1
|
Fekete M, Lehoczki A, Szappanos Á, Zábó V, Kaposvári C, Horváth A, Farkas Á, Fazekas-Pongor V, Major D, Lipécz Á, Csípő T, Varga JT. Vitamin D and Colorectal Cancer Prevention: Immunological Mechanisms, Inflammatory Pathways, and Nutritional Implications. Nutrients 2025; 17:1351. [PMID: 40284214 PMCID: PMC12029991 DOI: 10.3390/nu17081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Vitamin D plays a crucial role in the regulation of the immune system, with immunomodulatory effects that are key in the prevention of colorectal cancer (CRC). Over the past decades, research has shown that this steroid hormone impacts much more than bone health, significantly influencing immune responses. Vitamin D enhances immune organ functions such as the spleen and lymph nodes, and boosts T-cell activity, which is essential in defending the body against tumors. Additionally, vitamin D mitigates inflammatory responses closely linked to cancer development, reducing the inflammation that contributes to CRC. It acts via vitamin D receptors (VDRs) expressed on immune cells, modulating immune responses. Adequate vitamin D levels influence gene expression related to inflammation and cell proliferation, inhibiting tumor development. Vitamin D also activates mechanisms that suppress cancer cell survival, proliferation, migration, and metastasis. Low levels of vitamin D have been associated with an increased risk of CRC, with deficiency correlating with higher disease incidence. Lifestyle factors, such as a diet high in red meat and calories but low in fiber, fruits, and vegetables, as well as physical inactivity, contribute significantly to CRC risk. Insufficient calcium and vitamin D intake are also linked to disease occurrence and poorer clinical outcomes. Maintaining optimal vitamin D levels and adequate dietary intake is crucial in preventing CRC and improving patient prognosis. This review explores the role of vitamin D in immune regulation and summarizes findings from randomized clinical trials assessing the effects of vitamin D supplementation on CRC outcomes.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
- Health Sciences Division, Doctoral College, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1023 Budapest, Hungary
| | - Virág Zábó
- Health Sciences Division, Doctoral College, Semmelweis University, 1085 Budapest, Hungary;
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Csilla Kaposvári
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Alpár Horváth
- Pulmonology Center of the Reformed Church in Hungary, 2045 Törökbálint, Hungary;
| | - Árpád Farkas
- HUN-REN Centre for Energy Research, 1121 Budapest, Hungary;
| | - Vince Fazekas-Pongor
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Dávid Major
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Ágnes Lipécz
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Tamás Csípő
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
2
|
Galdo-Torres D, Andreu S, Caballero O, Hernández-Ruiz I, Ripa I, Bello-Morales R, López-Guerrero JA. Immune Modulatory Effects of Vitamin D on Herpesvirus Infections. Int J Mol Sci 2025; 26:1767. [PMID: 40004230 PMCID: PMC11855552 DOI: 10.3390/ijms26041767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
In addition to its classical role in calcium and phosphate metabolism regulation, vitamin D also has an important impact on immunity modulation. Vitamin D regulates the immune response, shifting from a proinflammatory state to a more tolerogenic one by increasing the release of anti-inflammatory cytokines while downregulating proinflammatory cytokines. Thus, low levels of vitamin D have been associated with an increased risk of developing autoimmune diseases like multiple sclerosis and type 1 diabetes. Furthermore, this prohormone also enhances the release of well-known antimicrobial peptides, like cathelicidin LL-37 and β-defensins; therefore, it has been proposed that vitamin D serum levels might be related to the risk of well-known pathogen infections, including herpesviruses. These are a group of widely spread viral pathogens that can cause severe encephalitis or tumors like Kaposi's sarcoma and Burkitt lymphoma. However, there is no consensus on the minimum levels of vitamin D or the recommended daily dose, making it difficult to establish a possible association between these two factors. This narrative non-systematic review will analyze the mechanisms by which vitamin D regulates the immune system and recent studies about whether there is an association between vitamin D serum levels and herpesvirus infections.
Collapse
Affiliation(s)
| | | | | | | | | | - Raquel Bello-Morales
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (D.G.-T.); (O.C.); (I.R.); (J.A.L.-G.)
| | | |
Collapse
|
3
|
Tanase E, Marusca LM, Horhat FG, Susan M, Susan R, Horhat R, Dinu S, Dragomir TL, Tanasescu S. Assessing the Impact of Vitamin D Supplementation on Respiratory Infections in Children and Adolescents: A Cross-Sectional Study. Nutrients 2024; 16:3953. [PMID: 39599738 PMCID: PMC11597694 DOI: 10.3390/nu16223953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Recent studies suggest that vitamin D supplementation and higher serum 25-hydroxyvitamin D (25-OHD) concentrations may reduce the incidence of respiratory infections in children and adolescents. This cross-sectional study aimed to evaluate the association between different concentrations of vitamin D supplementation, serum 25-OHD concentrations, and the frequency of respiratory infections among individuals aged 1 to 18 years, for a duration of 2 years. METHODS Concerning sun exposure in relation to vitamin D, the study took place in Romania, at approximately 45-degree northern latitude. A total of 194 patients were divided into groups based on weekly vitamin D supplementation (<400 IU, 400-800 IU, >800 IU), serum 25-OHD concentrations (<20 ng/mL, 20-30 ng/mL, >30 ng/mL), and age (<6 years, 6-12 years, 12-18 years). The overall incidence of respiratory infections was 41.2%. RESULTS Participants receiving >800 IU/week had a significantly lower incidence of infections (16.7%) compared to those receiving <400 IU/week (60.0%, p < 0.001). Similarly, participants with serum 25-OHD concentrations >30 ng/mL had an infection rate of 16.7%, compared to 61.4% in those with concentrations <20 ng/mL (p < 0.001). Age-specific analyses revealed that the protective effect of vitamin D was most pronounced in children under 6 years old. Logistic regression showed that higher vitamin D supplementation and serum 25-OHD concentrations were independently associated with reduced odds of respiratory infections (OR = 0.25 and OR = 0.22, respectively, p < 0.001). CONCLUSIONS These findings support the potential role of vitamin D supplementation in preventing respiratory infections in the pediatric population.
Collapse
Affiliation(s)
- Elena Tanase
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Larisa Mihaela Marusca
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
- Laboratory Medicine, “Louis Turcanu” Emergency Hospital for Children, 300011 Timisoara, Romania
| | - Florin George Horhat
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Monica Susan
- Department of Internal Medicine I, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Razvan Susan
- Department of Family Medicine, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Razvan Horhat
- Department of Restorative Dentistry, Faculty of Dentistry, Digital and Advanced Technique for Endodontic, Restorative and Prosthetic Treatment Research Center (TADERP), “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Tiberiu-Liviu Dragomir
- Department V of Internal Medicine I and Medical Semiology II, ‘’Victor Babes’’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Sonia Tanasescu
- Department of Pediatrics, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| |
Collapse
|
4
|
You H, Shin U, Kwon DH, Hwang J, Lee GY, Han SN. The effects of in vitro vitamin D treatment on glycolytic reprogramming of bone marrow-derived dendritic cells from Ldlr knock-out mouse. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167436. [PMID: 39067537 DOI: 10.1016/j.bbadis.2024.167436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Dendritic cells (DCs) undergo glycolytic reprogramming, a metabolic conversion process essential for their activation. Vitamin D has been reported to affect the function of DCs, but studies in metabolic diseases are insufficient. This study investigates the effects of in vitro 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) treatment on glycolytic reprogramming of bone marrow-derived dendritic cells (BMDCs) from control, obese, and atherosclerosis mice. Six-week-old male C57BL/6J mice were fed a control diet (CON) or a Western diet (WD), and B6.129S7-Ldlrtm1Her/J mice were fed a Western diet (LDLR-/-) for 16 weeks. BMDCs were cultured in a medium containing 1,25(OH)2D3 (10 nM) for 7 days and stimulated with lipopolysaccharide (LPS, 50 ng/mL) for 24 h. In mature BMDCs, 1,25(OH)2D3 treatment decreased basal and compensatory glycolytic proton efflux rates (glycoPER), the expression of surface markers related to immune function of DCs (MHC class II, CD80, and CD86), and IL-12p70 production. In addition, mTORC1 activation and nitric oxide (NO) production were suppressed by 1,25(OH)2D3 treatment in mature BMDCs. The effect of 1,25(OH)2D3 treatment on IL-12p70 production and mTORC1 activity in the LDLR-/- group was greater than in the CON group. These findings suggest that vitamin D can affect the metabolic environment of BMDCs by regulating glycolytic reprogramming as well as by inducing tolerogenic phenotypes of DCs.
Collapse
Affiliation(s)
- Hyeyoung You
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ungue Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Deok Hoon Kwon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Jungwon Hwang
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Republic of Korea; Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Sintès M, Kovjenic P, Haine (Hablal) L, Serror K, Beladjine M, Parietti (Montcuquet) V, Delagrange M, Ducos B, Bouaziz JD, Boccara D, Mimoun M, Bensussan A, Bagot M, Huang N, Michel L. Coencapsulation of Immunosuppressive Drug with Anti-Inflammatory Molecule in Pickering Emulsions as an Innovative Therapeutic Approach for Inflammatory Dermatoses. JID INNOVATIONS 2024; 4:100273. [PMID: 39045393 PMCID: PMC11264173 DOI: 10.1016/j.xjidi.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 07/25/2024] Open
Abstract
Psoriasis is an inflammatory skin disease characterized by epidermal and immune dysfunctions. Although efficient, current topical treatments display adverse effects, including skin atrophy and burning sensation, leading to poor patient adherence. To overcome these downsides, pickering emulsions were formulated in which the calcitriol-containing dispersed phase was stabilized with either cyclosporin A- or tacrolimus-loaded poly(lactic-co-glycolic) acid nanoparticles. This study aimed to investigate their biological effects on lymphocytes and epidermal cells and their effectiveness in an imiquimod-induced psoriasis-like mouse model. Results showed that both emulsions significantly inhibited nuclear factor of activated T cell translocation in T lymphocytes as well as their IL-2 production, cell activation, and proliferation. In keratinocytes, inhibition of nuclear factor of activated T cell translocation decreased the production of IL-8 and TNF-α. Topical application of emulsions over skin biopsies ex vivo showed accumulation of rhodamin B-coupled poly(lactic-co-glycolic) acid nanoparticles throughout the epidermis by immunofluorescence and significantly decreased the antigen-presenting capacity of Langerhans cells in relation to a reduced expression of activation markers CD40, CD86, and HLA-DR. Using an imiquimod-induced psoriasis model in vivo, pickering emulsions significantly alleviated psoriasiform lesions potentially attributed to the decreased cutaneous expression of T-cell markers, proinflammatory cytokines, chemokines, and specific epidermal cell genes. Altogether, pickering emulsion might be a very efficient formulation for treating inflammatory dermatoses.
Collapse
Affiliation(s)
- Maxime Sintès
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Petra Kovjenic
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Liasmine Haine (Hablal)
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Kevin Serror
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Mohamed Beladjine
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | | | - Marine Delagrange
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility, École Normale Supérieure, Université Paris Sciences & Lettres, Paris, France
| | - Jean-David Bouaziz
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - David Boccara
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Maurice Mimoun
- Department of Reconstructive and Plastic Surgery, Hôpital Saint-Louis, Paris, France
| | - Armand Bensussan
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
| | - Martine Bagot
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| | - Nicolas Huang
- University Paris Saclay, CNRS, Institut Galien Paris-Saclay, Orsay, France
| | - Laurence Michel
- Inserm UMR_U976, University Paris Cité, Skin Research Center, Hôpital Saint-Louis, Paris, France
- Department of Dermatology, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
6
|
Liu B, Wang Y, Han G, Zhu M. Tolerogenic dendritic cells in radiation-induced lung injury. Front Immunol 2024; 14:1323676. [PMID: 38259434 PMCID: PMC10800505 DOI: 10.3389/fimmu.2023.1323676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024] Open
Abstract
Radiation-induced lung injury is a common complication associated with radiotherapy. It is characterized by early-stage radiation pneumonia and subsequent radiation pulmonary fibrosis. However, there is currently a lack of effective therapeutic strategies for radiation-induced lung injury. Recent studies have shown that tolerogenic dendritic cells interact with regulatory T cells and/or regulatory B cells to stimulate the production of immunosuppressive molecules, control inflammation, and prevent overimmunity. This highlights a potential new therapeutic activity of tolerogenic dendritic cells in managing radiation-induced lung injury. In this review, we aim to provide a comprehensive overview of tolerogenic dendritic cells in the context of radiation-induced lung injury, which will be valuable for researchers in this field.
Collapse
Affiliation(s)
| | - Yilong Wang
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Maoxiang Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
7
|
Khabbazi A, Mahmoudi M, Esalatmanesh K, Asgari-Sabet M, Safary A. Vitamin D Status in Palindromic Rheumatism: A Propensity Score Matching Analysis. Lab Med 2024; 55:45-49. [PMID: 37204153 DOI: 10.1093/labmed/lmad032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
OBJECTIVE To determine whether there is a correlation between vitamin D levels and palindromic rheumatism (PR) as an at-risk phenotype of rheumatoid arthritis (RA). METHODS A total of 308 participants were enrolled in this cross-sectional study. We recorded their clinical characteristics and performed propensity-score matching (PSM). Serum 25(OH)D3 levels were determined via enzyme-linked immunosorbent assay. RESULTS Our PSM resulted in 48 patients with PR and 96 matched control individuals. The multivariate regression analysis we performed after the PSM did not show a significant increase in PR risk in patients with vitamin D deficiency/insufficiency. There was no significant correlation between levels of 25(OH)D3 and frequency/duration of attacks, number of joints affected, and duration of symptoms before diagnosis (P ≥ .05). Mean (SD) serum levels of 25(OH)D3 in patients with and without progression to RA were 28.7 (15.9) ng/mL and 25.1 (11.4) ng/mL, respectively. CONCLUSION Based on the results, we found no clear association between vitamin D serum levels and the risk, severity, and rate of PR progressing into RA.
Collapse
Affiliation(s)
- Alireza Khabbazi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Mahmoudi
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kamal Esalatmanesh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Masoomeh Asgari-Sabet
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Safary
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Ahsan N, Imran M, Mohammed Y, Al Anouti F, Khan MI, Banerjee T, Adnan M, Ashfaq F, Kieliszek M, Ashraf SA, Haq A. Mechanistic Insight into the role of Vitamin D and Zinc in Modulating Immunity Against COVID-19: A View from an Immunological Standpoint. Biol Trace Elem Res 2023; 201:5546-5560. [PMID: 36890344 PMCID: PMC9995175 DOI: 10.1007/s12011-023-03620-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/01/2023] [Indexed: 03/10/2023]
Abstract
The pathophysiology of coronavirus disease-19 (COVID-19) is characterized by worsened inflammation because of weakened immunity, causing the infiltration of immune cells, followed by necrosis. Consequently, these pathophysiological changes may lead to a life-threatening decline in perfusion due to hyperplasia of the lungs, instigating severe pneumonia, and causing fatalities. Additionally, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection can cause mortality due to viral septic shock, resulting from unrestrained and backfiring immune reactions to the pathogen. Sepsis can cause premature organ failure in COVID-19 patients, as well. Notably, vitamin D and its derivatives and minerals, such as zinc and magnesium, have been reported to improve the immune system against respiratory illnesses. This comprehensive review aims to provide updated mechanistic details of vitamin D and zinc as immunomodulators. Additionally, this review also focuses on their role in respiratory illnesses, while specifically delineating the plausibility of employing them as a preventive and therapeutic agent against current and future pandemics from an immunological perspective. Furthermore, this comprehensive review will attract the attention of health professionals, nutritionists, pharmaceuticals, and scientific communities, as it encourages the use of such micronutrients for therapeutic purposes, as well as promoting their health benefits for a healthy lifestyle and wellbeing.
Collapse
Affiliation(s)
- Nuzhat Ahsan
- Quantum Biphotonics Division, Quantlase Laboratory LLC, Abu Dhabi, UAE
| | - Mohammad Imran
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, 4102, Australia
| | - Yousuf Mohammed
- Therapeutic Research Group, Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, 4102, Australia
| | - Fatme Al Anouti
- College of Natural and Health Sciences, Zayed University, Abu Dhabi, UAE
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass, 51921, Saudi Arabia
| | - Tanushree Banerjee
- Infosys Ltd. SEZ Unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra, 57, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Fauzia Ashfaq
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il, Saudi Arabia.
| | | |
Collapse
|
9
|
Lui PP, Ainali C, Chu CC, Terranova-Barberio M, Karagiannis P, Tewari A, Safinia N, Sharif-Paghaleh E, Tsoka S, Woszczek G, Di Meglio P, Lombardi G, Young AR, Nestle FO, Ali N. Human skin CD141 + dendritic cells regulate cutaneous immunity via the neuropeptide urocortin 2. iScience 2023; 26:108029. [PMID: 37860766 PMCID: PMC10583083 DOI: 10.1016/j.isci.2023.108029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 08/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Skin immune homeostasis is a multi-faceted process where dermal dendritic cells (DDCs) are key in orchestrating responses to environmental stressors. We have previously identified CD141+CD14+ DDCs as a skin-resident immunoregulatory population that is vitamin-D3 (VitD3) inducible from monocyte-derived DCs (moDCs), termed CD141hi VitD3 moDCs. We demonstrate that CD141+ DDCs and CD141hi VitD3 moDCs share key immunological features including cell surface markers, reduced T cell stimulation, IL-10 production, and a common transcriptomic signature. Bioinformatic analysis identified the neuroactive ligand receptor pathway and the neuropeptide, urocortin 2 (UCN2), as a potential immunoregulatory candidate molecule. Incubation with VitD3 upregulated UCN2 in CD141+ DCs and UVB irradiation induced UCN2 in CD141+ DCs in healthy skin in vivo. Notably, CD141+ DDC generation of suppressive Tregs was dependent upon the UCN2 pathway as in vivo administration of UCN2 reversed skin inflammation in humanized mice. We propose the neuropeptide UCN2 as a novel skin DC-derived immunoregulatory mediator with a potential role in UVB and VitD3-dependent skin immune homeostasis.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Biomedical Sciences, King’s College London, London, UK
| | - Chrysanthi Ainali
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Chung-Ching Chu
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Manuela Terranova-Barberio
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Panagiotis Karagiannis
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Angela Tewari
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Niloufar Safinia
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, James Black Centre, King’s College London, London, UK
| | - Ehsan Sharif-Paghaleh
- Department of Imaging Chemistry & Biology, School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King’s College London, Bush House, London, UK
| | - Grzegorz Woszczek
- Asthma UK Centre in Allergic Mechanisms of Asthma, School of Immunology and Microbial Sciences, King’s College London, London, UK
| | - Paola Di Meglio
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, UK
| | - Antony R. Young
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Frank O. Nestle
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Science, King’s College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Biomedical Sciences, King’s College London, London, UK
- St. John’s Institute of Dermatology, King’s College London and NIHR Biomedical Research Centre, London, UK
| |
Collapse
|
10
|
Liu H, Zhang Y, Li H, Gao X, Wang J, Cong X, Xin Y, Zhu Q, Chen B, Yang YG, Sun T. Co-delivery of vitamin D3 and Lkb1 siRNA by cationic lipid-assisted PEG-PLGA nanoparticles to effectively remodel the immune system in vivo. Biomater Sci 2023; 11:5931-5941. [PMID: 37470222 DOI: 10.1039/d3bm00767g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The imbalance of the immune system can lead to the occurrence of autoimmune diseases. Controlling and regulating the proliferation and function of effector T (Teff) cells and regulatory T (Treg) cells becomes the key to treating these diseases. Dendritic cells (DCs), as dedicated antigen-presenting cells, play a key role in inducing the differentiation of naive CD4+ T cells. In this study, we designed a cationic lipid-assisted PEG-PLGA nanoparticle (NPs/VD3/siLkb1) to deliver 1,25-dihydroxyvitamin D3 (VD3) and small interfering RNA (siRNA) to DC cells in the draining lymph nodes. By modulating the phenotypic changes of DC cells, this approach expands Treg cells and reduces the occurrence of autoimmune diseases. Thus, this study provides a novel approach to alleviating the occurrence and development of autoimmune diseases while also minimizing the risk of unwanted complications.
Collapse
Affiliation(s)
- Haochuan Liu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xue Gao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Qingsan Zhu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130031, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Jilin University, Changchun, Jilin, 130061, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, 130015, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, 130062, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
11
|
Lebiedziński F, Lisowska KA. Impact of Vitamin D on Immunopathology of Hashimoto's Thyroiditis: From Theory to Practice. Nutrients 2023; 15:3174. [PMID: 37513592 PMCID: PMC10385100 DOI: 10.3390/nu15143174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is a common autoimmune disease affecting the thyroid gland, characterized by lymphocytic infiltration, damage to thyroid cells, and hypothyroidism, and often requires lifetime treatment with levothyroxine. The disease has a complex etiology, with genetic and environmental factors contributing to its development. Vitamin D deficiency has been linked to a higher prevalence of thyroid autoimmunity in certain populations, including children, adolescents, and obese individuals. Moreover, vitamin D supplementation has shown promise in reducing antithyroid antibody levels, improving thyroid function, and improving other markers of autoimmunity, such as cytokines, e.g., IP10, TNF-α, and IL-10, and the ratio of T-cell subsets, such as Th17 and Tr1. Studies suggest that by impacting various immunological mechanisms, vitamin D may help control autoimmunity and improve thyroid function and, potentially, clinical outcomes of HT patients. The article discusses the potential impact of vitamin D on various immune pathways in HT. Overall, current evidence supports the potential role of vitamin D in the prevention and management of HT, although further studies are needed to fully understand its mechanisms of action and potential therapeutic benefits.
Collapse
Affiliation(s)
- Filip Lebiedziński
- Department of Physiopathology, Medical University of Gdańsk, 80-211 Gdansk, Poland
| | | |
Collapse
|
12
|
Agliardi C, Guerini FR, Bolognesi E, Zanzottera M, Clerici M. VDR Gene Single Nucleotide Polymorphisms and Autoimmunity: A Narrative Review. BIOLOGY 2023; 12:916. [PMID: 37508347 PMCID: PMC10376382 DOI: 10.3390/biology12070916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
The vitamin D/Vitamin D receptor (VDR) axis is crucial for human health as it regulates the expression of genes involved in different functions, including calcium homeostasis, energy metabolism, cell growth and differentiation, and immune responses. In particular, the vitamin D/VDR complex regulates genes of both innate and adaptive immunity. Autoimmune diseases are believed to arise from a genetic predisposition and the presence of triggers such as hormones and environmental factors. Among these, a role for Vitamin D and molecules correlated to its functions has been repeatedly suggested. Four single nucleotide polymorphisms (SNPs) of the VDR gene, ApaI, BsmI, TaqI, and FokI, in particular, have been associated with autoimmune disorders. The presence of particular VDR SNP alleles and genotypes, thus, was observed to modulate the likelihood of developing diverse autoimmune conditions, either increasing or reducing it. In this work, we will review the scientific literature suggesting a role for these different factors in the pathogenesis of autoimmune conditions and summarize evidence indicating a possible VDR SNP involvement in the onset of these diseases. A better understanding of the role of the molecular mechanisms linking Vitamin D/VDR and autoimmunity might be extremely useful in designing novel therapeutic avenues for these disorders.
Collapse
Affiliation(s)
| | | | | | | | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, LAMMB, 20148 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| |
Collapse
|
13
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
14
|
Sanseverino I, Rinaldi AO, Purificato C, Cortese A, Millefiorini E, Gauzzi MC. 1,25(OH) 2D3 Differently Modulates the Secretory Activity of IFN-DC and IL4-DC: A Study in Cells from Healthy Donors and MS Patients. Int J Mol Sci 2023; 24:ijms24076717. [PMID: 37047690 PMCID: PMC10094841 DOI: 10.3390/ijms24076717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Immune mechanisms play an essential role in driving multiple sclerosis (MS) and altered trafficking and/or activation of dendritic cells (DC) were observed in the central nervous system and cerebrospinal fluid of MS patients. Interferon β (IFNβ) has been used as a first-line therapy in MS for almost three decades and vitamin D deficiency is a recognized environmental risk factor for MS. Both IFNβ and vitamin D modulate DC functions. Here, we studied the response to 1,25-dihydoxyvitamin D3 (1,25(OH)2D3) of DC obtained with IFNβ/GM-CSF (IFN-DC) compared to classically derived IL4-DC, in three donor groups: MS patients free of therapy, MS patients undergoing IFNβ therapy, and healthy donors. Except for a decreased CCL2 secretion by IL4-DC from the MS group, no major defects were observed in the 1,25(OH)2D3 response of either IFN-DC or IL4-DC from MS donors compared to healthy donors. However, the two cell models strongly differed for vitamin D receptor level of expression as well as for basal and 1,25(OH)2D3-induced cytokine/chemokine secretion. 1,25(OH)2D3 up-modulated IL6, its soluble receptor sIL6R, and CCL5 in IL4-DC, and down-modulated IL10 in IFN-DC. IFN-DC, but not IL4-DC, constitutively secreted high levels of IL8 and of matrix-metalloproteinase-9, both down-modulated by 1,25(OH)2D3. DC may contribute to MS pathogenesis, but also provide an avenue for therapeutic intervention. 1,25(OH)2D3-induced tolerogenic DC are in clinical trial for MS. We show that the protocol of in vitro DC differentiation qualitatively and quantitatively affects secretion of cytokines and chemokines deeply involved in MS pathogenesis.
Collapse
Affiliation(s)
- Isabella Sanseverino
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | | | - Cristina Purificato
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Antonio Cortese
- Multiple Sclerosis Center, Sapienza University of Rome, 00161 Rome, Italy
| | | | | |
Collapse
|
15
|
Musavi H, Abazari O, Barartabar Z, Kalaki-Jouybari F, Hemmati-Dinarvand M, Esmaeili P, Mahjoub S. The benefits of Vitamin D in the COVID-19 pandemic: biochemical and immunological mechanisms. Arch Physiol Biochem 2023; 129:354-362. [PMID: 33030073 DOI: 10.1080/13813455.2020.1826530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In December 2019, a new infectious complication called CoronaVirus Infectious Disease-19, briefly COVID-19, caused by SARS-COV-2, is identified in Wuhan, China. It spread all over the world and became a pandemic. In many individuals who had suffered SARS-COV-2 infection, cytokine storm starts through cytokine overproduction and leads to Acute Respiratory Syndrome (ARS), organ failure, and death. According to the obtained evidence, Vitamin D (VitD) enhances the ACE2/Ang(1-7)/MasR pathway activity, and it also reduces cytokine storms and the ARS risk. Therefore, VitD intake may be beneficial for patients with SARS-COV-2 infection exposed to cytokine storm but do not suffer hypotension. In the present review, we have explained the effects of VitD on the renin-angiotensin system (RAS) function and angiotensin-converting enzyme2 (ACE2) expression. Furthermore, we have reviewed the biochemical and immunological effects of VitD on immune function in the underlying diseases and its role in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Hadis Musavi
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Barartabar
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Fatemeh Kalaki-Jouybari
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohsen Hemmati-Dinarvand
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Esmaeili
- Department of Immunology and Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Soleiman Mahjoub
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Pathology, University of Kiel, Kiel, Germany
| |
Collapse
|
16
|
Bouichrat N, Benyakhef S, Assarrar I, Draoui N, Lazreg Y, Abda N, Rouf S, Latrech H. Vitamin D Status in Diabetic Moroccan Children And Adolescents: a Case-control Study. Rev Diabet Stud 2023; 19:1-7. [PMID: 37185054 PMCID: PMC10082332 DOI: 10.1900/rds.2023.19.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Background: Type 1 diabetes mellitus (T1DM) incidence is currently increasing worldwide, and different environmental players along with genetic predisposition, could be involved as powerful triggers of this disease onset. In this study, we aim to shed the light on the relationship between 25OHD deficiency and T1DM. Patients and methods: A case-control study was laid out to compare serum 25OHD level between T1DM patients and controls. A total of 147 T1DM patients aged under 19 years old were recruited from our Endocrinology-Diabetology and Nutrition department between October 2014 and December 2019. A total of 147 controls were randomly enlisted from clinical biochemistry laboratory of our center, and were carefully matched. The levels of 25OHD in the serum were determined in T1DM patients and nondiabetic controls. Results: Average serum 25OHD concentration was established in both groups; reaching 19,29 ±6,13 ng/ml in the control arm and 15,02 ± 6,48 ng/ml in the selected group with T1DM independently of the disease duration. However, the mean serum 25OHD concentration was not significantly different between the two T1DM subgroups according to diabetes duration below or above 5 years, and 25OHD concentration remained lower either in winter or summer months. A negative correlation was noticed between HbA1c and serum 25 OHD concentration in T1DM patients and was statistically significant (p<0,05). Conclusion: Key messages on the importance of vitamin D status, particularly in diabetic children and adolescents, should be spread widely in order to start a suitable vitamin supplementation, and establish guidelines regarding its timing at adequate recommended doses..
Collapse
Affiliation(s)
- Nisrine Bouichrat
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Salma Benyakhef
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Imane Assarrar
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Najat Draoui
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Youssef Lazreg
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Naima Abda
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Siham Rouf
- Laboratory of Epidemiology, Clinical Research and Public Health, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| | - Hanane Latrech
- Department of Endocrinology-Diabetology and Nutrition, Mohammed Vi University Hospital Center, Faculty of Medicine and Pharmacy, University of Mohammed First, Oujda, Morocco
| |
Collapse
|
17
|
Gao H, Zhou H, Zhang Z, Gao J, Li J, Li X. Vitamin D3 alleviates inflammation in ulcerative colitis by activating the VDR-NLRP6 signaling pathway. Front Immunol 2023; 14:1135930. [PMID: 36845152 PMCID: PMC9944717 DOI: 10.3389/fimmu.2023.1135930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023] Open
Abstract
Inflammation is a key factor in the development of ulcerative colitis (UC). 1,25-dihydroxyvitamin D3 (1,25(OH)2D3, VD3), as the major active ingredient of vitamin D and an anti-inflammatory activator, is closely related to the initiation and development of UC, but its regulatory mechanism remains unclear. In this study, we carried out histological and physiological analyses in UC patients and UC mice. RNA sequencing (RNA-seq), assays for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), chromatin immunoprecipitation (ChIP) assays and protein and mRNA expression were performed to analyze and identify the potential molecular mechanism in UC mice and lipopolysaccharide (LPS)-induced mouse intestinal epithelial cells (MIECs). Moreover, we established nucleotide-binding oligomerization domain (NOD)-like receptor protein nlrp6 -/- mice and siRNA-NLRP6 MIECs to further characterize the role of NLRP6 in anti-inflammation of VD3. Our study revealed that VD3 abolished NOD-like receptor protein 6 (NLRP6) inflammasome activation, suppressing NLRP6, apoptosis-associated speck-like protein (ASC) and Caspase-1 levels via the vitamin D receptor (VDR). ChIP and ATAC-seq showed that VDR transcriptionally repressed NLRP6 by binding to vitamin D response elements (VDREs) in the promoter of NLRP6, impairing UC development. Importantly, VD3 had both preventive and therapeutic effects on the UC mouse model via inhibition of NLRP6 inflammasome activation. Our results demonstrated that VD3 substantially represses inflammation and the development of UC in vivo. These findings reveal a new mechanism by which VD3 affects inflammation in UC by regulating the expression of NLRP6 and show the potential clinical use of VD3 in autoimmune syndromes or other NLRP6 inflammasome-driven inflammatory diseases.
Collapse
Affiliation(s)
- Hongliang Gao
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - He Zhou
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhiqiang Zhang
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jianshu Gao
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jian Li
- The Second Department of Gastroenterology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xinxia Li
- Pathology Center, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang, China
| |
Collapse
|
18
|
Al-Hajj S, Lemoine R, Chadet S, Goumard A, Legay L, Roxburgh E, Heraud A, Deluce N, Lamendour L, Burlaud-Gaillard J, Gatault P, Büchler M, Roger S, Halimi JM, Baron C. High extracellular sodium chloride concentrations induce resistance to LPS signal in human dendritic cells. Cell Immunol 2023; 384:104658. [PMID: 36566700 DOI: 10.1016/j.cellimm.2022.104658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/24/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Recent evidence showed that in response to elevated sodium dietary intakes, many body tissues retain Na+ ions for long periods of time and can reach concentrations up to 200 mM. This could modulate the immune system and be responsible for several diseases. However, studies brought contrasted results and the effects of external sodium on human dendritic cell (DC) responses to danger signals remain largely unknown. Considering their central role in triggering T cell response, we tested how NaCl-enriched medium influences human DCs properties. We found that DCs submitted to high extracellular Na+ concentrations up to 200 mM remain viable and maintain the expression of specific DC markers, however, their maturation, chemotaxis toward CCL19, production of pro-inflammatory cytokines and ROS in response to LPS were also partially inhibited. In line with these results, the T-cell allostimulatory capacity of DCs was also inhibited. Finally, our data indicate that high NaCl concentrations triggered the phosphorylation of SGK1 and ERK1/2 kinases. These results raised the possibility that the previously reported pro-inflammatory effects of high NaCl concentrations on T cells might be counterbalanced by a downregulation of DC activation.
Collapse
Affiliation(s)
- Sally Al-Hajj
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Roxane Lemoine
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Stéphanie Chadet
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Annabelle Goumard
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Laura Legay
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Ellena Roxburgh
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Audrey Heraud
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Nora Deluce
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Lucille Lamendour
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France
| | - Julien Burlaud-Gaillard
- U1259 Morphogenesis and Antigenicity of HIV and Hepatitis virus (MAVIVH), University of Tours, Tours, France; IBISA Facility of Electronic Microscopy, University Hospital of Tours, Tours, France
| | - Philippe Gatault
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Mathias Büchler
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Sébastien Roger
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France.
| | - Jean-Michel Halimi
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| | - Christophe Baron
- EA4245 Transplantation, Immunology & Inflammation (T2I), University of Tours, Tours, France; Nephrology, Clinical Immunology Department, University Hospital of Tours, Tours, France
| |
Collapse
|
19
|
NCoR1 controls immune tolerance in conventional dendritic cells by fine-tuning glycolysis and fatty acid oxidation. Redox Biol 2022; 59:102575. [PMID: 36565644 PMCID: PMC9804250 DOI: 10.1016/j.redox.2022.102575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) undergo rapid metabolic reprogramming to generate signal-specific immune responses. The fine control of cellular metabolism underlying DC immune tolerance remains elusive. We have recently reported that NCoR1 ablation generates immune-tolerant DCs through enhanced IL-10, IL-27 and SOCS3 expression. In this study, we did comprehensive metabolic profiling of these tolerogenic DCs and identified that they meet their energy requirements through enhanced glycolysis and oxidative phosphorylation (OXPHOS), supported by fatty acid oxidation-driven oxygen consumption. In addition, the reduced pyruvate and glutamine oxidation with a broken TCA cycle maintains the tolerogenic state of the cells. Mechanistically, the AKT-mTOR-HIF-1α-axis mediated glycolysis and CPT1a-driven β-oxidation were enhanced in these tolerogenic DCs. To confirm these observations, we used synthetic metabolic inhibitors and found that the combined inhibition of HIF-1α and CPT1a using KC7F2 and etomoxir, respectively, compromised the overall transcriptional signature of immunological tolerance including the regulatory cytokines IL-10 and IL-27. Functionally, treatment of tolerogenic DCs with dual KC7F2 and etomoxir treatment perturbed the polarization of co-cultured naïve CD4+ T helper (Th) cells towards Th1 than Tregs, ex vivo and in vivo. Physiologically, the Mycobacterium tuberculosis (Mtb) infection model depicted significantly reduced bacterial burden in BMcDC1 ex vivo and in CD103+ lung DCs in Mtb infected NCoR1DC-/-mice. The spleen of these infected animals also showed increased Th1-mediated responses in the inhibitor-treated group. These findings suggested strong involvement of NCoR1 in immune tolerance. Our validation in primary human monocyte-derived DCs (moDCs) showed diminished NCOR1 expression in dexamethasone-derived tolerogenic moDCs along with suppression of CD4+T cell proliferation and Th1 polarization. Furthermore, the combined KC7F2 and etomoxir treatment rescued the decreased T cell proliferative capacity and the Th1 phenotype. Overall, for the first time, we demonstrated here that NCoR1 mediated control of glycolysis and fatty acid oxidation fine-tunes immune tolerance versus inflammation balance in murine and human DCs.
Collapse
|
20
|
Silalahi ER, Wibowo N, Prasmusinto D, Djuwita R, Rengganis I, Mose JC. Decidual dendritic cells 10 and CD4 +CD25 +FOXP3 regulatory T cell in preeclampsia and their correlation with nutritional factors in pathomechanism of immune rejection in pregnancy. J Reprod Immunol 2022; 154:103746. [PMID: 36108422 DOI: 10.1016/j.jri.2022.103746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immune intolerance is thought to be the underlying cause of immune rejection to fetus in preeclampsia. Decidual dendritic cell-10 (DC-10) and T regulator cell (Treg) play important role to create tolerogenic environment during pregnancy. However, their roles on the specific pathomechanism of preeclampsia along with various nutritional factors have not been widely studied. AIM To determine the number of DC-10 and Treg in preeclampsia and their correlations with decidual nutritional factors. METHOD This was a cross-sectional study among early onset preeclampsia (EOPE), late onset preeclampsia (LOPE), and normotensive (NT) pregnancies. Decidual specimens were obtained by curettage after caesarean section. The number of DC-10 and Treg cells were counted using flow cytometry. The levels of nutritional factors (zinc, retinol, all-trans retinoic acid, vitamin D) were determined using ICP-MS and LC-MS method. RESULT A total of 14 subjects for each group were included in the study. The DC-10 was significantly lower in both EOPE and LOPE compared to NT (p < 0.001). Treg cells were significantly higher in EOPE compare to NT (p = 0.015). There was a moderate correlation between zinc level and DC-10 (p = 0.011) and a strong correlation between retinol level and DC-10 (p = 0.002) in the NT group. A moderate correlation was found between vitamin D level and Treg cells in the NT group (p = 0.026). CONCLUSION There was a lower number of DC-10 and higher number of Treg cells in early preeclampsia. There was no correlation between DC-10 and Treg number with decidual nutritional factors in preeclampsia.
Collapse
Affiliation(s)
- Eva Roria Silalahi
- Doctoral Program in Medical Sciences, Faculty of Medicine, Universitas Indonesia, Indonesia.
| | - Noroyono Wibowo
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Damar Prasmusinto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Ratna Djuwita
- Department of Epidemiology, Faculty of Public Health, Universitas Indonesia, Indonesia
| | - Iris Rengganis
- Department of Internal Medicine, Faculty of Medicine, Universitas Indonesia - Cipto Mangunkusumo Hospital, Indonesia
| | - Johanes C Mose
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Padjadjaran - Hasan Sadikin Hospital, Indonesia
| |
Collapse
|
21
|
Mazur A, Frączek P, Tabarkiewicz J. Vitamin D as a Nutri-Epigenetic Factor in Autoimmunity-A Review of Current Research and Reports on Vitamin D Deficiency in Autoimmune Diseases. Nutrients 2022; 14:nu14204286. [PMID: 36296970 PMCID: PMC9611618 DOI: 10.3390/nu14204286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
Epigenetics is a series of alterations regulating gene expression without disrupting the DNA sequence of bases. These regulatory mechanisms can result in embryogenesis, cellular differentiation, X-chromosome inactivation, and DNA-protein interactions. The main epigenetic mechanisms considered to play a major role in both health and disease are DNA methylation, histone modifications, and profiling of non-coding RNA. When the fragile balance between these simultaneously occurring phenomena is disrupted, the risk of pathology increases. Thus, the factors that determine proper epigenetic modeling are defined and those with disruptive influence are sought. Several such factors with proven negative effects have already been described. Diet and nutritional substances have recently been one of the most interesting targets of exploration for epigenetic modeling in disease states, including autoimmunity. The preventive role of proper nutrition and maintaining sufficient vitamin D concentration in maternal blood during pregnancy, as well as in the early years of life, is emphasized. Opportunities are also being investigated for affecting the course of the disease by exploring nutriepigenetics. The authors aim to review the literature presenting vitamin D as one of the important nutrients potentially modeling the course of disease in selected autoimmune disorders.
Collapse
Affiliation(s)
- Artur Mazur
- Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
| | - Paulina Frączek
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Correspondence:
| | - Jacek Tabarkiewicz
- Department of Human Immunology, Institute of Medical Sciences, Medical College of Rzeszow University, University of Rzeszów, 35-310 Rzeszow, Poland
- Centre for Innovative Research in Medical and Natural Sciences, Medical Faculty, University of Rzeszów, 35-310 Rzeszow, Poland
| |
Collapse
|
22
|
LoPinto-Khoury C. Long-Term Effects of Antiseizure Medications. Semin Neurol 2022; 42:583-593. [PMID: 36216358 DOI: 10.1055/a-1958-0802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Most patients with epilepsy will benefit from seizure control with one of an array of chronic antiseizure medications. Knowledge of the potential long-term effects of these medications is critical to prevent adverse consequences on overall health. Antiseizure medications vary in their capacities to affect the brain and peripheral nerves, hormones, bone mineralization, cardiovascular risk, renal health, hepatic, hematological, and dermatological systems. Understanding of pathophysiology and population risk has evolved, although most of the data available are still on older generation antiseizure medications such as phenytoin, carbamazepine, and valproic acid. The enzyme-inducing properties of some antiseizure medications make their effects on cardiovascular risk and bone health detrimental. Few clear guidelines exist for monitoring long-term effects of medication therapy for epilepsy. When selecting an antiseizure medication, consideration should be given to the individual patient's risks of adverse consequences on other organ systems. During monitoring of patients on chronic therapy, screening tools such as metabolic panels and bone density measurements can help stratify risk and guide management.
Collapse
Affiliation(s)
- Carla LoPinto-Khoury
- Department of Neurology, Lewis Katz Temple School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Zheng Q, Wang D, Lin R, Lv Q, Wang W. IFI44 is an immune evasion biomarker for SARS-CoV-2 and Staphylococcus aureus infection in patients with RA. Front Immunol 2022; 13:1013322. [PMID: 36189314 PMCID: PMC9520788 DOI: 10.3389/fimmu.2022.1013322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 08/29/2022] [Indexed: 12/04/2022] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused a global pandemic of severe coronavirus disease 2019 (COVID-19). Staphylococcus aureus is one of the most common pathogenic bacteria in humans, rheumatoid arthritis (RA) is among the most prevalent autoimmune conditions. RA is a significant risk factor for SARS-CoV-2 and S. aureus infections, although the mechanism of RA and SARS-CoV-2 infection in conjunction with S. aureus infection has not been elucidated. The purpose of this study is to investigate the biomarkers and disease targets between RA and SARS-CoV-2 and S. aureus infections using bioinformatics analysis, to search for the molecular mechanisms of SARS-CoV-2 and S. aureus immune escape and potential drug targets in the RA population, and to provide new directions for further analysis and targeted development of clinical treatments. Methods The RA dataset (GSE93272) and the S. aureus bacteremia (SAB) dataset (GSE33341) were used to obtain differentially expressed gene sets, respectively, and the common differentially expressed genes (DEGs) were determined through the intersection. Functional enrichment analysis utilizing GO, KEGG, and ClueGO methods. The PPI network was created utilizing the STRING database, and the top 10 hub genes were identified and further examined for functional enrichment using Metascape and GeneMANIA. The top 10 hub genes were intersected with the SARS-CoV-2 gene pool to identify five hub genes shared by RA, COVID-19, and SAB, and functional enrichment analysis was conducted using Metascape and GeneMANIA. Using the NetworkAnalyst platform, TF-hub gene and miRNA-hub gene networks were built for these five hub genes. The hub gene was verified utilizing GSE17755, GSE55235, and GSE13670, and its effectiveness was assessed utilizing ROC curves. CIBERSORT was applied to examine immune cell infiltration and the link between the hub gene and immune cells. Results A total of 199 DEGs were extracted from the GSE93272 and GSE33341 datasets. KEGG analysis of enrichment pathways were NLR signaling pathway, cell membrane DNA sensing pathway, oxidative phosphorylation, and viral infection. Positive/negative regulation of the immune system, regulation of the interferon-I (IFN-I; IFN-α/β) pathway, and associated pathways of the immunological response to viruses were enriched in GO and ClueGO analyses. PPI network and Cytoscape platform identified the top 10 hub genes: RSAD2, IFIT3, GBP1, RTP4, IFI44, OAS1, IFI44L, ISG15, HERC5, and IFIT5. The pathways are mainly enriched in response to viral and bacterial infection, IFN signaling, and 1,25-dihydroxy vitamin D3. IFI44, OAS1, IFI44L, ISG15, and HERC5 are the five hub genes shared by RA, COVID-19, and SAB. The pathways are primarily enriched for response to viral and bacterial infections. The TF-hub gene network and miRNA-hub gene network identified YY1 as a key TF and hsa-mir-1-3p and hsa-mir-146a-5p as two important miRNAs related to IFI44. IFI44 was identified as a hub gene by validating GSE17755, GSE55235, and GSE13670. Immune cell infiltration analysis showed a strong positive correlation between activated dendritic cells and IFI44 expression. Conclusions IFI144 was discovered as a shared biomarker and disease target for RA, COVID-19, and SAB by this study. IFI44 negatively regulates the IFN signaling pathway to promote viral replication and bacterial proliferation and is an important molecular target for SARS-CoV-2 and S. aureus immune escape in RA. Dendritic cells play an important role in this process. 1,25-Dihydroxy vitamin D3 may be an important therapeutic agent in treating RA with SARS-CoV-2 and S. aureus infections.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Qi Lv
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Wanming Wang
- Department of Orthopedics, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| |
Collapse
|
24
|
Vitamin D in the Context of Evolution. Nutrients 2022; 14:nu14153018. [PMID: 35893872 PMCID: PMC9332464 DOI: 10.3390/nu14153018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/12/2022] Open
Abstract
For at least 1.2 billion years, eukaryotes have been able to synthesize sterols and, therefore, can produce vitamin D when exposed to UV-B. Vitamin D endocrinology was established some 550 million years ago in animals, when the high-affinity nuclear receptor VDR (vitamin D receptor), transport proteins and enzymes for vitamin D metabolism evolved. This enabled vitamin D to regulate, via its target genes, physiological process, the first of which were detoxification and energy metabolism. In this way, vitamin D was enabled to modulate the energy-consuming processes of the innate immune system in its fight against microbes. In the evolving adaptive immune system, vitamin D started to act as a negative regulator of growth, which prevents overboarding reactions of T cells in the context of autoimmune diseases. When, some 400 million years ago, species left the ocean and were exposed to gravitation, vitamin D endocrinology took over the additional role as a major regulator of calcium homeostasis, being important for a stable skeleton. Homo sapiens evolved approximately 300,000 years ago in East Africa and had adapted vitamin D endocrinology to the intensive exposure of the equatorial sun. However, when some 75,000 years ago, when anatomically modern humans started to populate all continents, they also reached regions with seasonally low or no UV-B, i.e., and under these conditions vitamin D became a vitamin.
Collapse
|
25
|
Zhao L, Lu W, Mao Z, Mou D, Huang L, Yang M, Ding D, Yan H, Fang Z, Che L, Zhuo Y, Jiang X, Xu S, Lin Y, Li J, Huang C, Zou Y, Li L, Wu D, Feng B. Maternal VD 3 supplementation during gestation improves intestinal health and microbial composition of weaning piglets. Food Funct 2022; 13:6830-6842. [PMID: 35687102 DOI: 10.1039/d1fo04303j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Vitamin D3 (VD3) has been reported to improve the reproductive performance of sows. This study was conducted to investigate the long-term effect of maternal VD3 supplementation during gestation on the intestinal health of piglets. Twenty-three Landrace × Yorkshire gilts were randomly allocated into two groups to receive one of the following two diets during gestation: basal diet (CON group, 800 IU VD3 per kg diet, n = 12) and VD3 supplemented diet (VD3 group, 2000 IU VD3 per kg diet, n = 11). All sows were then fed with the same diet during lactation. Results showed that maternal VD3 supplementation during lactation tended to decrease (p = 0.08) the body weight loss of sows during lactation compared to the CON group. Besides, the relative length and weight of the small intestine (SI) and the villus height of the duodenum and ileum in weaning piglets were much higher (p < 0.05) in the VD3 group than those in the CON group, though their body weight was not changed. Meanwhile, maternal VD3 supplementation significantly upregulated the expression levels of IGF-1, IGF-2R, VDR, GLUT-2 and CAT1 in the duodenum (p < 0.05), and increased the expression levels of IGF-1, IGF-1R, IGF-2R, VDR, Occludin, ZO-1, MUC2, PEPT1 and CAT1 (p < 0.05) in the jejunum of suckling piglets compared with the CON group. Besides, the concentration of SigA in the jejunum of suckling piglets was higher (p < 0.05) in the VD3 group than that in the CON group. In addition, maternal VD3 supplementation significantly increased the contents of short chain fatty acids and the relative abundance of Lactobacillus and Faecalibacterium (p < 0.05) in the feces of weaning piglets compared to the CON group. Moreover, the relative abundance of unidentified_Lachnospiraceae in the feces of weaning piglets tended to be higher (p = 0.05), while that of unidentified_Spirochaetaceae was lower (p < 0.05) in the VD3 group than those in the CON group. Taken together, maternal VD3 supplementation during gestation could improve the intestinal function and microbiota in suckling piglets.
Collapse
Affiliation(s)
- Lianpeng Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Wei Lu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengyu Mao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Long Huang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Min Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Dajiang Ding
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Hui Yan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Yuanfeng Zou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lixia Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, 211 Huimin Road, No. 6 Teaching Building, Room 604, Wenjiang District, Chengdu, Sichuan 611130, China.
| |
Collapse
|
26
|
Effect of Vitamin D on Graft-versus-Host Disease. Biomedicines 2022; 10:biomedicines10050987. [PMID: 35625724 PMCID: PMC9138416 DOI: 10.3390/biomedicines10050987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
The different cell subsets of the immune system express the vitamin D receptor (VDR). Through the VDR, vitamin D exerts different functions that influence immune responses, as previously shown in different preclinical models. Based on this background, retrospective studies explored the impacts of vitamin D levels on the outcomes of patients undergoing allogeneic hematopoietic stem-cell transplantation, showing that vitamin D deficiency is related to an increased risk of complications, especially graft-versus-host disease. These results were confirmed in a prospective cohort trial, although further studies are required to confirm this data. In addition, the role of vitamin D on the treatment of hematologic malignancies was also explored. Considering this dual effect on both the immune systems and tumor cells of patients with hematologic malignancies, vitamin D might be useful in this setting to decrease both graft-versus-host disease and relapse rates.
Collapse
|
27
|
Rueter K, Siafarikas A, Palmer DJ, Prescott SL. Pre- and Postnatal Vitamin D Status and Allergy Outcomes in Early Childhood. Biomedicines 2022; 10:biomedicines10050933. [PMID: 35625670 PMCID: PMC9139153 DOI: 10.3390/biomedicines10050933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
The dramatic increase in the prevalence of allergic disease in recent decades reflects environmental and behavioural changes that have altered patterns of early immune development. The very early onset of allergic diseases points to the specific vulnerability of the developing immune system to environmental changes and the development of primary intervention strategies is crucial to address this unparalleled burden. Vitamin D is known to have immunomodulatory functions. While allergic disease is multifactorial, associations with reduced sunlight exposure have led to the hypothesis that suboptimal vitamin D levels during critical early periods may be one possible explanation. Interventions to improve vitamin D status, especially in early life, may be the key to allergic disease prevention.
Collapse
Affiliation(s)
- Kristina Rueter
- School of Medicine, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (D.J.P.); (S.L.P.)
- Department of Immunology, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands 6009, Australia
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), 6010 Park Ave, West New York, NJ 07093, USA
- Correspondence:
| | - Aris Siafarikas
- School of Medicine, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (D.J.P.); (S.L.P.)
- Telethon Kids Institute, The University of Western Australia, 15 Hospital Avenue, Nedlands 6009, Australia
- Department of Endocrinology, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands 6009, Australia
- Institute for Health Research, University of Notre Dame, Fremantle 6160, Australia
| | - Debra J. Palmer
- School of Medicine, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (D.J.P.); (S.L.P.)
- Telethon Kids Institute, The University of Western Australia, 15 Hospital Avenue, Nedlands 6009, Australia
| | - Susan L. Prescott
- School of Medicine, The University of Western Australia, 35 Stirling Highway, Crawley 6009, Australia; (A.S.); (D.J.P.); (S.L.P.)
- Department of Immunology, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands 6009, Australia
- inVIVO Planetary Health, Group of the Worldwide Universities Network (WUN), 6010 Park Ave, West New York, NJ 07093, USA
- Telethon Kids Institute, The University of Western Australia, 15 Hospital Avenue, Nedlands 6009, Australia
| |
Collapse
|
28
|
Mapunda JA, Tibar H, Regragui W, Engelhardt B. How Does the Immune System Enter the Brain? Front Immunol 2022; 13:805657. [PMID: 35273596 PMCID: PMC8902072 DOI: 10.3389/fimmu.2022.805657] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple Sclerosis (MS) is considered the most frequent inflammatory demyelinating disease of the central nervous system (CNS). It occurs with a variable prevalence across the world. A rich armamentarium of disease modifying therapies selectively targeting specific actions of the immune system is available for the treatment of MS. Understanding how and where immune cells are primed, how they access the CNS in MS and how immunomodulatory treatments affect neuroinflammation requires a proper knowledge on the mechanisms regulating immune cell trafficking and the special anatomy of the CNS. The brain barriers divide the CNS into different compartments that differ with respect to their accessibility to cells of the innate and adaptive immune system. In steady state, the blood-brain barrier (BBB) limits immune cell trafficking to activated T cells, which can reach the cerebrospinal fluid (CSF) filled compartments to ensure CNS immune surveillance. In MS immune cells breach a second barrier, the glia limitans to reach the CNS parenchyma. Here we will summarize the role of the endothelial, epithelial and glial brain barriers in regulating immune cell entry into the CNS and which immunomodulatory treatments for MS target the brain barriers. Finally, we will explore current knowledge on genetic and environmental factors that may influence immune cell entry into the CNS during neuroinflammation in Africa.
Collapse
Affiliation(s)
| | - Houyam Tibar
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | - Wafa Regragui
- Medical School of Rabat, Mohamed 5 University, Rabat, Morocco.,Hôpital des spécialités de Rabat, Ibn Sina University Hospital of Rabat, Rabat, Morocco
| | | |
Collapse
|
29
|
Català-Moll F, Ferreté-Bonastre AG, Godoy-Tena G, Morante-Palacios O, Ciudad L, Barberà L, Fondelli F, Martínez-Cáceres EM, Rodríguez-Ubreva J, Li T, Ballestar E. Vitamin D receptor, STAT3, and TET2 cooperate to establish tolerogenesis. Cell Rep 2022; 38:110244. [DOI: 10.1016/j.celrep.2021.110244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022] Open
|
30
|
Oristrell J, Oliva JC, Casado E, Subirana I, Domínguez D, Toloba A, Balado A, Grau M. Vitamin D supplementation and COVID-19 risk: a population-based, cohort study. J Endocrinol Invest 2022; 45:167-179. [PMID: 34273098 PMCID: PMC8285728 DOI: 10.1007/s40618-021-01639-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE To analyze the associations between cholecalciferol or calcifediol supplementation, serum 25-hydroxyvitamin D (25OHD) levels and COVID-19 outcomes in a large population. METHODS All individuals ≥ 18 years old living in Barcelona-Central Catalonia (n = 4.6 million) supplemented with cholecalciferol or calcifediol from April 2019 to February 2020 were compared with propensity score-matched untreated controls. Outcome variables were SARS-CoV2 infection, severe COVID-19 and COVID-19 mortality occuring during the first wave of the pandemic. Demographical data, comorbidities, serum 25OHD levels and concomitant pharmacological treatments were collected as covariates. Associations between cholecalciferol or calcifediol use and outcome variables were analyzed using multivariate Cox proportional regression. RESULTS Cholecalciferol supplementation (n = 108,343) was associated with slight protection from SARS-CoV2 infection (n = 4352 [4.0%] vs 9142/216,686 [4.2%] in controls; HR 0.95 [CI 95% 0.91-0.98], p = 0.004). Patients on cholecalciferol treatment achieving 25OHD levels ≥ 30 ng/ml had lower risk of SARS-CoV2 infection, lower risk of severe COVID-19 and lower COVID-19 mortality than unsupplemented 25OHD-deficient patients (56/9474 [0.6%] vs 96/7616 [1.3%]; HR 0.66 [CI 95% 0.46-0.93], p = 0.018). Calcifediol use (n = 134,703) was not associated with reduced risk of SARS-CoV2 infection or mortality in the whole cohort. However, patients on calcifediol treatment achieving serum 25OHD levels ≥ 30 ng/ml also had lower risk of SARS-CoV2 infection, lower risk of severe COVID-19, and lower COVID-19 mortality compared to 25OHD-deficient patients not receiving vitamin D supplements (88/16276 [0.5%] vs 96/7616 [1.3%]; HR 0.56 [CI 95% 0.42-0.76], p < 0.001). CONCLUSIONS In this large, population-based study, we observed that patients supplemented with cholecalciferol or calcifediol achieving serum 25OHD levels ≥ 30 ng/ml were associated with better COVID-19 outcomes.
Collapse
Affiliation(s)
- J Oristrell
- Internal Medicine Service, Corporació Sanitària Parc Taulí, Parc Taulí s/n, 08208, Sabadell, Barcelona, Catalonia.
- Institut d'Investigació i Innovació I3PT, Sabadell, Catalonia.
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Catalonia.
| | - J C Oliva
- Institut d'Investigació i Innovació I3PT, Sabadell, Catalonia
| | - E Casado
- Rheumatology Service, Corporació Sanitària Parc Taulí, Parc Taulí s/n, 08208, Sabadell, Barcelona, Catalonia.
| | - I Subirana
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Catalonia
| | - D Domínguez
- Agència de Qualitat i Avaluació Sanitària, Generalitat de Catalunya, Barcelona, Catalonia
| | - A Toloba
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Catalonia
| | - A Balado
- Internal Medicine Service, Corporació Sanitària Parc Taulí, Parc Taulí s/n, 08208, Sabadell, Barcelona, Catalonia
| | - M Grau
- CIBER of Epidemiology and Public Health (CIBERESP), Barcelona, Catalonia
- Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Catalonia
- Department of Medicine, University of Barcelona, Barcelona, Catalonia
| |
Collapse
|
31
|
Vitamin D deficiency after allogeneic hematopoietic cell transplantation promotes T-cell activation and is inversely associated with an EZH2-ID3 signature. Transplant Cell Ther 2022; 28:18.e1-18.e10. [PMID: 34597852 PMCID: PMC8792200 DOI: 10.1016/j.jtct.2021.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/10/2021] [Accepted: 09/22/2021] [Indexed: 01/03/2023]
Abstract
Vitamin D promotes a shift from a proinflammatory to a more tolerogenic immune state in allogeneic hematopoietic cell transplant (HCT) recipients. The dominant mechanism responsible for this shift has not been elucidated. We took a multifaceted approach to evaluating the clinical and immunologic impact of low vitamin D levels in 53 HCT recipients. We used 28-plex flow cytometry for immunophenotyping, serum cytokine levels, T-cell cytokine production, and T-cell whole genome transcription. The median day-30 vitamin D level was 20 ng/mL, and deficiency was common in younger patients undergoing myeloablative transplantation. Low vitamin D levels were associated with a high CD8/Treg ratio, increased serum levels and T-cell production of proinflammatory cytokines, and a gene expression signature of unrestrained T-cell proliferation and epigenetic modulation through the PRC2/EZH2 complex. Immunophenotyping confirmed a strong association between high levels of vitamin D and an activated EZH2 signature, characterized by overexpression of ID3, which has a role in effector T-cell differentiation. Our findings demonstrate the critical role of vitamin D in modulating T-cell function in human GVHD and identify a previously undescribed interaction with EZH2 and ID3, which may impact effector differentiation and has implications to cell therapies and other forms of cancer immunotherapy. © 20XX American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Collapse
|
32
|
Rea IM, Alexander HD. Triple jeopardy in ageing: COVID-19, co-morbidities and inflamm-ageing. Ageing Res Rev 2022; 73:101494. [PMID: 34688926 PMCID: PMC8530779 DOI: 10.1016/j.arr.2021.101494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023]
Abstract
Covid-19 endangers lives, has disrupted normal life, changed the way medicine is practised and is likely to alter our world for the foreseeable future. Almost two years on since the presumptive first diagnosis of COVID-19 in China, more than two hundred and fifty million cases have been confirmed and more than five million people have died globally, with the figures rising daily. One of the most striking aspects of COVID-19 illness is the marked difference in individuals' experiences of the disease. Some, most often younger groups, are asymptomatic, whereas others become severely ill with acute respiratory distress syndrome (ARDS), pneumonia or proceed to fatal organ disease. The highest death rates are in the older and oldest age groups and in people with co-morbidities such as diabetes, heart disease and obesity. Three major questions seem important to consider. What do we understand about changes in the immune system that might contribute to the older person's risk of developing severe COVID-19? What factors contribute to the higher morbidity and mortality in older people with COVID-19? How could immunocompetence in the older and the frailest individuals and populations be supported and enhanced to give protection from serious COVID-19 illness?
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, United Kingdom; Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom; Meadowlands Ambulatory Care Centre, Belfast Health and Social Care Trust, Belfast, United Kingdom.
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Londonderry, United Kingdom
| |
Collapse
|
33
|
Cho DH, Lee GY, An JH, Han SN. The Effects of 1,25(OH)2D3 treatment on Immune Responses and Intracellular Metabolic Pathways of Bone Marrow-Derived Dendritic Cells from Lean and Obese Mice. IUBMB Life 2021; 74:378-390. [PMID: 34962347 DOI: 10.1002/iub.2592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/15/2021] [Indexed: 11/11/2022]
Abstract
Vitamin D affects differentiation, maturation, and activation of dendritic cells (DCs). Obesity-related immune dysfunction is associated with metabolic changes in immune cells. Objectives of the study are to investigate the effects of vitamin D and obesity on immune responses and markers related to immunometabolism of bone marrow-derived dendritic cells (BMDCs). Bone marrow cells (BMCs) were isolated from lean and obese mice, and BMDCs were generated by culturing BMCs with rmGM-CSF. BMDCs were treated with 1 or 10 nM of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), and maturation was induced by LPS (50 ng/mL) stimulation for 24 h. Cell phenotypes, cytokine productions, and expression of proteins and genes involved in Akt/mTOR signaling pathway and glycolytic pathway were determined. 1,25(OH)2D3 treatment inhibited differentiation of BMDCs (CD11c+ %), expression of phenotypes related with DC function (MHC class II and CD86) and production of IL-12p70 in both lean and obese mice. The expression of PD-L1 and the ratio of IL-10/IL-12p70 were increased by 1,25(OH)2D3. With 1,25(OH)2D3 treatment, Akt/mTOR signaling pathway was suppressed, and expression of genes related to glycolysis (Glut1, Pfkfb4, Hif1A) was increased. The upregulation of glycolysis-related genes observed with 1,25(OH)2D3 treatment seems to be associated with the induction of tolerogenic features of BMDCs from lean and obese mice, and Hif1A seems to have a potential role in conveying the effect of 1,25(OH)2D3 on glycolysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Da Hye Cho
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Ga Young Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Jeong Hee An
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul, Korea.,Research Institute of Human Ecology, Seoul National University, Seoul, Korea
| |
Collapse
|
34
|
Impact of carbamazepine on vitamin D levels: A meta-analysis. Epilepsy Res 2021; 178:106829. [PMID: 34847425 DOI: 10.1016/j.eplepsyres.2021.106829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023]
Abstract
PURPOSE There are longstanding concerns about the impact of enzyme-inducing anti-seizure medications (ASMs) on vitamin D, an important molecule in both bone metabolism and inflammation pathways. The relationship between chronic use of carbamazepine and vitamin D levels has been studied, but no comprehensive review to inform practitioners and policymakers is currently available. We performed a meta-analysis on studies that measured 25-hydroxyvitamin D (25OHD) levels in persons taking carbamazepine to determine whether this drug significantly reduces circulating 25OHD. PRINCIPAL RESULTS From a literature search of the terms "carbamazepine" and "vitamin D", we identified 12 studies that measured 25OHD levels in persons on carbamazepine monotherapy groups and controls. Persons taking carbamazepine had significantly lower 25OHD levels than persons not taking carbamazepine. The average 25OHD levels of carbamazepine-treated patients across all studies was 21.8 ng/mL (IQR 15.4,26.0) whereas 25OHD levels of control subjects was 28.0 ng/mL (IQR 20.8,30.4). The weighted difference of means was 4.00 ng/mL of 25OHD. Neither age nor sex nor duration of carbamazepine therapy had a significant impact on this finding. The effect was similar irrespective of whether the comparator group consisted of healthy controls or epilepsy patients taking non-inducing medications. MAJOR CONCLUSIONS Carbamazepine use is associated with a reduction of 25OHD levels. In combination with other literature establishing the problematic metabolic effects of carbamazepine, this meta-analysis provides additional evidence in favor of the use of alternative ASMs as first-line agents. At minimum, vitamin D supplementation should be strongly considered for patients prescribed carbamazepine.
Collapse
|
35
|
Džopalić T, Božić-Nedeljković B, Jurišić V. The role of vitamin A and vitamin D in modulation of the immune response with a focus on innate lymphoid cells. Cent Eur J Immunol 2021; 46:264-269. [PMID: 34764797 PMCID: PMC8568032 DOI: 10.5114/ceji.2021.103540] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/03/2021] [Indexed: 01/21/2023] Open
Abstract
The immune system with its numerous and complex interactions helps to protect the host from pathogenic microorganisms, and enables cleaning of damaged tissues. It is also associated with constant "monitoring" of the appearance of malignant cells and their elimination that can occur in the human body. Such a role depends on many factors including adequate intake of nutrients, including vitamins. The effect of vitamin supplementation on the modulation of the immune response has always been the focus of numerous studies. Vitamins A and D have been shown to have the greatest immune-modulatory effect. In this review, we discuss and consider the possible roles of vitamins A and D on the immune response through innate and adaptive immune cells, with special focus on the cell population recently characterized as innate lymphoid cells. Recent literature data indicate that vitamin A and its metabolites modulate the balance between Th1 and Th2 immunity. In addition, vitamin D expresses protective effects on the innate immune system and inhibitory effects on adaptive immunity.
Collapse
Affiliation(s)
- Tanja Džopalić
- Department of Immunology, University of Niš, Medical Faculty, Niš, Serbia
| | - Biljana Božić-Nedeljković
- Institute for Physiology and Biochemistry “Ivan Djaja” Belgrade, Faculty of Biology, University of Belgrade, Serbia
| | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
36
|
Yeung CY, Chiang Chiau JS, Cheng ML, Chan WT, Jiang CB, Chang SW, Liu CY, Chang CW, Lee HC. Effects of Vitamin D-Deficient Diet on Intestinal Epithelial Integrity and Zonulin Expression in a C57BL/6 Mouse Model. Front Med (Lausanne) 2021; 8:649818. [PMID: 34414198 PMCID: PMC8369235 DOI: 10.3389/fmed.2021.649818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Aims: Vitamin D (VD) plays an important role not only in mineral balance and skeletal maintenance but also in immune modulation. VD status was found correlated with the pathophysiology and severity of inflammatory bowel diseases and other autoimmune disorders. Epithelial barrier function is primarily regulated by the tight-junction (TJ) proteins. In this study, we try to establish an animal model by raising mice fed VD-deficient diet and to investigate the effects of VD-deficient diet on gut integrity and zonulin expression. Methods: Male C57BL/6 mice were administered either VD-deficient [VDD group, 25(OH)2D3 0 IU/per mouse] or VD-sufficient [VDS group, 25(OH)2D3 37.8 IU/per mouse] special diets for 7 weeks. Body weight and diet intake were recorded weekly. Serum VD levels were detected. After sacrifice, jejunum and colon specimens were collected. The villus length and crypt depth of the jejunum as well as mucosa thickness of the colon were measured. Various serum pro-inflammatory cytokines and intestinal TJ proteins were assessed. The serum level of zonulin and the mRNA expression of jejunum zonulin were also investigated. Results: We found that mice fed a VDD diet had a lower serum level of VD after 7 weeks (p < 0.001). VDD mice gained significant less weight (p = 0.022) and took a similar amount of diet (p = 0.398) when compared to mice raised on a VDS diet. Significantly decreased colon mucosa thickness was found in VDD mice compared with the VDS group (p = 0.022). A marked increase in serum pro-inflammatory cytokine levels was demonstrated in VDD mice. All relative levels of claudin (CLD)-1 (p = 0.007), CLD-3 (p < 0.001), CLD-7 (p < 0.001), and zonulin-1 (ZO-1, p = 0.038) protein expressions were significantly decreased in the VDD group when compared to the VDS group. A significant upregulation of mRNA expression of jejunum zonulin (p = 0.043) and elevated serum zonulin (p = 0.001) were found in the VDD group. Conclusions: We successfully demonstrated that VDD could lead to impaired barrier properties. We assume that sufficient VD could maintain intestinal epithelial integrity and prevent mucosal barrier dysfunction. VD supplementation may serve as part of a therapeutic strategy for human autoimmune and infectious diseases with intestinal barrier dysfunction (leaky gut) in the future. To our knowledge, this is the first study to demonstrate that VDD could lead to a significant upregulation in mRNA expression of the jejunum zonulin level and also a marked elevation of serum zonulin in a mouse model.
Collapse
Affiliation(s)
- Chun-Yan Yeung
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | | | - Mei-Lein Cheng
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wai-Tao Chan
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chuen-Bin Jiang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Szu-Wen Chang
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Chia-Yuan Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ching-Wei Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Hepatology and Gastroenterology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hung-Chang Lee
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, MacKay Children's Hospital, Taipei, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
37
|
Fakhoury HMA, Kvietys PR, Shakir I, Shams H, Grant WB, Alkattan K. Lung-Centric Inflammation of COVID-19: Potential Modulation by Vitamin D. Nutrients 2021; 13:2216. [PMID: 34203190 PMCID: PMC8308422 DOI: 10.3390/nu13072216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
SARS-CoV-2 infects the respiratory tract and leads to the disease entity, COVID-19. Accordingly, the lungs bear the greatest pathologic burden with the major cause of death being respiratory failure. However, organs remote from the initial site of infection (e.g., kidney, heart) are not spared, particularly in severe and fatal cases. Emerging evidence indicates that an excessive inflammatory response coupled with a diminished antiviral defense is pivotal in the initiation and development of COVID-19. A common finding in autopsy specimens is the presence of thrombi in the lungs as well as remote organs, indicative of immunothrombosis. Herein, the role of SARS-CoV-2 in lung inflammation and associated sequelae are reviewed with an emphasis on immunothrombosis. In as much as vitamin D is touted as a supplement to conventional therapies of COVID-19, the impact of this vitamin at various junctures of COVID-19 pathogenesis is also addressed.
Collapse
Affiliation(s)
- Hana. M. A. Fakhoury
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Peter R. Kvietys
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Ismail Shakir
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - Hashim Shams
- Department of Physiology, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia; (P.R.K.); (I.S.); (H.S.)
| | - William B. Grant
- Sunlight, Nutrition, and Health Research Center, P.O. Box 641603, San Francisco, CA 94164-1603, USA;
| | - Khaled Alkattan
- Department of Surgery, College of Medicine, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia;
| |
Collapse
|
38
|
Mijnheer G, Lutter L, Mokry M, van der Wal M, Scholman R, Fleskens V, Pandit A, Tao W, Wekking M, Vervoort S, Roberts C, Petrelli A, Peeters JGC, Knijff M, de Roock S, Vastert S, Taams LS, van Loosdregt J, van Wijk F. Conserved human effector Treg cell transcriptomic and epigenetic signature in arthritic joint inflammation. Nat Commun 2021; 12:2710. [PMID: 33976194 PMCID: PMC8113485 DOI: 10.1038/s41467-021-22975-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 04/08/2021] [Indexed: 02/07/2023] Open
Abstract
Treg cells are critical regulators of immune homeostasis, and environment-driven Treg cell differentiation into effector (e)Treg cells is crucial for optimal functioning. However, human Treg cell programming in inflammation is unclear. Here, we combine transcriptional and epigenetic profiling to identify a human eTreg cell signature. Inflammation-derived functional Treg cells have a transcriptional profile characterized by upregulation of both a core Treg cell (FOXP3, CTLA4, TIGIT) and effector program (GITR, BLIMP-1, BATF). We identify a specific human eTreg cell signature that includes the vitamin D receptor (VDR) as a predicted regulator in eTreg cell differentiation. H3K27ac/H3K4me1 occupancy indicates an altered (super-)enhancer landscape, including enrichment of the VDR and BATF binding motifs. The Treg cell profile has striking overlap with tumor-infiltrating Treg cells. Our data demonstrate that human inflammation-derived Treg cells acquire a conserved and specific eTreg cell profile guided by epigenetic changes, and fine-tuned by environment-specific adaptations.
Collapse
MESH Headings
- Adolescent
- Arthritis, Juvenile/genetics
- Arthritis, Juvenile/immunology
- Arthritis, Juvenile/pathology
- Base Sequence
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/immunology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Case-Control Studies
- Cell Differentiation
- Child
- Child, Preschool
- Epigenesis, Genetic
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression Profiling
- Gene Regulatory Networks
- Glucocorticoid-Induced TNFR-Related Protein/genetics
- Glucocorticoid-Induced TNFR-Related Protein/immunology
- Histones/genetics
- Histones/immunology
- Humans
- Joints/immunology
- Joints/pathology
- Male
- Metabolic Networks and Pathways/genetics
- Metabolic Networks and Pathways/immunology
- Positive Regulatory Domain I-Binding Factor 1/genetics
- Positive Regulatory Domain I-Binding Factor 1/immunology
- Primary Cell Culture
- Receptors, Calcitriol/genetics
- Receptors, Calcitriol/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Transcriptome
- Young Adult
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lisanne Lutter
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Michal Mokry
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Department of Pediatrics, University Medical Center Utrecht, Utrecht, The Netherlands
- Epigenomics facility, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marlot van der Wal
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Rianne Scholman
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Veerle Fleskens
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Aridaman Pandit
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Weiyang Tao
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark Wekking
- Epigenomics facility, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stephin Vervoort
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ceri Roberts
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Alessandra Petrelli
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Janneke G C Peeters
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Knijff
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sytze de Roock
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Sebastiaan Vastert
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, School of Immunology & Microbial Sciences, King's College London, London, UK
| | - Jorg van Loosdregt
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Translational Immunology, Pediatric Immunology & Rheumatology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
39
|
McCullough PJ, McCullough WP, Lehrer D, Travers JB, Repas SJ. Oral and Topical Vitamin D, Sunshine, and UVB Phototherapy Safely Control Psoriasis in Patients with Normal Pretreatment Serum 25-Hydroxyvitamin D Concentrations: A Literature Review and Discussion of Health Implications. Nutrients 2021; 13:1511. [PMID: 33947070 PMCID: PMC8146035 DOI: 10.3390/nu13051511] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
Vitamin D, sunshine and UVB phototherapy were first reported in the early 1900s to control psoriasis, cure rickets and cure tuberculosis (TB). Vitamin D also controlled asthma and rheumatoid arthritis with intakes ranging from 60,000 to 600,000 International Units (IU)/day. In the 1980s, interest in treating psoriasis with vitamin D rekindled. Since 1985 four different oral forms of vitamin D (D2, D3, 1-hydroxyvitaminD3 (1(OH)D3) and 1,25-dihydroxyvitaminD3 (calcitriol)) and several topical formulations have been reported safe and effective treatments for psoriasis-as has UVB phototherapy and sunshine. In this review we show that many pre-treatment serum 25(OH)D concentrations fall within the current range of normal, while many post-treatment concentrations fall outside the upper limit of this normal (100 ng/mL). Yet, psoriasis patients showed significant clinical improvement without complications using these treatments. Current estimates of vitamin D sufficiency appear to underestimate serum 25(OH)D concentrations required for optimal health in psoriasis patients, while concentrations associated with adverse events appear to be much higher than current estimates of safe serum 25(OH)D concentrations. Based on these observations, the therapeutic index for vitamin D needs to be reexamined in the treatment of psoriasis and other diseases strongly linked to vitamin D deficiency, including COVID-19 infections, which may also improve safely with sufficient vitamin D intake or UVB exposure.
Collapse
Affiliation(s)
- Patrick J. McCullough
- Medical Services Department, Summit Behavioral Healthcare, Ohio Department of Mental Health and Addiction Services, 1101 Summit Rd, Cincinnati, OH 45237, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | | | - Douglas Lehrer
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| | - Steven J. Repas
- Wright State University Boonshoft School of Medicine, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA;
| |
Collapse
|
40
|
Briceno Noriega D, Savelkoul HFJ. Vitamin D and Allergy Susceptibility during Gestation and Early Life. Nutrients 2021; 13:1015. [PMID: 33801051 PMCID: PMC8003945 DOI: 10.3390/nu13031015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/12/2021] [Indexed: 02/07/2023] Open
Abstract
Worldwide, the prevalence of allergies in young children, but also vitamin D deficiency during pregnancy and in newborns is rising. Vitamin D modulates the development and activity of the immune system and a low vitamin D status during pregnancy and in early life might be associated with an increased risk to develop an allergy during early childhood. This review studies the effects of vitamin D during gestation and early life, on allergy susceptibility in infants. The bioactive form of vitamin D, 1,25(OH)2D, inhibits maturation and results in immature dendritic cells that cause a decreased differentiation of naive T cells into effector T cells. Nevertheless, the development of regulatory T cells and the production of interleukin-10 was increased. Consequently, a more tolerogenic immune response developed against antigens. Secondly, binding of 1,25(OH)2D to epithelial cells induces the expression of tight junction proteins resulting in enhanced epithelial barrier function. Thirdly, 1,25(OH)2D increased the expression of anti-microbial peptides by epithelial cells that also promoted the defense mechanism against pathogens, by preventing an invasive penetration of pathogens. Immune intervention by vitamin D supplementation can mitigate the disease burden from asthma and allergy. In conclusion, our review indicates that a sufficient vitamin D status during gestation and early life can lower the susceptibility to develop an allergy in infants although there remains a need for more causal evidence.
Collapse
Affiliation(s)
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University & Research, 6708 WD Wageningen, The Netherlands;
| |
Collapse
|
41
|
Saksida T, Jevtić B, Djedović N, Miljković Đ, Stojanović I. Redox Regulation of Tolerogenic Dendritic Cells and Regulatory T Cells in the Pathogenesis and Therapy of Autoimmunity. Antioxid Redox Signal 2021; 34:364-382. [PMID: 32458699 DOI: 10.1089/ars.2019.7999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Significance: Autoimmune diseases are progressively affecting westernized societies, as the proportion of individuals suffering from autoimmunity is steadily increasing over the past decades. Understanding the role of reactive oxygen species (ROS) in modulation of the immune response in the pathogenesis of autoimmune disorders is of utmost importance. The focus of this review is the regulation of ROS production within tolerogenic dendritic cells (tolDCs) and regulatory T (Treg) cells that have the essential role in the prevention of autoimmune diseases and significant potency in their therapy. Recent Advances: It is now clear that ROS are extremely important for the proper function of both DC and T cells. Antigen processing/presentation and the ability of DC to activate T cells depend upon the ROS availability. Treg differentiation, suppressive function, and stability are profoundly influenced by ROS presence. Critical Issues: Although a plethora of results on the relation between ROS and immune cells exist, it remains unclear whether ROS modulation is a productive way for skewing T cells and DCs toward a tolerogenic phenotype. Also, the possibility of ROS modulation for enhancement of regulatory properties of DC and Treg during their preparation for use in cellular therapy has to be clarified. Future Directions: Studies of DC and T cell redox regulation should allow for the improvement of the therapy of autoimmune diseases. This could be achieved through the direct therapeutic application of ROS modulators in autoimmunity, or indirectly through ROS-dependent enhancement of tolDC and Treg preparation for cell-based immunotherapy. Antioxid. Redox Signal. 34, 364-382.
Collapse
Affiliation(s)
- Tamara Saksida
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Neda Djedović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research "Siniša Stanković," National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
42
|
Herrmann N, Nümm TJ, Iwamoto K, Leib N, Koch S, Majlesain Y, Maintz L, Kirins H, Schnautz S, Bieber T. Vitamin D 3-Induced Promotor Dissociation of PU.1 and YY1 Results in FcεRI Reduction on Dendritic Cells in Atopic Dermatitis. THE JOURNAL OF IMMUNOLOGY 2021; 206:531-539. [PMID: 33443066 DOI: 10.4049/jimmunol.2000667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Atopic dermatitis (AD) is a severe inflammatory skin disease. Langerhans cells and inflammatory dendritic epidermal cells (IDEC) are located in the epidermis of AD patients and contribute to the inflammatory processes. Both express robustly the high-affinity receptor for IgE, FcεRI, and thereby sense allergens. A beneficial role of vitamin D3 in AD is discussed to be important especially in patients with allergic sensitization. We hypothesized that vitamin D3 impacts FcεRI expression and addressed this in human ex vivo skin, in vitro Langerhans cells, and IDEC models generated from primary human precursor cells. We show in this article that biologically active vitamin D3 [1,25(OH)2-D3] significantly downregulated FcεRI at the protein and mRNA levels of the receptor's α-chain, analyzed by flow cytometry and quantitative RT-PCR. We also describe the expression of a functional vitamin D receptor in IDEC. 1,25(OH)2-D3-mediated FcεRI reduction was direct and resulted in impaired activation of IDEC upon FcεRI engagement as monitored by CD83 expression. FcεRI regulation by 1,25(OH)2-D3 was independent of maturation and expression levels of microRNA-155 and PU.1 (as upstream regulatory axis of FcεRI) and transcription factors Elf-1 and YY1. However, 1,25(OH)2-D3 induced dissociation of PU.1 and YY1 from the FCER1A promotor, evaluated by chromatin immunoprecipitation. We show that vitamin D3 directly reduces FcεRI expression on dendritic cells by inhibiting transcription factor binding to its promotor and subsequently impairs IgE-mediated signaling. Thus, vitamin D3 as an individualized therapeutic supplement for those AD patients with allergic sensitization interferes with IgE-mediated inflammatory processes in AD patients.
Collapse
Affiliation(s)
- Nadine Herrmann
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and .,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Tim J Nümm
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Kazumasa Iwamoto
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Nicole Leib
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Susanne Koch
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Yasmin Majlesain
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Laura Maintz
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| | - Helene Kirins
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Sylvia Schnautz
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and
| | - Thomas Bieber
- Department of Dermatology and Allergy, University Hospital of Bonn, D-53127 Bonn, Germany; and.,Christine Kühne-Center for Allergy Research and Education, CH-7265 Davos, Switzerland
| |
Collapse
|
43
|
Savastio S, Cadario F, D'Alfonso S, Stracuzzi M, Pozzi E, Raviolo S, Rizzollo S, Gigliotti L, Boggio E, Bellomo G, Basagni C, Bona G, Rabbone I, Dianzani U, Prodam F. Vitamin D Supplementation Modulates ICOS+ and ICOS- Regulatory T Cell in Siblings of Children With Type 1 Diabetes. J Clin Endocrinol Metab 2020; 105:5897243. [PMID: 32844222 DOI: 10.1210/clinem/dgaa588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Vitamin D plays an immunoregulatory activity. The aim of this study was to assess the correlation between blood serum 25(OH)D levels and Th17 and Treg circulating subsets, mainly Treg/inducible costimulatory-positive (ICOS+), which seems to have a protective role in autoimmunity, in children with type 1 diabetes mellitus (T1D) and their healthy siblings (S). The secondary aim was to evaluate the impact of vitamin D supplementation on these subsets. PATIENTS AND METHODS 22 T1D and 33 S were enrolled. Glucose, hemoglobin A1c, 25 OH vitamin D (25[OH]D), T helper type 17 (Th17; CD4+CCR6+), regulatory T cells (Treg; CD4+CD25+Foxp3+), and Treg/ICOS+ cells were evaluated. According to human leukocyte antigen (HLA) haplotypes, subjects were classified as "at risk" (HLA+), "protective haplotypes" (HLA-; "nested controls"), and "undetermined" (HLAUND). T1D and S subjects were supplemented with cholecalciferol 1000 IU/die and evaluated after 6 months. RESULTS Vitamin D insufficiency (74.4%) and deficiency (43%) were frequent. S subjects with 25(OH)D levels <25 nmol/L had Th17, Treg (p < 0.01), and Treg/ICOS+ (P < 0.05) percentages higher than subjects with 25(OH)D >75 nmol/L. Treg/ICOS+ percentages (P < 0.05) were higher in HLA- S subjects compared to percentages observed in S with T1D. At baseline, in S subjects, a decreasing trend in Th17 and Treg/ICOS+ values (P < 0.05) from vitamin D deficiency to sufficiency was observed; 25(OH)D levels were negative predictors of Treg/ICOS+ (R2 = 0.301) and Th17 percentages (R2 = 0.138). After 6 months, supplemented S subjects showed higher 25(OH)D levels (P < 0.0001), and lower Th17 (P < 0.0001) and Treg/ICOS+ (P < 0.05) percentages than at baseline; supplemented T1D patients only had a decrease in Th17 levels (P < 0.05). CONCLUSION Serum 25(OH)D levels seem to affect Th17 and Treg cell subsets in S subjects, consistent with its immunomodulating role. HLA role should be investigated in a larger population.
Collapse
Affiliation(s)
- Silvia Savastio
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
| | - Francesco Cadario
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Sandra D'Alfonso
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Marta Stracuzzi
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
| | - Erica Pozzi
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
| | - Silvia Raviolo
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
| | - Stefano Rizzollo
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
| | - Luca Gigliotti
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Elena Boggio
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Giorgio Bellomo
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Chiara Basagni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Gianni Bona
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ivana Rabbone
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Umberto Dianzani
- Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
- SCDU of Clinical Biochemistry, University Hospital Maggiore della Carità, Novara, Italy
| | - Flavia Prodam
- SCDU of Pediatrics, University Hospital Maggiore della Carità, Novara, Italy
- Interdisciplinary Research Center of Autoimmune Diseases, Università del Piemonte Orientale, Novara, Italy
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
44
|
Di Renzo L, Gualtieri P, Pivari F, Soldati L, Attinà A, Leggeri C, Cinelli G, Tarsitano MG, Caparello G, Carrano E, Merra G, Pujia AM, Danieli R, De Lorenzo A. COVID-19: Is there a role for immunonutrition in obese patient? J Transl Med 2020; 18:415. [PMID: 33160363 PMCID: PMC7647877 DOI: 10.1186/s12967-020-02594-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
On December 12, 2019 a new coronavirus (SARS-CoV-2) emerged in Wuhan, China, triggering a pandemic of severe acute respiratory syndrome in humans (COVID-19). Today, the scientific community is investing all the resources available to find any therapy and prevention strategies to defeat COVID-19. In this context, immunonutrition can play a pivotal role in improving immune responses against viral infections. Immunonutrition has been based on the concept that malnutrition impairs immune function. Therefore, immunonutrition involves feeding enriched with various pharmaconutrients (Omega 3 Fatty Acids, Vitamin C, Arginine, Glutamine, Selenium, Zinc, Vitamin, E and Vitamin D) to modulate inflammatory responses, acquired immune response and to improve patient outcomes. In literature, significant evidences indicate that obesity, a malnutrition state, negatively impacts on immune system functionality and on host defense, impairing protection from infections. Immunonutrients can promote patient recovery by inhibiting inflammatory responses and regulating immune function. Immune system dysfunction is considered to increase the risk of viral infections, such as SARS-CoV-2, and was observed in different pathological situations. Obese patients develop severe COVID-19 sequelae, due to the high concentrations of TNF-α, MCP-1 and IL-6 produced in the meantime by visceral and subcutaneous adipose tissue and by innate immunity. Moreover, leptin, released by adipose tissue, helps to increase inflammatory milieu with a dysregulation of the immune response. Additionally, gut microbiota plays a crucial role in the maturation, development and functions of both innate and adaptive immune system, as well as contributing to develop obese phenotype. The gut microbiota has been shown to affect lung health through a vital crosstalk between gut microbiota and lungs, called the "gut-lung axis". This axis communicates through a bi-directional pathway in which endotoxins, or microbial metabolites, may affect the lung through the blood and when inflammation occurs in the lung, this in turn can affect the gut microbiota. Therefore, the modulation of gut microbiota in obese COVID-19 patients can play a key role in immunonutrition therapeutic strategy. This umbrella review seeks to answer the question of whether a nutritional approach can be used to enhance the immune system's response to obesity in obese patients affected by COVID-19.
Collapse
Affiliation(s)
- Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Francesca Pivari
- Department of Health Sciences, University of Milan, Via A. Di Rudinì 8, 20142, Milan, Italy.
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Via A. Di Rudinì 8, 20142, Milan, Italy
| | - Alda Attinà
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Claudia Leggeri
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giulia Cinelli
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
- Predictive and Preventive Medicine Research Unit, "Bambino Gesù" Children Hospital IRCCS, 00165, Rome, Italy
| | - Maria Grazia Tarsitano
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy
| | - Giovanna Caparello
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Elena Carrano
- School of Specialization in Food Sciences, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Giuseppe Merra
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Alberto Maria Pujia
- Department of Surgery, University of Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Roberta Danieli
- Telematic University of San Raffaele Rome, 00166, Rome, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| |
Collapse
|
45
|
Gasmi A, Tippairote T, Mujawdiya PK, Peana M, Menzel A, Dadar M, Gasmi Benahmed A, Bjørklund G. Micronutrients as immunomodulatory tools for COVID-19 management. Clin Immunol 2020; 220:108545. [PMID: 32710937 PMCID: PMC7833875 DOI: 10.1016/j.clim.2020.108545] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 01/08/2023]
Abstract
COVID-19 rapidly turned to a global pandemic posing lethal threats to overwhelming health care capabilities, despite its relatively low mortality rate. The clinical respiratory symptoms include dry cough, fever, anosmia, breathing difficulties, and subsequent respiratory failure. No known cure is available for COVID-19. Apart from the anti-viral strategy, the supports of immune effectors and modulation of immunosuppressive mechanisms is the rationale immunomodulation approach in COVID-19 management. Diet and nutrition are essential for healthy immunity. However, a group of micronutrients plays a dominant role in immunomodulation. The deficiency of most nutrients increases the individual susceptibility to virus infection with a tendency for severe clinical presentation. Despite a shred of evidence, the supplementation of a single nutrient is not promising in the general population. Individuals at high-risk for specific nutrient deficiencies likely benefit from supplementation. The individual dietary and nutritional status assessments are critical for determining the comprehensive actions in COVID-19.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, Villeurbanne, France
| | - Torsak Tippairote
- Philosophy Program in Nutrition, Faculty of Medicine, Ramathibodi Hospital and Institute of Nutrition, Mahidol University, Bangkok, Thailand; Nutritional and Environmental Medicine Department, BBH Hospital, Bangkok, Thailand
| | | | | | | | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Mo i Rana, Norway.
| |
Collapse
|
46
|
Iberg CA, Hawiger D. Natural and Induced Tolerogenic Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:733-744. [PMID: 32015076 DOI: 10.4049/jimmunol.1901121] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 11/19/2022]
Abstract
Dendritic cells (DCs) are highly susceptible to extrinsic signals that modify the functions of these crucial APCs. Maturation of DCs induced by diverse proinflammatory conditions promotes immune responses, but certain signals also induce tolerogenic functions in DCs. These "induced tolerogenic DCs" help to moderate immune responses such as those to commensals present at specific anatomical locations. However, also under steady-state conditions, some DCs are characterized by inherent tolerogenic properties. The immunomodulatory mechanisms constitutively present in such "natural tolerogenic DCs" help to promote tolerance to peripheral Ags. By extending tolerance initially established in the thymus, these functions of DCs help to regulate autoimmune and other immune responses. In this review we will discuss the mechanisms and functions of natural and induced tolerogenic DCs and offer further insight into how their possible manipulations may ultimately lead to more precise treatments for various immune-mediated conditions and diseases.
Collapse
Affiliation(s)
- Courtney A Iberg
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| | - Daniel Hawiger
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO 63104
| |
Collapse
|
47
|
Kerperien J, Veening-Griffioen D, Oja A, Wehkamp T, Jeurink PV, Garssen J, Knippels LMJ, Willemsen LEM. Dietary Vitamin D Supplementation Is Ineffective in Preventing Murine Cow's Milk Allergy, Irrespective of the Presence of Nondigestible Oligosaccharides. Int Arch Allergy Immunol 2020; 181:908-918. [PMID: 32814335 DOI: 10.1159/000509750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Cow's milk allergy (CMA) is one of the most common food allergies especially early in life. A mixture of nondigestible short-chain galacto-oligosaccharides, long-chain fructo-oligosaccharides, and pectin-derived acidic-oligosaccharides (GFA) may reduce allergy development and allergic symptoms in murine CMA. Recently, vitamin D (VitD) has been suggested to have beneficial effects in reducing allergy as well. OBJECTIVE In this study, the immune modulatory effect on allergy prevention using the combination of GFA and VitD was investigated. METHODS Female C3H/HeOuJ mice were fed a control or GFA-containing diet with depleted, standard (1,000 IU/kg), or supplemented (5,000 IU/kg) VitD content for 2 weeks before and during whey sensitization (n = 10-15). Mice were sensitized 5 times intragastrically with PBS as a control, whey as cow's milk allergen, and/or cholera toxin as adjuvant on a weekly interval. One week after the last sensitization, mice were intradermally challenged in both ear pinnae and orally with whey, subsequently the acute allergic skin response and shock symptoms were measured. After 18 h, terminal blood samples, mesenteric lymph nodes, and spleens were collected. Whey-specific immunoglobulin (Ig) E and IgG1 levels were measured by means of ELISA. T cell subsets and dendritic cells (DCs) were studied using flow cytometry. RESULTS Additional VitD supplementation did not lower the allergic symptoms compared to the standard VitD diet. CMA mice fed the GFA diet supplemented with VitD (GFA VitD+) significantly decreased the acute allergic skin response of whey sensitized mice when compared to the CMA mice fed VitD (VitD+) group (p < 0.05). The effect of GFA was not improved by extra VitD supplementation even though the CMA mice fed the GFA VitD+ diet had a significantly increased percentage of CD103+ DCs compared to the VitD+ group (p < 0.05). The VitD-deprived mice showed a high percentage of severe shock and many reached the humane endpoint; therefore, these groups were not further analyzed. CONCLUSIONS High-dose VitD supplementation in mice does not protect against CMA development in the presence or absence of GFA.
Collapse
Affiliation(s)
- JoAnn Kerperien
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Désirée Veening-Griffioen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research B.V, Utrecht, The Netherlands
| | - Anna Oja
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | | | - Prescilla V Jeurink
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research B.V, Utrecht, The Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research B.V, Utrecht, The Netherlands
| | - Leon M J Knippels
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Nutricia Research B.V, Utrecht, The Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands,
| |
Collapse
|
48
|
Harrison SR, Jutley G, Li D, Sahbudin I, Filer A, Hewison M, Raza K. Vitamin D and early rheumatoid arthritis. BMC Rheumatol 2020; 4:38. [PMID: 32728658 PMCID: PMC7384217 DOI: 10.1186/s41927-020-00134-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Previous studies have linked rheumatoid arthritis (RA) risk and disease activity with vitamin D-deficiency (low serum 25-hydroxyvitamin D (25OHD)), but a causal role for vitamin D in RA is still unclear, with conflicting results from many previous studies, partly due to heterogeneity in study design and patient populations. In this study we aimed to (1) analyse serum 25OHD in early inflammatory arthritis, (2) compare 25OHD with disease activity and fatigue in early RA and (3) determine whether low 25OHD is associated with progression to RA. METHODS An analysis of 790 patients recruited to the Birmingham Early Inflammatory Arthritis Cohort and followed longitudinally to determine clinical outcomes. The following were recorded at baseline: demographic data, duration of symptoms, duration of early morning stiffness (EMS), tender and swollen joint counts, Visual Analogue Scale (VAS) pain/fatigue/EMS, PHQ-9, HAQ and FACIT-Fatigue scores, DAS28-ESR, DAS28-CRP, CRP, ESR, anti-CCP antibody status, rheumatoid factor status, and serum 25OHD (ng/ml). Diagnosis was recorded at 0 and 12 months onwards as either RA, Undifferentiated Inflammatory Arthritis (UIA; synovitis not meeting other classification/diagnostic criteria), Clinically Suspect Arthralgia (CSA; arthralgia of an inflammatory type without synovitis), or Other. RESULTS Baseline demographic data were similar between all groups, with median symptom duration of 16.8-34.0 days. Baseline 25OHD was not significantly different between groups [median, interquartile range (IQR): RA 46.7, 30.0-73.3; UIA 51.4, 30.0-72.3; CSA 47.7, 30.3-73.0; Other 39.9, 28.6-62.2]. In RA (n = 335), there were no significant differences between 25OHD and measures of disease activity or fatigue. No association between 25OHD and progression from UIA or CSA to RA was observed. CONCLUSIONS There was no clear association between serum 25OHD and baseline diagnosis, RA disease activity, or progression from UIA or CSA to RA. Future studies of other vitamin D metabolites may better define the complex role of vitamin D in RA.
Collapse
Affiliation(s)
- Stephanie R. Harrison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, B18 7QH UK
| | - Gurpreet Jutley
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Danyang Li
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Ilfita Sahbudin
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Andrew Filer
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| | - Martin Hewison
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, B15 2TT UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, B15 2TT UK
| | - Karim Raza
- Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, B18 7QH UK
- Institute of Inflammation and Ageing, Research into Inflammatory Arthritis Centre Versus Arthritis and MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT UK
| |
Collapse
|
49
|
Barrea L, Muscogiuri G, Frias-Toral E, Laudisio D, Pugliese G, Castellucci B, Garcia-Velasquez E, Savastano S, Colao A. Nutrition and immune system: from the Mediterranean diet to dietary supplementary through the microbiota. Crit Rev Food Sci Nutr 2020; 61:3066-3090. [PMID: 32691606 DOI: 10.1080/10408398.2020.1792826] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interaction between nutrition and the immune system is very complex. In particular, at every stage of the immune response, specific micronutrients, including vitamins and minerals play a key role and often synergistic, and the deficiency of only one essential nutrient may impair immunity. An individual's overall nutrition status and pattern of dietary intake (comprised of nutrients and non-nutritive bioactive compounds and food) and any supplementation with nutraceuticals including vitamins and minerals, can influence positively or negatively the function of the immune system. This influence can occur at various levels from the innate immune system and adaptive immune system to the microbiome. Although there are conflicting evidence, the current results point out that dietary supplementation with some nutrients such as vitamin D and zinc may modulate immune function. An update on the complex relationship between nutrition, diet, and the immune system through gut microbiota is the aim of this current review. Indeed, we will provide the overview of the link among immune function, nutrition and gut microbiota, paying particular attention at the effect of the Mediterranean diet on the immune system, and finally we will speculate the possible role of the main one functional supplements on immune function.
Collapse
Affiliation(s)
- Luigi Barrea
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | | - Daniela Laudisio
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Gabriella Pugliese
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Bianca Castellucci
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | | | - Silvia Savastano
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Unit of Endocrinology, Federico II University Medical School of Naples, Naples, Italy.,Centro Italiano per la cura e il Benessere del paziente con Obesità (C.I.B.O), Department of Clinical Medicine and Surgery, Endocrinology Unit, University Medical School of Naples, Naples, Italy.,Cattedra Unesco "Educazione alla salute e allo sviluppo sostenibile," University Federico II, Naples, Italy
| |
Collapse
|
50
|
The effects of 1,25-dihydroxyvitamin D 3 on markers related to the differentiation and maturation of bone marrow-derived dendritic cells from control and obese mice. J Nutr Biochem 2020; 85:108464. [PMID: 32769019 DOI: 10.1016/j.jnutbio.2020.108464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/19/2020] [Accepted: 06/28/2020] [Indexed: 12/24/2022]
Abstract
Vitamin D has been reported to regulate the maturation and function of dendritic cells (DCs). Obesity was shown to be associated with the dysregulation of vitamin D metabolism and malfunction of DCs. We investigated the effects of in vitro 1,25(OH)2D3 treatment (0, 1, or 10 nM) on phenotype and expression of genes related to function of bone marrow-derived DCs (BMDCs) from control and obese mice. C57BL/6 N mice were fed a control or high-fat (10% or 45% kcal fat: CON or HFD) diets for 15 weeks. Differentiation toward DCs was induced with GM-CSF (20 ng/ml) and maturation was induced by LPS (50 ng/ml); 10 nM 1,25(OH)2D3 treatment inhibited BMDC differentiation (CD11c+) and decreased the percentage of mature DCs (MHCIIhighCD11c+ and CD86highCD11c+) in both CON and HFD groups. The Il10 expression in stimulated BMDCs from the CON group increased with the 10 nM 1,25(OH)2D3 treatment, but not in those from the HFD group. The Il12b mRNA levels in stimulated BMDCs were lower in the HFD group than in the CON group. In conclusion, lower levels of Cd 40, Cd83 and Il12 mRNA in LPS-stimulated BMDCs from obese mice suggest malfunction of DCs as antigen presenting cells. 1,25(OH)2D3 treatment inhibited the differentiation and maturation of BMDCs in both control and obese mice. Differential effects of 1,25(OH)2D3 on the expression of Il10 between control and obese mice suggest that regulation of immune response by vitamin D could be influenced by obesity.
Collapse
|