1
|
Zheng L, Ning Z, Shen Y, Tang L, De S, Wang Y, Duan H. Multifunctional silver/ε-polylysine/diethyl ferulate composite films with improved anti-UV and antibacterial properties for food packaging. Food Res Int 2025; 211:116367. [PMID: 40356161 DOI: 10.1016/j.foodres.2025.116367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 03/19/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Food spoilage is a major challenge to food safety. The development of multifunctional food packaging materials offers an innovative and effective strategy to mitigate this issue. In this study, we successfully synthesized the water-soluble Silver - polylysine - diethyl ferulate (Ag-PLL-DEF) polymer using a CuAAC reaction and an in situ growth method, which enhanced the dispersibility of diethyl ferulate (DEF) in aqueous solutions. This polymer was then blended with Polyvinyl alcohol (PVA) to create the Ag-PLL-DEF/PVA composite film. Our results demonstrate that incorporating DEF significantly improved the UV resistance of the composite film, with the UV shield rate of the 0.8 wt% Ag-PLL-DEF/PVA composite film reaching 98.62 %. After 30 days of continuous UV irradiation, the composite film exhibited outstanding light stability. The incorporation of Ag and PLL conferred remarkable antibacterial properties to the composite film. The inhibitory zone diameters of the 0.8 wt% Ag-PLL-DEF/PVA composite film against E. coli and S. aureus were 3.3 ± 0.2 mm and 2.75 ± 0.15 mm, respectively. Furthermore, a strawberry preservation experiment confirmed that the Ag-PLL-DEF/PVA composite film effectively inhibited bacterial growth and extended the shelf life of strawberries by up to 7 days. Similarly, preservation experiments with milk and jujube revealed that the composite films reduced photooxidation and significantly prolonged shelf life. This work provides valuable insights into the development of composite films with both anti-ultraviolet and antibacterial properties. It also offers a promising framework for advancing active food packaging technologies.
Collapse
Affiliation(s)
- Lingyan Zheng
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing 100048, PR China.
| | - Zhifang Ning
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing 100048, PR China
| | - Yumin Shen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing 100048, PR China
| | - Lei Tang
- National Center of Technology Innovation for Dairy, Hohhot City 010100, PR China
| | - Sharuna De
- National Center of Technology Innovation for Dairy, Hohhot City 010100, PR China
| | - Yi Wang
- Inner Mongolia Yili Industrial Group Co., Ltd,010110, PR China
| | - Hong Duan
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology & Business University, Beijing 100048, PR China
| |
Collapse
|
2
|
Bertolo MRV, de Oliveira Filho JG, Lamonica GC, de Oliveira Nobre Bezerra CC, da Conceição Amaro Martins V, Ferreira MD, de Guzzi Plepis AM, Bogusz Junior S. Improvement of the physical-chemical, microbiological, volatiles and sensory quality of strawberries covered with chitosan/gelatin/pomegranate peel extract-based coatings. Food Chem 2025; 471:142755. [PMID: 39764943 DOI: 10.1016/j.foodchem.2025.142755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/15/2024] [Accepted: 01/01/2025] [Indexed: 02/12/2025]
Abstract
This study investigated the effects of chitosan/gelatin (CG) coatings containing pomegranate peel extract (PPE) on the physical-chemical, microbiological, volatile profile, and sensory characteristics of strawberries over 12 days of refrigerated storage. The coatings containing PPE minimized the weight loss of the fruits by 11 % and delayed their fungal contamination by 6-8 days. Uncoated fruits showed soluble solids content, pH, and titratable acidity values characteristics of highly deteriorated fruits. The coatings preserved the color, firmness, respiratory quotient, and bioactive compounds contents of the fruits. Uncoated strawberries showed a 39.4 % reduction in total volatile compounds, approximately 6 times greater than coated fruits. The severity of injuries caused by fungi was slowed down by the coatings. The sensory quality of the fruits was not affected, and the coatings cost was estimated at approximately $ 0.03/fruit, confirming that the materials developed can be used as natural coatings and a cheap alternative for strawberries preservation.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentação, São Carlos, SP, Brazil
| | | | - Stanislau Bogusz Junior
- University of São Paulo (USP), São Carlos Institute of Chemistry (IQSC), São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Sun J, Wang T, Liu L, Li Q, Liu H, Wang X, Liu M, Zhang H. Preparation and Application of Edible Chitosan Coating Incorporating Natamycin. Polymers (Basel) 2025; 17:1062. [PMID: 40284327 PMCID: PMC12030211 DOI: 10.3390/polym17081062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
In this paper, edible composite coatings, which used chitosan (CTS) as the matrix material, glycerol as the plasticizer, and natamycin as the antibacterial material, were prepared and composite films were prepared by a casting method. Taking cherry tomatoes as the research models, the optimal preservation effect of the composite coating was achieved using 10 g/L CTS, 2.5 g/L glycerol, and 125 mg/L natamycin under conditions of 25 °C and 50% RH. The thickness, transparency, water vapor transmittance (WVT), tensile strength (TS), and elongation at break (EB) of composite film were measured and the results showed the film prepared using 10 g/L CTS, 2.5 g/L glycerol and 125 mg/L natamycin was the best. The direct application of the optimal coating to cherry tomatoes kept the cherry tomatoes valuable for 20 days. The weight loss rate and hardness loss rate were reduced by 22.13% and 12.55%, respectively. The total soluble solid (TSS) content and vitamin c (Vc) content were increased by 2.54% and 20.35%, respectively. The malondialdehyde (MDA) content and peroxidase (POD) activity were decreased by 19.38% and 28.03%, respectively. Based on the significant preservation effect of the composite coating, it is expected to be widely used in the preservation of fruits and vegetables with skin morphologies similar to cherry tomatoes.
Collapse
Affiliation(s)
- Jianming Sun
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang 471023, China
| | - Tiantian Wang
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
| | - Lei Liu
- Henan Inspection and Testing Institute Group Co., Ltd., Zhengzhou 450018, China
| | - Qian Li
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
| | - Hui Liu
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang 471023, China
| | - Xiaofang Wang
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
- Henan Engineering Research Center of Intelligent and Protective Packaging Design, Luoyang 471023, China
| | - Mengrui Liu
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
| | - Han Zhang
- Department of Packaging Engineering, Henan University of Science and Technology, Luoyang 471023, China; (J.S.); (T.W.)
| |
Collapse
|
4
|
Kusuma HS, Sabita A, Putri NA, Azliza N, Illiyanasafa N, Darmokoesoemo H, Amenaghawon AN, Kurniawan TA. Waste to wealth: Polyhydroxyalkanoates (PHA) production from food waste for a sustainable packaging paradigm. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100225. [PMID: 39497731 PMCID: PMC11532435 DOI: 10.1016/j.fochms.2024.100225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/07/2024]
Abstract
The growing demand for sustainable food packaging and the increasing concerns regarding environmental pollution have driven interest in biodegradable materials. This paper presents an in-depth review of the production of Polyhydroxyalkanoates (PHA), a biodegradable polymer, from food waste. PHA-based bioplastics, particularly when derived from low-cost carbon sources such as volatile fatty acids (VFAs) and waste oils, offer a promising solution for reducing plastic waste and enhancing food packaging sustainability. Through optimization of microbial fermentation processes, PHA production can achieve significant efficiency improvements, with yields reaching up to 87 % PHA content under ideal conditions. This review highlights the technical advancements in using PHA for food packaging, emphasizing its biodegradability, biocompatibility, and potential to serve as a biodegradable alternative to petroleum-based plastics. However, challenges such as high production costs, mechanical limitations, and the need for scalability remain barriers to industrial adoption. The future of PHA in food packaging hinges on overcoming these challenges through further research and innovation in production techniques, material properties, and cost reduction strategies, along with necessary legislative support to promote widespread use.
Collapse
Affiliation(s)
- Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Atna Sabita
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Najla Anira Putri
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nadhira Azliza
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Nafisa Illiyanasafa
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran” Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | | | | |
Collapse
|
5
|
Iñiguez-Moreno M, Santiesteban-Romero B, Flores-Contreras EA, Scott-Ayala S, Araújo RG, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Sustainable Solutions for Postharvest Berry Protection: Natural Edible Coatings. FOOD BIOPROCESS TECH 2024; 17:3483-3505. [DOI: 10.1007/s11947-023-03301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2024]
|
6
|
Priyadarshi R, El-Araby A, Rhim JW. Chitosan-based sustainable packaging and coating technologies for strawberry preservation: A review. Int J Biol Macromol 2024; 278:134859. [PMID: 39163966 DOI: 10.1016/j.ijbiomac.2024.134859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
Strawberry fruits are popular all over the world due to their rich organoleptic properties and enormous health benefits. However, it is highly susceptible to postharvest spoilage due to various factors, including moisture loss, nutrient oxidation, and microbial spoilage. Recently, various researchers have studied the effect of chitosan-based flexible films and surface coatings on the shelf life of strawberries. Despite various reviews providing general information on the effects of chitosan-based films and coatings on various food products, no review has focused solely on their effects on postharvest preservation and the shelf life of strawberries. The purpose of this review is to summarize the current research on chitosan-based formulations for extending the shelf life of strawberries. Chitosan, a cationic carbohydrate polymer, possesses excellent properties such as film formation, mechanical strength, non-toxicity, biodegradability, edibility, UV-blocking ability, antioxidant activity, and antibacterial functionality, justifying its potential as packaging/coating material for fresh agricultural products, including strawberries. This review covers the various factors responsible for strawberry spoilage and the properties of chitosan that help counteract these factors. Additionally, the advantages of chitosan-based preservation technology compared to existing strawberry preservation methods were explained, efficiency was evaluated, and future research directions were suggested.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea
| | - Abir El-Araby
- Functional Ecology and Environment Engineering Laboratory, Faculty of Science and Technology, Sidi Mohamed Ben Abdellah University, Imouzzer Street, B.P. 2202, Fez 30050, Morocco
| | - Jong-Whan Rhim
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul 02447, South Korea.
| |
Collapse
|
7
|
Priyadarshi R, Jayakumar A, de Souza CK, Rhim JW, Kim JT. Advances in strawberry postharvest preservation and packaging: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13417. [PMID: 39072989 DOI: 10.1111/1541-4337.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Strawberries spoil rapidly after harvest due to factors such as the ripening process, weight loss, and, most importantly, microbial contamination. Traditionally, several methods are used to preserve strawberries after harvest and extend their shelf life, including thermal, plasma, radiation, chemical, and biological treatments. Although these methods are effective, they are a concern from the perspective of safety and consumer acceptance of the treated food. To address these issues, more advanced environment-friendly technologies have been developed over the past decades, including modified and controlled atmosphere packaging, active biopolymer-based packaging, or edible coating formulations. This method can not only significantly extend the shelf life of fruit but also solve safety concerns. Some studies have shown that combining two or more of these technologies can significantly extend the shelf life of strawberries, which could significantly contribute to expanding the global supply chain for delicious fruit. Despite the large number of studies underway in this field of research, no systematic review has been published discussing these advances. This review aims to cover important information about postharvest physiology, decay factors, and preservation methods of strawberry fruits. It is a pioneering work that integrates, relates, and discusses all information on the postharvest fate and handling of strawberries in one place. Additionally, commercially used techniques were discussed to provide insight into current developments in strawberry preservation and suggest future research directions in this field of study. This review aims to enrich the knowledge of academic and industrial researchers, scientists, and students on trends and developments in postharvest preservation and packaging of strawberry fruits.
Collapse
Affiliation(s)
- Ruchir Priyadarshi
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | | | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
8
|
Zhang L, Sathiyaseelan A, Zhang X, Lu Y, Wang MH. Development and Analysis of Silver Nitroprusside Nanoparticle-Incorporated Sodium Alginate Films for Banana Browning Prevention. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:292. [PMID: 38334563 PMCID: PMC10856574 DOI: 10.3390/nano14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/10/2024]
Abstract
Banana (Musa acuminate) has been popular among consumers worldwide due to its rich nutrients and minerals. However, bananas are highly susceptible to the physical and biological factors that lead to postharvest loss during transportation and storage. In this work, novel sodium alginate (SA) films incorporated with silver nitroprusside nanoparticles (AgNNPs) were prepared to extend the shelf life of bananas through antibacterial and antioxidant coating. The results exhibited that AgNNPs were cubical and that their size was <500 nm, with metal composition being Ag and Fe. Additionally, the incorporation of AgNNPs in the SA film was seen in FE-SEM and zeta analysis, with an average size of about 365.6 nm. Furthermore, the functional and crystalline properties of AgNNPs were assessed through FTIR and XRD. Transmittance testing of the SA-AgNNPs films confirmed they have good UV barrier properties. SA-AgNNPs films exhibited excellent high antibacterial activity against foodborne pathogens including L. monocytogenes, S. enterica, and E. coli at the concentration of 500 µg/mL. Moreover, during the storage of bananas, SA-AgNNPs nanocomposite coatings act as a barrier to microbial contamination and slow down the ripening of bananas. As a result, compared with SA-coated and uncoated bananas, SA-AgNNPs-coated bananas exhibited the lowest weight loss and lowest total bacterial colonies, thus greatly extending their shelf life. Particularly when coated with SA-AgNNPs films, total bacterial colonies (TBC) in the banana peel and pulp were as low as 1.13 × 103 and 51 CUF/g on the ninth day of storage, respectively. Our work offers an efficient strategy to improve the quality of bananas during the postharvest period, with extensive applications in fruit preservation and food packing.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Yuting Lu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Republic of Korea; (L.Z.); (A.S.); (X.Z.); (Y.L.)
- KIIT (Kangwon Institute of Inclusive Technology), Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
9
|
Flores-López ML, Vieira JM, Rocha CMR, Lagarón JM, Cerqueira MA, Jasso de Rodríguez D, Vicente AA. Postharvest Quality Improvement of Tomato ( Solanum lycopersicum L.) Fruit Using a Nanomultilayer Coating Containing Aloe vera. Foods 2023; 13:83. [PMID: 38201111 PMCID: PMC10778306 DOI: 10.3390/foods13010083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The effectiveness of an alginate/chitosan nanomultilayer coating without (NM) and with Aloe vera liquid fraction (NM+Av) was evaluated on the postharvest quality of tomato fruit at 20 °C and 85% relative humidity (RH) to simulate direct consumption. Both nanomultilayer coatings had comparable effects on firmness and pH values. However, the NM+Av coating significantly reduced weight loss (4.5 ± 0.2%) and molds and yeasts (3.5-4.0 log CFU g-1) compared to uncoated fruit (16.2 ± 1.2% and 8.0 ± 0.0 log CFU g-1, respectively). It notably lowered O2 consumption by 70% and a 52% decrease in CO2 production, inhibiting ethylene synthesis. Visual evaluation confirmed NM+Av's efficacy in preserving the postharvest quality of tomato. The preservation of color, indicated by the Minolta color (a*/b*) values, demonstrated NM+Av's ability to keep the light red stage compared to uncoated fruit. The favorable effects of NM+Av coating on enhancing postharvest quality indicates it as a potential alternative for large-scale tomato fruit preservation.
Collapse
Affiliation(s)
- María L. Flores-López
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.L.F.-L.); (J.M.V.); (C.M.R.R.)
- Centro de Investigación e Innovación Científica y Tecnológica, Universidad Autónoma de Coahuila, Saltillo 25070, Coahuila, Mexico
| | - Jorge M. Vieira
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.L.F.-L.); (J.M.V.); (C.M.R.R.)
| | - Cristina M. R. Rocha
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.L.F.-L.); (J.M.V.); (C.M.R.R.)
| | - José M. Lagarón
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain;
| | - Miguel A. Cerqueira
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Diana Jasso de Rodríguez
- Plant Breeding Department, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro No. 1923, Colonia Buenavista, Saltillo 25315, Coahuila, Mexico;
| | - António A. Vicente
- Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (M.L.F.-L.); (J.M.V.); (C.M.R.R.)
| |
Collapse
|
10
|
Shafique M, Rashid M, Ullah S, Rajwana IA, Naz A, Razzaq K, Hussain M, Abdelgawad MA, El-Ghorab AH, Ghoneim MM, Shaker ME, Imran M, Jbawi EA. Quality and shelf life of strawberry fruit as affected by edible coating by moringa leaf extract, aloe vera gel, oxalic acid, and ascorbic acid. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2023; 26:2995-3012. [DOI: 10.1080/10942912.2023.2267794] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/03/2023] [Indexed: 05/04/2025]
Affiliation(s)
- Muhammad Shafique
- Department of Horticulture, MNS-University of Agriculture, Multan, Pakistan
- University of Agriculture Faisalabad, Sub-Campus Burewala-Vehari, Pakistan
| | - Muhammad Rashid
- Department of Horticulture, MNS-University of Agriculture, Multan, Pakistan
| | - Sami Ullah
- Department of Horticulture, MNS-University of Agriculture, Multan, Pakistan
| | | | - Ambreen Naz
- Department of Food Science and Technology, MNS-University of Agriculture, Multan, Pakistan
| | - Kashif Razzaq
- Department of Horticulture, MNS-University of Agriculture, Multan, Pakistan
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University, Faisalabad, Pakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | | |
Collapse
|
11
|
A. S, Kumar N, Rahul K, Upadhyay A, Gniewosz M, Kieliszek M. Characterization of Aloe Vera Gel-Based Edible Coating with Orange Peel Essential Oil and Its Preservation Effects on Button Mushroom (Agaricus bisporus). FOOD BIOPROCESS TECH 2023; 16:2877-2897. [DOI: 10.1007/s11947-023-03107-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/14/2025]
Abstract
AbstractIn the present study, the effects of orange peel essential oils (EOs) on the physiochemical, rheological, particle size and zeta potential distribution of the developed aloe vera gel-based edible coating were investigated. We also investigated the effects of prepared aloe vera gel-based edible coating (with or without incorporation of orange peel essential oil) on the postharvest shelf life and characteristics such as physiological loss of weight (PLW), color, respiration rate, firmness, total phenolic content (TPC), total flavonoid content (TFC), antioxidant activity, and antimicrobial activity of button mushroom (Agaricus bisporus) at 4 °C during 16 days of storage. The results revealed that the 50% concentration of aloe vera gel-based edible coating without addition of essential oil had significantly superior properties with higher stability zeta potential (− 9.7 mV) as compared to other concentrations of aloe vera gel-based formulation. It also showed the highest potential to maintain the postharvest quality attributes of mushrooms throughout storage. The maximum concentration of orange peel essential oil (1500 µL/L) incorporated in the 50% aloe vera gel (F3)-based treatment significantly improved the postharvest quality attributes of mushrooms as compared to coating prepared with incorporation of 500 µL/L and 1000 µL/L concentration of EOs (orange peel essential oils) and helped extend the shelf life of mushrooms up to 4 days as compared to the control (50% AV (aloe vera gel) only). Further research should be performed to develop water and gas barrier composite edible coatings to further extend mushroom shelf life.
Collapse
|
12
|
Kumar N, Pratibha, Prasad J, Yadav A, Upadhyay A, Neeraj, Shukla S, Petkoska AT, Heena, Suri S, Gniewosz M, Kieliszek M. Recent Trends in Edible Packaging for Food Applications — Perspective for the Future. FOOD ENGINEERING REVIEWS 2023; 15:718-747. [DOI: 10.1007/s12393-023-09358-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/28/2023] [Indexed: 05/14/2025]
Abstract
AbstractEdible packaging plays an important role in protecting food products from physical, mechanical, chemical, and microbiological damages by creating a barrier against oxidation, water, and controlling enzymatic activation. The employment of active agents such as plant extracts, essential oils, cross-linkers, and nanomaterials in edible packaging promises to improve mechanical, physical, barrier, and other properties of edible materials as well as food products. In the current review, we have compiled information on the recent advances and trends in developing composite (binary and ternary) edible packaging for food application. Several types of active agents such as essential oils, plant extracts, cross-linking agents, and nanomaterials as well as their functions in edible packaging (active composite) have been discussed. The present study provides the collective information about the high- (high-pressure homogenizer, ultrasonication, and microfludizer) and low-energy (phase inversion temperature and composition and spontaneous emulsification) methods for developing nanoformulations. In addition, concepts of comprehensive studies required for developing edible coatings and films for food packaging applications, as well as overcoming challenges like consumer acceptance, regulatory requirements, and non-toxic scaling up to the commercial applications, have also been discussed.
Collapse
|
13
|
Haider MW, Nafees M, Iqbal R, Ali S, Asad HU, Azeem F, Arslan M, Rahman MHU, Gaafar ARZ, Elshikh MS. Combined application of hot water treatment and eucalyptus leaf extract postpones seneṣcence in harvested green chilies by conserving their antioxidants: a sustainable approach. BMC PLANT BIOLOGY 2023; 23:576. [PMID: 37978421 PMCID: PMC10656992 DOI: 10.1186/s12870-023-04588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Green chili is the predominant vegetable in tropical and subtropical regions with high economic value. However, after harvest, it exhibits vigorous metabolic activities due to the high moisture level, leading to a reduction in bioactive compounds and hence reduced shelf life and nutritional quality. Low temperature storage results in the onset of chilling injury symptoms. Therefore, developing techniques to increase the shelf life of green chilies and safeguard their nutritional value has become a serious concern for researchers. In this regard, an experiment was conducted to evaluate the impact of the alone or combined application of hot water treatment (HWT) (45 °C for 15 min) and eucalyptus leaf extract (ELE) (30%) on 'Golden Hot' chilies in comparison to the control. After treatment, chilies were stored at 20 ± 1.5 °C for 20 days. RESULTS HWT + ELE-treated chilies had a significant reduction in fruit weight loss (14.6%), fungal decay index (35%), red chili percentage (41.2%), soluble solid content (42.9%), ripening index (48.9%), and reactive oxygen species production like H2O2 (55.1%) and O-2 (46.5%) during shelf in comparison to control, followed by the alone application of HWT and ELE. Furthermore, the combined use of HWT and ELE effectively improved the antioxidative properties of stored chilies including DPPH radical scavenging activities (54.6%), ascorbic acid content (28.4%), phenolic content (31.8%), as well as the enzyme activities of POD (103%), CAT (128%), SOD (26.5%), and APX (43.8%) in comparison to the control. Additionally, the green chilies underwent HWT + ELE treatment also exhibited higher chlorophyll levels (100%) and general appearance (79.6%) with reduced anthocyanin content (40.8%) and wrinkling (43%), leading to a higher marketable fruit (41.3%) than the control. CONCLUSION The pre-storage application of HWT and ELE could be used as an antimicrobial, non-chemical, non-toxic, and eco-friendly treatment for preserving the postharvest quality of green chilies at ambient temperature (20 ± 1.5 °C).
Collapse
Affiliation(s)
- Muhammad Wasim Haider
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Nafees
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Rashid Iqbal
- Department of Agronomy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Sajid Ali
- Department of Horticulture, Bahauddin Zakariya University, Multan, 60000, Pakistan
| | - Habat Ullah Asad
- Centre for Agriculture and Bioscience International, Rawalpindi, 46300, Pakistan
| | - Farrukh Azeem
- Agri Development, Fauji Fresh N Freeze Ltd, Gulberg II, Lahore, 48000, Pakistan
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany.
| | - Muhammad Habib Ur Rahman
- Institute of Crop Science and Resource Conservation (INRES), Crop Science, University of Bonn, 53115, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Abdel-Rhman Z Gaafar
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohamed S Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Tosif MM, Bains A, Dhull SB, Chawla P, Goksen G. Effect of Aloe vera and carboxymethyl cellulose-derived binary blend edible coating on the shelf life of fresh-cut apple. Food Sci Nutr 2023; 11:6987-6999. [PMID: 37970395 PMCID: PMC10630825 DOI: 10.1002/fsn3.3623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 11/17/2023] Open
Abstract
In recent years, the demand and market for minimally processed fruits are increasing worldwide. Fresh-cut apples are extremely sensitive to environmental factors including oxygen, temperature, and microorganisms in resulting the browning of apples. Therefore, in this study, different concentration of blended edible-coating solution was prepared using Aloe vera and carboxymethyl cellulose (1:1, 1:2, 2:1, 3:3, 3:2, 4:2, 2:4, 3:4, and 4:3, respectively). Lease particle size (101.74 ± 0.67 nm) of the coating solution was observed with 3% A. vera and 2% carboxymethyl cellulose (CMC). Afterward, the shelf life of the apples was evaluated for 10 days at refrigeration condition. Results showed that a significant difference was found in weight loss of coated (6.42%-10.26%) and uncoated apples (8.12%-15.32%) for 2-10 days. Moreover, the titrable acidity of the cut apples increased during the storage time. Rheological data emerged that the viscosity of the coating solution decreases with the increasing temperature from 0 to 50°C. Fourier transform infrared spectroscopy data confirmed the presence of hydroxyl group (-OH), C=O, C-O, and N-H banding in the A. vera, CMC, and blend-coating solution. The blend solution indicated excellent antimicrobial efficiency. Total phenolic content of coated and uncoated apples at 0 day was 737.55 mg GAE kg-1 for uncoated and 717.88 mg GAE kg-1, respectively. Whereas, aerobic and psychrotrophic bacteria counts for edible coated apples significantly lower than control apples. For coated apples, aerobic and psychrotrophic bacteria counts were 1.59 ± 0.84 and 1.25 ± 0.49 log CFU g-1 were 4.26 ± 0.67 and 2.68 ± 0.22 log CFU g-1 at 10th day, respectively. Overall, it can be inferred that blend of A. vera and carboxymethyl cellulose could be used as a nontoxic potential anti-browning and antimicrobial component for the enhancement of the shelf life and additional nutritional value of fresh-cut apples.
Collapse
Affiliation(s)
- Mansuri M. Tosif
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Aarti Bains
- Department of MicrobiologyLovely Professional UniversityPhagwaraIndia
| | - Sanju Bala Dhull
- Department of Food Science and TechnologyChaudhary Devi Lal UniversitySirsaIndia
| | - Prince Chawla
- Department of Food Technology and NutritionLovely Professional UniversityPhagwaraIndia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial ZoneTarsus UniversityMersinTurkey
| |
Collapse
|
15
|
Iñiguez-Moreno M, González-González RB, Flores-Contreras EA, Araújo RG, Chen WN, Alfaro-Ponce M, Iqbal HMN, Melchor-Martínez EM, Parra-Saldívar R. Nano and Technological Frontiers as a Sustainable Platform for Postharvest Preservation of Berry Fruits. Foods 2023; 12:3159. [PMID: 37685092 PMCID: PMC10486450 DOI: 10.3390/foods12173159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.
Collapse
Affiliation(s)
- Maricarmen Iñiguez-Moreno
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Reyna Berenice González-González
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda A. Flores-Contreras
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Rafael G. Araújo
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Wei Ning Chen
- Food Science and Technology Programme, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Mariel Alfaro-Ponce
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Tlalpan, Mexico City 14380, Mexico;
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Elda M. Melchor-Martínez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (M.I.-M.); (R.B.G.-G.); (E.A.F.-C.); (R.G.A.); (H.M.N.I.); (R.P.-S.)
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico
| |
Collapse
|
16
|
Koshy JT, Vasudevan D, Sangeetha D, Prabu AA. Biopolymer Based Multifunctional Films Loaded with Anthocyanin Rich Floral Extract and ZnO Nano Particles for Smart Packaging and Wound Healing Applications. Polymers (Basel) 2023; 15:polym15102372. [PMID: 37242946 DOI: 10.3390/polym15102372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 05/28/2023] Open
Abstract
There are significant societal repercussions from our excessive use of plastic products derived from petroleum. In response to the increasing environmental implications of plastic wastes, biodegradable materials have been proven to be an effective means of mitigating environmental issues. Therefore, protein- and polysaccharide-based polymers have gained widespread attention recently. In our study, for increasing the strength of a biopolymer (Starch), we used ZnO dispersed nanoparticles (NPs), which resulted in the enhancement of other functional properties of the polymer. The synthesized NPs were characterized using SEM, XRD, and Zeta potential values. The preparation techniques are completely green, with no hazardous chemicals employed. The floral extract employed in this study is Torenia fournieri (TFE), which is prepared using a mixture of ethanol and water and possesses diverse bioactive features and pH-sensitive characteristics. The prepared films were characterized using SEM, XRD, FTIR, contact angle and TGA. The incorporation of TFE and ZnO (SEZ) NPs was found to increase the overall nature of the control film. The results obtained from this study confirmed that the developed material is suitable for wound healing and can also be used as a smart packaging material.
Collapse
Affiliation(s)
- Jijo Thomas Koshy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Devipriya Vasudevan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Dhanaraj Sangeetha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Arun Anand Prabu
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
17
|
Sukhavattanakul P, Thanyacharoen T, Chuysinuan P, Techasakul S, Ummartyotin S. Influence of a Transparent and Edible Coating of Encapsulated Cannabidiol Nanoparticles on the Quality and Shelf Life of Strawberries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23834-23843. [PMID: 37140618 DOI: 10.1021/acsami.3c04036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cannabidiol (CBD) has been shown to have antioxidant and antibacterial effects. The investigation into CBD's potential as an antioxidant and antibacterial agent, meanwhile, is still in its initial stages. The study goals were to prepare encapsulated cannabidiol isolate (eCBDi), evaluate the effect of eCBDi edible active coatings on the physicochemical properties of strawberries, and determine whether CBD and sodium alginate coatings could be used as a postharvest treatment to promote antioxidation and antimicrobial activity and prolong the strawberry shelf life. A well-designed edible coating on the strawberry surface was achieved using eCBDi nanoparticles in combination with a sodium alginate polysaccharide-based solution. Strawberries were examined for their visual appearance and quality parameters. In the results, a significantly delayed deterioration was observed in terms of weight loss, total acidity, pH, microbial activity, and antioxidant activity for coated strawberries compared to the control. This study demonstrates the capability of eCBDi nanoparticles as an efficient active food coating agent.
Collapse
Affiliation(s)
- Pongpat Sukhavattanakul
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathumtani 12121, Thailand
| | | | - Piyachat Chuysinuan
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Sarute Ummartyotin
- Department of Materials and Textile Technology, Faculty of Science and Technology, Thammasat University, Pathumtani 12121, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
18
|
Hou X, Wang H, Shi Y, Yue Z. Recent advances of antibacterial starch-based materials. Carbohydr Polym 2023; 302:120392. [PMID: 36604070 DOI: 10.1016/j.carbpol.2022.120392] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
Starch has attracted a lot of attention because it is biodegradable, renewable, nontoxic and low cost. By adding antibacterial substances to starch, starch-based materials have antibacterial properties. The composite with other materials can improve the comprehensive performance of starch-based materials, thus broadening the application field of the material. In this paper, we focus on antibacterial starch-based materials and review their preparation and applications. It was found that antibacterial starch-based materials were most widely used in packaging, followed by medicine, and the research on smart starch-based materials was relatively less. This review may provide some reference value for subsequent studies of starch-based materials.
Collapse
Affiliation(s)
- Xiurong Hou
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Huashan Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China.
| | - Yuting Shi
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| | - Zhouyao Yue
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, No. 29, 13th Avenue, TEDA, 300457 Tianjin, PR China
| |
Collapse
|
19
|
Damdam A, Al-Zahrani A, Salah L, Salama KN. Effect of combining UV-C irradiation and vacuum sealing on the shelf life of fresh strawberries and tomatoes. J Food Sci 2023; 88:595-607. [PMID: 36624610 PMCID: PMC10108318 DOI: 10.1111/1750-3841.16444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/09/2022] [Accepted: 12/13/2022] [Indexed: 01/11/2023]
Abstract
This research presents the effect of combining UV-C irradiation and vacuum sealing on the shelf life of strawberries and quartered tomatoes and compares it with the effect of the sole use of UV-C irradiation or vacuum sealing. A constant UV-C dose of 360 J/m2 was used for the samples' irradiation, and all the vacuum-sealed samples were stored at a reduced pressure of 40 kPa. Organoleptic analysis, microbial population quantification of yeast and mold, Pseudomonas sp., weight loss, and pH measurements were obtained to identify the spoilage occurrence, monitor the samples' quality, and quantify the shelf life. Sensory evaluation was conducted by 12 consumer panelists to evaluate the aroma, taste, color, texture, and the overall acceptance of the samples. The results revealed that the combination of UV-C irradiation and vacuum sealing prolongs the shelf life of perishables more than the sole use of UV-C irradiation or vacuum sealing. The achieved shelf-life increase using this combination was 124.41% and 54.41% for strawberries and quartered tomatoes, respectively, while acceptable sensory characteristics were maintained throughout the storage period. Hence, this food preservation method can be further improved and integrated in the daily life of modern consumers and the operations of fresh produce retailers, as it could effectively reduce the spoilage rates of fresh produce and help achieve the UN SDG 12.3, which aims to reduce food loss and waste by 50% by 2030 at the consumer and retail levels. PRACTICAL APPLICATION: The system can be further developed and introduced to the market as a kitchen appliance for households or as a predistribution step for fresh produce distribution centers. The shelf-life extension capability of this system, which does not involve any use of chemical substances, would make it an attractive solution for households and food retailers.
Collapse
Affiliation(s)
- Asrar Damdam
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Ashwaq Al-Zahrani
- Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Lama Salah
- Research and Development Department, Uvera Inc., Thuwal, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
20
|
Saffari Samani E, Jooyandeh H, Alizadeh Behbahani B. The impact of Zedo gum based edible coating containing Zataria multiflora Boiss essential oil on the quality enhancement and shelf life improvement of fresh buffalo meat. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
An all-cellulose sponge with a nanofiller-assisted hierarchical cellular structure for fruit maintaining freshness. Int J Biol Macromol 2023; 225:1361-1373. [PMID: 36435456 DOI: 10.1016/j.ijbiomac.2022.11.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Cellulose sponges with compressibility and resilience are an ideal packaging material for fruits with fragile skin. Here, a soft and elastic all-cellulose sponge (CS) with a hierarchical cellular structure was fabricated, where the long molecular chain cellulose constructed major pores, the cellulose at nanoscale acted as an elastic nanofiller to fill the gaps of long molecular chain cellulose fibers and constructed minor pores. With these two kinds of pores, this structure can absorb strain hierarchically. The sponge can protect fruits from mechanical damage when dropped or repeated vibration. Furthermore, the CS modified with chlorogenic acid (C-CGAS) had excellent antibacterial and antifungal abilities. Therefore, C-CGAS could extend the storage time of strawberries to 18 days without any microbial invasion, which is the longest storage time reported thus far. This study provides a new idea for the preparation of polymer sponges and a new design for the development of antimicrobial packaging materials.
Collapse
|
22
|
Armghan Khalid M, Niaz B, Saeed F, Afzaal M, Islam F, Hussain M, Mahwish, Muhammad Salman Khalid H, Siddeeg A, Al-Farga A. Edible coatings for enhancing safety and quality attributes of fresh produce: A comprehensive review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022; 25:1817-1847. [DOI: 10.1080/10942912.2022.2107005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/24/2022] [Indexed: 10/15/2022]
Affiliation(s)
| | - Bushra Niaz
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Muzzamal Hussain
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Mahwish
- Institute of Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Muhammad Salman Khalid
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture Faisalabad Faisalabad Pakistan
| | - Azhari Siddeeg
- Department of Food Engineering and Technology, Faculty of Engineering and Technology, University of Gezira, Wad Medani, Sudan
| | - Ammar Al-Farga
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Bhadu S, Ghoshal G, Goyal M. Effect of Aloevera gel /tamarind starch/whey protein based edible coating on shelf life and postharvest quality of ber fruit (
Ziziphusmauritiana
) stored at 4 ± 1°C and at 25 ± 2°C. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Shweta Bhadu
- Energy Research Centre Panjab University Chandigarh 160014 India
| | - Gargi Ghoshal
- Dr. S.S. Bhatnagar University institute of Chemical Engineering & Technology Panjab University Chandigarh 160014 India
| | - Meenakshi Goyal
- Dr. S.S. Bhatnagar University institute of Chemical Engineering & Technology Panjab University Chandigarh 160014 India
| |
Collapse
|
24
|
Shuang FF, Zong CM, Wang CC, Hu RZ, Shen YS, Ju YX, Yao XH, Chen T, Zhao WG, Zhang DY. Chlorogenic acid and cellulose nanocrystal–assisted crosslinking preparation of a silk-based film to extend the shelf life of strawberries. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Al-Hilifi SA, Al-Ali RM, Al-Ibresam OT, Kumar N, Paidari S, Trajkovska Petkoska A, Agarwal V. Physicochemical, Morphological, and Functional Characterization of Edible Anthocyanin-Enriched Aloevera Coatings on Fresh Figs ( Ficus carica L.). Gels 2022; 8:gels8100645. [PMID: 36286146 PMCID: PMC9601845 DOI: 10.3390/gels8100645] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
In the present investigation, Aloe vera gel (AVG)-based edible coatings enriched with anthocyanin were prepared. We investigated the effect of different formulations of aloe-vera-based edible coatings, such as neat AVG (T1), AVG with glycerol (T2), Aloe vera with 0.2% anthocyanin + glycerol (T3), and AVG with 0.5% anthocyanin + glycerol (T4), on the postharvest quality of fig (Ficus carica L.) fruits under refrigerated conditions (4 °C) for up to 12 days of storage with 2-day examination intervals. The results of the present study revealed that the T4 treatment was the most effective for reducing the weight loss in fig fruits throughout the storage period (~4%), followed by T3, T2, and T1. The minimum weight loss after 12 days of storage (3.76%) was recorded for the T4 treatment, followed by T3 (4.34%), which was significantly higher than that of uncoated fruit (~11%). The best quality attributes, such as the total soluble solids (TSS), titratable acidity (TA), and pH, were also demonstrated by the T3 and T4 treatments. The T4 coating caused a marginal change of 0.16 in the fruit titratable acidity, compared to the change of 0.33 in the untreated fruit control after 12 days of storage at 4 °C. Similarly, the total soluble solids in the T4-coated fruits increased marginally (0.43 °Brix) compared to the uncoated control fruits (>2 °Brix) after 12 days of storage at 4 °C. The results revealed that the incorporation of anthocyanin content into AVG is a promising technology for the development of active edible coatings to extend the shelf life of fig fruits.
Collapse
Affiliation(s)
- Sawsan Ali Al-Hilifi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
- Correspondence:
| | - Rawdah Mahmood Al-Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Orass T. Al-Ibresam
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
| | - Nishant Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonepat 131028, India
| | - Saeed Paidari
- Department of Food Science and Technology, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81551-39998, Iran
| | - Anka Trajkovska Petkoska
- Faculty of Technology and Technical Social Sciences, St. Kliment Ohridski University-Bitola, Dimitar Vlahov, 1400 Veles, North Macedonia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Chitosan-based active coating for pineapple preservation: Evaluation of antimicrobial efficacy and shelf-life extension. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Jiao X, Xie J, Hao M, Li Y, Wang C, Zhu Z, Wen Y. Chitosan Biguanidine/PVP Antibacterial Coatings for Perishable Fruits. Polymers (Basel) 2022; 14:2704. [PMID: 35808748 PMCID: PMC9269116 DOI: 10.3390/polym14132704] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 11/27/2022] Open
Abstract
World hunger is on the rise, yet one-third of food is wasted. It is necessary to develop an effective food preservation method to reduce food waste. This article reports a composite film based on chitosan biguanidine hydrochloride(CBg) and poly (N-vinyl-2-pyrrolidone)(PVP) that can be used as a conformal coating for fresh produce. Due to the strong positive charge of CBg, the film has excellent antibacterial properties. Owing to the hydrogen bonds between CBg and PVP, the film has good flexibility and mechanical properties. In addition, the coating is washable, transparent, and can reduce the evaporation of water. The above characteristics mean the film has broad application prospects in the field of food preservation.
Collapse
Affiliation(s)
- Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Jiaxuan Xie
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Mingda Hao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Yiping Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Changtao Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing 100048, China;
| | - Zhu Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.X.); (M.H.); (Y.L.); (Z.Z.); (Y.W.)
| |
Collapse
|
28
|
Agyemang B, Grabulos J, Hubert O, Bourlieu C, Nigen M, Lebrun M, Coffigniez F, Guillard V, Brat P. Properties of beeswax antifungal coatings obtained by high‐pressure homogenisation and their application for preserving bananas during storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bridget Agyemang
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Joel Grabulos
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Olivier Hubert
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Claire Bourlieu
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Michael Nigen
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
- IATE, Univ Montpellier, INRAE, Institut Agro Montpellier France
| | - Marc Lebrun
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| | - Fanny Coffigniez
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Valérie Guillard
- Département Génie Biologique Alimentaire ‐ Équipe I2M Polytech Montpellier, UMR IATE Montpellier France
| | - Pierre Brat
- CIRAD ‐ UMR‐ Qualisud, Dpt Persyst Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD Université de La Réunion Montpellier France
| |
Collapse
|
29
|
Montone AMI, Malvano F, Pham PL, Cinquanta L, Capparelli R, Capuano F, Albanese D. Alginate‐based coatings charged with hydroxyapatite and quercetin for fresh‐cut papaya shelf life. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Francesca Malvano
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Phuong Ly Pham
- Department of Industrial Engineering University of Salerno Fisciano Italy
| | - Luciano Cinquanta
- Department of Agricultural, Food and Forest Sciences University of Palermo Palermo Italy
| | - Rosanna Capparelli
- Department of Agriculture University of Naples “Federico II” Portici (Naples) Italy
| | - Federico Capuano
- Department of Food Inspection Istituto Zooprofilattico Sperimentale del Mezzogiorno Portici (Naples) Italy
| | - Donatella Albanese
- Department of Industrial Engineering University of Salerno Fisciano Italy
| |
Collapse
|
30
|
The use of bacteriophage-based edible coatings for the biocontrol of Salmonella in strawberries. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
31
|
Assessing the Use of Aloe vera Gel Alone and in Combination with Lemongrass Essential Oil as a Coating Material for Strawberry Fruits: HPLC and EDX Analyses. COATINGS 2022. [DOI: 10.3390/coatings12040489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Strawberry is a non-climacteric fruit but exhibits a limited postharvest life due to rapid softening and decay. A strawberry coating that is natural and safe for human consumption can be used to improve the appearance and safeguard the fruits. In this study, 20% and 40% Aloe vera gel alone or in combination with 1% lemongrass essential oil (EO) was used as an edible coating for strawberries. After application of all the treatments, the strawberry fruits were stored at a temperature of 5 ± 1 °C at a relative humidity (RH) of 90%–95% for up to 16 days and all the parameters were analyzed and compared to control (uncoated fruits). The results show that A. vera gel alone or with lemongrass EO reduced the deterioration and increased the shelf life of the fruit. Treatment with A. vera gel and lemongrass EO decreased acidity and total anthocyanins and maintained fruit firmness. Treatment with A. vera gel 40% + lemongrass EO 1% led to the lowest weight loss, retained firmness and acidity, but increased the total soluble solids and total anthocyanins compared to uncoated fruits during storage of up to 16 days. The phenolic compounds of A. vera gel were analyzed by HPLC, and the most abundant compounds were found to be caffeic (30.77 mg/mL), coumaric (22.4 mg/mL), syringic (15.12 mg/mL), sinapic (14.05 mg/mL), ferulic (8.22 mg/mL), and cinnamic acids (7.14 mg/mL). Lemongrass EO was analyzed by GC–MS, and the most abundant compounds were identified as α-citral (neral) (40.10%) ꞵ-citral (geranial) (30.71%), γ-dodecalactone (10.24%), isoneral (6.67%), neryl acetal (5.64%), and linalool (1.77%). When the fruits were treated with 20% or 40% A. vera gel along with 1% lemongrass, their total phenolic content was maintained during the storage period (from 4 to 8 days). The antioxidant activity was relatively stable during the 8 days of cold storage of the fruits coated with A. vera gel combined with lemongrass EO because the activity of both 20% and 40% gel was greater than that for the other treatments after 12 days of storage in both experiments. Moreover, all the treatments resulted in lower numbers of total microbes at the end of the storage period compared with the control treatment. This study indicates that the use of Aloe vera gel with lemongrass EO as an edible coating considerably enhances the productivity of strawberry fruits and the treatment could be used on a commercial scale.
Collapse
|
32
|
Taha IM, Zaghlool A, Nasr A, Nagib A, El Azab IH, Mersal GAM, Ibrahim MM, Fahmy A. Impact of Starch Coating Embedded with Silver Nanoparticles on Strawberry Storage Time. Polymers (Basel) 2022; 14:1439. [PMID: 35406312 PMCID: PMC9002491 DOI: 10.3390/polym14071439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
The strawberry has a very short postharvest life due to its fast softening and decomposition. The goal of this research is to see how well a starch-silver nanoparticle (St-AgNPs) coating affects the physical, chemical, and microbiological qualities of strawberries during postharvest life. Additionally, the effect of washing with running water on silver concentration in coated strawberry fruit was studied by an inductively coupled plasma-optical emission spectrometer (ICP-OES). Furthermore, the shelf-life period was calculated in relation to the temperature of storage. Fourier transform infrared-attenuated total reflectance (FTIR-ATR), UV-Visible, and Transmission Electron Microscopic (TEM) were used to investigate the structure of starch-silver materials, the size and shape of AgNPs, respectively. The AgNPs were spherical, with an average size range of 12.7 nm. The coated samples had the lowest weight loss, decay, and microbial counts as compared to the uncoated sample. They had higher total acidity and anthocyanin contents as well. The washing process led to the almost complete removal of silver particles by rates ranging from 98.86 to 99.10%. Finally, the coating maintained strawberry qualities and lengthened their shelf-life from 2 to 6 days at room storage and from 8 to 16 days in cold storage.
Collapse
Affiliation(s)
- Ibrahim M Taha
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ayman Zaghlool
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ali Nasr
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ashraf Nagib
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A M Mersal
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed M Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alaa Fahmy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
33
|
Zhang R, Li Q, Yang L, Dwibedi V, Ge Y, Zhang D, Li J, Sun T. The antibacterial activity and antibacterial mechanism of the tea polyphenol liposomes/lysozyme–chitosan gradual sustained release composite coating. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ran Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Qiuying Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Lili Yang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Vagish Dwibedi
- University Institute of Biotechnology Chandigarh University Mohali Punjab 140413 India
| | - Yonghong Ge
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Defu Zhang
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Jianrong Li
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| | - Tong Sun
- Collaborative Innovation Center of Seafood Deep Processing College of Food Science and Engineering Bohai University Jinzhou 121013 China
| |
Collapse
|
34
|
Luciano CG, Caicedo Chacon WD, Valencia GA. Starch‐Based Coatings for Food Preservation: A Review. STARCH-STARKE 2022. [DOI: 10.1002/star.202100279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carla Giovana Luciano
- Department of Food Engineering Faculty of Animal Science and Food Engineering University of São Paulo Av Duque de Caxias North, 225, 13635–900 Pirassununga SP Brazil
| | - Wilson Daniel Caicedo Chacon
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| | - Germán Ayala Valencia
- Department of Chemical and Food Engineering Federal University of Santa Catarina Florianópolis SC 88040‐970 Brazil
| |
Collapse
|
35
|
Murugan A, Banu AT, Lakshmi DS. Edible Coatings to Enhance Shelf life of Fruits and Vegetables -A Mini Review. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220303161527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Recently, edible coatings or films have gained enormous importance in fruits and vegetables preservation. This review summarises edible coatings, the classification of coating materials, formulation procedures, and the benefits of active edible coating. Studies reported that edible coating or films from natural resources benefit the consumer as well as the environment. In general, edible coatings or films are a combination of polysaccharides, proteins, lipids, and plasticizers, used to enhance the functional properties and the general quality parameters of fruits and vegetables, such as texture, colour, acidity, total soluble solids, thus preventing their browning and oxidation. Casting (wet process) and extrusion (dry process) are two prominent methods used to fabricate edible thin films. General techniques for applying edible coatings are dipping, spraying, coating, panning, using a fluidized bed, and film wrapping. Active edible coatings or films are developed with herbal extracts to improve the functional properties, i.e., antioxidant and antimicrobial. Therefore, based on the literature review, future research exploration will focus on underutilized edible natural resources, along with some natural edible plasticizers used to improve the postharvest quality of fruits and vegetables without affecting their nutritional, organoleptic, and sensory attributes. The primary objective of the present review was to summarize the different types of edible coating with an infusion of herbal extracts and their application on fruits and vegetables.
Collapse
Affiliation(s)
- Aswini Murugan
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | - A. Thahira Banu
- School of Sciences, Department of Home Science
The Gandhigram Rural Institute- Deemed to be University
Gandhigram-624302, Dindigul, Tamil Nadu, India
| | | |
Collapse
|
36
|
Vargas-Torrico MF, von Borries-Medrano E, Valle-Guadarrama S, Aguilar-Méndez MA. Development of gelatin-carboxymethylcellulose coatings incorporated with avocado epicarp and coconut endocarp extracts to control fungal growth in strawberries for shelf-life extension. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2021.2024607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maria Fernanda Vargas-Torrico
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | - Erich von Borries-Medrano
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| | | | - Miguel A. Aguilar-Méndez
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Ciudad de México, México
| |
Collapse
|
37
|
Haneef N, Garièpy Y, Raghavan V, Kurian JK, Hanif N, Hanif T. Effects of Aloe-pectin coatings and osmotic dehydration on storage stability of mango slices. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | | | - Najma Hanif
- National University of Science and Technology, Pakistan
| | | |
Collapse
|
38
|
Mousavi SR, Rahmati-Joneidabad M, Noshad M. Effect of chia seed mucilage/bacterial cellulose edible coating on bioactive compounds and antioxidant activity of strawberries during cold storage. Int J Biol Macromol 2021; 190:618-623. [PMID: 34509518 DOI: 10.1016/j.ijbiomac.2021.08.213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate the effect of chia seed mucilage (CSM) - bacterial cellulose nano-fiber (CNF) edible coating on bioactive compounds and antioxidant enzyme activity of strawberries. Strawberries were coated with CSM containing 0.6 and 8.0% (w/w) of CNF. The content of total phenol, flavonoids, anthocyanin, ascorbic acid, protein content, antioxidant activity and the activity of polyphenol oxidase, peroxidase, superoxide dismutase and phenylalanine ammonia-lyase enzymes were evaluated. The use of CSM - CNF edible coatings further preserved the phenolic, flavonoid, ascorbic acid and antioxidant activity of strawberries, and this effect was more evident in the CSM-coated sample containing CNF; However, the accumulation of anthocyanins in the coated samples was lower than the control sample. The activity of polyphenol oxidase and peroxidase enzymes, which lead to the degradation of phenolic compounds and brown color in the product, was also effectively controlled by the edible coating.
Collapse
Affiliation(s)
- Seyed Rasoul Mousavi
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| | - Mostafa Rahmati-Joneidabad
- Department of Horticultural Science, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
| | - Mohammad Noshad
- Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran
| |
Collapse
|
39
|
Abdel Aziz MS, Salama HE. Developing multifunctional edible coatings based on alginate for active food packaging. Int J Biol Macromol 2021; 190:837-844. [PMID: 34517032 DOI: 10.1016/j.ijbiomac.2021.09.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/25/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
The applications of edible coatings stemmed exclusively from alginate in food packaging are restricted due to their inherent deficient antimicrobial, barrier, and UV-barrier properties. In this work, we aimed to design smart alginate-based coatings for active food packaging through the addition of both aloe vera (AV) and garlic oil (GO). The interactions between the film components were verified by FTIR and XRD. Thermal and mechanical properties were improved by the presence of AV and GO. The presence of AV and GO did not significantly influence the transparency of alginate films. The films exhibited a significant UV-shielding to all UV regions. Water vapor permeability was significantly (p < 0.05) reduced either through the incorporation of AV or GO. The antimicrobial properties of the prepared films were considerably improved by the presence of AV and GO. The shelf-life of tomatoes (Solanum lycopersicum L.) was extended when coated with the alginate film incorporated with AV and GO. Owing to the outstanding UV-shielding, mechanical, thermal, and antimicrobial properties, the alginate/AV/GO active coatings could potentially be implemented in the food packaging industry.
Collapse
Affiliation(s)
| | - Hend E Salama
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
40
|
|
41
|
Iñiguez-Moreno M, Ragazzo-Sánchez JA, Calderón-Santoyo M. An Extensive Review of Natural Polymers Used as Coatings for Postharvest Shelf-Life Extension: Trends and Challenges. Polymers (Basel) 2021; 13:polym13193271. [PMID: 34641086 PMCID: PMC8512484 DOI: 10.3390/polym13193271] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 12/16/2022] Open
Abstract
Global demand for minimally processed fruits and vegetables is increasing due to the tendency to acquire a healthy lifestyle. Losses of these foods during the chain supply reach as much as 30%; reducing them represents a challenge for the industry and scientific sectors. The use of edible packaging based on biopolymers is an alternative to mitigate the negative impact of conventional films and coatings on environmental and human health. Moreover, it has been demonstrated that natural coatings added with functional compounds reduce the post-harvest losses of fruits and vegetables without altering their sensorial and nutritive properties. Furthermore, the enhancement of their mechanical, structural, and barrier properties can be achieved through mixing two or more biopolymers to form composite coatings and adding plasticizers and/or cross-linking agents. This review shows the latest updates, tendencies, and challenges in the food industry to develop eco-friendly food packaging from diverse natural sources, added with bioactive compounds, and their effect on perishable foods. Moreover, the methods used in the food industry and the new techniques used to coat foods such as electrospinning and electrospraying are also discussed. Finally, the tendency and challenges in the development of edible films and coatings for fresh foods are reviewed.
Collapse
|
42
|
Amiri S, Rezazad Bari L, Malekzadeh S, Amiri S, Mostashari P, Ahmadi Gheshlagh P. Effect of
Aloe vera
gel‐based active coating incorporated with catechin nanoemulsion and calcium chloride on postharvest quality of fresh strawberry fruit. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Saber Amiri
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| | - Laya Rezazad Bari
- Department of Horticultural Sciences Faculty of Agriculture and Natural Resources Mohaghegh Ardabili University Ardabil Iran
| | - Shahryar Malekzadeh
- Department of Food Science and Technology Faculty of Shahid Beheshti Urmia Branch, Technical and Vocational University (TVU) Urmia Iran
| | - Samaneh Amiri
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| | - Parisa Mostashari
- Nutrition and Food Sciences Research Center Tehran Medical Sciences Islamic Azad University Tehran Iran
| | - Parviz Ahmadi Gheshlagh
- Department of Food Science and Technology Faculty of Agriculture Urmia University Urmia Iran
| |
Collapse
|
43
|
Improvement of the Performance of Chitosan- Aloe vera Coatings by Adding Beeswax on Postharvest Quality of Mango Fruit. Foods 2021; 10:foods10102240. [PMID: 34681289 PMCID: PMC8534360 DOI: 10.3390/foods10102240] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 11/18/2022] Open
Abstract
The effect of the application of chitosan–Aloe vera coatings emulsified with beeswax (0, 0.5, 1, 1.5 and 2%) during storage of Mangifera indica L. (cv Anwar Ratol) was investigated. Particle size of emulsions was reduced significantly with an increase in beeswax concentration. Water vapor permeability of the coatings was reduced by 43.7% with an increase in concentration of beeswax to 2%. The coated mangoes (at all concentrations of beeswax) exhibited reduced weight loss, delayed firmness loss, minimized pH change, maintained the total soluble solid contents, and retained free radical scavenging activity and total phenolic contents when stored at 18 °C and 75 ± 5% R.H. The best results were produced with a formulation containing 2.0% beeswax. Antimicrobial properties of chitosan and Aloe vera coatings were also improved with an increase in beeswax concentration and remarkably reduced the disease incidence in mangoes. In conclusion, beeswax-emulsified chitosan–Aloe vera coatings can be effectively used to increase the shelf life and marketable period of mangoes.
Collapse
|
44
|
Muley AB, Kedia P, Pegu K, Kausley SB, Rai B. Analyzing the physical and biochemical changes in strawberries during storage at different temperatures and the development of kinetic models. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01146-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Nguyen TT, Huynh Nguyen TT, Tran Pham BT, Van Tran T, Bach LG, Bui Thi PQ, Ha Thuc C. Development of poly (vinyl alcohol)/agar/maltodextrin coating containing silver nanoparticles for banana (Musa acuminate) preservation. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2021.100740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Abstract
Oxidation is the main problem in preserving food products during storage. A relatively novel strategy is the use of antioxidant-enriched edible films. Antioxidants hinder reactive oxygen species, which mainly affect fats and proteins in food. At present, these films have been improved by the addition of micro- and nanoliposomes coated with carbohydrate polymers, which are not hazardous for human health and can be ingested without risk. The liposomes are loaded with different antioxidants, and their effects are observed as a longer storage time of the food product. The synergy of these methodologies and advances can lead to the displacement of the protective packaging used currently, which would result in food products with functional properties added by the films, an increase in shelf life, and an improvement to the environment by reducing the amount of waste.
Collapse
|
47
|
Yadav A, Kumar N, Upadhyay A, Pratibha, Anurag RK. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1940198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ajay Yadav
- Agro Produce Processing Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, Madhya Pradesh, India
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Nishant Kumar
- Department of Agricultural and Environmental Sciences, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Ashutosh Upadhyay
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, Haryana, India
| | - Pratibha
- Department of Food Business Management and Entrepreneurship Development, National Institute of Food Technology Entrepreneurship and Management, Sonipat- 131028, India
| | - Rahul Kumar Anurag
- Agricultural Structures and Environmental Control Division, ICAR-Central Institute of Post Harvest Engineering and Technology, PAU Campus-141004 Ludhiana, Punjab, India
| |
Collapse
|
48
|
Aloe Vera Gel Edible Coating for Shelf Life and Antioxidant Proprieties Preservation of Andean Blackberry. Processes (Basel) 2021. [DOI: 10.3390/pr9060999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Andean blackberry is cultivated in Colombia due to its national and international commercial importance, in addition to its flavour and high nutritional value. Due to its physicochemical, morphological, and physiological characteristics, it constitutes one of the most unstable fruits in the Colombian fruit and vegetable supply chain, thereby generating economic losses. In this study, a polymer-based coating of Aloe vera and essential oil was designed, and its influence on the shelf life of Andean blackberry stored at 4 °C was studied. Once the appropriate composition was established according to the experimental design, Andean blackberries’ physicochemical parameters, the content of total phenols, and antioxidant activity were monitored over 19 days. The total soluble solids present a change between 5.2 and 5.6° Brix and 5.2 and 7.2° Brix for coated and uncoated fruits between 1 and 19 days, respectively. The coated fruits presented a lower loss compared to the uncoated fruits and the total phenol content presented a higher concentration on day 19 in the coated fruits (412.71 ± 37.5 mg Gallic Acid Equivalents L−1 sample). The coating enabled an increase in the shelf life of the blackberries, from 4 to 19 days, while preserving the physicochemical properties of the fruits. Therefore, the application of coating as a method for the post-harvest preservation of Andean blackberries represents a low-cost, easily available strategy.
Collapse
|
49
|
Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS JOURNAL 2021. [DOI: 10.1016/j.nfs.2021.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Development of active edible coating of alginate and aloe vera enriched with frankincense oil for retarding the senescence of green capsicums. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111341] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|