-6, IL-8, MMP-9, and MCP-1, and (ii) significantly more strongly stimulated human dermal microvascular endothelial cells to migrate and assemble tubes/nodes in vitro. Conclusions: Our results showed that both cell-cell and cell-SF interactions boosted the exosomal release of AGFs from HaCaTs/HDFs co-cultured on C/H-3D-SFnws/ESFNs. Hence, such exosomes are an asset for prospective clinical applications as they advance cell growth and neoangiogenesis and consequently graft take and skin healing. Moreover, this new integument analog could be instrumental in preclinical and translational studies on human skin pathophysiology and regeneration.
Collapse
Affiliation(s)
- Peng Hu
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ubaldo Armato
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | | | - Anna Chiarini
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| | - Ilaria Dal Prà
- Department of Surgery, Dentistry, Pediatrics & Gynecology, University of Verona Medical School, 37134 Verona, Italy
| |
Collapse
|
8
|
Serpelloni M, Arricca M, Ravelli C, Grillo E, Mitola S, Salvadori A. Mechanobiology of the relocation of proteins in advecting cells: in vitro experiments, multi-physics modeling, and simulations. Biomech Model Mechanobiol 2023:10.1007/s10237-023-01717-2. [PMID: 37067608 PMCID: PMC10366044 DOI: 10.1007/s10237-023-01717-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/29/2023] [Indexed: 04/18/2023]
Abstract
Cell motility-a cellular behavior of paramount relevance in embryonic development, immunological response, metastasis, or angiogenesis-demands a mechanical deformation of the cell membrane and influences the surface motion of molecules and their biochemical interactions. In this work, we develop a fully coupled multi-physics model able to capture and predict the protein flow on endothelial advecting plasma membranes. The model has been validated against co-designed in vitro experiments. The complete picture of the receptor dynamics has been understood, and limiting factors have been identified together with the laws that regulate receptor polarization. This computational approach might be insightful in the prediction of endothelial cell behavior in different tumoral environments, circumventing the time-consuming and expensive empirical characterization of each tumor.
Collapse
Affiliation(s)
- M Serpelloni
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, 25123, Brescia, Italy
| | - M Arricca
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, 25123, Brescia, Italy
| | - C Ravelli
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, 25123, Brescia, Italy
| | - E Grillo
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, 25123, Brescia, Italy
| | - S Mitola
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, 25123, Brescia, Italy
| | - A Salvadori
- The Mechanobiology research center, UNIBS, 25123, Brescia, Italy.
- Department of Mechanical and Industrial Engineering, Università degli Studi di Brescia, 25123, Brescia, Italy.
| |
Collapse
|
9
|
Liu J, Luo Z. Correlations of cardiac function with vascular endothelial function, renal function and KIM-1 in patients with dilated cardiomyopathy-induced heart failure. Minerva Med 2022; 113:1041-1043. [PMID: 32880424 DOI: 10.23736/s0026-4806.20.06909-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Juan Liu
- Department of Geriatrics, Kangda College of Nanjing Medical University Affiliated Lianshui County People's Hospital, Huaian, China
| | - Zhaojun Luo
- Department of Cardiology, Second People's Hospital of Gansu Province, Lanzhou, China -
| |
Collapse
|
10
|
Xia Y, Wang Y, Shan M, Hao Y, Liu H, Chen Q, Liang Z. Advances in the pathogenesis and clinical application prospects of tumor biomolecules in keloid. BURNS & TRAUMA 2022; 10:tkac025. [PMID: 35769828 PMCID: PMC9233200 DOI: 10.1093/burnst/tkac025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/13/2022] [Indexed: 12/29/2022]
Abstract
Keloid scarring is a kind of pathological healing manifestation after skin injury and possesses various tumor properties, such as the Warburg effect, epithelial-mesenchymal transition (EMT), expression imbalances of apoptosis-related genes and the presence of stem cells. Abnormal expression of tumor signatures is critical to the initiation and operation of these effects. Although previous experimental studies have recognized the potential value of a single or several tumor biomolecules in keloids, a comprehensive evaluation system for multiple tumor signatures in keloid scarring is still lacking. This paper aims to summarize tumor biomolecules in keloids from the perspectives of liquid biopsy, genetics, proteomics and epigenetics and to investigate their mechanisms of action and feasibility from bench to bedside. Liquid biopsy is suitable for the early screening of people with keloids due to its noninvasive and accurate performance. Epigenetic biomarkers do not require changes in the gene sequence and their reversibility and tissue specificity make them ideal therapeutic targets. Nonetheless, given the ethnic specificity and genetic predisposition of keloids, more large-sample multicenter studies are indispensable for determining the prevalence of these signatures and for establishing diagnostic criteria and therapeutic efficacy estimations based on these molecules.
Collapse
Affiliation(s)
- Yijun Xia
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Youbin Wang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Mengjie Shan
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Yan Hao
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Hao Liu
- Department of Plastic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Qiao Chen
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Zhengyun Liang
- Department of Plastic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
11
|
Zhou X, Lu J, Wu B, Guo Z. HOXA11-AS facilitates the proliferation, cell cycle process and migration of keloid fibroblasts through sponging miR-188-5p to regulate VEGFA. J Dermatol Sci 2022; 106:111-118. [DOI: 10.1016/j.jdermsci.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 01/14/2023]
|
12
|
Li Y, Li M, Qu C, Li Y, Tang Z, Zhou Z, Yu Z, Wang X, Xin L, Shi T. The Polygenic Map of Keloid Fibroblasts Reveals Fibrosis-Associated Gene Alterations in Inflammation and Immune Responses. Front Immunol 2022; 12:810290. [PMID: 35082796 PMCID: PMC8785650 DOI: 10.3389/fimmu.2021.810290] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Due to many inconsistencies in differentially expressed genes (DEGs) related to genomic expression changes during keloid formation and a lack of satisfactory prevention and treatment methods for this disease, the critical biomarkers related to inflammation and the immune response affecting keloid formation should be systematically clarified. Normal skin/keloid scar tissue-derived fibroblast genome expression data sets were obtained from the Gene Expression Omnibus (GEO) and ArrayExpress databases. Hub genes have a high degree of connectivity and gene function aggregation in the integration network. The hub DEGs were screened by gene-related protein–protein interactions (PPIs), and their biological processes and signaling pathways were annotated to identify critical biomarkers. Finally, eighty-one hub DEGs were selected for further analysis, and some noteworthy signaling pathways and genes were found to be closely related to keloid fibrosis. For example, IL17RA is involved in IL-17 signal transduction, TIMP2 and MMP14 activate extracellular matrix metalloproteinases, and TNC, ITGB2, and ITGA4 interact with cell surface integrins. Furthermore, changes in local immune cell activity in keloid tissue were detected by DEG expression, immune cell infiltration, and mass CyTOF analyses. The results showed that CD4+ T cells, CD8+ T cells and NK cells were abnormal in keloid tissue compared with normal skin tissue. These findings not only support the key roles of fibrosis-related pathways, immune cells and critical genes in the pathogenesis of keloids but also expand our understanding of targets that may be useful for the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Yang Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Min Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Caijie Qu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Yongxi Li
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zhanli Tang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Zhike Zhou
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Zengzhao Yu
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Xu Wang
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| | - Linlin Xin
- Department of Dermatology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Tongxin Shi
- Department of Dermatology, The Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Liu H, Zhang X, Zhang S, Yu S. Analysis of prognostic factors in 171 patients with myxofibrosarcoma of the trunk and extremities: a cohort study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1322. [PMID: 34532459 PMCID: PMC8422150 DOI: 10.21037/atm-21-3587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/12/2021] [Indexed: 12/23/2022]
Abstract
Background Myxofibrosarcoma (MFS) of the trunk and extremities has unique clinical features. However, it is not clear which indicators are the influencing factors of recurrence, metastasis, and survival of trunk and limb MFS. The aim of the present study was to analyze clinical features and prognosis of trunk and limb MFS. Methods The data of 171 patients with MFS of the trunk and extremities and a median follow-up period of 67 months from January 1999 to July 2018 were retrospectively analyzed. Risk factors for survival, recurrence and metastasis following resection of MFS of trunk and extremities were analyzed. The Kaplan-Meier method (log-rank test) was used for the univariate analysis and a Cox regression model was used for the multivariate analysis. Results The median age of the patients was 53 years; there were 111 males and 60 females. A total of 132 cases had French Federation of Cancer Centers grade 1, 24 cases had grade 2, and 15 cases had grade 3 MFS. The 3-year recurrence, 3-year metastasis, and 5-year survival rates were 29.2%, 19.3%, and 93.6%, respectively. Kaplan-Meier survival analysis showed that the surgical margin (χ2=22.228, P<0.001) and tumor size (χ2=6.697, P=0.010) were associated with recurrence. The surgical margin (χ2=12.353, P<0.001) and CD44 expression (χ2=5.227, P=0.022) were associated with metastasis. The multivariate analysis showed that the surgical margin [hazard ratio (HR) =3.635, 95% confidence interval (CI): 1.883-7.016, P<0.001] and tumor size (HR =1.889, 95% CI: 1.039-3.435, P=0.037) were risk factors for local recurrence. In addition, the surgical margin (HR =4.475, 95% CI: 1.918-10.438, P=0.001) and presence of CD44 (HR =3.406, 95% CI: 1.462-8.405, P=0.005) were risk factors for distant metastasis. Conclusions A negative surgical margin can be reduced effectively the rate of recurrence and metastasis in patients with MFS of the trunk and limbs. In addition, CD44 may be used to assess the metastatic risk of patients with MFS.
Collapse
Affiliation(s)
- Huanmei Liu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinxin Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuguang Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengji Yu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
14
|
Hu P, Chiarini A, Wu J, Freddi G, Nie K, Armato U, Prà ID. Exosomes of adult human fibroblasts cultured on 3D silk fibroin nonwovens intensely stimulate neoangiogenesis. BURNS & TRAUMA 2021; 9:tkab003. [PMID: 34212056 PMCID: PMC8240536 DOI: 10.1093/burnst/tkab003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Indexed: 12/11/2022]
Abstract
Background Bombyx mori silk fibroin is a biomacromolecule that allows the assembly of scaffolds for tissue engineering and regeneration purposes due to its cellular adhesiveness, high biocompatibility and low immunogenicity. Earlier work showed that two types of 3D silk fibroin nonwovens (3D-SFnws) implanted into mouse subcutaneous tissue were promptly vascularized via undefined molecular mechanisms. The present study used nontumorigenic adult human dermal fibroblasts (HDFs) adhering to a third type of 3D-SFnws to assess whether HDFs release exosomes whose contents promote neoangiogenesis. Methods Electron microscopy imaging and physical tests defined the features of the novel carded/hydroentangled 3D-SFnws. HDFs were cultured on 3D-SFnws and polystyrene plates in an exosome-depleted medium. DNA amounts and D-glucose consumption revealed the growth and metabolic activities of HDFs on 3D-SFnws. CD9-expressing total exosome fractions were from conditioned media of 3D-SFnws and 2D polystyrene plates HDF cultures. Angiogenic growth factors (AGFs) in equal amounts of the two groups of exosomal proteins were analysed via double-antibody arrays. A tube formation assay using human dermal microvascular endothelial cells (HDMVECs) was used to evaluate the exosomes’ angiogenic power. Results The novel features of the 3D-SFnws met the biomechanical requirements typical of human soft tissues. By experimental day 15, 3D-SFnws-adhering HDFs had increased 4.5-fold in numbers and metabolized 5.4-fold more D-glucose than at day 3 in vitro. Compared to polystyrene-stuck HDFs, exosomes from 3D-SFnws-adhering HDFs carried significantly higher amounts of AGFs, such as interleukin (IL)-1α, IL-4 and IL-8; angiopoietin-1 and angiopoietin-2; angiopoietin-1 receptor (or Tie-2); growth-regulated oncogene (GRO)-α, GRO-β and GRO-γ; matrix metalloproteinase-1; tissue inhibitor metalloproteinase-1; and urokinase-type plasminogen activator surface receptor, but lesser amounts of anti-angiogenic tissue inhibitor metalloproteinase-2 and pro-inflammatory monocyte chemoattractant protein-1. At concentrations from 0.62 to 10 μg/ml, the exosomes from 3D-SFnws-cultured HDFs proved their angiogenic power by inducing HDMVECs to form significant amounts of tubes in vitro. Conclusions The structural and mechanical properties of carded/hydroentangled 3D-SFnws proved their suitability for tissue engineering and regeneration applications. Consistent with our hypothesis, 3D-SFnws-adhering HDFs released exosomes carrying several AGFs that induced HDMVECs to promptly assemble vascular tubes in vitro. Hence, we posit that once implanted in vivo, the 3D-SFnws/HDFs interactions could promote the vascularization and repair of extended skin wounds due to burns or other noxious agents in human and veterinary clinical settings.
Collapse
Affiliation(s)
- Peng Hu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy
| | - Jun Wu
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Giuliano Freddi
- Silk Biomaterials S.r.l., Via Cavour 2, I-22074, Lomazzo, Lombardy, Italy
| | - Kaiyu Nie
- Department of Burns & Plastic Surgery, The Affiliated Hospital of ZunYi Medical University, 149 Dalian Road, ZunYi City, 563003 Guizhou Province, China
| | - Ubaldo Armato
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| | - Ilaria Dal Prà
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, Strada Le Grazie 8, I-37134, Verona, Venetia, Italy.,Department of Burns and Plastic Surgery, Second People's Hospital, University of Shenzhen, 3002 Sungang West Road, Futian District, Shenzhen, 518000, Guangdong Province, China
| |
Collapse
|
15
|
Giannis D, Geropoulos G, Ziogas IA, Gitlin J, Oropallo A. The anti-adhesive effect of anti-VEGF agents in experimental models: A systematic review. Wound Repair Regen 2020; 29:168-182. [PMID: 33316850 DOI: 10.1111/wrr.12879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 02/01/2023]
Abstract
Adhesions constitute a major problem in abdominal-pelvic and thoracic surgery with significant impact in the postoperative quality of life and healthcare services utilization. Adhesiogenesis is the result of increased fibrin formation, impaired fibrinolysis, angiogenesis, and fibrosis. Despite the recent advancements, the ideal anti-adhesive agent remains to be determined. To this end, we performed a comprehensive literature search in PubMed, EMBASE, and Scopus databases to identify studies investigating the antiadhesive role of anti-VEGF agents in peritoneal, pleural, and pericardial experimental adhesion models. Fifteen studies were eligible for inclusion with a total population of 602 animals (334 rats, 180 rabbits, and 88 mice). The majority of included studies (11/15) used bevacizumab, while three studies used other anti-VEGF antibodies and one study used an anti-VEGFR-antibody. A rat model was used in nine studies, while rabbit (n = 3) or mouse (n = 3) models were used less frequently. Eleven studies used peritoneal models, three studies used pleural models, and one study used a pericardial model. The scales (n = 12) and interval (Range: 1-42 days) used for the evaluation of adhesions varied between the studies. All studies demonstrated a significant decrease in adhesion scores between the anti-VEGF and control groups up to 42 days postprocedure. VEGF blockade resulted in decreased fibrosis in four out of five studies that used peritoneal models, while the effect on pleural models depended on the pleurodesis agent and was significant between 7 and 28 days. The effect of anti-VEGF agents on anastomosis integrity depends on the dose and the model that is used (inconclusive results).Current data support the anti-adhesive role of Anti-VEGF agents in all three serosal surfaces up to 6 weeks postprocedure. Further studies are needed to confirm the anti-adhesive role of anti-VEGF agents in pleural and pericardial adhesion experimental models and investigate any effect on anastomosis integrity in peritoneal models.
Collapse
Affiliation(s)
- Dimitrios Giannis
- Institute of Health Innovations and Outcomes Research, The Feinstein Institutes for Medical Research, Manhasset, New York, USA.,Surgery Working Group, Society of Junior Doctors, Athens, Greece
| | - Georgios Geropoulos
- Surgery Working Group, Society of Junior Doctors, Athens, Greece.,Thoracic Surgery Department, University College London Hospitals, NHS Foundation Trust, London, UK
| | - Ioannis A Ziogas
- Surgery Working Group, Society of Junior Doctors, Athens, Greece.,Aristotle University of Thessaloniki School of Medicine, Thessaloniki, Greece
| | - Jordan Gitlin
- The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Hempstead, New York, USA
| | - Alisha Oropallo
- Department of Vascular Surgery, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, New Hyde Park, New York, USA
| |
Collapse
|
16
|
Wang ZC, Zhao WY, Cao Y, Liu YQ, Sun Q, Shi P, Cai JQ, Shen XZ, Tan WQ. The Roles of Inflammation in Keloid and Hypertrophic Scars. Front Immunol 2020; 11:603187. [PMID: 33343575 PMCID: PMC7746641 DOI: 10.3389/fimmu.2020.603187] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 11/06/2020] [Indexed: 01/13/2023] Open
Abstract
The underlying mechanisms of wound healing are complex but inflammation is one of the determining factors. Besides its traditional role in combating against infection upon injury, the characteristics and magnitude of inflammation have dramatic impacts on the pathogenesis of scar. Keloids and hypertrophic scars are pathological scars that result from aberrant wound healing. They are characterized by continuous local inflammation and excessive collagen deposition. In this review, we aim at discussing how dysregulated inflammation contributes to the pathogenesis of scar formation. Immune cells, soluble inflammatory mediators, and the related intracellular signal transduction pathways are our three subtopics encompassing the events occurring in inflammation associated with scar formation. In the end, we enumerate the current and potential medicines and therapeutics for suppressing inflammation and limiting progression to scar. Understanding the initiation, progression, and resolution of inflammation will provide insights into the mechanisms of scar formation and is useful for developing effective treatments.
Collapse
Affiliation(s)
- Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wan-Yi Zhao
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyang Cao
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Qi Liu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qihang Sun
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Shi
- Department of Cardiology of the Second Affiliated Hospital, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia-Qin Cai
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Z Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Huang C, Ogawa R. Systemic factors that shape cutaneous pathological scarring. FASEB J 2020; 34:13171-13184. [DOI: 10.1096/fj.202001157r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Chenyu Huang
- Department of Dermatology Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University Beijing China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery Nippon Medical School Tokyo Japan
| |
Collapse
|
18
|
Marchesini A, De Francesco F, Mattioli-Belmonte M, Zingaretti N, Riccio V, Orlando F, Zavan B, Riccio M. A New Animal Model for Pathological Subcutaneous Fibrosis: Surgical Technique and in vitro Analysis. Front Cell Dev Biol 2020; 8:542. [PMID: 32850775 PMCID: PMC7409519 DOI: 10.3389/fcell.2020.00542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Fibrosis is a condition that affects the connective tissue in an organ or tissue in the restorative or responsive phase as a result of injury. The consequences of excessive fibrotic tissue growth may lead to various physiological complications of deformity and impairment due to hypertrophic scars, keloids, and tendon adhesion without understating the psychological impact on the patient. However, no method accurately quantifies the rate and pattern of subcutaneous induced hypertrophic fibrosis. We, therefore, devised a rodent excisional model to evaluate the extent of fibrosis with talc. Tissue specimens were set on formalin, and paraffin sections for histological, immunohistochemical, and molecular analysis talc was used to induce the fibroproliferative mechanism typical of hypertrophic scars. This pathway is relevant to the activation of inflammatory and fibrotic agents to stimulate human hypertrophic scarring. This model reproduces morpho-functional features of human hypertrophic scars to investigate scar formation and assess potential anti-scarring therapies.
Collapse
Affiliation(s)
- Andrea Marchesini
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Francesco De Francesco
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Nicola Zingaretti
- Clinic of Plastic and Reconstructive Surgery, Department of Medical Area (DAME), Academic Hospital of Udine, University of Udine, Udine, Italy
| | - Valentina Riccio
- Veterinary Medical School, University of Camerino, Camerino, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Unit, Scientific Technological Area, IRCCS INRNCA, Ancona, Italy
| | - Barbara Zavan
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Michele Riccio
- Department of Reconstructive Surgery and Hand Surgery, AOU "Ospedali Riuniti", Ancona, Italy
| |
Collapse
|