1
|
Aftabi S, Barzegar Behrooz A, Cordani M, Rahiman N, Sadeghdoust M, Aligolighasemabadi F, Pistorius S, Alavizadeh SH, Taefehshokr N, Ghavami S. Therapeutic targeting of TGF-β in lung cancer. FEBS J 2025; 292:1520-1557. [PMID: 39083441 PMCID: PMC11970718 DOI: 10.1111/febs.17234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/22/2024] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Transforming growth factor-β (TGF-β) plays a complex role in lung cancer pathophysiology, initially acting as a tumor suppressor by inhibiting early-stage tumor growth. However, its role evolves in the advanced stages of the disease, where it contributes to tumor progression not by directly promoting cell proliferation but by enhancing epithelial-mesenchymal transition (EMT) and creating a conducive tumor microenvironment. While EMT is typically associated with enhanced migratory and invasive capabilities rather than proliferation per se, TGF-β's influence on this process facilitates the complex dynamics of tumor metastasis. Additionally, TGF-β impacts the tumor microenvironment by interacting with immune cells, a process influenced by genetic and epigenetic changes within tumor cells. This interaction highlights its role in immune evasion and chemoresistance, further complicating lung cancer therapy. This review provides a critical overview of recent findings on TGF-β's involvement in lung cancer, its contribution to chemoresistance, and its modulation of the immune response. Despite the considerable challenges encountered in clinical trials and the development of new treatments targeting the TGF-β pathway, this review highlights the necessity for continued, in-depth investigation into the roles of TGF-β. A deeper comprehension of these roles may lead to novel, targeted therapies for lung cancer. Despite the intricate behavior of TGF-β signaling in tumors and previous challenges, further research could yield innovative treatment strategies.
Collapse
Affiliation(s)
- Sajjad Aftabi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Electrophysiology Research Center, Neuroscience InstituteTehran University of Medical SciencesIran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of BiologyComplutense UniversityMadridSpain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC)MadridSpain
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Mohammadamin Sadeghdoust
- Division of BioMedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sCanada
| | - Farnaz Aligolighasemabadi
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
| | - Stephen Pistorius
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Department of Physics and AstronomyUniversity of ManitobaWinnipegCanada
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology InstituteMashhad University of Medical SciencesIran
- Department of Pharmaceutical Nanotechnology, School of PharmacyMashhad University of Medical SciencesIran
| | - Nima Taefehshokr
- Apoptosis Research CentreChildren's Hospital of Eastern Ontario Research InstituteOttawaCanada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of Manitoba College of MedicineWinnipegCanada
- Paul Albrechtsen Research Institute, CancerCare ManitobaUniversity of ManitobaWinnipegCanada
- Faculty Academy of Silesia, Faculty of MedicineKatowicePoland
- Children Hospital Research Institute of ManitobaUniversity of ManitobaWinnipegCanada
| |
Collapse
|
2
|
Lv J, Liu Z, Ren X, Song S, Zhang Y, Wang Y. γδT cells, a key subset of T cell for cancer immunotherapy. Front Immunol 2025; 16:1562188. [PMID: 40226616 PMCID: PMC11985848 DOI: 10.3389/fimmu.2025.1562188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
γδT cells represent a unique and versatile subset of T cells characterized by the expression of T-cell receptors (TCRs) composed of γ and δ chains. Unlike conventional αβT cells, γδT cells do not require major histocompatibility complex (MHC)-dependent antigen presentation for activation, enabling them to recognize and respond to a wide array of antigens, including phosphoantigens, stress-induced ligands, and tumor-associated antigens. While γδT cells are relatively rare in peripheral blood, they are enriched in peripheral tissues such as the skin, intestine, and lung. These cells play a crucial role in tumor immunotherapy by exerting direct cytotoxicity through the production of inflammatory cytokines (e.g., interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and interleukin-17 (IL-17)) and cytotoxic molecules (e.g., perforin and granzyme). Recent advances in γδT cell research have elucidated their mechanisms of tumor recognition, including the detection of phosphoantigens and stress-induced ligands like MICA (MHC class I polypeptide-related sequence A), MICB (MHC class I polypeptide-related sequence B), and ULBP (UL16-binding protein). Furthermore, various strategies to enhance γδT cell-based tumor immunotherapy have been developed, such as in vitro expansion using phosphoantigen-based therapies, cytokine stimulation, and chimeric antigen receptor (CAR)-γδT cell engineering. These advancements have shown promising results in both preclinical and clinical settings, paving the way for γδT cells to become a powerful tool in cancer immunotherapy. This review highlights the key mechanisms, functions, and strategies to harness the potential of γδT cells for effective tumor immunotherapy.
Collapse
Affiliation(s)
- Jianzhen Lv
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zheng Liu
- Pathology Department, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiangting Ren
- Medical School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Yan Zhang
- Department of Geriatrics, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Center of Organ Transplantation, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Xue HY, Wei F. TGF-β: an active participant in the immune and metabolic microenvironment of multiple myeloma : TGF-β in the microenvironment of multiple myeloma. Ann Hematol 2024; 103:4351-4362. [PMID: 38900304 PMCID: PMC11534828 DOI: 10.1007/s00277-024-05843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Although substantial quantities of potent therapies for multiple myeloma (MM) have been established, MM remains an incurable disease. In recent years, our understanding of the initiation, development, and metastasis of cancers has made a qualitative leap. Cancers attain the abilities to maintain proliferation signals, escape growth inhibitors, resist cell death, induce angiogenesis, and more importantly, escape anti-tumor immunity and reprogram metabolism, which are the hallmarks of cancers. Besides, different cancers have different tumor microenvironments (TME), thus, we pay more attention to the TME in the pathogenesis of MM. Many researchers have identified that myeloma cells interact with the components of TME, which is beneficial for their survival, ultimately causing the formation of immunosuppressive and high-metabolism TME. In the process, transforming growth factor-β (TGF-β), as a pivotal cytokine in the TME, controls various cells' fates and influences numerous metabolic pathways, including inhibiting immune cells to infiltrate the tumors, suppressing the activation of anti-tumor immune cells, facilitating more immunosuppressive cells, enhancing glucose and glutamine metabolism, dysregulating bone metabolism and so on. Thus, we consider TGF-β as the tumor promoter. However, in healthy cells and the early stage of tumors, it functions as a tumor suppressor. Due to the effect of context dependence, TGF-β has dual roles in TME, which attracts us to further explore whether targeting it can overcome obstacles in the treatment of MM by regulating the progression of myeloma, molecular mechanisms of drug resistance, and various signaling pathways in the immune and metabolic microenvironment. In this review, we predominantly discuss that TGF-β promotes the development of MM by influencing immunity and metabolism.
Collapse
Affiliation(s)
- Han-Yue Xue
- The First Clinical Medical College of Shanxi Medical University, 56 Xinjian South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China
| | - Fang Wei
- Department of Hematology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Yingze District, Taiyuan, Shanxi, People's Republic of China.
| |
Collapse
|
4
|
Bick F, Brenis Gómez CM, Lammens I, Van Moorleghem J, De Wolf C, Dupont S, Dumoutier L, Smith NP, Villani AC, Browaeys R, Alladina J, Haring AM, Medoff BD, Cho JL, Bigirimana R, Vieira J, Hammad H, Blanchetot C, Schuijs MJ, Lambrecht BN. IL-2 family cytokines IL-9 and IL-21 differentially regulate innate and adaptive type 2 immunity in asthma. J Allergy Clin Immunol 2024; 154:1129-1145. [PMID: 39147327 DOI: 10.1016/j.jaci.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/07/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND Asthma is often accompanied by type 2 immunity rich in IL-4, IL-5, and IL-13 cytokines produced by TH2 lymphocytes or type 2 innate lymphoid cells (ILC2s). IL-2 family cytokines play a key role in the differentiation, homeostasis, and effector function of innate and adaptive lymphocytes. OBJECTIVE IL-9 and IL-21 boost activation and proliferation of TH2 and ILC2s, but the relative importance and potential synergism between these γ common chain cytokines are currently unknown. METHODS Using newly generated antibodies, we inhibited IL-9 and IL-21 alone or in combination in various murine models of asthma. In a translational approach using segmental allergen challenge, we recently described elevated IL-9 levels in human subjects with allergic asthma compared with nonasthmatic controls. Here, we also measured IL-21 in both groups. RESULTS IL-9 played a central role in controlling innate IL-33-induced lung inflammation by promoting proliferation and activation of ILC2s in an IL-21-independent manner. Conversely, chronic house dust mite-induced airway inflammation, mainly driven by adaptive immunity, was solely dependent on IL-21, which controlled TH2 activation, eosinophilia, total serum IgE, and formation of tertiary lymphoid structures. In a model of innate on adaptive immunity driven by papain allergen, a clear synergy was found between both pathways, as combined anti-IL-9 or anti-IL-21 blockade was superior in reducing key asthma features. In human bronchoalveolar lavage samples we measured elevated IL-21 protein within the allergic asthmatic group compared with the allergic control group. We also found increased IL21R transcripts and predicted IL-21 ligand activity in various disease-associated cell subsets. CONCLUSIONS IL-9 and IL-21 play important and nonredundant roles in allergic asthma by boosting ILC2s and TH2 cells, revealing a dual IL-9 and IL-21 targeting strategy as a new and testable approach.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, Zwijnaarde, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Claudia M Brenis Gómez
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | - Inés Lammens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Caroline De Wolf
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sam Dupont
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Laure Dumoutier
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Neal P Smith
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Mass; Massachusetts General Hospital Cancer Center, Boston, Mass
| | - Robin Browaeys
- Bioinformatics Expertise Unit, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Jehan Alladina
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Alexis M Haring
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Benjamin D Medoff
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Mass; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Mass
| | - Josalyn L Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | | | | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | | | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
5
|
El-Ansary MRM, El-Ansary AR, Said SM, Abdel-Hakeem MA. Regular cold shower exposure modulates humoral and cell-mediated immunity in healthy individuals. J Therm Biol 2024; 125:103971. [PMID: 39299098 DOI: 10.1016/j.jtherbio.2024.103971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cold hydrotherapy is an ancient practice that has recently gained scientific interest for its potential health benefits. This study explored the effects of regular cold shower exposure on immune cell function. METHODS Sixty healthy Egyptian adults were randomized to take cold or hot showers daily for 90 days. Levels of immunoglobulins, cytokines, and interferon-gamma were measured in blood samples at baseline, 30, 60, and 90 days. RESULTS The cold shower group exhibited significant increases in immunoglobulin levels. Conversely, the hot shower group showed a significant decrease in IgM levels at 60 and 90 days compared to baseline, alongside nonsignificant decrease of IgG and IgA. the cold shower group demonstrated elevated levels of IL-2 and IL-4 at 90 days, indicating enhanced T-cell proliferation and humoral immunity, respectively. In contrast, the hot shower group did not exhibit significant changes in cytokine levels. There were no significant differences in IFN-γ and TNF-α levels between the groups. CONCLUSIONS Regular cold shower exposure appears to enhance humoral and cell-mediated immunity through the upregulation of antibodies, interleukin-2, and interleukin-4. Brief cold stressors may induce physiological adaptations that prime the immune response. This accessible, sustainable lifestyle modification could potentially serve as an alternative therapy to boost immunity. Further research on larger populations is warranted to better understand the physiological effects of cold temperatures on immunity.
Collapse
Affiliation(s)
- Mahmoud R M El-Ansary
- Department of Immunology and Medical Microbiology, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Amira R El-Ansary
- Department of Internal Medicine, Faculty of Medicine, Misr University for Science and Technology, Giza, Egypt
| | - Shereen M Said
- Department of Basic Science, Faculty of Physical Therapy, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A Abdel-Hakeem
- Department of Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt.
| |
Collapse
|
6
|
Fang CH, Cheng YF, Lin SR, Lai WY, Liao LR, Chiu YL, Lee JM. Establishment of a protocol for rapidly expanding Epstein-Barr-virus-specific cytotoxic T cells with enhanced cytotoxicity. BMC Cancer 2024; 24:980. [PMID: 39118069 PMCID: PMC11312821 DOI: 10.1186/s12885-024-12707-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/26/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Lytic Epstein-Barr virus (EBV) infection plays a major role in the pathogenesis of nasopharyngeal carcinoma (NPC). For patients with recurrent or metastatic NPC and resistant to conventional therapies, adoptive cell therapy using EBV-specific cytotoxic T cells (EBV-CTLs) is a promising option. However, the long production period (around 3 to 4 weeks) and low EBV-CTL purity (approximately 40% of total CD8 T cells) in the cell product limits the application of EBV-CTLs in clinics. Thus, this study aimed to establish a protocol for the rapid production of EBV-CTLs. METHODS By culturing peripheral blood mononuclear cells (PBMCs) from EBV-seropositive donors with EBV-specific peptides and interleukin (IL)-2, IL-15, and interferon α (IFN-α) for 9 days, we identified that IL-15 can enhance IL-2-mediated CTL activation and significantly increase the yield of CTLs. RESULTS When IFN-α was used in IL-2/IL-15-mediated CTL production from days 0 to 6, the productivity of EBV-CTLs and EBV-specific cytotoxicity significantly were reinforced relative to EBV-CTLs from IL-2/IL-15 treatment. Additionally, IFN-α-induced production improvement of virus-specific CTLs was not only the case for EBV-CTLs but also for cytomegalovirus-specific CTLs. CONCLUSION We established a novel protocol to rapidly expand highly pure EBV-CTLs from PBMCs, which can produce EBV-CTLs in 9 days and does not require feeder cells during cultivation.
Collapse
Affiliation(s)
- Chih-Hao Fang
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Ya Fang Cheng
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Shian-Ren Lin
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Wan-Yu Lai
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan
| | - Li-Ren Liao
- Department of Otolaryngology, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan
| | - Yen-Ling Chiu
- Division of Nephrology, Department of Medicine, Far Eastern Memorial Hospital, New Taipei City, 220216, Taiwan.
- Department of Medical Research, Far Eastern Memorial Hospital, No. 121, Sec. 2, Nanya S. Rd., Banqiao Dist., New Taipei City, 220216, Taiwan.
- Graduate Institute of Medicine and Graduate Program in Biomedical Informatics, Yuan Ze University, Taoyuan, 320315, Taiwan.
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, 100233, Taiwan.
| | - Jan-Mou Lee
- FullHope Biomedical Co., Ltd., 10F., No. 10, Ln. 609, Sec. 5, Chongxin Rd., Sanchong Dist., New Taipei City, 241405, Taiwan.
| |
Collapse
|
7
|
Shufang M, Xiaojiao H, Yinhong K. Pro-inflammatory cytokine IL-21 correlates with the reactive oxygen species and 25-hydroxy vitamin D in rheumatoid arthritis patients. Immun Inflamm Dis 2024; 12:e1308. [PMID: 39056553 PMCID: PMC11273535 DOI: 10.1002/iid3.1308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/28/2024] [Accepted: 05/19/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disorder and its characteristics include the immune system's invasion of the healthy lining of the joints and the articular structures degeneration. The IL-21 pro-inflammatory cytokine, and the reactive oxygen species (ROS) might have a role in the RA etiopathogenesis. The present study assessed the correlation of IL-21 with vitamin 25(OH)D and the ROS. METHODS The study included 120 RA patients and 60 healthy group. The RA patients were categorized based on rheumatoid factor (RF) seropositivity or seronegativity and the RA severity. Chemiluminescent immunoassay and 10% hematocrit were used to check levels of vitamin 25(OH)D and ROS, respectively. ELISA was used for the detection of IL-21 in the plasma. RESULTS The RA patients had a significantly reduced vitamin 25(OH)D level compared to the healthy controls. The IL-21 and ROS were however significantly increased in the RA patients compared to the controls. Further, the seropositive RF and the high RA severity patients had significant IL-21 and ROS increase in comparison with the seronegative RF and the low severity RA patients. Finally, IL-21 negatively correlated with vitamin 25(OH)D, but positively correlated with the ROS. CONCLUSION This is the first investigation to confirm the relationship between IL-21 with vitamin 25(OH)D and the ROS among the RA patients. The findings indicate that vitamin 25(OH)D is reduced in the RA patients' serum. ROS and IL-21 are also associated with increased RA severity.
Collapse
Affiliation(s)
- Ma Shufang
- Rheumatology and Immunology DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| | - Han Xiaojiao
- Rheumatology and Immunology DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| | - Kang Yinhong
- Obstetrics DepartmentFourth Central Hospital of Baoding CityBaodingHebei ProvinceChina
| |
Collapse
|
8
|
Ghorani E, Swanton C, Quezada SA. Cancer cell-intrinsic mechanisms driving acquired immune tolerance. Immunity 2023; 56:2270-2295. [PMID: 37820584 DOI: 10.1016/j.immuni.2023.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023]
Abstract
Immune evasion is a hallmark of cancer, enabling tumors to survive contact with the host immune system and evade the cycle of immune recognition and destruction. Here, we review the current understanding of the cancer cell-intrinsic factors driving immune evasion. We focus on T cells as key effectors of anti-cancer immunity and argue that cancer cells evade immune destruction by gaining control over pathways that usually serve to maintain physiological tolerance to self. Using this framework, we place recent mechanistic advances in the understanding of cancer immune evasion into broad categories of control over T cell localization, antigen recognition, and acquisition of optimal effector function. We discuss the redundancy in the pathways involved and identify knowledge gaps that must be overcome to better target immune evasion, including the need for better, routinely available tools that incorporate the growing understanding of evasion mechanisms to stratify patients for therapy and trials.
Collapse
Affiliation(s)
- Ehsan Ghorani
- Cancer Immunology and Immunotherapy Unit, Department of Surgery and Cancer, Imperial College London, London, UK; Department of Medical Oncology, Imperial College London Hospitals, London, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK; Department of Oncology, University College London Hospitals, London, UK
| | - Sergio A Quezada
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK; Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, London, UK.
| |
Collapse
|
9
|
Tvingsholm SA, Frej MS, Rafa VM, Hansen UK, Ormhøj M, Tyron A, Jensen AWP, Kadivar M, Bentzen AK, Munk KK, Aasbjerg GN, Ternander JSH, Heeke C, Tamhane T, Schmess C, Funt SA, Kjeldsen JW, Kverneland AH, Met Ö, Draghi A, Jakobsen SN, Donia M, Marie Svane I, Hadrup SR. TCR-engaging scaffolds selectively expand antigen-specific T-cells with a favorable phenotype for adoptive cell therapy. J Immunother Cancer 2023; 11:e006847. [PMID: 37586765 PMCID: PMC10432666 DOI: 10.1136/jitc-2023-006847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Adoptive cell therapy (ACT) has shown promising results for the treatment of cancer and viral infections. Successful ACT relies on ex vivo expansion of large numbers of desired T-cells with strong cytotoxic capacity and in vivo persistence, which constitutes the greatest challenge to current ACT strategies. Here, in this study, we present a novel technology for ex vivo expansion of antigen-specific T-cells; artificial antigen-presenting scaffolds (Ag-scaffolds) consisting of a dextran-polysaccharide backbone, decorated with combinations of peptide-Major Histocompatibility Complex (pMHC), cytokines and co-stimulatory molecules, enabling coordinated stimulation of antigen-specific T-cells. METHODS The capacity of Ag-scaffolds to expand antigen-specific T-cells was explored in ex vivo cultures with peripheral blood mononuclear cells from healthy donors and patients with metastatic melanoma. The resulting T-cell products were assessed for phenotypic and functional characteristics. RESULTS We identified an optimal Ag-scaffold for expansion of T-cells for ACT, carrying pMHC and interleukin-2 (IL-2) and IL-21, with which we efficiently expanded both virus-specific and tumor-specific CD8+ T cells from peripheral blood of healthy donors and patients, respectively. The resulting T-cell products were characterized by a high frequency of antigen-specific cells with high self-renewal capacity, low exhaustion, a multifunctional cytokine profile upon antigen-challenge and superior tumor killing capacity. This demonstrates that the coordinated stimuli provided by an optimized stoichiometry of TCR engaging (pMHC) and stimulatory (cytokine) moieties is essential to obtain desired T-cell characteristics. To generate an 'off-the-shelf' multitargeting Ag-scaffold product of relevance to patients with metastatic melanoma, we identified the 30 most frequently recognized shared HLA-A0201-restricted melanoma epitopes in a cohort of 87 patients. By combining these in an Ag-scaffold product, we were able to expand tumor-specific T-cells from 60-70% of patients with melanoma, yielding a multitargeted T-cell product with up to 25% specific and phenotypically and functionally improved T cells. CONCLUSIONS Taken together, the Ag-scaffold represents a promising new technology for selective expansion of antigen-specific CD8+ T cells directly from blood, yielding a highly specific and functionally enhanced T-cell product for ACT.
Collapse
Affiliation(s)
| | | | - Vibeke Mindahl Rafa
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Maria Ormhøj
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Alexander Tyron
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Agnete W P Jensen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Amalie Kai Bentzen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Kamilla K Munk
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Gitte N Aasbjerg
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | - Christina Heeke
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Tripti Tamhane
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Christian Schmess
- NMI Natural and Medical Science Institute, University of Tübingen, Tubingen, Germany
| | - Samuel A Funt
- Deptartment of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie Westerlin Kjeldsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Anders Handrup Kverneland
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Özcan Met
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Copenhagen, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Søren Nyboe Jakobsen
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Herlev Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
10
|
Rana PS, Soler DC, Kort J, Driscoll JJ. Targeting TGF-β signaling in the multiple myeloma microenvironment: Steering CARs and T cells in the right direction. Front Cell Dev Biol 2022; 10:1059715. [PMID: 36578789 PMCID: PMC9790996 DOI: 10.3389/fcell.2022.1059715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) remains a lethal hematologic cancer characterized by the expansion of transformed plasma cells within the permissive bone marrow (BM) milieu. The emergence of relapsed and/or refractory MM (RRMM) is provoked through clonal evolution of malignant plasma cells that harbor genomic, metabolic and proteomic perturbations. For most patients, relapsed disease remains a major cause of overall mortality. Transforming growth factors (TGFs) have pleiotropic effects that regulate myelomagenesis as well as the emergence of drug resistance. Moreover, TGF-β modulates numerous cell types present with the tumor microenvironment, including many immune cell types. While numerous agents have been FDA-approved over the past 2 decades and significantly expanded the treatment options available for MM patients, the molecular mechanisms responsible for drug resistance remain elusive. Multiple myeloma is uniformly preceded by a premalignant state, monoclonal gammopathy of unknown significance, and both conditions are associated with progressive deregulation in host immunity characterized by reduced T cell, natural killer (NK) cell and antigen-presenting dendritic cell (DC) activity. TGF-β promotes myelomagenesis as well as intrinsic drug resistance by repressing anti-myeloma immunity to promote tolerance, drug resistance and disease progression. Hence, repression of TGF-β signaling is a prerequisite to enhance the efficacy of current and future immunotherapeutics. Novel strategies that incorporate T cells that have been modified to express chimeric antigen receptor (CARs), T cell receptors (TCRs) and bispecific T cell engagers (BiTEs) offer promise to block TGF-β signaling, overcome chemoresistance and enhance anti-myeloma immunity. Here, we describe the effects of TGF-β signaling on immune cell effectors in the bone marrow and emerging strategies to overcome TGF-β-mediated myeloma growth, drug resistance and survival.
Collapse
Affiliation(s)
- Priyanka S. Rana
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States
| | - David C. Soler
- The Brain Tumor and Neuro-Oncology Center, The Center of Excellence for Translational Neuro-Oncology, Department of Neurosurgery, Case Western Reserve University, Cleveland, OH, United States
| | - Jeries Kort
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States
| | - James J. Driscoll
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, Cleveland, OH, United States,Adult Hematologic Malignancies and Stem Cell Transplant Section, Seidman Cancer Center, University Hospitals Cleveland Medical Center, Cleveland, OH, United States,*Correspondence: James J. Driscoll,
| |
Collapse
|
11
|
Lin RJ, Nager AR, Park S, Sutton J, Lay C, Melton Z, Zhang Y, Boldajipour B, Van Blarcom TJ, Panowski SH, Sasu BJ, Chaparro-Riggers J. Design and Validation of Inducible TurboCARsTM with Tunable Induction and Combinatorial Cytokine Signaling. Cancer Immunol Res 2022; 10:1069-1083. [PMID: 35881865 DOI: 10.1158/2326-6066.cir-21-0253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/23/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Although cytokine support can enhance CAR T-cell function, co-administering cytokines or engineering CAR T cells to secrete cytokines can result in toxicities. To mitigate these safety risks, we engineered iTurboCARTM T cells that coexpress a novel inducible Turbo (iTurbo) cytokine signaling domain. iTurbo domains consist of modular components that are customizable to a variety of activating inputs, as well as cytokine signaling outputs multiplexable for combinatorial signaling outcomes. Unlike most canonical cytokine receptors that are heterodimeric, iTurbo domains leverage a compact, homodimeric design that minimizes viral vector cargo. Using an iTurbo domain activated by the clinically validated dimerizer, AP1903, homodimeric iTurbo domains instigated signaling that mimicked the endogenous heterodimeric cytokine receptor. Different iTurbo domains programmed iTurboCAR T cells towards divergent phenotypes and resulted in improved anti-tumor efficacy. iTurbo domains, therefore, offer the flexibility for user-programmable signaling outputs, permitting control over cellular phenotype and function, while minimizing viral cargo footprint.
Collapse
Affiliation(s)
- Regina J Lin
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | | | - Spencer Park
- Weill Cornell Medicine, Seattle, WA, United States
| | - Janette Sutton
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Cecilia Lay
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Zea Melton
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | - Yi Zhang
- Allogene Therapeutics, Inc., South San Francisco, CA, United States
| | | | | | | | - Barbra J Sasu
- Allogene Therapuetics Inc, South San Francisco, CA, United States
| | | |
Collapse
|
12
|
Gupta R, Mehta A, Wajapeyee N. Transcriptional determinants of cancer immunotherapy response and resistance. Trends Cancer 2022; 8:404-415. [PMID: 35125331 PMCID: PMC9035058 DOI: 10.1016/j.trecan.2022.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022]
Abstract
The host immune response is a potent defense mechanism against cancer development and progression. To survive, cancer cells must develop mechanisms to evade the immune response. Based on this knowledge, a series of new therapies collectively referred to as immunotherapies have been developed and translated to the clinic for treating cancer patients. Although some cancer subtypes have shown strong clinical responses, including curative outcomes in some patients, immunotherapies have not worked as desired for some subtypes and forms of cancers. We provide an overview of the transcriptional mechanisms that drive the response and resistance to immunotherapies. We also discuss possible interventions to enhance the outcomes of immunotherapies by targeting dysregulated transcriptional networks in cancer cells.
Collapse
Affiliation(s)
- Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Amitkumar Mehta
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA; O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Chen XL, Wang JH, Zhao W, Shi CW, Yang KD, Niu TM, Yang GL, Cao X, Jiang YL, Wang JZ, Huang HB, Zeng Y, Wang N, Yang WT, Wang CF. Lactobacillus plantarum surface-displayed ASFV (p54) with porcine IL-21 generally stimulates protective immune responses in mice. AMB Express 2021; 11:114. [PMID: 34383171 PMCID: PMC8360262 DOI: 10.1186/s13568-021-01275-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
African classical swine fever virus (ASFV) has spread seriously around the world and has dealt with a heavy blow to the pig breeding industry due to the lack of vaccines. In this study, we produced recombinant Lactobacillus plantarum (L. plantarum) expressing an ASFV p54 and porcine IL-21 (pIL-21) fusion protein and evaluated the immune effect of NC8-pSIP409-pgsA'-p54-pIL-21 in a mouse model. First, we verified that the ASFV p54 protein and p54-pIL-21 fusion protein were anchored on the surface of L. plantarum NC8 by flow cytometry, immunofluorescence and Western blotting. Then, the results were verified by flow cytometry, ELISA and MTT assays. Mouse-specific humoral immunity and mucosal and T cell-mediated immune responses were induced by recombinant L. plantarum. The results of feeding mice recombinant L. plantarum showed that the levels of serum IgG and mucosal secreted IgA (SIgA), the number of CD4 and CD8 T cells, and the expression of IFN-γ in CD4 and CD8 T cells increased significantly, and lymphocyte proliferation occurred under stimulation with the ASFV p54 protein. Our data lay a foundation for the development of oral vaccines against ASFV in the future.
Collapse
|
14
|
Chang S, Yin T, He F, Ding J, Shang Y, Yang J. CaMK4 promotes abortion-related Th17 cell imbalance by activating AKT/mTOR signaling pathway. Am J Reprod Immunol 2020; 84:e13315. [PMID: 32738170 DOI: 10.1111/aji.13315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
PROBLEM The balance of the immune microenvironment along the maternal-fetal interface is closely related to pregnancy outcomes, with excessive inflammatory reactions leading to the occurrence of pathological pregnancy outcomes such as abortion. CaMK4 has been reported to play a significant role in autoimmune diseases through the regulation of Th17 cells. However, whether CaMK4 is associated with spontaneous abortion or the immune microenvironment along the maternal-fetal interface remains unclear. METHODS OF STUDY In this study, we constructed normal pregnancy and LPS-induced abortion models in mice, and a CaMK4 inhibitor called KN-93 was administered to investigate the changes in and mechanisms of the immune response. The expression of CaMK4 was evaluated in the uteroplacental complex and spleen. Furthermore, the infiltration and function of Th17 cells were estimated in peripheral tissues and the uteroplacental complex. RESULTS The expression of CaMK4 in the uteroplacental complex and spleen was significantly higher in the LPS-treated group than in the normal pregnancy group. KN-93, the CaMK4 inhibitor, reversed fetal resorption and excessive inflammation. In detail, KN-93 led to reduced infiltration of Th17 cells into peripheral tissues and the uteroplacental complex, and the functions of Th17 cells were inhibited. In addition, CaMK4 promoted the AKT/mTOR signaling pathway, which is one of the mechanisms that regulate the immune microenvironment. CONCLUSION CaMK4 is a critical regulator that promotes the expansion of Th17 cells and enhances their functions through the AKT/mTOR signaling pathway. The inhibition of CaMK4 can reverse the immune imbalance along the maternal-fetal interface and improve pregnancy outcomes.
Collapse
Affiliation(s)
- Shuo Chang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Fan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Ye Shang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University and Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan, China
| |
Collapse
|
15
|
Solaymani-Mohammadi S, Eckmann L, Singer SM. Interleukin (IL)-21 in Inflammation and Immunity During Parasitic Diseases. Front Cell Infect Microbiol 2019; 9:401. [PMID: 31867283 PMCID: PMC6904299 DOI: 10.3389/fcimb.2019.00401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022] Open
Abstract
Parasitic diseases cause significant morbidity and mortality in the developing and underdeveloped countries. No efficacious vaccines are available against most parasitic diseases and there is a critical need for developing novel vaccine strategies for care. IL-21 is a pleiotropic cytokine whose functions in protection and immunopathology during parasitic diseases have been explored in limited ways. IL-21 and its cognate receptor, IL-21R, are highly expressed in parasitized organs of infected humans as well in murine models of the human parasitic diseases. Prior studies have indicated the ability of the IL-21/IL-21R signaling axis to regulate the effector functions (e.g., cytokine production) of T cell subsets by enhancing the expression of T-bet and STAT4 in human T cells, resulting in an augmented production of IFN-γ. Mice deficient for either IL-21 (Il21−/−) or IL-21R (Il21r−/−) showed significantly reduced inflammatory responses following parasitic infections as compared with their WT counterparts. Targeting the IL-21/IL-21R signaling axis may provide a novel approach for the development of new therapeutic agents for the prevention of parasite-induced immunopathology and tissue destruction.
Collapse
Affiliation(s)
- Shahram Solaymani-Mohammadi
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven M Singer
- Department of Biology, Georgetown University, Washington, DC, United States
| |
Collapse
|
16
|
Interleukin-21 (IL-21) Downregulates Dendritic Cell Cytokine Responses to Helicobacter pylori and Modulates T Lymphocyte IL-17A Expression in Peyer's Patches during Infection. Infect Immun 2019; 87:IAI.00237-19. [PMID: 31383743 DOI: 10.1128/iai.00237-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022] Open
Abstract
Interleukin-21 (IL-21), a cytokine produced by many subsets of activated immune cells, is critical for driving inflammation in several models. Using Helicobacter pylori infection as a model for chronic mucosal infection, we previously published that IL-21 is required for the development of gastritis in response to infection. Concomitant with protection from chronic inflammation, H. pylori-infected IL-21-/- mice exhibited limited Th1 and Th17 responses in their gastric mucosa. Here we report that H. pylori-infected IL-21-/- mice express significantly higher levels of IL-17A than H. pylori-infected wild-type (WT) mice in the Peyer's patches and mesenteric lymph nodes. This led us to hypothesize that IL-21 may indirectly regulate H. pylori-specific T cell responses by controlling dendritic cell (DC) functions in mucosa-associated lymphoid tissue. It was found that IL-21 treatment reduced the ability of dendritic cells to produce proinflammatory cytokines in response to H. pylori While H. pylori increased the expression of costimulatory proteins on DCs, IL-21 reduced the expression of CD40 in the presence of H. pylori Also, Th17 recall responses were intact when DCs were used as antigen-presenting cells in the presence of IL-21, but IL-21 did impact the ability of DCs to induce antigen-specific proliferation. These data suggest that IL-21, while proinflammatory in most settings, downregulates the proinflammatory cytokine microenvironment through modulating the cytokine expression of DCs, indirectly modifying IL-17A expression. Understanding how these proinflammatory cytokines are regulated will advance our understanding of how and why H. pylori infection may be tolerated in some individuals while it causes gastritis, ulcers, or cancer in others.
Collapse
|
17
|
Jing R, Qi T, Wen C, Yue J, Wang G, Pei C, Ma B. Interleukin-2 induces extracellular matrix synthesis and TGF-β2 expression in retinal pigment epithelial cells. Dev Growth Differ 2019; 61:410-418. [PMID: 31608440 PMCID: PMC6899885 DOI: 10.1111/dgd.12630] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Macular fibrosis is a vital obstacle of vision acuity improvement of age‐related macular degeneration patients. This study was to investigate the effects of interleukin 2 (IL‐2) on epithelial‐mesenchymal transition (EMT), extracellular matrix (ECM) synthesis and transforming growth factor β2 (TGF‐β2) expression in retinal pigment epithelial (RPE) cells. 10 μg/L IL‐2 was used to induce fibrosis in RPE cells for various times. Western blot was used to detect the EMT marker α‐smooth muscle actin (α‐SMA), ECM markers fibronectin (Fn) and type 1 collagen (COL‐1), TGF‐β2, and the activation of the JAK/STAT3 and NF‐κB signaling pathway. Furthermore, JAK/STAT3 and NF‐κB signaling pathways were specifically blocked by WP1066 or BAY11‐7082, respectively, and the expression of α‐SMA, COL‐1, Fn and TGF‐β2 protein were detected. Wound healing and Transwell assays were used to measure cell migration ability of IL‐2 with or without WP1066 or BAY11‐7082. After induction of IL‐2, the expressions of Fn, COL‐1, TGF‐β2 protein were significantly increased, and this effect was correlated with IL‐2 treatment duration, while α‐SMA protein expression did not change significantly. Both WP1066 and BAY11‐7082 could effectively downregulate the expression of Fn, COL‐1 and TGF‐β2 induced by IL‐2. What's more, both NF‐κB and JAK/STAT3 inhibitors could suppress the activation of the other signaling pathway. Additionally, JAK/STAT3 inhibitor WP1066 and NF‐κB inhibitor BAY 11‐7082 could obviously decrease RPE cells migration capability induced by IL‐2. IL‐2 promotes cell migration, ECM synthesis and TGF‐β2 expression in RPE cells via JAK/STAT3 and NF‐κB signaling pathways, which may play an important role in proliferative vitreoretinopathy.
Collapse
Affiliation(s)
- Ruihua Jing
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tiantian Qi
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chan Wen
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaqi Yue
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangyan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cheng Pei
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Ma
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
18
|
Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity 2019; 50:924-940. [PMID: 30995507 DOI: 10.1016/j.immuni.2019.03.024] [Citation(s) in RCA: 1585] [Impact Index Per Article: 264.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
|
19
|
Abstract
Transforming growth factor (TGF)-β is a crucial enforcer of immune homeostasis and tolerance, inhibiting the expansion and function of many components of the immune system. Perturbations in TGF-β signaling underlie inflammatory diseases and promote tumor emergence. TGF-β is also central to immune suppression within the tumor microenvironment, and recent studies have revealed roles in tumor immune evasion and poor responses to cancer immunotherapy. Here, we present an overview of the complex biology of the TGF-β family and its context-dependent nature. Then, focusing on cancer, we discuss the roles of TGF-β signaling in distinct immune cell types and how this knowledge is being leveraged to unleash the immune system against the tumor.
Collapse
Affiliation(s)
- Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), the Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain; ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
20
|
Kim MM, Audet J. On-demand serum-free media formulations for human hematopoietic cell expansion using a high dimensional search algorithm. Commun Biol 2019; 2:48. [PMID: 30729186 PMCID: PMC6358607 DOI: 10.1038/s42003-019-0296-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 01/09/2019] [Indexed: 12/13/2022] Open
Abstract
Substitution of serum and other clinically incompatible reagents is requisite for controlling product quality in a therapeutic cell manufacturing process. However, substitution with chemically defined compounds creates a complex, large-scale optimization problem due to the large number of possible factors and dose levels, making conventional process optimization methods ineffective. We present a framework for high-dimensional optimization of serum-free formulations for the expansion of human hematopoietic cells. Our model-free approach utilizes evolutionary computing principles to drive an experiment-based feedback control platform. We validate this method by optimizing serum-free formulations for first, TF-1 cells and second, primary T-cells. For each cell type, we successfully identify a set of serum-free formulations that support cell expansions similar to the serum-containing conditions commonly used to culture these cells, by experimentally testing less than 1 × 10-5 % of the total search space. We also demonstrate how this iterative search process can provide insights into factor interactions that contribute to supporting cell expansion.
Collapse
Affiliation(s)
- Michelle M. Kim
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9 Canada
| | - Julie Audet
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON M5S 3G9 Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St, Toronto, ON M5S 3E5 Canada
| |
Collapse
|
21
|
IL-21 promotes allergic airway inflammation by driving apoptosis of FoxP3 + regulatory T cells. J Allergy Clin Immunol 2019; 143:2178-2189.e5. [PMID: 30654048 DOI: 10.1016/j.jaci.2018.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/05/2018] [Accepted: 11/30/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND IL-21 is a key player of adaptive immunity, with well-established roles in B-cell and cytotoxic T-cell responses. IL-21 has been implicated in promotion of effector CD4+ T cells and inhibition of forkhead box P3-positive regulatory T (Treg) cells, but the mechanism and functional relevance of these findings remain controversial. OBJECTIVE We sought to understand the mechanisms by which IL-21 controls effector CD4+ cell responses and Treg cell homeostasis. METHODS We used IL-21 receptor-deficient mice to study the effect of IL-21 on T-cell responses in models of asthma and colitis. We used mixed bone marrow chimeras and adoptive transfer of naive CD4+ T cells and Treg cells into lymphopenic mice to assess the cell-intrinsic effects of IL-21. Using various in vitro T-cell assays, we characterized the mechanism of IL-21-mediated inhibition of Treg cells. RESULTS We show that IL-21 production by TH2 and follicular helper T/ex-follicular helper T cells promotes asthma by inhibiting Treg cells. Il21r-/- mice displayed reduced generation of TH2 cells and increased generation of Treg cells. In mixed chimeras we demonstrate that IL-21 promotes TH2 responses indirectly through inhibition of Treg cells. Depleting Treg cells in Il21r-/- mice restored TH2 generation and eosinophilia. Furthermore, IL-21 inhibited Treg cell generation in mice with colitis. Using competitive transfer of Il21r+/+ and Il21r-/- CD4+ cells, we show that IL-21 directly inhibited expansion of differentiated Treg cells but was dispensable for TH1/TH17 effectors. We show that IL-21 sensitizes Treg cells to apoptosis by interfering with the expression of Bcl-2 family genes. CONCLUSION IL-21 directly promotes apoptosis of Treg cells and therefore indirectly sustains generation of inflammatory TH cells and related effector responses.
Collapse
|
22
|
Guan L, Li X, Wei J, Liang Z, Yang J, Weng X, Wu X. Antigen-specific CD8+ memory stem T cells generated from human peripheral blood effectively eradicate allogeneic targets in mice. Stem Cell Res Ther 2018; 9:337. [PMID: 30526661 PMCID: PMC6286512 DOI: 10.1186/s13287-018-1080-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND As the implantation and long-term existence of tumor-specific T cells in host are the prerequisite for adoptive immunotherapy, memory stem T cells (TSCM) with self-renewal and differentiation capacity show the greatest potential to implant and long-term exhibit function in vivo, compared with other T cells of differentiation stages. Hence, tumor-specific TSCM have become potential candidate for adoptive T cell therapy of cancer. Here, we reported a protocol to generate allogeneic antigen-specific CD8+ TSCM cells from human PBLs. METHODS To prepare allogeneic antigen-specific CD8+ TSCM, we used an LCL named E007 of defined HLA allotyping as simulator, a co-culture of E007 and allogeneic PBLs was carried out in the presence of differentiation inhibitor TWS119 for 7 days. Sorting of proliferation cells ensured the E007-specificity of the prepared TSCM cells. The sorted lymphocytes underwent further expansion by cytokines IL-7 and IL-15 for further 7 days, making the E007-specific CD8 + TSCM expanded in number. The stem cell and T memory cell properties of the prepared CD8+ TSCM were observed in NOD-SCID mice. RESULTS Our protocol began with 1 × 107 PBLs and resulted in 2 × 107 E007-specific CD8+ TSCM cells in 2 weeks of preparation. The prepared TSCM cells exhibited a proliferative history and rapid differentiation into effector cells upon the E007 re-stimulation. Importantly, the prepared TSCM cells were able to exist long and reconstitute other T cell subsets in vivo, eradicating the E007 cells effectively after transferred into the LCL burden mice. CONCLUSIONS This protocol was able to prepare allogeneic antigen-specific CD8+ TSCM cells from human PBLs. The prepared TSCM showed the properties of stem cells and T memory cells. This study provided a reference method for generation of antigen-specific TSCM for T cell adoptive immunotherapy.
Collapse
Affiliation(s)
- Liping Guan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Xiaoyi Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Jiali Wei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Zhihui Liang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Jing Yang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China
| | - Xiufang Weng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China.
| | - Xiongwen Wu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan, 430030, China.
| |
Collapse
|
23
|
Kim HJ, Kim SH, Kim TG, Park JY, Lee M, Kim DS, Lee MG. Interleukin-21 receptor signalling is not critically required for imiquimod-induced psoriasiform dermatitis in mice. Exp Dermatol 2018; 27:191-195. [PMID: 29220875 DOI: 10.1111/exd.13481] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2017] [Indexed: 11/27/2022]
Abstract
Psoriasis is largely mediated by interleukin (IL)-23/T helper (Th) 17 axis, and IL-21 is a pleiotropic cytokine expressed by Th17 cells. Despite previously reported possible pathogenic roles of IL-21 in human psoriasis, we found that IL-21 receptor (IL-21R) signalling was not crucial for imiquimod-induced psoriatic inflammation, using IL-21R-/- mice. The severity of imiquimod-induced psoriatic manifestation and pro-inflammatory Th17 cytokine levels, IL-17A-producing γδ T cells and CD4+ T cells, and in vitro IL-17A production by γδ T cells after IL-23 stimulation was comparable between wild-type and IL-21R-/- mice. Collectively, IL-21R signalling was not critically involved in IMQ-induced psoriatic inflammation despite an increased IL-21 expression in the IMQ-treated mouse skin. Our data may represent the significant differences between human psoriasis and murine psoriasis model, and further studies using other models will be required to elucidate the role of IL-21 in psoriasis pathogenesis.
Collapse
Affiliation(s)
- Hee Joo Kim
- Department of dermatology, Gachon University Gil Medical Center, Incheon, Korea
| | - Sung Hee Kim
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Tae-Gyun Kim
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Je Yun Park
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Minseok Lee
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Suk Kim
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Min-Geol Lee
- Department of dermatology, Severance hospital, Cutaneous Biology Research Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
Hartimath SV, Manuelli V, Zijlma R, Signore A, Nayak TK, Freimoser-Grundschober A, Klein C, Dierckx RAJO, de Vries EFJ. Pharmacokinetic properties of radiolabeled mutant Interleukin-2v: a PET imaging study. Oncotarget 2018; 9:7162-7174. [PMID: 29467958 PMCID: PMC5805544 DOI: 10.18632/oncotarget.23852] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/28/2017] [Indexed: 11/25/2022] Open
Abstract
Interleukin-2 (IL2) is a cytokine that can stimulate cytotoxic immune cells to attack infected and malignant cells. Unfortunately, IL2 can also cause serious immune-related toxicity. Recently, a mutant of IL2 (IL2v) with abolished CD25 binding, increased plasma half-life and less toxicity was engineered. Unlike wild-type IL2 (wt-IL2), mutant IL2v does not bind to the α-subunit (CD25) of the high affinity IL2αβγ receptor, but only to its β and γ subunit. Here, we investigated the biological properties of IL2v and compared with the wt-IL2 using fluorine-18 and PET. [18F]FB-IL2v binds specifically to IL2 receptors (IL2R) on activated human peripheral blood monocytes (hPBMCs) and is cleared mainly by the kidneys (Balb/c mice). [18F]FB-IL2v PET studies in SCID mice injected with hPBMCs revealed high uptake in the implant (0.85 ± 0.15 SUV), which was significantly reduced after pretreatment with wt-IL2 or mutant IL2v (SUV 0.26 ± 0.1 and 0.46 ± 0.1, p < 0.01). Compartment modeling and Logan graphical analysis in wistar rats inoculated with hPBMCs indicated that the binding of [18F]FB-IL2v to IL2R was reversible. The volume of distribution (VT) and the non-displaceable binding potential (BPnd) of mutant [18F]FB-IL2v in the implant were approximately 3 times lower than those of wild-type [18F]FB-IL2 (p < 0.01). Pretreatment with wt-IL2 significantly reduced the VT and BPnd of mutant [18F]FB-IL2v in the implant (p < 0.001). This demonstrates that wild-type [18F]FB-IL2 binds stronger to IL2R and has faster kinetics than [18F]FB-IL2v, which makes it less suitable as a therapeutic drug. [18F]FB-IL2v, on the other hand, seems to have better properties for use as a therapeutic drug.
Collapse
Affiliation(s)
- Siddesh V Hartimath
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Valeria Manuelli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Rolf Zijlma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alberto Signore
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Tapan K Nayak
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Anne Freimoser-Grundschober
- Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Schlieren, Switzerland
| | - Christian Klein
- Pharma Research and Early Development (pRED), Roche Innovation Center Zurich, Zurich, Schlieren, Switzerland
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
25
|
Mishima T, Fukaya S, Toda S, Ando Y, Matsunaga T, Inobe M. Rapid G0/1 transition and cell cycle progression in CD8 + T cells compared to CD4 + T cells following in vitro stimulation. Microbiol Immunol 2017; 61:168-175. [PMID: 28370382 DOI: 10.1111/1348-0421.12479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 03/10/2017] [Accepted: 03/26/2017] [Indexed: 11/29/2022]
Abstract
T-cell population consists of two major subsets, CD4+ T cells and CD8+ T cells, which can be distinguished by the expression of CD4 or CD8 molecules, respectively. Although they play quite different roles in the immune system, many of their basic cellular processes such as proliferation following stimulation are presumably common. In this study, we have carefully analyzed time-course of G0/1 transition as well as cell cycle progression in the two subsets of quiescent T-cell population following in vitro growth stimulation. We found that CD8+ T cells promote G0/1 transition more rapidly and drive their cell cycle progression faster compared to CD4+ T cells. In addition, expression of CD25 and effects of its blockade revealed that IL-2 is implicated in the rapid progression, but not the earlier G0/1 transition, of CD8+ T cells.
Collapse
Affiliation(s)
- Takuya Mishima
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shotaro Fukaya
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Shoko Toda
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Yoshiaki Ando
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Manabu Inobe
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Sharpton T, Lyalina S, Luong J, Pham J, Deal EM, Armour C, Gaulke C, Sanjabi S, Pollard KS. Development of Inflammatory Bowel Disease Is Linked to a Longitudinal Restructuring of the Gut Metagenome in Mice. mSystems 2017; 2:e00036-17. [PMID: 28904997 PMCID: PMC5585689 DOI: 10.1128/msystems.00036-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/08/2017] [Indexed: 02/08/2023] Open
Abstract
The gut microbiome is linked to inflammatory bowel disease (IBD) severity and altered in late-stage disease. However, it is unclear how gut microbial communities change over the course of IBD development, especially in regard to function. To investigate microbiome-mediated disease mechanisms and discover early biomarkers of IBD, we conducted a longitudinal metagenomic investigation in an established mouse model of IBD, where damped transforming growth factor β (TGF-β) signaling in T cells leads to peripheral immune activation, weight loss, and severe colitis. IBD development is associated with abnormal gut microbiome temporal dynamics, including damped acquisition of functional diversity and significant differences in abundance trajectories for KEGG modules such as glycosaminoglycan degradation, cellular chemotaxis, and type III and IV secretion systems. Most differences between sick and control mice emerge when mice begin to lose weight and heightened T cell activation is detected in peripheral blood. However, levels of lipooligosaccharide transporter abundance diverge prior to immune activation, indicating that it could be a predisease indicator or microbiome-mediated disease mechanism. Taxonomic structure of the gut microbiome also significantly changes in association with IBD development, and the abundances of particular taxa, including several species of Bacteroides, correlate with immune activation. These discoveries were enabled by our use of generalized linear mixed-effects models to test for differences in longitudinal profiles between healthy and diseased mice while accounting for the distributions of taxon and gene counts in metagenomic data. These findings demonstrate that longitudinal metagenomics is useful for discovering the potential mechanisms through which the gut microbiome becomes altered in IBD. IMPORTANCE IBD patients harbor distinct microbial communities with functional capabilities different from those seen with healthy people. But is this cause or effect? Answering this question requires data on changes in gut microbial communities leading to disease onset. By performing weekly metagenomic sequencing and mixed-effects modeling on an established mouse model of IBD, we identified several functional pathways encoded by the gut microbiome that covary with host immune status. These pathways are novel early biomarkers that may either enable microbes to live inside an inflamed gut or contribute to immune activation in IBD mice. Future work will validate the potential roles of these microbial pathways in host-microbe interactions and human disease. This study was novel in its longitudinal design and focus on microbial pathways, which provided new mechanistic insights into the role of gut microbes in IBD development.
Collapse
Affiliation(s)
- Thomas Sharpton
- Department of Microbiology, Oregon State University, Corvallis, Oregon
- Department of Statistics, Oregon State University, Corvallis, Oregon
| | | | - Julie Luong
- Gladstone Institutes, San Francisco, California, USA
| | - Joey Pham
- Gladstone Institutes, San Francisco, California, USA
| | - Emily M. Deal
- Gladstone Institutes, San Francisco, California, USA
| | - Courtney Armour
- Department of Microbiology, Oregon State University, Corvallis, Oregon
| | | | - Shomyseh Sanjabi
- Gladstone Institutes, San Francisco, California, USA
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, California, USA
| | - Katherine S. Pollard
- Gladstone Institutes, San Francisco, California, USA
- Department of Epidemiology & Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
27
|
Sanjabi S, Oh SA, Li MO. Regulation of the Immune Response by TGF-β: From Conception to Autoimmunity and Infection. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022236. [PMID: 28108486 DOI: 10.1101/cshperspect.a022236] [Citation(s) in RCA: 410] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine involved in both suppressive and inflammatory immune responses. After 30 years of intense study, we have only begun to elucidate how TGF-β alters immunity under various conditions. Under steady-state conditions, TGF-β regulates thymic T-cell selection and maintains homeostasis of the naïve T-cell pool. TGF-β inhibits cytotoxic T lymphocyte (CTL), Th1-, and Th2-cell differentiation while promoting peripheral (p)Treg-, Th17-, Th9-, and Tfh-cell generation, and T-cell tissue residence in response to immune challenges. Similarly, TGF-β controls the proliferation, survival, activation, and differentiation of B cells, as well as the development and functions of innate cells, including natural killer (NK) cells, macrophages, dendritic cells, and granulocytes. Collectively, TGF-β plays a pivotal role in maintaining peripheral tolerance against self- and innocuous antigens, such as food, commensal bacteria, and fetal alloantigens, and in controlling immune responses to pathogens.
Collapse
Affiliation(s)
- Shomyseh Sanjabi
- Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California 94158.,Department of Microbiology and Immunology, University of California, San Francisco, California 94143
| | - Soyoung A Oh
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
28
|
Green WD, Beck MA. Obesity altered T cell metabolism and the response to infection. Curr Opin Immunol 2017; 46:1-7. [PMID: 28359913 PMCID: PMC5554716 DOI: 10.1016/j.coi.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Abstract
An epidemic of obesity over the past three decades increases the risk of chronic and infectious diseases for adults and children alike. Within the past few years, obesity has been shown to impair the adaptive immune response to infection through alterations in T cell functioning. Growing evidence suggests that perturbations in T cell metabolism drives this stunted immune response, stemming from nutrient, hormone and adipokine dysregulation in the obese. In this review, recent findings in the fields of obesity and T cell mediated immunity demonstrate a unique relationship between altered mechanisms of T cell metabolic homeostasis and plasticity of adaptive immune responses in the obese setting.
Collapse
Affiliation(s)
- William D Green
- Department of Nutrition, University of North Carolina at Chapel Hill, United States
| | - Melinda A Beck
- Department of Nutrition, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
29
|
Goswami R, Kaplan M. STAT Transcription Factors in T Cell Control of Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 331:123-180. [DOI: 10.1016/bs.ircmb.2016.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Alvarez-Fernández C, Escribà-Garcia L, Vidal S, Sierra J, Briones J. A short CD3/CD28 costimulation combined with IL-21 enhance the generation of human memory stem T cells for adoptive immunotherapy. J Transl Med 2016; 14:214. [PMID: 27435312 PMCID: PMC4952071 DOI: 10.1186/s12967-016-0973-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immunotherapy based on the adoptive transfer of gene modified T cells is an emerging approach for the induction of tumor-specific immune responses. Memory stem T cells, due to their enhanced antitumor and self-renewal capacity, have become potential candidate for adoptive T cell therapy of cancer. Methods to generate memory stem T cells ex vivo rely on CD3/CD28 costimulation and the use of cytokines such as IL-7 and IL-15 during the entire culture period. However, a strong costimulation may induce differentiation of memory stem T cells to effector memory T cells. Here we show that manipulation of the length of the costimulation and addition of IL-21 enhance the ex vivo expansion of memory stem T cells. METHODS Purified naïve T cells from healthy donors were cultured in the presence of anti-CD3/CD28 coated beads, IL-7, IL-15 and/or IL-21 (25 ng/ml). T cells phenotype from the different memory and effector subpopulations were analyzed by multiparametric flow cytometry. RESULTS A short anti-CD3/CD28 costimulation of naïve T cells, combined with IL-7 and IL-15 significantly increased the frequencies of CD4(+) and CD8(+) memory stem T cells ex vivo, compared to a prolonged costimulation (34.6 ± 4.4 % vs 15.6 ± 4.24 % in CD4(+); p = 0.008, and 20.5 ± 4.00 % vs 7.7 ± 2.53 % in CD8(+); p = 0.02). Moreover, the addition of IL-21 to this condition further enhanced the enrichment and expansion of CD4(+) and CD8(+) memory stem T cells with an increase in the absolute numbers (0.7 × 10(6) ± 0.1 vs 0.26 × 10(6) ± 0.1 cells for CD4(+); p = 0.002 and 1.1 × 10(6) ± 0.1 vs 0.27 × 10(6) ± 0.1 cells for CD8(+); p = 0.0002; short + IL-21 vs long). CONCLUSIONS These new in vitro conditions increase the frequencies and expansion of memory stem T cells and may have relevant clinical implications for the generation of this memory T cell subset for adoptive cell therapy of patients with cancer.
Collapse
Affiliation(s)
- C. Alvarez-Fernández
- />Hematology Service, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041 Barcelona, Spain
- />Autonomous University, Barcelona, Spain
- />Laboratory of Experimental Hematology–IIB, Institut Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - L. Escribà-Garcia
- />Hematology Service, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041 Barcelona, Spain
- />Autonomous University, Barcelona, Spain
- />Laboratory of Experimental Hematology–IIB, Institut Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - S. Vidal
- />Autonomous University, Barcelona, Spain
- />IIB-Institut Recerca Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - J. Sierra
- />Hematology Service, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041 Barcelona, Spain
- />Autonomous University, Barcelona, Spain
| | - J. Briones
- />Hematology Service, Hospital de la Santa Creu i Sant Pau, Mas Casanovas 90, 08041 Barcelona, Spain
- />Autonomous University, Barcelona, Spain
| |
Collapse
|
31
|
Suthers AN, Old JM, Young LJ. The common gamma chain cytokine interleukin-21 is expressed by activated lymphocytes from two macropod marsupials, Macropus eugenii and Onychogalea fraenata. Int J Immunogenet 2016; 43:209-17. [PMID: 27306193 DOI: 10.1111/iji.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/05/2016] [Indexed: 12/01/2022]
Abstract
In mammals, interleukin-21 is a member of the common gamma chain cytokine family that also includes IL-2, IL-4, IL-7, IL-9 and IL-15. IL-21 has pleiotropic effects on both myeloid and lymphoid immune cells and as a consequence, the biological actions of IL-21 are broad: regulating both innate and adaptive immune responses and playing a pivotal role in antiviral, inflammatory and antitumour cellular responses. While IL-21 genes have been characterized in mammals, birds, fish and amphibians, there are no reports for any marsupial species to date. We characterized the expressed IL-21 gene from immune tissues of two macropod species, the tammar wallaby (Macropus eugenii), a model macropod, and the closely related endangered bridled nailtail wallaby (Onychogalea fraenata). The open reading frame of macropod IL-21 is 462 nucleotides in length and encodes a 153-mer putative protein that has 46% identity with human IL-21. Despite the somewhat low amino acid conservation with other mammals, structural elements and residues essential for IL-21 conformation and receptor association were conserved in the macropod IL-21 predicted peptides. The detection of IL-21 gene expression in T-cell-enriched tissues, combined with analysis of the promotor region of the tammar wallaby gene, suggests that macropod IL-21 is expressed in stimulated T cells but is not readily detected in other cells and tissues. The similarity of gene expression profile and functionally important amino acid residues to eutherian IL-21 makes it unlikely that the differences in B- and T-cell responses that are reported for some marsupial species are due to a lack of important functional residues or IL-21 gene expression in this group of mammals.
Collapse
Affiliation(s)
- A N Suthers
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld, Australia
| | - J M Old
- School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| | - L J Young
- School of Science and Health, University of Western Sydney, Penrith, NSW, Australia
| |
Collapse
|
32
|
Pulliam SR, Uzhachenko RV, Adunyah SE, Shanker A. Common gamma chain cytokines in combinatorial immune strategies against cancer. Immunol Lett 2015; 169:61-72. [PMID: 26597610 DOI: 10.1016/j.imlet.2015.11.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/15/2015] [Accepted: 11/12/2015] [Indexed: 01/10/2023]
Abstract
Common γ chain (γC) cytokines, namely IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21 are important for the proliferation, differentiation, and survival of lymphocytes that display antitumor activity, thus stimulating considerable interest for the use of cytokines in cancer immunotherapy. In this review, we will focus on the γC cytokines that demonstrate the greatest potential for immunotherapy, IL-2, IL-7, IL-15, and IL-21. We will briefly cover their biological function, potential applications in cancer therapy, and update on their use in combinatorial immune strategies for eradicating tumors and hematopoietic malignancies.
Collapse
Affiliation(s)
- Stephanie R Pulliam
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA
| | - Roman V Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Samuel E Adunyah
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA.
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
33
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
34
|
Zhang J, Wu Q, Shi J, Ge M, Li X, Shao Y, Yao J, Zheng Y. Involvement of interleukin-21 in the pathophysiology of aplastic anemia. Eur J Haematol 2015; 95:44-51. [PMID: 25784172 DOI: 10.1111/ejh.12471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Recently enhanced T-helper type 17 (Th17) immune responses and deficient CD4(+) CD25(hi) FoxP3(+) regulatory T cells (Tregs) have been reported in acquired aplastic anemia (AA). Interleukin-21 (IL-21), a CD4(+) T-cell-derived proinflammatory cytokine, modulates the balance between Th17 cells and Tregs. However, its role in AA remains unclear. METHODS IL-21 gene expression was examined by quantitative real-time PCR. Cytokines in plasma and cell culture supernatants were detected by ELISA. Cytokines-producing T cells and Tregs were evaluated by flow cytometry. RESULTS IL-21 mRNA levels in circulating CD4(+) T cells and IL-21 levels in blood plasma were markedly increased in patients with newly diagnosed AA. Moreover, elevated IL-21-producing CD4(+) T cells were accompanied by Th17 cells accumulation and Tregs decrease, and correlated with AA activity. In vitro, IL-21 not only inhibited the expression of FoxP3, but also induced the expression of IL-17 in CD4(+) T cells of AA patients. More importantly, we found that T cells within the bone marrow (BM) of AA patients were in a heightened activation state, which may be related to IL-21. CONCLUSION Our data suggested a critical role of IL-21 in breaking immune homeostasis in AA by promoting Th17 cells, activating BM T cells and suppressing Tregs.
Collapse
Affiliation(s)
- Jizhou Zhang
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Qingqing Wu
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jun Shi
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Meili Ge
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xingxin Li
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yingqi Shao
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Jianfeng Yao
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yizhou Zheng
- Severe Aplastic Anemia Studying Program, State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| |
Collapse
|
35
|
Orio J, Carli C, Janelle V, Giroux M, Taillefer J, Goupil M, Richaud M, Roy DC, Delisle JS. Early exposure to interleukin-21 limits rapidly generated anti-Epstein-Barr virus T-cell line differentiation. Cytotherapy 2015; 17:496-508. [PMID: 25661862 DOI: 10.1016/j.jcyt.2014.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines. METHODS We adapted a clinically validated protocol to rapidly generate EBV-specific T-cell lines in 12 to 14 days and tested whether the addition of IL-21 at the initiation of the culture would affect T-cell expansion and differentiation. RESULTS We generated clinical-scale EBV-restricted T-cell line expansion with balanced T-cell subset ratios. The addition of IL-21 at the beginning of the culture decreased both T-cell expansion and effector memory T-cell accumulation, with a relative increase in less-differentiated T cells. Within CD4 T-cell subsets, exogenous IL-21 was notably associated with the cell surface expression of CD27 and high KLF2 transcript levels, further arguing for a role of IL-21 in the control of late T-cell differentiation. CONCLUSIONS Our results show that IL-21 has profound effects on T-cell differentiation in a rapid T-cell line generation protocol and as such should be further explored as a novel approach to program anti-viral T cells with features associated with early differentiation and optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Julie Orio
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Cédric Carli
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Valérie Janelle
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Martin Giroux
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Julie Taillefer
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Mathieu Goupil
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Manon Richaud
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada
| | - Denis-Claude Roy
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada; Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Quebec, Canada; Department of Medicine, University of Montréal, Quebec, Canada
| | - Jean-Sébastien Delisle
- Hôpital Maisonneuve-Rosemont Research Centre, Quebec, Canada; Hematology-Oncology Division, Hôpital Maisonneuve-Rosemont, Quebec, Canada; Department of Medicine, University of Montréal, Quebec, Canada.
| |
Collapse
|
36
|
Caramalho I, Nunes-Silva V, Pires AR, Mota C, Pinto AI, Nunes-Cabaço H, Foxall RB, Sousa AE. Human regulatory T-cell development is dictated by Interleukin-2 and -15 expressed in a non-overlapping pattern in the thymus. J Autoimmun 2014; 56:98-110. [PMID: 25481744 DOI: 10.1016/j.jaut.2014.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 12/19/2022]
Abstract
Thymus-derived FOXP3-expressing regulatory T-cells (tTregs) are master orchestrators of physiological and pathological immune responses, thus constituting ideal targets for the treatment of autoimmunity. Despite their clinical importance, the developmental program governing their differentiation in the human thymus remains poorly understood. Here, we investigated the role of common gamma-chain cytokines in human tTreg differentiation, by performing gain- and loss-of-function experiments in 3D and 2D postnatal thymic cultures. We identified IL-2 and IL-15 as key molecular determinants in this process and excluded a major function for IL-4, IL-7 and IL-21. Mechanistically, IL-2 and IL-15 were equally able to drive tTreg precursor differentiation into FOXP3(+) cells, and promote tTreg proliferation and survival. Both cytokines also increased the expression levels of molecules associated with effector function within FOXP3(+) subsets, supporting their involvement in tTreg functional maturation. Furthermore, we revealed that IL-2 and IL-15 are expressed in a non-overlapping pattern in the human thymus, with the former produced mainly by mature αβ and γδ thymocytes and the latter by monocyte/macrophages and B lymphocytes. Our results identify core mechanisms dictating human tTreg development, with IL-2 and IL-15 defining specific niches required for tTreg lineage stabilization and differentiation, with implications for their therapeutic targeting in autoimmune conditions.
Collapse
Affiliation(s)
- Iris Caramalho
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal.
| | - Vânia Nunes-Silva
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Ana R Pires
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Catarina Mota
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Ana I Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Helena Nunes-Cabaço
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Russell B Foxall
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| | - Ana E Sousa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Portugal
| |
Collapse
|
37
|
Volarevic V, Markovic BS, Bojic S, Stojanovic M, Nilsson U, Leffler H, Besra GS, Arsenijevic N, Paunovic V, Trajkovic V, Lukic ML. Gal-3 regulates the capacity of dendritic cells to promote NKT-cell-induced liver injury. Eur J Immunol 2014; 45:531-43. [DOI: 10.1002/eji.201444849] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/09/2014] [Accepted: 10/28/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Vladislav Volarevic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Bojana Simovic Markovic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Sanja Bojic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Maja Stojanovic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Ulf Nilsson
- Centre for Analysis and Synthesis; Department of Chemistry; Lund University; Lund Sweden
| | - Hakon Leffler
- Section MIG; Department of Laboratory Medicine; Lund University; Lund Sweden
| | | | - Nebojsa Arsenijevic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| | - Verica Paunovic
- Institute for Microbiology and Immunology; School of Medicine; University of Belgrade; Belgrade Serbia
| | - Vladimir Trajkovic
- Institute for Microbiology and Immunology; School of Medicine; University of Belgrade; Belgrade Serbia
| | - Miodrag L. Lukic
- Centre for Molecular Medicine and Stem Cell Research; Faculty of Medical Sciences; University of Kragujevac; Kragujevac Serbia
| |
Collapse
|
38
|
Shared genetic determinants between eczema and other immune-related diseases. Curr Opin Allergy Clin Immunol 2014; 13:478-86. [PMID: 23945175 DOI: 10.1097/aci.0b013e328364e8f7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Eczema and other allergic disorders are complex diseases caused by multiple genetic and environmental factors. Here, we review recent success in the identification of novel susceptibility loci for eczema. RECENT FINDINGS Genome-wide association studies led to marked progress in unraveling the genetic determinants of allergic disorders. In the past 4 years, a total of 14 new eczema susceptibility loci have been identified and nearly all of them were successfully replicated. Seven additional eczema loci were recently identified by alternative strategies utilizing the remarkable overlap in the genetic cause of diverse immune-related traits. Apart from underlining the importance of the skin barrier in eczema, these studies point to specific immunological functions altered in eczema pathogenesis. SUMMARY The new findings demonstrate that common pathways are involved in the development of eczema and other immune-related traits. Moreover, the genetic determinants shared between eczema, asthma, and allergic rhinitis should aid in resolving the molecular mechanisms triggering disease progression along the atopic march. The identification of the underlying genes and causal variants will be the major challenge for upcoming studies.
Collapse
|
39
|
Aspord C, Tramcourt L, Leloup C, Molens JP, Leccia MT, Charles J, Plumas J. Imiquimod inhibits melanoma development by promoting pDC cytotoxic functions and impeding tumor vascularization. J Invest Dermatol 2014; 134:2551-2561. [PMID: 24751730 DOI: 10.1038/jid.2014.194] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 03/06/2014] [Accepted: 04/08/2014] [Indexed: 11/09/2022]
Abstract
Imiquimod (IMQ) is a synthetic Toll-like receptor (TLR7/8) ligand that can trigger antiviral and antitumor activities. Despite evidence of potent therapeutic effects, the clinical use of IMQ in melanoma is impeded by incomplete understanding of its mechanisms of action. Mice and humans differ in many aspects of immunity, including TLR7 expression patterns, thus impeding the use of mouse models in translating discoveries into clinical applications. In this article, we investigated the mechanisms behind IMQ effects in vivo in a human context of melanoma and immunity using an innovative melanoma-bearing humanized mouse model. In this model, IMQ strongly inhibited melanoma tumor development through prompt mobilization of plasmacytoid dendritic cells and by triggering their cytotoxic functions, and through upregulation of expression of type 1 IFN response genes. IMQ also drastically impeded tumor vascularization by inducing the downregulation of angiogenic factors vascular endothelial growth factor, angiogenin, IL-8, and fibroblast growth factor. Our results revealed the short- and long-term multifactorial effects of IMQ converging toward inhibition of melanoma development. By providing a better understanding of the mechanisms of action of IMQ in melanoma, our study opens the way for its further clinical use in the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Caroline Aspord
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France.
| | - Laetitia Tramcourt
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Claire Leloup
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Jean-Paul Molens
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| | - Marie-Therese Leccia
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Julie Charles
- University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France; Department of Dermatology, Grenoble University Hospital, Grenoble, France
| | - Joel Plumas
- R&D Laboratory, Etablissement Français du Sang Rhône-Alpes, La Tronche, France; University Joseph Fourier, Grenoble, France; Immunobiology & Immunotherapy of Cancers, U823, INSERM, La Tronche, France
| |
Collapse
|
40
|
Clarkson BDS, Ling C, Shi Y, Harris MG, Rayasam A, Sun D, Salamat MS, Kuchroo V, Lambris JD, Sandor M, Fabry Z. T cell-derived interleukin (IL)-21 promotes brain injury following stroke in mice. ACTA ACUST UNITED AC 2014; 211:595-604. [PMID: 24616379 PMCID: PMC3978271 DOI: 10.1084/jem.20131377] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
T lymphocytes are key contributors to the acute phase of cerebral ischemia reperfusion injury, but the relevant T cell-derived mediators of tissue injury remain unknown. Using a mouse model of transient focal brain ischemia, we report that IL-21 is highly up-regulated in the injured mouse brain after cerebral ischemia. IL-21-deficient mice have smaller infarcts, improved neurological function, and reduced lymphocyte accumulation in the brain within 24 h of reperfusion. Intracellular cytokine staining and adoptive transfer experiments revealed that brain-infiltrating CD4(+) T cells are the predominant IL-21 source. Mice treated with decoy IL-21 receptor Fc fusion protein are protected from reperfusion injury. In postmortem human brain tissue, IL-21 localized to perivascular CD4(+) T cells in the area surrounding acute stroke lesions, suggesting that IL-21-mediated brain injury may be relevant to human stroke.
Collapse
Affiliation(s)
- Benjamin D S Clarkson
- Department of Pathology and Laboratory Medicine, 2 Department of Neurological Surgery, 3 Department of Cellular and Molecular Pathology, 4 Neuroscience Training Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hall BM, Tran GT, Verma ND, Plain KM, Robinson CM, Nomura M, Hodgkinson SJ. Do Natural T Regulatory Cells become Activated to Antigen Specific T Regulatory Cells in Transplantation and in Autoimmunity? Front Immunol 2013; 4:208. [PMID: 23935597 PMCID: PMC3731939 DOI: 10.3389/fimmu.2013.00208] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/08/2013] [Indexed: 12/20/2022] Open
Abstract
Antigen specific T regulatory cells (Treg) are often CD4+CD25+FoxP3+ T cells, with a phenotype similar to natural Treg (nTreg). It is assumed that nTreg cannot develop into an antigen specific Treg as repeated culture with IL-2 and a specific antigen does not increase the capacity or potency of nTreg to promote immune tolerance or suppress in vitro. This has led to an assumption that antigen specific Treg mainly develop from CD4+CD25−FoxP3− T cells, by activation with antigen and TGF-β in the absence of inflammatory cytokines such as IL-6 and IL-1β. Our studies on antigen specific CD4+CD25+ T cells from animals with tolerance to an allograft, identified that the antigen specific and Treg are dividing, and need continuous stimulation with specific antigen T cell derived cytokines. We identified that a variety of cytokines, especially IL-5 and IFN-γ but not IL-2 or IL-4 promoted survival of antigen specific CD4+CD25+FoxP3+ Treg. To examine if nTreg could be activated to antigen specific Treg, we activated nTreg in culture with either IL-2 or IL-4. Within 3 days, antigen specific Treg are activated and there is induction of new cytokine receptors on these cells. Specifically nTreg activated by IL-2 and antigen express the interferon-γ receptor (IFNGR) and IL-12p70 (IL-12Rβ2) receptor but not the IL-5 receptor (IL-5Rα). These cells were responsive to IFN-γ or IL-12p70. nTreg activated by IL-4 and alloantigen express IL-5Rα not IFNGR or IL-12p70Rβ2 and become responsive to IL-5. These early activated antigen specific Treg, were respectively named Ts1 and Ts2 cells, as they depend on Th1 or Th2 responses. Further culture of Ts1 cells with IL-12p70 induced Th1-like Treg, expressing IFN-γ, and T-bet as well as FoxP3. Our studies suggest that activation of nTreg with Th1 or Th2 responses induced separate lineages of antigen specific Treg, that are dependent on late Th1 and Th2 cytokines, not the early cytokines IL-2 and IL-4.
Collapse
Affiliation(s)
- Bruce M Hall
- Immune Tolerance Laboratory, Medicine, University of New South Wales , Sydney, NSW , Australia
| | | | | | | | | | | | | |
Collapse
|
42
|
Catzola V, Battaglia A, Buzzonetti A, Fossati M, Scuderi F, Fattorossi A, Evoli A. Changes in regulatory T cells after rituximab in two patients with refractory myasthenia gravis. J Neurol 2013; 260:2163-5. [PMID: 23749295 DOI: 10.1007/s00415-013-6987-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/23/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022]
|