1
|
Zhang J, Tang H, Wu H, Pang X, Jin R, Zhang Y. Thymic dendritic cell-derived IL-27p28 promotes the establishment of functional bias against IFN-γ production in newly generated CD4 + T cells through STAT1-related epigenetic mechanisms. eLife 2025; 13:RP96868. [PMID: 40366856 PMCID: PMC12077877 DOI: 10.7554/elife.96868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
The newly generated CD4 single-positive (SP) T lymphocytes are featured by enhanced IL-4 but repressed IFN-γ production. The mechanisms underlying this functional bias remain elusive. Previous studies have reported that CD4+ T cells from mice harboring dendritic cell (DC)-specific deletion of IL-27p28 display an increased capacity of IFN-γ production upon TCR stimulation. Here, we demonstrated that similarly altered functionality occurred in CD4SP thymocytes, recent thymic emigrants (RTEs), as well as naive T cells from either Cd11c-p28f/f mice or mice deficient in the α subunit of IL-27 receptor. Therefore, DC-derived IL-27p28-triggered, IL-27Rα-mediated signal is critically involved in the establishment of functional bias against IFN-γ production during their development in the thymus. Epigenetic analyses indicated reduced DNA methylation of the Ifng locus and increased trimethylation of H3K4 at both Ifng and Tbx21 loci in CD4SP thymocytes from Cd11c-p28f/f mice. Transcriptome profiling demonstrated that Il27p28 ablation resulted in the coordinated up-regulation of STAT1-activated genes. Concurrently, STAT1 was found to be constitutively activated. Moreover, we observed increased accumulation of STAT1 at the Ifng and Tbx21 loci and a strong correlation between STAT1 binding and H3K4me3 modification of these loci. Of note, Il27p28 deficiency exacerbated the autoimmune phenotype of Aire-/- mice. Collectively, this study reveals a novel mechanism underlying the functional bias of newly generated CD4+ T cells and the potential relevance of such a bias in autoimmunity.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
| | - Hui Tang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
| | - Haoming Wu
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
| | - Rong Jin
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking UniversityBeijingChina
- Institute of Life Sciences, Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
2
|
Palollathil A, Babu S, Abhinand CS, Mathew RT, Vijayakumar M, Prasad TSK. Proteomic profiling of oral squamous cell carcinoma tissues reveals altered immune-related proteins: implications for personalized therapy. Expert Rev Proteomics 2024; 21:483-495. [PMID: 39523852 DOI: 10.1080/14789450.2024.2428332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVES Oral squamous cell carcinoma poses a substantial global health challenge marked by rising mortality rate. Recently, immunotherapy has shown promising results in cancer management by enhancing immune response. Thus, identifying additional immune-related markers is critical for advancing immunotherapy treatments. METHODS Data-independent acquisition (DIA) mass spectrometry approach was used to explore differentially expressed immune-related proteins in oral cancer tissues compared to adjacent non-cancerous tissues. Functional significance was identified through Gene Ontology, pathway, and network analysis. Gene expression of identified proteins was validated using transcriptomic data. RESULTS DIA analysis identified 29,459 precursors corresponding to 3429 proteins. Among these, 1060 proteins were differentially expressed, with 166 being immune-related. Differentially regulated proteins were involved in innate immune response, mitochondrial ATP synthesis, and neutrophil degranulation. Pathway analysis of immune-related proteins showed perturbation in anti-tumor immunity-related pathways such as interferon signaling, TCR signaling, PD-1 signaling, and antigen processing and presentation. Significance of these pathways was further reinforced by the strong interactions identified in the protein-protein interaction network analysis. Additionally, gene expression analysis showed similar mRNA expression patterns for key proteins involved in altered pathways, including ISG15, IFIT1/3, HLA-A/C and OAS2/3. CONCLUSIONS Further validation of these proteins could establish them as potential targets for personalized therapy.
Collapse
Affiliation(s)
- Akhina Palollathil
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Sreeranjini Babu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Rohan Thomas Mathew
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | - Manavalan Vijayakumar
- Department of Surgical Oncology, Yenepoya Medical College Hospital, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
3
|
Koul A, Hui LT, Lubna N, McKenna SA. Distinct domain organization and diversity of 2'-5'-oligoadenylate synthetases. Biochem Cell Biol 2024; 102:305-318. [PMID: 38603810 DOI: 10.1139/bcb-2023-0369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are important components of the innate immune system that recognize viral double-stranded RNA (dsRNA). Upon dsRNA binding, OAS generate 2'-5'-linked oligoadenylates (2-5A) that activate ribonuclease L (RNase L), halting viral replication. The OAS/RNase L pathway is thus an important antiviral pathway and viruses have devised strategies to circumvent OAS activation. OAS enzymes are divided into four classes according to size: small (OAS1), medium (OAS2), and large (OAS3) that consist of one, two, and three OAS domains, respectively, and the OAS-like protein (OASL) that consists of one OAS domain and tandem domains similar to ubiquitin. Early investigation of the OAS enzymes hinted at the recognition of dsRNA by OAS, but due to size differences amongst OAS family members combined with the lack of structural information on full-length OAS2 and OAS3, the regulation of OAS catalytic activity by dsRNA was not well understood. However, the recent biophysical studies of OAS have highlighted overall structure and domain organization. In this review, we present a detailed examination of the OAS literature and summarized the investigation on 2'-5'-oligoadenylate synthetases.
Collapse
Affiliation(s)
- Amit Koul
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lok Tin Hui
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Nikhat Lubna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T2N2, Canada
| |
Collapse
|
4
|
Flesken-Nikitin A, Pirtz MG, Ashe CS, Ellenson LH, Cosgrove BD, Nikitin AY. Dysregulation of cell state dynamics during early stages of serous endometrial carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585274. [PMID: 38562813 PMCID: PMC10983873 DOI: 10.1101/2024.03.15.585274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Serous endometrial carcinoma (SEC) constitutes about 10% of endometrial carcinomas and is one of the most aggressive and lethal types of uterine cancer. Due to the rapid progression of SEC, early detection of this disease is of utmost importance. However, molecular and cellular dynamics during the pre-dysplastic stage of this disease remain largely unknown. Here, we provide a comprehensive census of cell types and their states for normal, pre-dysplastic, and dysplastic endometrium in a mouse model of SEC. This model is associated with inactivation of tumor suppressor genes Trp53 and Rb1 , whose pathways are altered frequently in SEC. We report that pre-dysplastic changes are characterized by an expanded and increasingly diverse immature luminal epithelial cell populations. Consistent with transcriptome changes, cells expressing the luminal epithelial marker TROP2 begin to substitute FOXA2+ cells in the glandular epithelium. These changes are associated with a reduction in number and strength of predicted interactions between epithelial and stromal endometrial cells. By using a multi-level approach combining single-cell and spatial transcriptomics paired with screening for clinically relevant genes in human endometrial carcinoma, we identified a panel of 44 genes suitable for further testing of their validity as early diagnostic and prognostic markers. Among these genes are known markers of human SEC, such as C DKN2A, and novel markers, such as OAS2 and OASL, members of 2-5A synthetase family that is essential for the innate immune response. In summary, our results suggest an important role of the luminal epithelium in SEC pathogenesis, highlight aberrant cell-cell interactions in pre-dysplastic stages, and provide a new platform for comparative identification and characterization of novel, clinically relevant prognostic and diagnostic markers and potential therapeutic modalities.
Collapse
|
5
|
Tatari N, Khan S, Livingstone J, Zhai K, Mckenna D, Ignatchenko V, Chokshi C, Gwynne WD, Singh M, Revill S, Mikolajewicz N, Zhu C, Chan J, Hawkins C, Lu JQ, Provias JP, Ask K, Morrissy S, Brown S, Weiss T, Weller M, Han H, Greenspoon JN, Moffat J, Venugopal C, Boutros PC, Singh SK, Kislinger T. The proteomic landscape of glioblastoma recurrence reveals novel and targetable immunoregulatory drivers. Acta Neuropathol 2022; 144:1127-1142. [PMID: 36178522 PMCID: PMC10187978 DOI: 10.1007/s00401-022-02506-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 01/26/2023]
Abstract
Glioblastoma (GBM) is characterized by extensive cellular and genetic heterogeneity. Its initial presentation as primary disease (pGBM) has been subject to exhaustive molecular and cellular profiling. By contrast, our understanding of how GBM evolves to evade the selective pressure of therapy is starkly limited. The proteomic landscape of recurrent GBM (rGBM), which is refractory to most treatments used for pGBM, are poorly known. We, therefore, quantified the transcriptome and proteome of 134 patient-derived pGBM and rGBM samples, including 40 matched pGBM-rGBM pairs. GBM subtypes transition from pGBM to rGBM towards a preferentially mesenchymal state at recurrence, consistent with the increasingly invasive nature of rGBM. We identified immune regulatory/suppressive genes as important drivers of rGBM and in particular 2-5-oligoadenylate synthase 2 (OAS2) as an essential gene in recurrent disease. Our data identify a new class of therapeutic targets that emerge from the adaptive response of pGBM to therapy, emerging specifically in recurrent disease and may provide new therapeutic opportunities absent at pGBM diagnosis.
Collapse
Affiliation(s)
- Nazanin Tatari
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Julie Livingstone
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Kui Zhai
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Dillon Mckenna
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | | | - Chirayu Chokshi
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - William D Gwynne
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Manoj Singh
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Spencer Revill
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chenghao Zhu
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Jennifer Chan
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
| | - Jian-Qiang Lu
- Department of Pathology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John P Provias
- Department of Pathology, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kjetil Ask
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Sorana Morrissy
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, AB, Canada
| | - Samuel Brown
- Department of Biochemistry and Molecular Biology, The University of Calgary, Calgary, AB, Canada
| | - Tobias Weiss
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology and Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Hong Han
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jeffrey N Greenspoon
- Juravinski Cancer Center, Department of Oncology, Radiation Oncology, McMaster University, Hamilton, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics - Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Chitra Venugopal
- Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Paul C Boutros
- Department of Human Genetics and Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Centre for Discovery in Cancer Research, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Department of Surgery, McMaster University, Hamilton, ON, Canada.
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Gao L, Ren R, Shen J, Hou J, Ning J, Feng Y, Wang M, Wu L, Sun Y, Wang H, Wang D, Cao J. Values of OAS gene family in the expression signature, immune cell infiltration and prognosis of human bladder cancer. BMC Cancer 2022; 22:1016. [PMID: 36162993 PMCID: PMC9510761 DOI: 10.1186/s12885-022-10102-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bladder cancer (BLCA) is one of the most common genitourinary malignancies in the world, but its pathogenic genes have not been fully identified and the treatment outcomes are still unsatisfactory. Although the members of 2', 5'-oligoadenylate synthetase (OAS) gene family are known involved in some tumorous biological processes, the roles of the OAS gene family in BLCA are still undetermined. METHODS By combining vast bioinformatic datasets analyses of BLCA and the experimental verification on clinical BLCA specimen, we identified the expressions and biological functions of OAS gene family members in BLCA with comparison to normal bladder tissues. RESULTS The expression levels of OAS gene family members were higher in BLCA than in normal bladder tissues. The expression levels of most OAS genes had correlations with genomic mutation and methylation, and with the infiltration levels of CD4 + T cells, CD8 + T cells, neutrophils, and dendritic cells in the microenvironment of BLCA. In addition, high expressions of OAS1, OAS2, OAS3, and OASL predicted better overall survival in BLCA patients. CONCLUSIONS The highly expressed OAS genes in BLCA can reflect immune cells infiltration in the tumor microenvironment and predict the better overall survival of BLCA, and thus may be considered as a signature of BLCA. The study provides new insights into the diagnosis, treatment, and prognosis of BLCA.
Collapse
Affiliation(s)
- Lijuan Gao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Ruimin Ren
- Department of Urology, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, 030032, China
| | - Jing Shen
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Jiayi Hou
- Department of Clinical Laboratory, Shanxi Provincial Academy of Traditional Chinese Medicine, Taiyuan, 030012, China
| | - Junya Ning
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Meiyue Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Lifei Wu
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
| | - Yaojun Sun
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Huang Wang
- Department of Urology, Shanxi Bethune Hospital (Third Hospital of Shanxi Medical University), Taiyuan, 030032, China
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
7
|
Xiu CD, Ying LX, Chun HY, Fu LJ. Advances in CD247. Scand J Immunol 2022; 96:e13170. [PMID: 35388926 DOI: 10.1111/sji.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/27/2022] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
CD247, which is also known as CD3ζ, CD3H, CD3Q, CD3Z, IMD25, T3Z, and TCRZ, encodes CD3ζ protein, which is expressed primarily in natural killer (NK) and T cells. Since the discovery of the ζ peptide in 1986, it has been continuously investigated. In this paper, we review the composition, molecular mechanisms and regulatory factors of CD247 expression in T cells; and review the autoimmune diseases, tumors and inflammatory diseases associated with CD247, providing a detailed and comprehensive reference for further research on the mechanism of CD247 and related diseases.
Collapse
Affiliation(s)
- Chen De Xiu
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Lei Xian Ying
- Department of Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hu Ying Chun
- Department of Emergency Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Jia Fu
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Key Laboratory of Medical Electrophysiology, Ministry of Education, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Schwartz SL, Dey D, Tanquary J, Bair CR, Lowen AC, Conn GL. Role of helical structure and dynamics in oligoadenylate synthetase 1 (OAS1) mismatch tolerance and activation by short dsRNAs. Proc Natl Acad Sci U S A 2022; 119:e2107111119. [PMID: 35017296 PMCID: PMC8784149 DOI: 10.1073/pnas.2107111119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
The 2'-5'-oligoadenylate synthetases (OAS) are innate immune sensors of cytosolic double-stranded RNA (dsRNA) that play a critical role in limiting viral infection. How these proteins are able to avoid aberrant activation by cellular RNAs is not fully understood, but adenosine-to-inosine (A-to-I) editing has been proposed to limit accumulation of endogenous RNAs that might otherwise cause stimulation of the OAS/RNase L pathway. Here, we aim to uncover whether and how such sequence modifications can restrict the ability of short, defined dsRNAs to activate the single-domain form of OAS, OAS1. Unexpectedly, we find that all tested inosine-containing dsRNAs have an increased capacity to activate OAS1, whether in a destabilizing (I•U) or standard Watson-Crick-like base pairing (I-C) context. Additional variants with strongly destabilizing A•C mismatches or stabilizing G-C pairs also exhibit increased capacity to activate OAS1, eliminating helical stability as a factor in the relative ability of the dsRNAs to activate OAS1. Using thermal difference spectra and molecular dynamics simulations, we identify both increased helical dynamics and specific local changes in helical structure as important factors in the capacity of short dsRNAs to activate OAS1. These helical features may facilitate more ready adoption of the distorted OAS1-bound conformation or stabilize important structures to predispose the dsRNA for optimal binding and activation of OAS1. These studies thus reveal the molecular basis for the greater capacity of some short dsRNAs to activate OAS1 in a sequence-independent manner.
Collapse
Affiliation(s)
- Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Julia Tanquary
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| | - Camden R Bair
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Anice C Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322;
- Graduate Program in Biochemistry, Cell and Developmental Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322
| |
Collapse
|
9
|
Comparative Transcriptome Analysis of the Expression of Antioxidant and Immunity Genes in the Spleen of a Cyanidin 3-O-Glucoside-Treated Alzheimer's Mouse Model. Antioxidants (Basel) 2021; 10:antiox10091435. [PMID: 34573067 PMCID: PMC8472539 DOI: 10.3390/antiox10091435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Cyanidin 3-O-glucoside (C3G) is a well-known antioxidant found as a dietary anthocyanin in different fruits and vegetables. It has protective and therapeutic effects on various diseases. It can reduce neuronal death from amyloid-beta (Aβ)-induced toxicity and promote the inhibition of Aβ fibrillization. Antioxidant and immune modulation might play a critical role in the properties of C3G against Alzheimer's disease (AD) and other diseases. However, limited studies have been performed on the mechanism involved in the effect of C3G through transcriptome analysis. Thus, the objective of this study was to perform comparative transcriptome analysis of the spleen to determine gene expression profiles of wild-type mice (C57BL/6J Jms), an Alzheimer's mouse model (APPswe/PS1dE9 mice), and a C3G-treated Alzheimer's mouse model. Differentially expressed antioxidant, immune-related, and AD pathways genes were identified in the treated group. The validation of gene expression data via RT-PCR studies further supported the current findings. Six important antioxidant genes (S100a8, S100a9, Prdx2, Hp, Mpst, and Prxl2a) and a high number of immune-related genes were found to be upregulated in the treatment groups, suggesting the possible antioxidant and immunomodulatory mechanisms of C3G, respectively. Further studies are strongly recommended to elucidate the precise role of these essential genes and optimize the therapeutic function of C3G in AD and other disease conditions.
Collapse
|
10
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
11
|
Yang J, Yao L, Li Y, Gao R, Huo R, Xia L, Shen H, Lu J. Interleukin-35 Regulates Angiogenesis Through P38 Mitogen-Activated Protein Kinase Signaling Pathway in Interleukin-1β-Stimulated SW1353 Cells and Cartilage Bioinformatics Analysis. J Interferon Cytokine Res 2021; 41:164-171. [PMID: 34003680 DOI: 10.1089/jir.2021.0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We aimed to investigate the effects of interleukin (IL)-35 on proangiogenic factors in IL-1β-pretreated chondrocyte-like SW1353 cells and screen-related genes that participated in osteoarthritis (OA) cartilage with IL-35, proangiogenic factors, and P38 mitogen-activated protein kinase (MAPK) signaling pathway. Different concentrations of IL-35 incubated with IL-1β stimulated SW1353 cells with or without SB203580 (inhibitor of P38 MAPK). Proangiogenic molecule expression was assessed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Microarray datasets were downloaded from the Gene Expression Omnibus database of OA cartilage. Protein-protein interaction of genes was visualized by Search Tool for the Retrieval Interacting Genes and Cytoscape. Database for Annotation, Visualization, and Integrated Discovery was used to screen biological processes and pathways. IL-35 inhibited mRNA expression of proangiogenic factors in IL-1β-stimulated SW1353 cells through the P38 MAPK signaling pathway. IL-35 inhibited angiopoietin-2 secretion. We found that 8 related genes, 18 biological processes, and 6 pathways may associate with IL-35, P38 MAPK signaling pathway, and cartilage angiogenesis. IL-35 regulated the expression of proangiogenic factors through P38 MAPK signaling pathway in IL-1β-stimulated SW1353 cells. IL-35 and P38 MAPK pathway may participate in neovascularization of cartilage. Our findings may provide molecular mechanisms and possible genes target treatment for OA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Lutian Yao
- Department of Sports Medicine and Joint Surgery, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuxuan Li
- Department of Rheumatology and Immunology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Ruoxi Gao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Ran Huo
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Liping Xia
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Hui Shen
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Jing Lu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
12
|
Aguinaga-Barrilero A, Castro-Sánchez P, Juárez I, Gutiérrez-Calvo A, Rodríguez-Pérez N, Lopez A, Gómez R, Martin-Villa JM. Defects at the Posttranscriptional Level Account for the Low TCR ζ Chain Expression Detected in Gastric Cancer Independently of Caspase-3 Activity. J Immunol Res 2020; 2020:1039458. [PMID: 33354577 PMCID: PMC7737443 DOI: 10.1155/2020/1039458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Reduced TCRζ chain surface has been reported in T cells from patients with different inflammatory conditions and cancer. However, the causes of this diminished expression in cancer remain elusive. METHODS T cell-enriched populations of blood or tissue (tumoral and nontumoral) origin from 44 patients with gastric adenocarcinoma and 33 healthy subjects were obtained. Samples were subjected to cytofluorimetry, Western blot analysis, TCRζ cDNA sequencing experiments, measurement of TCRζ mRNA levels, and caspase-3 activity assays. RESULTS Cytofluorimetry revealed a decreased TCRζ expression in T cells of patients, assessed either as percentage of cells expressing this chain (blood: control subjects 99.8 ± 0.1%, patients 98.8 ± 1.1%P < 0.001; tissue: control subjects 96.7 ± 0.9%, patients tumoral tissue 67.9 ± 27.0%, patients nontumoral tissue 82.8 ± 12.6%, P = 0.019) or mean fluorescence intensity (MFI) value (blood: control subjects 102.2 ± 26.0; patients 58.0 ± 12.3, P = 0.001; tissue: control subjects 99.4 ± 21.4; patients tumoral tissue 41.6 ± 21.4; patients nontumoral tissue 62.3 ± 16.6, P = 0.001). Other chains pertaining to the TCR-CD3 complex (CD3ε) showed no significant differences (MFI values). Subsequent TCRζ cDNA sequencing experiments or measurements of TCRζ mRNA levels disclosed no differences between patients and control subjects. Evaluation of caspase-3 activity showed higher levels in T cell extracts of patients, and this activity could be decreased by 70% with the use of the inhibitor Ac-DEVD-FMK, although CD3ζ expression levels did not recover. CONCLUSIONS These results further place the defect responsible for the low TCRζ expression in cancer at the posttranscriptional level and suggests contrary to what has been proposed in other pathologies that elevated caspase-3 activity is not the causative agent.
Collapse
Affiliation(s)
| | | | - Ignacio Juárez
- Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Alberto Gutiérrez-Calvo
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | | | - Adela Lopez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Remedios Gómez
- Servicio de Cirugía General y Aparato Digestivo, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - José M. Martin-Villa
- Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
13
|
Zhao J, Zhang X, Cheng M, Guan J, Gai J, Fu L, Zhang R, Du T, Li Q. Expression of IFN-induced 2'-5'-oligoadenylate synthetases correlates with immune infiltration, revealing potential targets and new biomarkers for basal-like breast cancer prognosis. Int Immunopharmacol 2020; 88:106916. [PMID: 32882665 DOI: 10.1016/j.intimp.2020.106916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 10/23/2022]
Abstract
Triple-negative breast cancer has been classified as basal-like immune activated (BLIA), basal-like immune-suppressed (BLIS), and two other subtypes, suggesting potential immune therapeutic targets for basal-like breast cancer (BLBC). 2'-5'-Oligoadenylate synthetases (OASs), identified from differentially expressed genes (DEGs) between BLIA and BLIS breast cancers (GSE76124), are involved in antiviral activity induced by interferons. However, the association between the four OASs and prognosis or tumor-infiltrating immune cells (TIICs) remains unclear. Expression, survival data, and immune correlations for OASs in BLBC were assessed using bioinformatics tools. We found that OASs were highly expressed in BLIA breast cancer. Survival analysis suggested that high transcriptional levels of OASs were associated with better overall survival, relapse-free survival, and distant metastasis-free survival in patients with BLBC. Moreover, the prognostic value of OASs with respect to different clinicopathological factors, and especially according to lymph node metastasis, in patients with BLBC was further assessed. Our findings elucidated the expression, prognostic role, and effect of OASs in TIICs on BLBC, which might promote the development of OAS-targeted immunotherapy for BLBC.
Collapse
Affiliation(s)
- Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Xiupeng Zhang
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Ming Cheng
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Jingqian Guan
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Junda Gai
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China; Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ruochen Zhang
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Tengjiao Du
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China
| | - Qingchang Li
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning Province, China; Department of Pathology, First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
14
|
Dar AA, Patil RS, Pradhan TN, Chaukar DA, D'Cruz AK, Chiplunkar SV. Myeloid-derived suppressor cells impede T cell functionality and promote Th17 differentiation in oral squamous cell carcinoma. Cancer Immunol Immunother 2020; 69:1071-1086. [PMID: 32103293 DOI: 10.1007/s00262-020-02523-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/16/2020] [Indexed: 11/24/2022]
Abstract
Oral tumor microenvironment is characterized by chronic inflammation signified with infiltrating leukocytes and soluble mediators which cause immune suppression. However, how immunosuppressive cells like myeloid-derived suppressor cells (MDSCs) maintain the immunosuppressive tumor microenvironment and influence T cell function in oral squamous cell carcinoma (OSCC) patients remains poorly understood. In the present study, we found that percentages of MDSCs were higher in oral cancer patients compared to healthy individuals and correlated with cancer stage. Monocytic MDSCs (M-MDSCs) were prevalent in the periphery, while granulocytic/polymorphonuclear subset dominated the tumor compartment. M-MDSCs suppressed the lymphocyte proliferation and decreased the CD3-ζ (zeta) chain expression and interferon gamma production. The percentage of M-MDSCs in peripheral blood correlated inversely with CD3-ζ chain expression in T cells of these patients. Interleukin 6 (IL-6)-induced phosphorylated STAT3-regulated programmed cell death ligand 1, CCAAT/enhancer-binding proteins alpha and beta and Interleukin 10 expression in MDSCs. MDSCs inhibited TGF-β-driven generation of induced regulatory T cells in vitro. M-MDSCs secreted interleukins IL-6, IL-1β, IL-23 and PGE2 and facilitated T-helper 17 (Th17) cell differentiation which utilizes nitric oxide synthase and cyclooxygenase 2 enzyme activity. Interestingly, OSCC patients showed increased levels of Th17 cells in peripheral blood and tumor tissue. Thus, increased frequency of MDSCs, Th17 cells and decreased expression of CD3-ζ chain portray T cell tolerance and chronic inflammatory state facilitating tumor growth.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Rushikesh S Patil
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India
| | - Trupti N Pradhan
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Devendra A Chaukar
- Tata Memorial Hospital, Tata Memorial Centre, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Anil K D'Cruz
- Tata Memorial Hospital, Tata Memorial Centre, Dr. E. Borges Road, Parel, Mumbai, Maharashtra, 400012, India
| | - Shubhada V Chiplunkar
- Chiplunkar Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, 410210, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, 400094, India.
| |
Collapse
|
15
|
In silico identification of potential inhibitors against human 2'-5'- oligoadenylate synthetase (OAS) proteins. Comput Biol Chem 2020; 85:107211. [PMID: 32004971 DOI: 10.1016/j.compbiolchem.2020.107211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/18/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
As part of the type I IFN signaling, the 2'-5'- oligoadenylate synthetase (OAS) proteins have been involved in the progression of several non-viral diseases. Notably, OAS has been correlated with immune-modulatory functions that promote chronic inflammatory conditions, autoimmune disorders, cancer, and infectious diseases. In spite of this, OAS enzymes have been ignored as drug targets, and to date, there are no reports of compounds that can inhibit their activity. In this study, we have used homology modeling and virtual high-throughput screening to identify potential inhibitors of the human proteins OAS1, OAS2, and OAS3. Altogether, we have found 37 molecules that could exert a competitive inhibition in the ATP binding sites of OAS proteins, independently of the activation state of the enzyme. This latter characteristic, which might be crucial for a versatile inhibitor, was observed in compounds interacting with the residues Asp75, Asp77, Gln229, and Tyr230 in OAS1, and their equivalents in OAS2 and OAS3. Although there was little correlation between specific chemical fragments and their interactions, intermolecular contacts with OAS catalytic triad and other critical amino acids were mainly promoted by heterocycles with π electrons and hydrogen bond acceptors. In conclusion, this study provides a potential set of OAS inhibitors as well as valuable information for their design, development, and optimization.
Collapse
|
16
|
Wang J, Wang Y, Kong F, Han R, Song W, Chen D, Bu L, Wang S, Yue J, Ma L. Identification of a six‐gene prognostic signature for oral squamous cell carcinoma. J Cell Physiol 2019; 235:3056-3068. [PMID: 31538341 DOI: 10.1002/jcp.29210] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jiaying Wang
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Yuanyong Wang
- Department of Thoracic Surgery Affiliated Hospital of Qingdao University Qingdao China
| | - Fanzhi Kong
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Rui Han
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Wenbin Song
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Di Chen
- Department of Gastroenterology Affiliated Hospital of Qingdao University Qingdao China
| | - Lingxue Bu
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Shuangyi Wang
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Jin Yue
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| | - Lei Ma
- Department of Stomatology Affiliated Hospital of Qingdao University Qingdao Shandong China
| |
Collapse
|
17
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
18
|
Panwar N, Soehartono AM, Chan KK, Zeng S, Xu G, Qu J, Coquet P, Yong KT, Chen X. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chem Rev 2019; 119:9559-9656. [DOI: 10.1021/acs.chemrev.9b00099] [Citation(s) in RCA: 238] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nishtha Panwar
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Alana Mauluidy Soehartono
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kok Ken Chan
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
| | - Gaixia Xu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Junle Qu
- Key Laboratory of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Philippe Coquet
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Singapore 637553, Singapore
- Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN), CNRS UMR 8520—Université de Lille, 59650 Villeneuve d’Ascq, France
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
19
|
Hu J, Wang X, Xing Y, Rong E, Ning M, Smith J, Huang Y. Origin and development of oligoadenylate synthetase immune system. BMC Evol Biol 2018; 18:201. [PMID: 30587119 PMCID: PMC6307210 DOI: 10.1186/s12862-018-1315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 12/04/2018] [Indexed: 12/19/2022] Open
Abstract
Background Oligoadenylate synthetases (OASs) are widely distributed in Metazoa including sponges, fish, reptiles, birds and mammals and show large variation, with one to twelve members in any given species. Upon double-stranded RNA (dsRNA) binding, avian and mammalian OASs generate the second messenger 2'-5'-linked oligoadenylate (2-5A), which activates ribonuclease L (RNaseL) and blocks viral replication. However, how Metazoa shape their OAS repertoires to keep evolutionary balance to virus infection is largely unknown. We performed comprehensive phylogenetic and functional analyses of OAS genes from evolutionarily lower to higher Metazoa to demonstrate how the OAS repertoires have developed anti-viral activity and diversified their functions. Results Ancient Metazoa harbor OAS genes, but lack both upstream and downstream genes of the OAS-related pathways, indicating that ancient OASs are not interferon-induced genes involved in the innate immune system. Compared to OASs of ancient Metazoa (i.e. sponge), the corresponding ones of higher Metazoa present an increasing number of basic residues on the OAS/dsRNA interaction interface. Such an increase of basic residues might improve their binding affinity to dsRNA. Moreover, mutations of functional residues in the active pocket might lead to the fact that higher Metazoan OASs lose the ability to produce 3'-5'-linked oligoadenylate (3-5A) and turn into specific 2-5A synthetases. In addition, we found that multiple rounds of gene duplication and domain coupling events occurred in the OAS family and mutations at functionally critical sites were observed in most new OAS members. Conclusions We propose a model for the expansion of OAS members and provide comprehensive evidence of subsequent neo-functionalization and sub-functionalization. Our observations lay the foundation for interrogating the evolutionary transition of ancient OAS genes to host defense genes and provide important information for exploring the unknown function of the OAS gene family. Electronic supplementary material The online version of this article (10.1186/s12862-018-1315-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiaxiang Hu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Xiaoxue Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Yanling Xing
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Enguang Rong
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Mengfei Ning
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Yinhua Huang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing, 100193, China.
| |
Collapse
|
20
|
Kim JC, Ha YJ, Tak KH, Roh SA, Kwon YH, Kim CW, Yoon YS, Lee JL, Park Y, Kim SK, Kim SY, Cho DH, Kim YS. Opposite functions of GSN and OAS2 on colorectal cancer metastasis, mediating perineural and lymphovascular invasion, respectively. PLoS One 2018; 13:e0202856. [PMID: 30148861 PMCID: PMC6110496 DOI: 10.1371/journal.pone.0202856] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 08/12/2018] [Indexed: 12/21/2022] Open
Abstract
The present study aimed to identify molecules associated with lymphovascular invasion (LVI) and perineural invasion (PNI) and to examine their biological behavior in colorectal cancer (CRC). LVI- and PNI-associated molecules were identified and verified using sequential processes including (1) identification of 117 recurrence-associated genes differentially expressed on RNA-seq analysis using primary cancer tissues from 130 CRC patients with and without systemic recurrence; (2) analysis of molecules associated with LVI and PNI; (3) assessment of biological properties by measuring proliferation, anoikis, invasion/migration, epithelial-mesenchymal transition and autophagy flux; and (4) verification of disease-free survival using public datasets. Gelsolin (GSN) and 2'-5'-oligoadenylate synthetase 2 (OAS2) were associated with PNI and LVI, respectively. Invasion potential was >2-fold greater in GSN-overexpressing LoVo cells than in control cells (p<0.001-0.005), whereas OAS2-overexpressing RKO cells showed reduced invasion (p<0.001-0.005). GSN downregulated E-cadherin, β-catenin, claudin-1 and snail, and upregulated N-cadherin and ZEB1, whereas OAS2 overexpression had the opposite effects. Several autophagy-related proteins including ATG5-12, ATG6/BECN1, ATG7 and ATG101 were downregulated in GSN-overexpressing LoVo cells, whereas the opposite pattern was observed in OAS2-overexpressing RKO cells. Patients with low GSN expression had significantly higher 5-year recurrence-free survival (RFS) rates than those with GSN overexpression (73.6% vs. 64.7%, p = 0.038), whereas RFS was longer in patients with OAS2 overexpression than in those with underexpression (73.4% vs. 63.7%, p = 0.01). In conclusion, GSN and OAS2 were positively and negatively associated with recurrence, respectively, suggesting their potential value as predictors of recurrence or therapeutic targets in CRC patients.
Collapse
Affiliation(s)
- Jin Cheon Kim
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Ye Jin Ha
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Ka Hee Tak
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Seon Ae Roh
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Yi Hong Kwon
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Chan Wook Kim
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Yong Sik Yoon
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Jong Lyul Lee
- Department of Surgery, University of Ulsan College of Medicine, Seoul, South Korea
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
| | - Yangsoon Park
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
- Department of Pathology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seon-Kyu Kim
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Seon-Young Kim
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| | - Dong-Hyung Cho
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
- School of Life Science, Kyungpook National University, Daegu, Korea
| | - Yong Sung Kim
- Institute of Innovative Cancer Research, Asan Medical Center, Seoul, South Korea
- Medical Genomics Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, South Korea
| |
Collapse
|
21
|
Leisching G, Wiid I, Baker B. OAS1, 2, and 3: Significance During Active Tuberculosis? J Infect Dis 2018; 217:1517-1521. [DOI: 10.1093/infdis/jiy084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/12/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Gina Leisching
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University
| | - Ian Wiid
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University
| | - Bienyameen Baker
- South African Medical Research Council Centre for Tuberculosis Research, Department of Science and Technology/National Research Foundation Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University
| |
Collapse
|
22
|
Dar AA, Bhat SA, Gogoi D, Gokhale A, Chiplunkar SV. Inhibition of Notch signalling has ability to alter the proximal and distal TCR signalling events in human CD3 + αβ T-cells. Mol Immunol 2017; 92:116-124. [PMID: 29078088 DOI: 10.1016/j.molimm.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Abhiram Gokhale
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
23
|
Wang YT, Tseng PH, Chen CL, Han DS, Chi YC, Tseng FY, Yang WS. Human serum RNase-L level is inversely associated with metabolic syndrome and age. Cardiovasc Diabetol 2017; 16:46. [PMID: 28399925 PMCID: PMC5387300 DOI: 10.1186/s12933-017-0522-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ribonuclease-L (RNase-L) was known to be a ubiquitous enzyme involved in several cellular functions, especially innate immunity. It was recently shown to participate in adipogenesis in rodents. Here, we developed a method to measure serum levels of RNase-L and analyzed the relationship between RNase-L and metabolic syndrome (MetS). METHODS A total of 396 subjects were recruited from a health check-up program. An in-house RNase-L immunoassay was developed. The serum RNase-L levels of these subjects were measured, and the association of MetS-related factors with RNase-L levels was assessed. RESULTS The mean serum level of RNase-L of the subjects with MetS were lower than those without (16.5 ± 6.4 vs. 18.4 ± 8.0 μg/ml, P = 0.018). The subjects with central obesity, elevated blood pressure, or impaired fasting glucose also had lower serum RNase-L levels in comparison to those without. In multivariate linear regression analysis, diastolic blood pressure (β = -0.129, P = 0.024) and high-density lipoprotein cholesterol (HDL-C) (β = 0.127, P = 0.036) were related to serum RNase-L. For every 5 μg/ml increase in serum RNase-L levels, it is associated with a reduced risk of MetS (OR 0.83, 95% CI 0.71-0.98, P = 0.028), central obesity (OR 0.82, 95% CI 0.71-0.94, P = 0.005), or low HDL-C (OR 0.86, 95% CI 0.74-1.00, P = 0.042). Moreover, age is inversely related to serum RNase-L levels in various analyses. CONCLUSIONS The serum RNase-L levels were inversely associated with MetS, unfavorable metabolic profiles, and age.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
| | - Ping-Huei Tseng
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, No. 17, Xu-Zhou Road, Taipei, 10055 Taiwan
| | - Der-Sheng Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital Beihu Branch, No.87, Neijiang St., Taipei, 10800 Taiwan
- Community and Geriatric Medicine Research Center, National Taiwan University Hospital Beihu Branch, No.87, Neijiang St., Taipei, 10800 Taiwan
| | - Yu-Chiao Chi
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
| | - Fen-Yu Tseng
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
| | - Wei-Shiung Yang
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
- Division of Endocrinology & Metabolism, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
- Center for Obesity, Lifestyle and Metabolic Surgery, National Taiwan University Hospital, No. 7, Chung-San South Road, Taipei, 10002 Taiwan
- Graduate Institute of Medical Genomics & Proteomics, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen-Ai Road, Taipei, 10051 Taiwan
- No. 1, Chang-Teh St., Taipei, 10048 Taiwan
| |
Collapse
|
24
|
Gu X, Boldrup L, Coates PJ, Fahraeus R, Nylander E, Loizou C, Olofsson K, Norberg-Spaak L, Gärskog O, Nylander K. Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites. Sci Rep 2016; 6:32579. [PMID: 27572959 PMCID: PMC5004144 DOI: 10.1038/srep32579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022] Open
Abstract
Epigenetic modifications are essential regulators of biological processes. Decreased DNA methylation of OAS2 (2′-5′-Oligoadenylate Synthetase 2), encoding an antiviral protein, has been seen in psoriasis. To provide further insight into the epigenetic regulation of OAS2, we performed pyrosequencing to detect OAS2 DNA methylation status at 11 promoter and first exon located CpG sites in psoriasis (n = 12) and two common subtypes of squamous cell carcinoma (SCC) of the head and neck: tongue (n = 12) and tonsillar (n = 11). Compared to corresponding controls, a general hypomethylation was seen in psoriasis. In tongue and tonsillar SCC, hypomethylation was found at only two CpG sites, the same two sites that were least demethylated in psoriasis. Despite differences in the specific residues targeted for methylation/demethylation, OAS2 expression was upregulated in all conditions and correlations between methylation and expression were seen in psoriasis and tongue SCC. Distinctive methylation status at four successively located CpG sites within a genomic area of 63 bp reveals a delicately integrated epigenetic program and indicates that detailed analysis of individual CpGs provides additional information into the mechanisms of epigenetic regulation in specific disease states. Methylation analyses as clinical biomarkers need to be tailored according to disease-specific sites.
Collapse
Affiliation(s)
- Xiaolian Gu
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Linda Boldrup
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| | - Philip J Coates
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Robin Fahraeus
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden.,RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, Paris, France
| | - Elisabet Nylander
- Department of Public Health and Clinical Medicine/Dermatology and Venereology, Umeå University, Umeå, Sweden
| | - Christos Loizou
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | | | | | - Ola Gärskog
- Department of Clinical Sciences/ENT, Umeå University, Umeå, Sweden
| | - Karin Nylander
- Department of Medical Biosciences/Pathology, Umeå University, Umeå, Sweden
| |
Collapse
|