1
|
Zhang F, Ramar S, Wang Y, Xu H, Zhang K, Awadasseid A, Rao G, Zhang W. Advances in cancer immunotherapy using small-molecular inhibitors targeting the PD-1/PD-L1 interaction. Bioorg Med Chem 2025; 127:118238. [PMID: 40367914 DOI: 10.1016/j.bmc.2025.118238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Cancer cells evade immune responses by interacting with PD-1 and its ligand, PD-L1. Although monoclonal antibodies targeting this pathway have revolutionized oncology, their high production costs, poor oral bioavailability, and limited tumor penetration remain significant challenges. Small-molecule inhibitors provide a promising alternative, offering advantages such as improved tumor penetration and cost-effectiveness. This review highlights advancements in small-molecule PD-1/PD-L1 inhibitors, focusing on their mechanisms, structural designs, and therapeutic potential. Key innovations, including biphenyl scaffolds, heterocyclic frameworks, enhance binding efficiency and immune activation. The article effectively integrates fundamental principles of drug chemistry with real-world clinical needs, offering a comprehensive approach to the design of PD-1/PD-L1 small-molecule inhibitors. It systematically classifies various molecular structures, analyzes relevant industrial cases, and incorporates the most recent research findings. By examining these aspects, it uncovers the underlying logic driving the design process and provides a fresh, innovative perspective on advancing the field of immune small-molecule inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Feng Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Sivaramakarthikeyan Ramar
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Moganshan Institute ZJUT, Deqing 313202, China
| | - Yu Wang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Haoran Xu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China
| | - Koutian Zhang
- Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China
| | - Annoor Awadasseid
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Qingzhenghong Technology Co., Ltd, Hangzhou 311121, China.
| | - Guowu Rao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Deqing 313299, China; Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Deqing 313299, China; Zhejiang Jieyuan Med-Tech Co., Ltd., Hangzhou 311113, China.
| |
Collapse
|
2
|
Liu H, Zheng R, Zhuang Z, Xue L, Chen M, Wu Y, Zeng Y. Diagnostic Efficacy and Clinical Significance of Lymphocyte Subsets, Granzyme B and Perforin in the Peripheral Blood of Patients with Invasive Breast Cancer Following Neoadjuvant Chemotherapy. Cancer Manag Res 2025; 17:589-602. [PMID: 40124841 PMCID: PMC11928756 DOI: 10.2147/cmar.s502155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose Breast cancer, a predominant contributor to cancer-related mortality worldwide, is increasingly managed through the application of neoadjuvant chemotherapy (NAC). Analyzing the dynamic changes in peripheral blood lymphocyte subsets, granzyme B and perforin are crucial for investigating their roles in tumorigenesis, development and treatment; this study aimed to use these analyses to diagnose malignant breast tumor, assess the anti-tumor immunity and predict chemotherapy efficacy in breast cancer patients. Patients and Methods To address this objective, a total of 582 peripheral blood samples were collected from healthy controls (n=47), benign breast disease patients (n=401) and breast cancer patients (n=134). Lymphocyte subsets, along with granzyme B and perforin expression, were assessed using flow cytometry. Changes before and after NAC were also monitored. Results Breast cancer patients exhibited reduced proportions and absolute counts of CD3+ and CD8+ T cells, increased NK cell percentage and CD4+/CD8+ ratio, and higher levels of granzyme B and perforin in CD3+, CD8+ T cells and NK cells. Post-NAC, the percentages of CD3+, CD4+, CD8+ T cells and NK cells increased, along with a higher CD4+/CD8+ ratio, while B cell percentages decreased compared to pre-NAC. Furthermore, the effective group showed higher percentages of CD3+, CD8+ T cells and lower percentages of B cells than the ineffective group post-NAC. Incidentally, Granzyme B and perforin expression in CD3+ and CD8+ T cells was elevated following postoperative chemotherapy. Conclusion These findings indicated that peripheral blood lymphocyte subsets, along with granzyme B and perforin levels, could serve as potential biomarkers for differentiating benign from malignant breast tumors, assessing anti-tumor immunity and predicting chemotherapy efficacy.
Collapse
Affiliation(s)
- Han Liu
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Ruinian Zheng
- Phase I Clinical Trial Center, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, Guangdong, People’s Republic of China
| | - Zhaowei Zhuang
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Liwen Xue
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Minggui Chen
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yuluo Wu
- Department of Oncology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Yan Zeng
- Precision Clinical Laboratory, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Marischen L, Fritsch J, Ilic J, Wahl L, Bertsch T, Knop S, Bold A. Two Are Better than One: The Bi-Specific Antibody Mosunetuzumab Reveals an Improved Immune Response of Vγ9Vδ2 T Cells Targeting CD20 in Malignant B Cells in Comparison to the Mono-Specific Antibody Obinutuzumab. Int J Mol Sci 2025; 26:1262. [PMID: 39941030 PMCID: PMC11818642 DOI: 10.3390/ijms26031262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
In treating cancer, immunotherapy has been established as a later-line treatment option in clinical practice. That includes stem cell transplantation, modified or activated immune cells, and antibodies directed against aberrant cells. As an unconventional immune cell subgroup, γδ T cells have been shown to provide effects against malignant cells. They exhibit an MHC-independent activation process, which could diminish graft-versus-host disease after an adoptive transfer of allogeneic cells. Over the last years, the efficacy of therapeutic antibodies has been improved. As a bi-specific antibody, mosunetuzumab binds to both CD3 and CD20, thereby providing close proximity between effector and target cells. Here, we set out to analyze the efficiency of γδ T cells' anti-tumor effects in combination with mosunetuzumab vs. the monoclonal anti-CD20 antibody obinutuzumab. Mosunetuzumab revealed improved responses of γδ T cells regarding their expression of IFN-γ and CD107a and their cytotoxicity towards malignant B cells from lymphoma B cell lines. In comparison to obinutuzumab, mosunetuzumab led to an equivalent or enhanced cytotoxicity against B cell lymphoma cell lines and primary patient samples, where this effect was even more prominent. In summary, we consider the combination of stimulated γδ T cells and mosunetuzumab to be a promising therapeutic approach for future clinical trials.
Collapse
MESH Headings
- Humans
- Antibodies, Monoclonal, Humanized/pharmacology
- Antigens, CD20/immunology
- Cell Line, Tumor
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Interferon-gamma/metabolism
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/drug effects
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Lothar Marischen
- Department of Hematology and Medical Oncology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Jürgen Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital of Regensburg, 93053 Regensburg, Germany
| | - Jovana Ilic
- Department of Hematology and Medical Oncology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Laura Wahl
- Department of Hematology and Medical Oncology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Thomas Bertsch
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Stefan Knop
- Department of Hematology and Medical Oncology, Paracelsus Medical University, 90419 Nuremberg, Germany
| | - Anna Bold
- Department of Hematology and Medical Oncology, Paracelsus Medical University, 90419 Nuremberg, Germany
| |
Collapse
|
4
|
Kour D, Bowen CA, Srivastava U, Nguyen HM, Kumari R, Kumar P, Brandelli AD, Bitarafan S, Tobin BR, Wood L, Seyfried NT, Wulff H, Rangaraju S. Identification of novel Kv1.3 channel-interacting proteins using proximity labelling in T-cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633279. [PMID: 39868101 PMCID: PMC11760797 DOI: 10.1101/2025.01.16.633279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Potassium channels regulate membrane potential, calcium flux, cellular activation and effector functions of adaptive and innate immune cells. The voltage-activated Kv1.3 channel is an important regulator of T cell-mediated autoimmunity and microglia-mediated neuroinflammation. Kv1.3 channels, via protein-protein interactions, are localized with key immune proteins and pathways, enabling functional coupling between K+ efflux and immune mechanisms. To gain insights into proteins and pathways that interact with Kv1.3 channels, we applied a proximity-labeling proteomics approach to characterize protein interactors of the Kv1.3 channel in activated T-cells. Biotin ligase TurboID was fused to either N or C termini of Kv1.3, stably expressed in Jurkat T cells and biotinylated proteins in proximity to Kv1.3 were enriched and quantified by mass spectrometry. We identified over 1,800 Kv1.3 interactors including known interactors (beta-integrins, Stat1) although majority were novel. We found that the N-terminus of Kv1.3 preferentially interacts with protein synthesis and protein trafficking machinery, while the C-terminus interacts with immune signaling and cell junction proteins. T-cell Kv1.3 interactors included 335 cell surface, T-cell receptor complex, mitochondrial, calcium and cytokine-mediated signaling pathway and lymphocyte migration proteins. 178 Kv1.3 interactors in T-cells also represent genetic risk factors of T cell-mediated autoimmunity, including STIM1, which was further validated using co-immunoprecipitation. Our studies reveal novel proteins and molecular pathways that interact with Kv1.3 channels in adaptive (T-cell) and innate immune (microglia), providing a foundation for how Kv1.3 channels may regulate immune mechanisms in autoimmune and neurological diseases.
Collapse
Affiliation(s)
- Dilpreet Kour
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Christine A. Bowen
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Upasna Srivastava
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Hai M. Nguyen
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Rashmi Kumari
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Prateek Kumar
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Amanda D. Brandelli
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| | - Sara Bitarafan
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Brendan R Tobin
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Levi Wood
- Parker H. Petit Institute for Bioengineering, Georgia Institute of Technology, Atlanta (GA), USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta (GA), USA
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Diseases, Emory University, Atlanta (GA), USA
- Department of Biochemistry, Emory University, Atlanta (GA), USA
| | - Heike Wulff
- Department of Pharmacology, University of California – Davis, Davis (CA), USA
| | - Srikant Rangaraju
- Department of Neurology, School of Medicine, Yale University, New Haven (CT), USA
| |
Collapse
|
5
|
Li H, Wei D, Cao H, Han Y, Li L, Liu Y, Qi J, Wu X, Zhang Z. Bioinformatics-Based Exploration of the Ability of Ginkgetin to Alleviate the Senescence of Cardiomyocytes After Myocardial Infarction and Its Cardioprotective Effects. J Inflamm Res 2025; 18:301-323. [PMID: 39802510 PMCID: PMC11724673 DOI: 10.2147/jir.s491535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/21/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. Ginkgo biloba extract is extensively used to treat neurological disorders and peripheral vascular diseases. The aim of this study was to determine the protective effects and mechanisms of ginkgetin on postinfarction cardiomyocytes through bioinformatics and experimental validation. Methods Bioinformatics analysis was performed to predict the underlying biological mechanisms of ginkgetin in the treatment of MI. Next, we performed further validation through experiments. For in vivo studies, we used coronary ligation to construct an MI rat model. In vitro, oxygen and glucose deprivation (OGD) was performed to simulate ischemia in H9c2 cardiomyocytes. Results Bioinformatics analysis revealed that the key targets of ginkgetin for MI treatment were MMP2, MMP9, and VEGFA. Immune infiltration analysis revealed that ginkgetin might be involved in immune regulation by acting on the TCR signaling pathway. The results of the GO enrichment analysis revealed that ginkgetin might protect the heart by acting on the cell membrane to alleviate the senescent apoptosis of cardiomyocytes after MI. In vivo studies revealed that ginkgetin ameliorated myocardial pathological damage and cardiac decompensation after MI. It also alleviated the inflammatory infiltration and senescent apoptosis of cardiomyocytes after MI. Additionally, ginkgetin can downregulate the activation signals of the TCR signaling pathway by dephosphorylating CD3 and CD28. In vitro studies revealed that ginkgetin attenuated elevated OGD-induced cytotoxicity, increased cell viability, and alleviated OGD-induced senescent apoptosis, thus protecting cardiomyocytes. Conclusion Ginkgetin inhibits postinfarction myocardial fibrosis and cardiomyocyte hypertrophy, scavenges oxygen free radicals, decreases postinfarction limbic cell inflammatory infiltration, suppresses activation of the inflammatory-immune pathway, and delays postinfarction peripheral cells from undergoing senescent apoptosis, thus protecting the heart.
Collapse
Affiliation(s)
- Han Li
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Dongsheng Wei
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Huimin Cao
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yelei Han
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Luzhen Li
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Yuting Liu
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Jiajie Qi
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Xinyue Wu
- The First School of Clinical Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
| | - Zhe Zhang
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People’s Republic of China
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, People’s Republic of China
| |
Collapse
|
6
|
Liu D, Hu X, Chen Z, Wei W, Wu Y. Key links in the physiological regulation of the immune system and disease induction: T cell receptor -CD3 complex. Biochem Pharmacol 2024; 227:116441. [PMID: 39029632 DOI: 10.1016/j.bcp.2024.116441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
T cell receptor (TCR) is a kind of surface marker that are specific to T cells. The TCR regulates T cell function and participates in the body's immunological response to prevent immune dysregulation and inflammatory reactions by identifying and binding exogenous antigens. Due to its brief intracellular segment, TCR requires intracellular molecules to assist with signaling. Among these, the CD3 molecule is one of the most important. The CD3 molecule involves in TCR structural stability as well as T cell activation signaling. A TCR-CD3 complex is created when TCR and CD3 form a non-covalent bond. Antigen recognition and T cell signaling are both facilitated by the TCR-CD3 complex. When a CD3 subunit is absent, a TCR-CD3 complex cannot form, and none of the subunits is transported to the cell surface. Thus, T cells cannot develop. Consequently, research on the physiological functions and potential pathogenicity of CD3 subunits can clarify the pathogenesis of immune system diseases and can offer fresh approaches to the treatment of it. In this review, the structure and function of the TCR-CD3 complex in the immune system was summarized, the pathogenicity of each CD3 subunit and therapeutic approaches to related diseases was explored and research directions for the development of new targeted drugs was provided.
Collapse
Affiliation(s)
- Danyan Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Xiaoxi Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Zhaoying Chen
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| | - Yujing Wu
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Anhui Provincial Institute of Translational Medicine, Hefei 230032, China.
| |
Collapse
|
7
|
Guo X, Hu J, Yin G, Cai Y, Gao Z, Liu Y, Zhong M, Wang R, Feng X. The Immunomodulatory Function of Assembled Composite Nanopolypeptide Containing Bursal-Derived BP7 (CNPB7) in Promoting the Mucosal Immune Response within Poultry Immunization. Vaccines (Basel) 2024; 12:834. [PMID: 39203960 PMCID: PMC11360326 DOI: 10.3390/vaccines12080834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Mucosal immunity is the main defense line against respiratory disease pathogens. Newcastle disease and avian infectious bronchitis are common respiratory diseases in poultry. However, the mucosal immune response is not sufficiently activated and thus fails to achieve the ideal immune protection. Therefore, it is important to develop a suitable mucosal immune adjuvant to enhance the immune response of live vaccines. Here, the bursal-derived peptide BP7, β-glucan, and hyaluronic acid were selected as the adjuvant to be assembled into the composite nanopolypeptide adjuvant (CNPB7) with ultrasonic dispersion technology. The results showed that after optimizing assembly conditions, the optimal average particle size of nanoparticle CNPB7 was 514.9 nm and PDI was 0.298. To evaluate the non-specific immune responses of nanoparticle CNPB7, the chickens were immunized only with nanoparticle CNPB7. It was confirmed that nanoparticle CNPB7 enhanced the expression of CD3, CD4, CD80, and CD86 factors in the spleen lymphocyte from the chicken immunized with nanoparticle CNPB7. To investigate the mucosal immune response of nanoparticle CNPB7, the chickens were orally immunized with Newcastle disease virus (NDV)-infectious bronchitis virus (IBV) dual vaccines and CNPB7. The results proved that the levels of immunoglobulin SIgA, IL-4, IFN-γ, and IL-13 in the mucus samples from the respiratory and digestive tract in chicken immunized with nanoparticle CNPB7 and vaccines were significantly increased, compared to that of vaccine control. Finally, it was observed that nanoparticle CNPB7 promoted specific increased antibody productions against NDV and IBV in the immunized chicken. These results proved that the assembled nanoparticle CNPB7 could enhance the vaccination efficacy in chicken, which provided the experimental basis for the development of new adjuvants, and offered technical support for preventing virus transmission of avian diseases.
Collapse
Affiliation(s)
- Xinyu Guo
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianing Hu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Guihu Yin
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yiqin Cai
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zichen Gao
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ye Liu
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng Zhong
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruiying Wang
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuli Feng
- Key Laboratory of Animal Microbiology of China’s Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (X.G.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
8
|
Mustafa M, Abbas K, Alam M, Habib S, Zulfareen, Hasan GM, Islam S, Shamsi A, Hassan I. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol 2024; 14:1427802. [PMID: 39087024 PMCID: PMC11288929 DOI: 10.3389/fonc.2024.1427802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Pancreatic adenocarcinoma, a clinically challenging malignancy constitutes a significant contributor to cancer-related mortality, characterized by an inherently poor prognosis. This review aims to provide a comprehensive understanding of pancreatic adenocarcinoma by examining its multifaceted etiologies, including genetic mutations and environmental factors. The review explains the complex molecular mechanisms underlying its pathogenesis and summarizes current therapeutic strategies, including surgery, chemotherapy, and emerging modalities such as immunotherapy. Critical molecular pathways driving pancreatic cancer development, including KRAS, Notch, and Hedgehog, are discussed. Current therapeutic strategies, including surgery, chemotherapy, and radiation, are discussed, with an emphasis on their limitations, particularly in terms of postoperative relapse. Promising research areas, including liquid biopsies, personalized medicine, and gene editing, are explored, demonstrating the significant potential for enhancing diagnosis and treatment. While immunotherapy presents promising prospects, it faces challenges related to immune evasion mechanisms. Emerging research directions, encompassing liquid biopsies, personalized medicine, CRISPR/Cas9 genome editing, and computational intelligence applications, hold promise for refining diagnostic approaches and therapeutic interventions. By integrating insights from genetic, molecular, and clinical research, innovative strategies that improve patient outcomes can be developed. Ongoing research in these emerging fields holds significant promise for advancing the diagnosis and treatment of this formidable malignancy.
Collapse
Affiliation(s)
- Mohd Mustafa
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Kashif Abbas
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Mudassir Alam
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Safia Habib
- Department of Biochemistry, J.N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Zulfareen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Gulam Mustafa Hasan
- Department of Basic Medical Science, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sidra Islam
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Anas Shamsi
- Center of Medical and Bio-Allied Health Sciences Research (CMBHSR), Ajman University, Ajman, United Arab Emirates
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Kasprzak R, Zakęś Z, Kamaszewski M, Szudrowicz H, Wiechetek W, Janusz JR, Ostaszewska T, Korzelecka-Orkisz A, Formicki K. Histomorphometric evaluation of melanomacrophage centers (MMCs) and CD3 + T cells of two morphs of brown trout (Salmo trutta) fed diets with immunostimulants. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109020. [PMID: 37611835 DOI: 10.1016/j.fsi.2023.109020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/25/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
The brown trout (Salmo trutta) is a salmonid residing in riverine and coastal waters throughout the Northern Hemisphere, whose various populations evolved into distinct ecological morphs, differing in their migratory tendencies and preferred habitats. Unfortunately, due to progressing degradation of natural environment, the conservation of these populations is of growing importance and is undoubtedly a challenging task. Therefore, various means to refine the preparatory protocols for restocking using hatchery-reared fish are being pursued, some of which involve the administration of immunity-boosting substances. The current study assessed the effects of two dietary immunostimulants: Bioimmuno (4% inosine pranobex and 96% β-glucan) and Focus Plus (commercial preparation by Biomar, Denmark) on two morphs of the brown trout - the river trout (S. trutta morpha fario) and the sea trout (S. trutta morpha trutta). Tissue samples were obtained from ∼75 to 100g fish after 0, 2 and 4 weeks of experimental feeding. Multi-factorial analysis of conducted histological measurements of melanomacrophage centers (MMCs) revealed no changes of their parameters within spleens, but showed a decrease of the occupied tissue area and MMC counts in the livers, progressing with time regardless of the applied diet. Immunohistochemical analysis of CD3+ T cells showed their increased recruitment into mucosal folds of pyloric caeca in the 2-week sampling of trouts fed with the diet with 2% Bioimmuno addition, but this effect was not present in the 4-week sampling. When studying all groups jointly within each morph, there was a significant difference in terms of maintained CD3+ T cells levels, as sea trouts showed significantly higher tissue areas occupied by these cells than river trouts, both in the pyloric caeca and hepatic parenchyma. The study revealed that feeding with a diet enriched with Bioimmuno for 2 weeks may be a favorable enhancement of rearing protocols of brown trout stocks prior to their release, but more studies need to be conducted to test the possibility of an even shorter feeding period.
Collapse
Affiliation(s)
- Robert Kasprzak
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Zdzisław Zakęś
- Department of Aquaculture, The Stanisław Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719, Olsztyn, Poland.
| | - Maciej Kamaszewski
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Hubert Szudrowicz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Wiktoria Wiechetek
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Julia Renata Janusz
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Teresa Ostaszewska
- Department of Ichthyology and Biotechnology in Aquaculture, Institute of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Agata Korzelecka-Orkisz
- Department of Hydrobiology, Ichthyology and Reproduction Biotechnology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland.
| | - Krzysztof Formicki
- Department of Hydrobiology, Ichthyology and Reproduction Biotechnology, Faculty of Food Science and Fisheries, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550, Szczecin, Poland.
| |
Collapse
|
10
|
Samer S, Chowdhury A, Wiche Salinas TR, Estrada PMDR, Reuter M, Tharp G, Bosinger S, Cervasi B, Auger J, Gill K, Ablanedo-Terrazas Y, Reyes-Teran G, Estes JD, Betts MR, Silvestri G, Paiardini M. Lymph-Node-Based CD3 + CD20 + Cells Emerge from Membrane Exchange between T Follicular Helper Cells and B Cells and Increase Their Frequency following Simian Immunodeficiency Virus Infection. J Virol 2023; 97:e0176022. [PMID: 37223960 PMCID: PMC10308947 DOI: 10.1128/jvi.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
CD4+ T follicular helper (TFH) cells are key targets for human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) replication and contribute to the virus reservoir under antiretroviral therapy (ART). Here, we describe a novel CD3+ CD20+ double-positive (DP) lymphocyte subset, resident in secondary lymphoid organs of humans and rhesus macaques (RMs), that appear predominantly after membrane exchange between TFH and B cells. DP lymphocytes are enriched in cells displaying a TFH phenotype (CD4+ PD1hi CXCR5hi), function (interleukin 21 positive [IL-21+]), and gene expression profile. Importantly, expression of CD40L upon brief in vitro mitogen stimulation identifies, by specific gene-expression signatures, DP cells of TFH-cell origin versus those of B-cell origin. Analysis of 56 RMs showed that DP cells (i) significantly increase following SIV infection, (ii) are reduced after 12 months of ART in comparison to pre-ART levels, and (iii) expand to a significantly higher frequency following ART interruption. Quantification of total SIV-gag DNA on sorted DP cells from chronically infected RMs showed that these cells are susceptible to SIV infection. These data reinforce earlier observations that CD20+ T cells are infected and expanded by HIV infection, while suggesting that these cells phenotypically overlap activated CD4+ TFH cells that acquire CD20 expression via trogocytosis and can be targeted as part of therapeutic strategies aimed at HIV remission. IMPORTANCE The HIV reservoir is largely composed of latently infected memory CD4+ T cells that persist during antiretroviral therapy and constitute a major barrier toward HIV eradication. In particular, CD4+ T follicular helper cells have been demonstrated as key targets for viral replication and persistence under ART. In lymph nodes from HIV-infected humans and SIV-infected rhesus macaques, we show that CD3+ CD20+ lymphocytes emerge after membrane exchange between T cells and B cells and are enriched in phenotypic, functional, and gene expression profiles found in T follicular helper cells. Furthermore, in SIV-infected rhesus macaques, these cells expand following experimental infection and after interruption of ART and harbor SIV DNA at levels similar to those found in CD4+ T cells; thus, CD3+ CD20+ lymphocytes are susceptible to SIV infection and can contribute to SIV persistence.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- HHSN261200800001C NCI NIH HHS
- U24 OD011023 NIH HHS
- U42 OD011023 NIH HHS
- P01 AI131338 NIAID NIH HHS
- HHSN261200800001E NCI NIH HHS
- UM1 AI164562 NIAID NIH HHS
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases (DIR, NIAID)
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute on Drug Abuse, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart Lung and Blood Institute, National Institute of Neurological Disorders and Stroke (DIR, NIAID, NIDA, NIDDK, NHLBI, NINDS)
- HHS | NIH | National Cancer Institute (NCI)
- HHS | NIH | Office of Research Infrastructure Programs, National Institutes of Health (ORIP)
Collapse
Affiliation(s)
- Sadia Samer
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Ankita Chowdhury
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | | | | | - Morgan Reuter
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gregory Tharp
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
| | - Steven Bosinger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NHP Genomics Core Laboratory, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Barbara Cervasi
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - James Auger
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Kiran Gill
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Yuria Ablanedo-Terrazas
- Práctica Médica Grupal en Otorrinolaringología, Centro Médico ABC Santa Fe, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comisión Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Jacob D. Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael R. Betts
- Department of Microbiology and Center for AIDS Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023; 15:1189. [PMID: 36831533 PMCID: PMC9953819 DOI: 10.3390/cancers15041189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Harnessing the immune system to fight cancer has become a reality with the clinical success of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all cancer patients respond to ICB. Thus, there is a need to modulate the immune system through alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the canonical receptor complex on T cells. It provides the "first signal" that initiates T cell activation and determines the specificity of the immune response. The TCR confers the binding specificity whilst the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms through which antigen sensing and signal transduction occur in the CD3-TCR complex are still under debate, recent revelations regarding the intricate 3D structure of the CD3-TCR complex might open the possibility of modulating its activity by designing targeted drugs and tools, including aptamers. In this review, we summarize the basis of CD3-TCR complex assembly and survey the clinical and preclinical therapeutic tools available to modulate CD3-TCR function for potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Francesca Nonatelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Unidad Desarrollo y Función del Sistema Inmunitario, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
12
|
Krechetov SP, Vtorushina VV, Inviyaeva EV, Gorodnova EA, Kolesnik SV, Kudlay DA, Borovikov PI, Krechetova LV, Dolgushina NV, Sukhikh GT. T-Cell Immunity in COVID-19-Recovered Individuals and Individuals Vaccinated with the Combined Vector Vaccine Gam-COVID-Vac. Int J Mol Sci 2023; 24:ijms24031930. [PMID: 36768254 PMCID: PMC9916700 DOI: 10.3390/ijms24031930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 01/21/2023] Open
Abstract
The COVID-19 pandemic has required extensive research on the new coronavirus SARS-CoV-2 and the creation of new highly effective vaccines. The presence of T-cells in the body that respond to virus antigens suggests adequate antiviral immunity. We investigated T-cell immunity in individuals who recovered from mild and moderate COVID-19 and in individuals vaccinated with the Gam-COVID-Vac combined vector vaccine. The ELISPOT method was used to determine the number of T-cells responding with IFN-γ synthesis to stimulation by peptides containing epitopes of the S-protein or N-, M-, ORF3, and ORF7 proteins, using peripheral blood mononuclear cells (PBMCs). At the same time, the multiplex method was used to determine the accumulation of IFN-γ and other cytokines in the culture medium. According to the data obtained, the proportion of positive conclusions about the T-cell immune response to SARS-CoV-2 antigens in control, recovered, and vaccinated individuals was 12%, 70%, and 52%, respectively. At the same time, more than half of the vaccinated individuals with a T-cell response were sensitized to the antigens of N-, M-, ORF3, and ORF7 proteins not produced by Gam-COVID-Vac, indicating a high likelihood of asymptomatic SARS-CoV-2 infection. Increased IFN-γ release by single sensitized T-cells in response to specific stimulation in recovered and vaccinated individuals did not result in the accumulation of this and other cytokines in the culture medium. These findings suggest a balance between cytokine production and utilization by immunocompetent cells as a prerequisite for providing a controlled cytokine signal and avoiding a "cytokine storm".
Collapse
Affiliation(s)
- Sergey Petrovich Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Valentina Valentinovna Vtorushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Evgenia Vladimirovna Inviyaeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Elena Aleksandrovna Gorodnova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-(916)564-77-69
| | - Svetlana Vladimirovna Kolesnik
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Dmitry Anatolievich Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel Igorevich Borovikov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Liubov Valentinovna Krechetova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
| | - Nataliya Vitalievna Dolgushina
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Gennady Tikhonovich Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I., Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Department of Obstetrics, Gynecology, Perinatology and Reproductology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
13
|
Tumor HPV Status, Level of Regulatory T Cells and Macrophage Infiltration Predict up to 20-Year Non-Disease-Specific Survival in Oropharynx Squamous Cell Carcinoma Patients. Biomedicines 2022; 10:biomedicines10102484. [PMID: 36289746 PMCID: PMC9599108 DOI: 10.3390/biomedicines10102484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Oropharynx squamous cell carcinoma (OPSCC) is of special interest because human papilloma virus (HPV) and/or smoking cause this disease. Influxes of inflammatory cells into such tumors are known to vary with prognoses. AIMS To study whether the density of tumor-infiltrating T lymphocytes and tumor-infiltrating macrophages predicted general 20-year overall survival (OS), as well as OS with only disease-specific survival (DSS) patients included. METHODS Biopsies from patients treated for OPSCC (n = 180) were stained by immunohistochemistry and the tumor cell macrophage (CD68), pan T lymphocytes (CD3), and regulatory T lymphocytes (Foxp3) densities were determined. The HE-determined percentage of matured tumor cells and the rate of invasion were calculated, and stromal desmoplasia were performed. Tumor HPV presence was studied by PCR. Twenty-year OS and five-year DSS patients were determined. RESULTS Tumor HPV status strongly predicted survival. High tumor infiltration of CD3, Foxp3 and CD68-positive cells predicted better twenty-year OS, with and without HPV stratification. Foxp3 and CD68 levels predicted OS, and 20-year among DSS patients, primarily among HPV(+) patients. Tumor HE-derived variables did not predict such survival. CONCLUSIONS Tumor HPV status, level of Foxp3 tumor-infiltrating lymphocytes and CD68 tumor-infiltrating macrophages predicted up to 20-year OS of both all patients and disease-specific survived patients.
Collapse
|
14
|
Bao L, Geng Z, Wang J, He L, Kang A, Song J, Huang X, Zhang Y, Liu Q, Jiang T, Pang Y, Niu Y, Zhang R. Attenuated T cell activation and rearrangement of T cell receptor β repertoire in silica nanoparticle-induced pulmonary fibrosis of mice. ENVIRONMENTAL RESEARCH 2022; 213:113678. [PMID: 35710025 DOI: 10.1016/j.envres.2022.113678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Silica nanoparticles (SiNPs) cause pulmonary fibrosis through a complex immune response, but the underlying mechanisms by which SiNPs interact with T cells and affect their functions remain unclear. The T cell receptor (TCR) repertoire is closely related to T cell activation and proliferation and mediates innate and adaptive immunity. High-throughput sequencing of the TCR enables comprehensive monitoring of the immune microenvironment. Here, the role of the TCRβ repertoire was explored using a mouse model of SiNP-induced pulmonary fibrosis and a co-culture of RAW264.7 and CD4+ T cells. Our results demonstrated increased TCRβ expression and decreased CD25 and CD69 expression in CD4+ T cells from peripheral blood and lung collected 14 days after the induction of pulmonary fibrosis by SiNPs. Simultaneously, SiNPs significantly decreased CD25 and CD69 expression in CD4+ T cells in vitro via RAW264.7 cell presentation. Mechanistically, pLCK and pZap70 expression, involved in mediating T cell activation, were also decreased in the lung of mice with SiNP-induced pulmonary fibrosis. Furthermore, the profile of the TCRβ repertoire in mice with SiNP-induced pulmonary fibrosis showed that SiNPs markedly altered the usage of V genes, VJ gene combinations, and CDR3 amino acids in lung tissue. Collectively, our data suggested that SiNPs could interfere with T cell activation by macrophage presentation via the LCK/Zap70 pathway and rearrange the TCRβ repertoire for adaptive immunity and the pulmonary microenvironment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Juan Wang
- Department of Statistics, Hebei General Hospital, Shijiazhuang, Hebei, 050000, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Jianshi Song
- School of Basic Medical, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaling Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Qingping Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Tao Jiang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China; Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, 050017, China.
| |
Collapse
|
15
|
Shahverdi M, Masoumi J, Ghorbaninezhad F, Shajari N, Hajizadeh F, Hassanian H, Alizadeh N, Jafarlou M, Baradaran B. The modulatory role of dendritic cell-T cell cross-talk in breast cancer: Challenges and prospects. Adv Med Sci 2022; 67:353-363. [PMID: 36116207 DOI: 10.1016/j.advms.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/05/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022]
Abstract
Antigen recognition and presentation are highlighted as the first steps in developing specialized antigen responses. Dendritic cells (DCs) are outstanding professional antigen-presenting cells (APCs) responsible for priming cellular immunity in pathological states, including cancer. However, the diminished or repressed function of DCs is thought to be a substantial mechanism through which tumors escape from the immune system. In this regard, DCs obtained from breast cancer (BC) patients represent a notably weakened potency to encourage specific T-cell responses. Additionally, impaired DC-T-cell cross-talk in BC facilitates the immune evade of cancer cells and is connected with tumor advancement, immune tolerance, and adverse prognosis for patients. In this review we aim to highlight the available knowledge on DC-T-cell interactions in BC aggressiveness and show its therapeutic potential in BC treatment.
Collapse
Affiliation(s)
- Mahshid Shahverdi
- Department of Medical Biotechnology, Arak University of Medical Sciences, Arak, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farid Ghorbaninezhad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farnaz Hajizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Hassanian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Jafarlou
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
BAP31 affects macrophage polarization through regulating helper T cells activation. J Mol Histol 2022; 53:843-855. [PMID: 36018529 DOI: 10.1007/s10735-022-10095-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
Previously, we reported that B cell receptor associated protein 31 (BAP31) is a positive regulator on T-cells activation. Helper T cells [cluster of differentiation 4+ (CD4+) T cells] can regulate macrophage activation in adaptive immune response against pathogens. In this study, we elucidate that M1 and M2 macrophages polarization is significantly suppressed in Lck Cre-BAP31flox/flox mice or the co-culture system of CD4+ T cells from Lck Cre-BAP31flox/flox mice and macrophages from WT mice. It means that BAP31 may affect the regulation of CD4+ T cells on macrophages. Further studies suggest that BAP31 deficiency significantly reduce the expressions of T helper 1 (Th1)/ Th2/ Th17/ Th9/ Th22/ Treg cells-related cytokines and transcription factors. The inhibition of macrophages activation caused by BAP31 knockdown is due to the reduction of IFN-γ and IL-4 secreted by Th1 and Th2 cells. BAP31 also affects the levels of early activation markers (CD69 and CD25) of CD4+ T cells. Moreover, BAP31 deficiency downregulates the expression of TCRαβ-CD3 complex, and the adaptor proteins p-Zap70, p-Lck, and p-Lat in TCR signaling pathway. These results demonstrate that BAP31 deficiency inhibits TCR/CD3-mediated activation in CD4+ T cells and adversely affects macrophages polarization. These findings establish a theoretical foundation for the study of BAP31 in immunotherapy.
Collapse
|
17
|
Nuiyen A, Rattanasri A, Wipa P, Roytrakul S, Wangteeraprasert A, Pongcharoen S, Ngoenkam J. Lack of Nck1 protein and Nck-CD3 interaction caused the increment of lipid content in Jurkat T cells. BMC Mol Cell Biol 2022; 23:36. [PMID: 35902806 PMCID: PMC9330638 DOI: 10.1186/s12860-022-00436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The non-catalytic region of tyrosine kinase (Nck) is an adaptor protein, which is ubiquitously expressed in many types of cells. In T cells, the Nck1 isoform promotes T cell receptor signalling as well as actin polymerisation. However, the role of Nck1 in the lipid metabolism in T cells is unknown. In the present study, we investigated the effect of the Nck1 protein and Nck-CD3 interaction on lipid metabolism and on the physical and biological properties of Jurkat T cells, using a newly developed holotomographic microscope. RESULTS Holotomographic microscopy showed that Nck1-knocked-out cells had membrane blebs and were irregular in shape compared to the rounded control cells. The cell size and volume of Nck1-deficient cells were comparable to those of the control cells. Nck1-knocked-out Jurkat T cells had a greater lipid content, lipid mass/cell mass ratio, and lipid metabolite levels than the control cells. Interestingly, treatment with a small molecule, AX-024, which inhibited Nck-CD3 interaction, also caused an increase in the lipid content in wild-type Jurkat T cells, as found in Nck1-deficient cells. CONCLUSIONS Knockout of Nck1 protein and hindrance of the Nck-CD3 interaction cause the elevation of lipid content in Jurkat T cells.
Collapse
Affiliation(s)
- Aussanee Nuiyen
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Araya Rattanasri
- Graduate School of Biomedical Sciences Programme, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Piyamaporn Wipa
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology, National Center for Genetic Engineering and Biotechnology (BIOTECH), Thailand Science Park, Pathumthani, 12120, Thailand
| | - Apirath Wangteeraprasert
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand.
| | - Jutaporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
18
|
Chen C, Zhao X, Luo Y, Li B, Li Q, Zhao C, Huang Y, Kang P. Imbalanced T-Cell Subsets May Facilitate the Occurrence of Osteonecrosis of the Femoral Head. J Inflamm Res 2022; 15:4159-4169. [PMID: 35912401 PMCID: PMC9328079 DOI: 10.2147/jir.s367214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Osteonecrosis of the femoral head (ONFH) is a complex disease resulting in degeneration of the hip joint. The pathogenesis of ONFH is largely unknown, but alterations in immunological factors have been proposed to play a role. Methods We included 109 patients with ONFH and 109 age-, sex-, and body mass index-matched healthy controls in this study. The percentage of circulating CD3+, CD4+, and CD8+ lymphocytes among the total lymphocytes was identified by flow cytometry and compared between the cases and controls. Subgroup analysis within each etiological group and correlation analysis of T-cell subset levels with disease duration were performed. Furthermore, we compared the expression patterns of CD4, RANKL, and FoxP3 in the femoral head of healthy and glucocorticoid (GC)-treated ONFH rats. Results The results showed that CD3+ and CD4+ T-cell counts and the CD4+/CD8+ ratio were significantly higher in patients with ONFH and that CD3+ lymphocyte levels were negatively correlated with disease duration. The CD4+ T-cell levels and CD4+/CD8+ ratios in the GC-ONFH etiological group were lower than those in the idiopathic-, traumatic-, and alcoholic-ONFH groups, while the CD8+ T-cell levels were higher. Furthermore, the CD3+, CD4+, and CD8+ T-cell counts and the CD4+/CD8+ ratio were higher in the GC-ONFH group than in the control group. Finally, we observed diminished levels of FoxP3/CD4 double-positive T regulatory cells and increased RANKL+ T-cell levels in the bone marrow of the femoral head in GC-ONFH rats. Conclusion The imbalance of T-cell subsets might be involved in the pathophysiological process of ONFH, and diminished CD4+/FoxP3+ T regulatory cells may be associated with increased RANKL+ T cells in the bone marrow of the femoral head in GC-ONFH, which may facilitate bone resorption and collapse of the femoral head. Trial Registration This study was registered in the Chinese Clinical Trial Registry (Registration number: ChiCTR2100042642).
Collapse
Affiliation(s)
- Changjun Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Xin Zhao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
| | - Yue Luo
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bohua Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Qianhao Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Chengcheng Zhao
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Yan Huang
- Health Management Center, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Pengde Kang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
19
|
Bian H, Wang L, Gao C, Liu Z, Sun Y, Hu M, Xiao Y, Hao F, Ma Y, Zhao X. Expression and Clinical Significance of Th1/Th2/Th17 Cytokines and Lymphocyte Subsets in PCNSL. J Inflamm Res 2022; 15:3815-3828. [PMID: 35836720 PMCID: PMC9273637 DOI: 10.2147/jir.s366761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose Primary central nervous system lymphoma (PCNSL) responds favorably to radiation, chemotherapy and targeted drug therapy. However survival is usually worse, the treatment-related drug resistance and recurrence are still clinical problems to be solved urgently. Studies have shown that cytokines are expressed in varying degrees in patients with lymphoma, which is significantly related to the progression, poor prognosis and drug resistance of lymphoma. We explore the expression and clinical significance of Th1/Th2/Th17 cytokines and lymphocyte subsets in patients with PCNSL to provide a more sufficient theoretical basis for its diagnosis and treatment. Patients and Methods We measured and analysed the levels of Th1/Th2/Th17 cytokines and the distribution of lymphocyte subsets (including Treg cells, CD3+, CD4+, CD8+, CD19+, and CD4+/CD8+) in 39 patients with PCNSL and 96 patients with diffuse large B-cell lymphoma (DLBCL) without central nervous system involvement. The cytokines of 13 healthy people and the lymphocyte subsets of 27 healthy people were measured as the control group. Results We found a significant difference in the level of Th1/Th2/Th17 cytokines and lymphocyte subsets between PCNSL and healthy controls, especially IL-2, after treatment, which was significantly higher than before treatment (p<0.01). However, the level of CD19+ and CD4+/CD8+ decreased while CD8+ and CD3+ increased after treatment (regardless of whether the treatment was effective), and the difference was statistically significant. In addition, our analysis of different prognostic factors found that HD-MTX-based chemotherapy appears to have a longer progression-free survival and overall survival than osimertinib-based chemotherapy. Conclusion There are significant differences in Th1/Th2/Th17 cytokines and lymphocyte subsets among PCNSL, DLBCL, and healthy controls, and their detection is helpful for the diagnosis, treatment, and prognosis of PCNSL. HD-MTX-based chemotherapy may still be the first choice for PCNSL.
Collapse
Affiliation(s)
- Haiyan Bian
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Lisheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Chengwen Gao
- Laboratory of Medical Biology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Zhihe Liu
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yang Sun
- Laboratory of Molecular Diagnosis and Regenerative Medicine, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Minghui Hu
- Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yujing Xiao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Fengyun Hao
- Department of Pathology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yushuo Ma
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xia Zhao
- Department of Hematology, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Xia Zhao, Department of Hematology, the Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Shinan District, Qingdao, 266000, People’s Republic of China, Email
| |
Collapse
|
20
|
Xu T, Wang Z, Liu J, Wang G, Zhou D, Du Y, Li X, Xia Y, Gao Q. Cyclin-Dependent Kinase Inhibitors Function as Potential Immune Regulators via Inducing Pyroptosis in Triple Negative Breast Cancer. Front Oncol 2022; 12:820696. [PMID: 35756622 PMCID: PMC9213695 DOI: 10.3389/fonc.2022.820696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Background Immunotherapy is the most promising treatment in triple-negative breast cancer (TNBC), and its efficiency is largely dependent on the intra-tumoral immune cells infiltrations. Thus, novel ways to assist immunotherapy by increasing immune cell infiltrations were highly desirable. Methods To find key immune-related genes and discover novel immune-evoking molecules, gene expression profiles of TNBC were downloaded from Gene Expression Omnibus (GEO). Single-sample gene set enrichment analysis (ssGSEA) and Weighted Gene Co-expression Network Analysis (WGCNA) were conducted to identified hub genes. The CMap database was used subsequently to predicate potential drugs that can modulate the overall hub gene expression network. In vitro experiments were conducted to assess the anti-tumor activity and the pyroptosis phenotypes induced by GW-8510. Results Gene expression profiles of 198 TNBC patients were downloaded from GEO dataset GSE76124, and ssGSEA was used to divide them into Immune Cell Proficiency (ICP) group and Immune Cell Deficiency (ICD) group. Hub differential expressed gene modules between two groups were identified by WGCNA and then annotated by Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A cyclin-dependent kinase (CDK) 2 inhibitor, GW-8510 was then identified by the CMap database and further investigated. Treatment with GW-8510 resulted in potent inhibition of TNBC cell lines. More importantly, in vitro and in vivo studies confirmed that GW-8510 and other CDK inhibitors (Dinaciclib, and Palbociclib) can induce pyroptosis by activating caspase-3 and GSDME, which might be the mechanism for their immune regulation potentials. Conclusion GW-8510, as well as other CDK inhibitors, might serve as potential immune regulators and pyroptosis promotors in TNBC.
Collapse
Affiliation(s)
- Tao Xu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahao Liu
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongchen Zhou
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinglei Gao
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Vo DHT, McGleave G, Overton IM. Immune Cell Networks Uncover Candidate Biomarkers of Melanoma Immunotherapy Response. J Pers Med 2022; 12:jpm12060958. [PMID: 35743743 PMCID: PMC9225330 DOI: 10.3390/jpm12060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic activation of antitumour immunity by immune checkpoint inhibitors (ICIs) is a significant advance in cancer medicine, not least due to the prospect of long-term remission. However, many patients are unresponsive to ICI therapy and may experience serious side effects; companion biomarkers are urgently needed to help inform ICI prescribing decisions. We present the IMMUNETS networks of gene coregulation in five key immune cell types and their application to interrogate control of nivolumab response in advanced melanoma cohorts. The results evidence a role for each of the IMMUNETS cell types in ICI response and in driving tumour clearance with independent cohorts from TCGA. As expected, ‘immune hot’ status, including T cell proliferation, correlates with response to first-line ICI therapy. Genes regulated in NK, dendritic, and B cells are the most prominent discriminators of nivolumab response in patients that had previously progressed on another ICI. Multivariate analysis controlling for tumour stage and age highlights CIITA and IKZF3 as candidate prognostic biomarkers. IMMUNETS provide a resource for network biology, enabling context-specific analysis of immune components in orthogonal datasets. Overall, our results illuminate the relationship between the tumour microenvironment and clinical trajectories, with potential implications for precision medicine.
Collapse
Affiliation(s)
- Duong H. T. Vo
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Gerard McGleave
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Ian M. Overton
- The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK; (D.H.T.V.); (G.M.)
- Health Data Research Wales and Northern Ireland, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
- Correspondence:
| |
Collapse
|
22
|
Zhang J, Liu Z, Cao P, Wang H, Liu H, Hua L, Xue H, Fu R. Tumor-associated macrophages regulate the function of cytotoxic T lymphocyte through PD-1/PD-L1 pathway in multiple myeloma. Cancer Med 2022; 11:4838-4848. [PMID: 35593325 PMCID: PMC9761071 DOI: 10.1002/cam4.4814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Tumor-associated macrophages (TAMs) are originated from circulating mononuclear cells in peripheral blood. They result from the recruitment of tumor cells and are a vital constituent of the tumor microenvironment. TAMs may be involved in the immunological escape of vicious clonal plasma cells (PC) in the bone marrow (BM) of sufferers with myeloma. METHODS From March 2020 to January 2021, 28 healthy controls (HC) and 86 multiple myeloma (MM) (53 newly diagnosed MM [NDMM] and 33 remissions) patients were enrolled as objects of the study. The expression of TAMs in the BM, CSF1 on CD138 + cells, and CSF1R on macrophages were detected by the method of flow cytometry, and the expression of PD-1 on CD8 + T cells and PD-L1 on TAMs were also done. Bone marrow mononuclear cells (BMMNCs) were extracted and cultured into TAMs, CD8 + T cells were sorted by magnetic beads and cultured, a coculture system was established and different inhibitors were added. The expression of the perforin and granzyme B was detected by flow cytometry. RESULTS The percentage of TAMs in NDMM group (61.49 ± 2.176%) increased when compared with remission (23.08 ± 1.699%, p < 0.001) and HC group (17.95 ± 1.865%, p < 0.001), and TAMs decreased after adding CSF1R inhibitor. Moreover, the expression of CSF1 on CD138 + cells increased significantly in NDMM group (17.090 ± 0.9156%) than remission (8.214 ± 0.5911% p < 0.001), and HC group (5.257 ± 0.6231%, p < 0.001), and CSF1R on macrophages increased significantly in NDMM group (58.78 ± 2.286%) than remission (20.74 ± 1.376%, p < 0.001) and HC group (17.42 ± 1.081%, p < 0.001). The expression of PD-1 on CD8 + T cells in NDMM group (32.64 ± 2.982%) increased than remission (20.35 ± 2.335% p < 0.01) and HC group (17.53 ± 1.349%, p < 0.001), and PD-L1 on TAMs also increased in NDMM group (50.92 ± 2.554%) than remission (20.02 ± 1.893%, p < 0.001) and HC group (13.08 ± 1.289%, p < 0.001). When CD8 + T cells were cocultured with TAMs, the perforin and granzyme B levels decreased significantly. However, the perforin and granzyme B levels were partly restored after adding CSF1R inhibitor and anti-PD-L1 antibody. CONCLUSION Our study shows that TAMs were increased in MM patients which can inhibit the function of cytotoxic T lymphocyte (CTL) through the PD-1/ PD-L1 signaling pathway and participate in the occurrence of immune escape of myeloma cells.
Collapse
Affiliation(s)
- Jiangbo Zhang
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China,Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Zhaoyun Liu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Panpan Cao
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Hao Wang
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Hui Liu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Luoming Hua
- Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Hua Xue
- Department of HematologyHebei University Affiliated HospitalBaodingPeople's Republic of China
| | - Rong Fu
- Department of HematologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| |
Collapse
|
23
|
Deng H, Niu Z, Zhang Z, Zhang J, Wang G, Wang Y, Yang J. Back on the scene: advances and challenges in CD3-related drugs in tumor therapy. Drug Discov Today 2022; 27:2199-2208. [PMID: 35489674 DOI: 10.1016/j.drudis.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/12/2022] [Accepted: 04/21/2022] [Indexed: 02/08/2023]
Abstract
CD3 molecules are mainly distributed on the membrane of mature T cells. They are involved in T cell antigen recognition, signal transduction, and regulation of T cell development. CD3-related monoclonal antibodies (mAbs) are mainly used in the treatment of autoimmune diseases. Nearly half of all bispecific antibodies developed are used in tumor therapy, one of which is CD3 antigen. In this review, we discuss the importance of biological function and the crucial role of CD3 in tumor therapy. We highlight the research status of antibodies and small molecules targeting CD3 to provide guidance for future drug research.
Collapse
Affiliation(s)
- Han Deng
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; These authors contributed equally
| | - Zhendong Niu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; These authors contributed equally
| | - Zhixiong Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; These authors contributed equally
| | - Jixuan Zhang
- Office of Supervision, Sichuan Development Holding Co., Ltd, Chengdu, China
| | - Guan Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuxi Wang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, Innovation Center of Nursing Research, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
24
|
Borroto A, Alarcón B, Navarro MN. Mutation of the Polyproline Sequence in CD3ε Evidences TCR Signaling Requirements for Differentiation and Function of Pro-Inflammatory Tγδ17 Cells. Front Immunol 2022; 13:799919. [PMID: 35432331 PMCID: PMC9008450 DOI: 10.3389/fimmu.2022.799919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/09/2022] [Indexed: 11/23/2022] Open
Abstract
Tγδ17 cells have emerged as a key population in the development of inflammatory and autoimmune conditions such as psoriasis. Thus, the therapeutic intervention of Tγδ17 cells can exert protective effects in this type of pathologies. Tγδ cells commit to IL-17 production during thymus development, and upon immune challenge, additional extrathymic signals induce the differentiation of uncommitted Tγδ cells into Tγδ17 effector cells. Despite the interest in Tγδ17 cells during the past 20 years, the role of TCR signaling in the generation and function of Tγδ17 cells has not been completely elucidated. While some studies point to the notion that Tγδ17 differentiation requires weak or no TCR signaling, other works suggest that Tγδ17 require the participation of specific kinases and adaptor molecules downstream of the TCR. Here we have examined the differentiation and pathogenic function of Tγδ17 cells in “knockin” mice bearing conservative mutations in the CD3ε polyproline rich sequence (KI-PRS) with attenuated TCR signaling due to lack of binding of the essential adaptor Nck. KI-PRS mice presented decreased frequency and numbers of Tγδ17 cells in adult thymus and lymph nodes. In the Imiquimod model of skin inflammation, KI-PRS presented attenuated skin inflammation parameters compared to wild-type littermates. Moreover, the generation, expansion and effector function Tγδ17 cells were impaired in KI-PRS mice upon Imiquimod challenge. Thus, we conclude that an intact CD3ε-PRS sequence is required for optimal differentiation and pathogenic function of Tγδ17 cells. These data open new opportunities for therapeutic targeting of specific TCR downstream effectors for treatment of Tγδ17-mediated diseases.
Collapse
Affiliation(s)
- Aldo Borroto
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcón
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - María N Navarro
- Interactions with the Environment Program, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Ljokjel B, Haave H, Lybak S, Vintermyr OK, Helgeland L, Aarstad HJ. Tumor Infiltration Levels of CD3, Foxp3 (+) Lymphocytes and CD68 Macrophages at Diagnosis Predict 5-Year Disease-Specific Survival in Patients with Oropharynx Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14061508. [PMID: 35326661 PMCID: PMC8946734 DOI: 10.3390/cancers14061508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/27/2022] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Head and neck cancer (HNC) is the sixth most common cancer worldwide, with a general prognosis of 50% disease-specific survival (DSS). The subgroup of oropharyngeal (OP) cancers are of interest because HPV infection is one of several causative agents and carries favorable prognosis. Influxes of inflammatory cells into tumors may vary with prognosis. T lymphocytes are important regarding specific immune defense. Within the immune system T regulatory cells (Foxp3 positive) co-governs this process. We have therefore primarily studied levels of Foxp3 (+) cells in malignant tumors from 170 patients related to prognosis of the patients. Higher levels of T lymphocyte Foxp3 (+) cells predicted better 5-year DSS. This case was unique relative to age, gender, TNM stage, and HPV infection; but more so among tumor HPV (+) than HPV (−) patients. The results encourage further study into the use of immune-based therapy in HNC patients. Abstract Head and neck cancer (HNC) is the sixth most common cancer worldwide. Oropharyngeal (OP) cancers are of special interest because of possible underlying HPV infection which is tied to prognosis. Influxes of inflammatory cells into tumors may vary with prognoses. We wanted to study whether the number of tumor-infiltrating lymphocytes (TIL) and tumor-associated macrophages (TAM) in tumors correlated to HPV status and predicted 5-year disease-specific survival (DSS). Formalin-fixed paraffin-embedded (FFPE) biopsies cut sections from 170 patients treated for OP cancer were stained by immunohistochemistry and evaluated for the number of CD68 (+) TAMs, CD3 (+), and Foxp3 (+) (T regulatory) TILs. From FFPE slides HPV by PCR and p16 by immunohistochemistry were established. From FFPE Hematoxylin-Eosin slides, levels of tumor nuclear polymorphism, tumor invasion, desmoplasia, and inflammation were determined as previously published. Levels of TIL CD3 (+) and TIL Foxp3 (+) were increased among the HPV (+) compared to the HPV (−) patients. High levels of TIL Foxp3 (+) and CD68 (+) macrophages predicted better 5-year DSS. TIL Foxp3 (+) levels predicted independent of age, gender, TNM stage, and HPV infection as well as level of stromal desmoplasia, tumor invasion, and nuclear polymorphism, but more pronounced among tumor HPV (+) than HPV (−) patients.
Collapse
Affiliation(s)
- Borghild Ljokjel
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5021 Bergen, Norway; (B.L.); (H.H.); (S.L.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway; (O.K.V.); (L.H.)
| | - Hilde Haave
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5021 Bergen, Norway; (B.L.); (H.H.); (S.L.)
| | - Stein Lybak
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5021 Bergen, Norway; (B.L.); (H.H.); (S.L.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway; (O.K.V.); (L.H.)
| | - Olav Karsten Vintermyr
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway; (O.K.V.); (L.H.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Lars Helgeland
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway; (O.K.V.); (L.H.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans Jørgen Aarstad
- Department of Otolaryngology/Head and Neck Surgery, Haukeland University Hospital, 5021 Bergen, Norway; (B.L.); (H.H.); (S.L.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, 5021 Bergen, Norway; (O.K.V.); (L.H.)
- Correspondence: or ; Tel.: +47-5597-2664
| |
Collapse
|
26
|
Huang H, Yang Y, Song T, Yang Y, Zhu Y, Liu Z, Li L, Wang X. Single-cell RNA Sequencing Uncovered the Involvement of an Endothelial Subset in Neutrophil Recruitment in Chemically Induced Rat Pulmonary Inflammation. Int J Med Sci 2022; 19:669-680. [PMID: 35582423 PMCID: PMC9108403 DOI: 10.7150/ijms.67806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/23/2022] [Indexed: 11/05/2022] Open
Abstract
There is growing support for the notion that chronic inflammation contributes to lung tumorigenesis, but the molecular and cellular basis underlying the protumorigenic effects of inflammation remains to be explored. 3-Methylcholanthrene and diethylnitrosamine were intratracheally instilled into rats to induce multistep lung carcinogenesis, and the presence of pulmonary inflammation was observed in addition to precancerous lesions. By leveraging single-cell RNA sequencing, we sought to unravel the mechanism underlying the inflammatory process at a higher resolution. A total of 14 cell types were identified in chemically treated and control rats. Chemical intervention introduced heterogeneity in cell type composition and gene expression patterns. Nonimmune cells were found to be the most affected, and two subpopulations of endothelial cells with diverse roles were defined. Car4-high endothelial cells were mainly responsible for angiogenesis, whereas Car4-low endothelial cells were involved in neutrophil recruitment, and adhesion between Car4-low endothelial cells and neutrophils was verified in inflamed tissues. Our work unveiled the intricate process of pulmonary inflammation at the single-cell level and characterized a proinflammatory subpopulation of endothelial cells involved in neutrophil recruitment. The conditions provided by chronic inflammatory environment are prerequisites for neoplastic progression. Targeting the specific subsets or processes defined herein holds promise for the early prevention and therapeutic intervention of lung cancer through the manipulation of angiogenesis or the inflammatory response.
Collapse
Affiliation(s)
- Hong Huang
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tingting Song
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongfeng Yang
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yihan Zhu
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhiqiang Liu
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Li
- Institute of Clinical Pathology, Key Laboratory of Transplantation Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Wang
- West China Second Hospital, Sichuan University, Chengdu, 610041 P. R. China & Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education
| |
Collapse
|
27
|
Ben-Nun O, Kisliouk T, Marco A, Rosenberg T, Meiri N. Early-life thermal stress mediates long-term alterations in hypothalamic microglia. Glia 2021; 70:619-633. [PMID: 34904755 DOI: 10.1002/glia.24129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/23/2022]
Abstract
Stressful environmental events in early life have long-lasting consequences on later stress responses. We previously showed that heat conditioning of 3-day-old chicks during the critical period of heat-response development leads to heat vulnerability later in life. Here we assessed the role of early-life heat stress on the inflammatory response in the chick anterior hypothalamus (AH), focusing on hypothalamic microglia. We identified the microglial cell population in the chick AH using anti-KUL01 and anti-CD45 antibodies. Specific microglial features were also confirmed by expression of their signature genes. Under normal environmental conditions, hypothalamic microglia isolated from lipopolysaccharide (LPS)-injected chicks displayed a classical activated proinflammatory profile accompanied by a decreased homeostatic signature, demonstrating similarity of immune response with mammalian microglial cells. In accordance with our previous observations, conditioning of 3-day-old chicks under high ambient temperature decreased the number of newborn cells in the AH, among them microglial precursors. Although heat exposure did not affect microglial cell viability, it had a long-term impact on LPS-induced inflammatory response. Exposure to harsh heat led to heat vulnerability, and attenuated recruitment of peripheral monocytes and T cells into the AH following LPS challenge. Moreover, heat conditioning altered microglial reactivity, manifested as suppressed microglial activation in response to LPS. Innate immune memory developed by heat conditioning might underlie suppression of the microglial response to LPS challenge. We describe alterations in genome-wide CpG methylation profile of hypothalamic microglia, demonstrating probable epigenetic involvement in the reprogramming of microglial function, leading to heat-induced inflammatory cross-tolerance.
Collapse
Affiliation(s)
- Osher Ben-Nun
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel.,The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tatiana Kisliouk
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Asaf Marco
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Tali Rosenberg
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| | - Noam Meiri
- Institute of Animal Science, ARO, The Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
28
|
Sahillioglu AC, Schumacher TN. Multimodular Optimization of Chemically Regulated T Cell Switches Demonstrates Flexible and Interchangeable Nature of Immune Cell Signaling Domains. Hum Gene Ther 2021; 32:1029-1043. [PMID: 34662227 PMCID: PMC10112874 DOI: 10.1089/hum.2021.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immune cell-based therapies can induce potent antitumor effects but are also often associated with severe toxicities. We previously developed a PD-1-based small molecule-regulated reversible T cell activation switch to control the activity of cellular immunotherapy products. This chemically regulated and SH2-delivered-inhibitory tail (CRASH-IT) switch relies on the noncovalent interaction of switch SH2 domains with phosphorylated ITAM motifs in either chimeric antigen receptors or T cell receptors. After this interaction, the immunoreceptor tyrosine-based inhibition motif/switch motif (ITIM/ITSM) containing PD-1 domain present in the CRASH-IT switch induces robust inhibition of T cell signaling, and CRASH-IT-mediated suppression of T cell activity can be reversed by small molecule-induced switch proteolysis. With the aim to develop improved second-generation switch systems, we here analyze the possibility space of both the immune cell receptor docking and inhibitory signaling domains that allow control over T cell activity. Importantly, these analyses demonstrate that the inhibitory domains that most potently suppress antigen receptor signaling in primary human T cells are not derived from inhibitory receptors, such as PD-1 and BTLA, that are endogenously expressed in T cells, but include ITIM/ITSM containing inhibitory domains derived from receptors present in myeloid cells. In addition, we demonstrate that physical proximity of the inhibitory domain to the antigen receptor is crucial to efficiently suppress T cell activation, as only switch designs that employ SH2 domains directly interacting with ITAM motifs in antigen receptors efficiently and reversibly inhibit T cell functionality. These data demonstrate the flexible and interchangeable nature of immune cell signaling domains, and inform the design of a synthetic proximity-based switch system with a superior dynamic range.
Collapse
Affiliation(s)
- Ali Can Sahillioglu
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Molecular Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Zhang L, Wang X, Li Y, Han J, Gao X, Li S, Wang F. c-Myb facilitates immune escape of esophageal adenocarcinoma cells through the miR-145-5p/SPOP/PD-L1 axis. Clin Transl Med 2021; 11:e464. [PMID: 34586738 PMCID: PMC8473478 DOI: 10.1002/ctm2.464] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 05/24/2021] [Accepted: 05/30/2021] [Indexed: 02/03/2023] Open
Abstract
Esophageal adenocarcinoma (EAC), a subtype of esophageal carcinoma, is a severe health problem associated with high death rate and poor prognosis. Immunotherapy has proven to be effective in many solid tumors, including EAC, but immune escape blocks its effectiveness. Thus, we explored the mechanisms and functional role of c-Myb in immune escape of EAC cells. Clinical EAC tissues were collected for determining the expression of c-Myb, speckled POZ protein (SPOP), and miR-145-5p. Functional assays were then performed to detect the interactions between c-Myb and SPOP as well as between SPOP and miR-145-5p. EAC cell invasion and migration were assessed. Next, T cells were sorted and cocultured with EAC cells with different treatments followed by detection of T-cell viability. In addition, a mouse model of EAC was constructed for relevant in vivo assays. c-Myb and miR-145-5p were highly expressed and SPOP had low expressions in EAC. c-Myb activated the transcription of miR-145-5p, which in turn targeted SPOP. Further, SPOP accelerated the ubiquitination of PD-L1 to enhance its expression. Overexpression of PD-L1 suppressed T-cell functions and promoted proliferative and migrative abilities of EAC cells to induce immune escape. The above findings were also confirmed in the ECA mouse model in vivo. Our findings uncovered that c-Myb can promote the immune escape of EAC cells by favoring the transcription of miR-145-5p and inhibiting SPOP-dependent ubiquitination and degradation of PD-L1, thus, presenting new target for EAC adjunct therapy.
Collapse
Affiliation(s)
- Lan Zhang
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| | - Xiaohui Wang
- Department of PathologyThe First Affiliated Hospital of Xinxiang Medical UniversityZhengzhouP. R. China
| | - Yunfei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| | - Jing Han
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| | - Xianzheng Gao
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| | - Shenglei Li
- Department of PathologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| | - Feng Wang
- Department of OncologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
30
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
31
|
Quixabeira DCA, Zafar S, Santos JM, Cervera-Carrascon V, Havunen R, Kudling TV, Basnet S, Anttila M, Kanerva A, Hemminki A. Oncolytic Adenovirus Coding for a Variant Interleukin 2 (vIL-2) Cytokine Re-Programs the Tumor Microenvironment and Confers Enhanced Tumor Control. Front Immunol 2021; 12:674400. [PMID: 34084172 PMCID: PMC8168464 DOI: 10.3389/fimmu.2021.674400] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022] Open
Abstract
The notion of developing variants of the classic interleukin 2 (IL-2) cytokine has emerged from the limitations observed with the systemic use of human IL-2 in the clinic: severe adverse events accompanied by low therapeutic response rate in treated patients. Modifications made in the IL-2 receptor-binding structure leads to preferential binding of IL-2 variant cytokine to receptors on effector anti-tumor lymphocytes over T regulatory (TReg) cells. Because of their inherent immunogenicity, oncolytic adenoviruses are useful for expression of immunomodulatory molecules in tumors, for induction of a pro-inflammatory state in the tumor microenvironment. In the present study, we constructed an adenovirus coding for an IL-2 variant (vIL-2) protein, Ad5/3-E2F-d24-vIL2. Functionality of the new virus was tested in vitro, and anti-tumor efficacy and mechanism of action studies were performed in immunocompetent hamsters bearing pancreatic tumors. Ad5/3-E2F-d24-vIL2 treatment elicited efficient anti-tumor response, with 62.5% monotherapy complete response. Moreover, it promoted substantial repression of genes associated with myeloid cells mediated immunosuppression (CD11b, ARG1, CD206). This was seen in conjunction with upregulation of genes associated with tumor-infiltrating lymphocyte (TIL) cytotoxicity (CD3G, SAP, PRF1, GZMM and GZMK). In summary, Ad5/3-E2F-d24-vIL2 demonstrates therapeutic potential by counteracting immunosuppression and in efficiently coordinating lymphocytes mediated anti-tumor response in immunosuppressive tumors. Thus, Ad5/3-E2F-d24-vIL2 is a promising candidate for translation into clinical trials in human immunosuppressive solid tumors.
Collapse
Affiliation(s)
- Dafne C A Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Sadia Zafar
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Joao M Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics, Helsinki, Finland
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics, Helsinki, Finland
| | - Tatiana V Kudling
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Anna Kanerva
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics, Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|
32
|
Cui G, Geng L, Zhu L, Lin Z, Liu X, Miao Z, Jiang J, Feng X, Wei F. CFP is a prognostic biomarker and correlated with immune infiltrates in Gastric Cancer and Lung Cancer. J Cancer 2021; 12:3378-3390. [PMID: 33976747 PMCID: PMC8100816 DOI: 10.7150/jca.50832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/21/2021] [Indexed: 01/06/2023] Open
Abstract
Complement factor properdin (CFP), encodes plasma glycoprotein, is a critical gene that regulates the complement pathway of the innate immune system. However, correlations of CFP in cancers remain unclear. In this study, the expression pattern and prognostic value of CFP in pan-cancer were analyzed via the Oncomine, PrognoScan, GEPIA and Kaplan-Meier plotters. In addition, we used immunohistochemical staining to validate CFP expression in clinical tissue samples. Finally, we evaluated the correlations between CFP and cancer immune infiltrates particularly in stomach adenocarcinoma (STAD) and lung adenocarcinoma (LUAD) by using GEPIA and TIMER databases. The results of database analysis and immunohistochemistry showed that the expression level of CFP in STAD and LUAD was lower than that in normal tissues. Low expression level of CFP was associated with poorer overall survival (OS), first progression (FP), post progression survival (PPS) and was detrimental to the prognosis of STAD and LUAD, specifically in stage 3, stage T3, stage N2 and N3 of STAD (P<0.05). Moreover, expression of CFP had significant positive correlations with the infiltration levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells (DCs) in STAD and LUAD. Furthermore, gene markers of infiltrating immune cells exhibited different CFP-related immune infiltration patterns such as tumor-associated-macrophages (TAMs). These results suggest that CFP can serve as a prognostic biomarker for determining prognosis and immune infiltration in STAD and LUAD.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Le Geng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jintao Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fei Wei
- Department of Physiology, School of medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
33
|
Hartl FA, Ngoenkam J, Beck-Garcia E, Cerqueira L, Wipa P, Paensuwan P, Suriyaphol P, Mishra P, Schraven B, Günther S, Pongcharoen S, Schamel WWA, Minguet S. Cooperative Interaction of Nck and Lck Orchestrates Optimal TCR Signaling. Cells 2021; 10:834. [PMID: 33917227 PMCID: PMC8068026 DOI: 10.3390/cells10040834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 11/17/2022] Open
Abstract
The T cell antigen receptor (TCR) is expressed on T cells, which orchestrate adaptive immune responses. It is composed of the ligand-binding clonotypic TCRαβ heterodimer and the non-covalently bound invariant signal-transducing CD3 complex. Among the CD3 subunits, the CD3ε cytoplasmic tail contains binding motifs for the Src family kinase, Lck, and the adaptor protein, Nck. Lck binds to a receptor kinase (RK) motif and Nck binds to a proline-rich sequence (PRS). Both motifs only become accessible upon ligand binding to the TCR and facilitate the recruitment of Lck and Nck independently of phosphorylation of the TCR. Mutations in each of these motifs cause defects in TCR signaling and T cell activation. Here, we investigated the role of Nck in proximal TCR signaling by silencing both Nck isoforms, Nck1 and Nck2. In the absence of Nck, TCR phosphorylation, ZAP70 recruitment, and ZAP70 phosphorylation was impaired. Mechanistically, this is explained by loss of Lck recruitment to the stimulated TCR in cells lacking Nck. Hence, our data uncover a previously unknown cooperative interaction between Lck and Nck to promote optimal TCR signaling.
Collapse
Affiliation(s)
- Frederike A. Hartl
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (J.N.); (P.W.)
| | - Esmeralda Beck-Garcia
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
| | - Liz Cerqueira
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand; (J.N.); (P.W.)
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Prapat Suriyaphol
- Division of Bioinformatics and Data Management for Research, Research Group and Research Network Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Pankaj Mishra
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (P.M.); (S.G.)
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology and Health Campus Immunology, Infectiology and Inflammation, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany;
| | - Stefan Günther
- Pharmaceutical Bioinformatics, Institute of Pharmaceutical Sciences, University of Freiburg, 79104 Freiburg, Germany; (P.M.); (S.G.)
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok 65000, Thailand;
- Center of Excellence in Petroleum, Petrochemical, and Advanced Materials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; (F.A.H.); (E.B.-G.); (L.C.); (W.W.A.S.)
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, 79106 Freiburg, Germany
| |
Collapse
|
34
|
Xiao P, Wang J, Zhao Z, Liu X, Sun X, Wang D, Li Y. Engineering Nanoscale Artificial Antigen-Presenting Cells by Metabolic Dendritic Cell Labeling to Potentiate Cancer Immunotherapy. NANO LETTERS 2021; 21:2094-2103. [PMID: 33622034 DOI: 10.1021/acs.nanolett.0c04783] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanoscale artificial antigen-presenting cells (aAPCs) are promising to activate T cells directly for cancer immunotherapy, while feasible and flexible strategy to develop nanoscale aAPCs remains highly desirable. Metabolic glycoengineering is used to decorate chemical tags on cells which enables bioorthogonal chemical conjugation of functional molecules. Herein, we develop a nanoscale aAPC by metabolic dendritic cell (DC) labeling to mobilize T-cell based antitumor immunity. We coat azido-labeled DC membrane on imiquimod-loaded polymeric nanoparticles and sequentially modify anti-CD3ε antibody via click chemistry. The nanoscale aAPCs perform improved distribution in lymph nodes and stimulate T cells and resident APCs. Significant inhibition of tumor inoculation and growth is observed after the vaccination, which can be further improved by combining antiprogrammed cell death receptor 1 (PD1) therapy. Our results demonstrate the promising application of metabolically labeled DCs for designing nanoscale aAPCs, which provide a simple and general strategy to potentiate cancer immunotherapy.
Collapse
Affiliation(s)
- Ping Xiao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jue Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zitong Zhao
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaochen Liu
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangshi Sun
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Dangge Wang
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong 265700, China
| | - Yaping Li
- State Key Laboratory of Drug Research and Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Shandong 265700, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Li L, Huang H, Zhu M, Wu J. Identification of Hub Genes and Pathways of Triple Negative Breast Cancer by Expression Profiles Analysis. Cancer Manag Res 2021; 13:2095-2104. [PMID: 33688252 PMCID: PMC7935333 DOI: 10.2147/cmar.s295951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
Purpose Triple negative breast cancer (TNBC) is an intrinsic subtype of breast cancer with a poor prognosis, characterized by a lack of ER and PR expression and the absence of HER2 amplification. The aim of this study is to characterize hub genes (key genes in the molecular interaction network) expression in TNBC, which may serve as prognostic predictors for TNBC treatment. Methods Four transcriptome microarray datasets GSE27447, GSE39004, GSE43358 and GSE45827 were obtained from the Gene Expression Omnibus (GEO) database, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted by DAVID and KOBAS database. Thereafter, protein–protein interaction (PPI) network was constructed according to STRING online database. Functional modules and hub genes were screened by MCODE and cytohubba plug-ins, and the Cancer Genome Atlas (TCGA) survival analysis and qRT-PCR were utilized to validate the expression of these hub genes on TNBC. Results A total of 134 DEGs were identified by differential expression analysis, consisting of 88 up- and 46 down-regulated genes. GO and KEGG analyses showed that the terms and pathways enriched were mainly associated with cell adhesion, tumorigenesis and cellular immunity. From the PPI network, we identified six hub genes, including CD3D, CD3E, CD3G, FYN, GRAP2 and ITK. Survival analysis and the qRT-PCR results confirmed the robustness of the identified hub genes. Conclusion This study provides a new insight into the understanding of the molecular mechanisms associated with TNBC and suggested that the hub genes may serve as prognostic predictors.
Collapse
Affiliation(s)
- Liqi Li
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Hu Huang
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Mingjie Zhu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Junqiang Wu
- Department of Breast Surgery, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
36
|
Qin Y, Sun Z, Wang W, Xu J, Wang B, Jia Z, Li X, Wang J, Gao Q, Chen X, Zou J. Characterization of CD3γ/δ + cells in grass carp (Ctenopharyngodon idella). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103791. [PMID: 32784010 DOI: 10.1016/j.dci.2020.103791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/04/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
CD3 is an essential component of the TCR-CD3 complex which plays a key role in adaptive immunity. Non-mammalian CD3 complex consists of CD3γ/δ, CD3ε and CD3ζ subunits. In this study, homologues of CD3γ/δ and CD3ε (termed CiCD3γ/δ and CiCD3ε) have been identified in grass carp (Ctenopharyngodon idella). Like their counterparts from other vertebrates, the CiCD3γ/δ and CiCD3ε are clustered in the same locus in the genome and encode proteins which are structurally conserved, comprising a signal peptide, an extracellular domain, a transmembrane domain and a cytoplasmic tail containing two ITAM motifs. Sequence analyses identified two novel conserved motifs in the cytoplasmic tail of CiCD3γ/δ and CiCD3ε, one is composed of an arginine and lysine motif (RK or RR) at the C terminus of CiCD3γ/δ and a proline rich domain (PxxPxP/Q) located at the N terminus of ITAM motifs of CiCD3ε. Both genes were highly expressed at the mRNA level in the spleen and gills of healthy fish and could be modulated by infection of Flavobacterium columnare and grass carp reovirus. A monoclonal antibody against the CiCD3γ/δ (GC38T) was produced and showed good reactivity with the native molecule in Western blotting analysis and flow cytometry. The CiCD3γ/δ+ cells were analysed in the primary leucocytes, accounting for 5.5% of lymphocytes isolated from spleen, 4.5% from head kidney and 2.8% from peripheral blood. The CiCD3γ/δ+ cells were localized in the gills and head kidney by fluorescent confocal microscopy.
Collapse
Affiliation(s)
- Yuting Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhaosheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiawen Xu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Bangjie Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xia Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Qian Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
37
|
Assessing the Multivariate Relationship between the Human Infant Intestinal Exfoliated Cell Transcriptome (Exfoliome) and Microbiome in Response to Diet. Microorganisms 2020; 8:microorganisms8122032. [PMID: 33353204 PMCID: PMC7766018 DOI: 10.3390/microorganisms8122032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota and the host exist in a mutualistic relationship, with the functional composition of the microbiota strongly influencing the health and well-being of the host. In addition to the standard differential expression analysis of host genes to assess the complex cross-talk between environment (diet), microbiome, and host intestinal physiology, data-driven integrative approaches are needed to identify potential biomarkers of both host genes and microbial communities that characterize these interactions. Our findings demonstrate that the complementary application of univariate differential gene expression analysis and multivariate approaches such as sparse Canonical Correlation Analysis (sCCA) and sparse Principal Components Analysis (sPCA) can be used to integrate data from both the healthy infant gut microbial community and host transcriptome (exfoliome) using stool derived exfoliated cells shed from the gut. These approaches reveal host genes and microbial functional categories related to the feeding phenotype of the infants. Our findings also confirm that combinatorial noninvasive -omic approaches provide an integrative genomics-based perspective of neonatal host-gut microbiome interactions.
Collapse
|
38
|
Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy. Cell Rep 2020; 33:108525. [PMID: 33357427 DOI: 10.1016/j.celrep.2020.108525] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/07/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
IgA nephropathy (IgAN) is the leading cause of kidney failure due to an incomplete understanding of its pathogenesis. We perform single-cell RNA sequencing (RNA-seq) on kidneys and CD14+ peripheral blood mononuclear cells (PBMCs) collected from IgAN and normal samples. In IgAN, upregulation of JCHAIN in mesangial cells provides insight into the trigger mechanism for the dimerization and deposition of IgA1 in situ. The pathological mesangium also demonstrates a prominent inflammatory signature and increased cell-cell communication with other renal parenchymal cells and immune cells, suggesting disease progress from the mesangium to the entire kidney. Specific gene expression of kidney-resident macrophages and CD8+ T cells further indicates abnormal regulation associated with proliferation and inflammation. A transitional cell type among intercalated cells with fibrosis signatures is identified, suggesting an adverse outcome of interstitial fibrosis. Altogether, we systematically analyze the molecular events in the onset and progression of IgAN, providing a promising landscape for disease treatment.
Collapse
|
39
|
Raskov H, Orhan A, Christensen JP, Gögenur I. Cytotoxic CD8 + T cells in cancer and cancer immunotherapy. Br J Cancer 2020; 124:359-367. [PMID: 32929195 PMCID: PMC7853123 DOI: 10.1038/s41416-020-01048-4] [Citation(s) in RCA: 907] [Impact Index Per Article: 181.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The functions of, and interactions between, the innate and adaptive immune systems are vital for anticancer immunity. Cytotoxic T cells expressing cell-surface CD8 are the most powerful effectors in the anticancer immune response and form the backbone of current successful cancer immunotherapies. Immune-checkpoint inhibitors are designed to target immune-inhibitory receptors that function to regulate the immune response, whereas adoptive cell-transfer therapies use CD8+ T cells with genetically modified receptors—chimaeric antigen receptors—to specify and enhance CD8+ T-cell functionality. New generations of cytotoxic T cells with genetically modified or synthetic receptors are being developed and evaluated in clinical trials. Furthermore, combinatory regimens might optimise treatment effects and reduce adverse events. This review summarises advances in research on the most prominent immune effectors in cancer and cancer immunotherapy, cytotoxic T cells, and discusses possible implications for future cancer treatment.
Collapse
Affiliation(s)
- Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
Zhang C, Gao J, He J, Liu C, Lv X, Yin X, Deng Y, Lu Z, Tian Z. Regulatory T-cell expansion in oral and maxillofacial Langerhans cell histiocytosis. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 130:547-556. [PMID: 32988807 DOI: 10.1016/j.oooo.2020.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/22/2020] [Accepted: 08/02/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Langerhans cell histiocytosis (LCH) is a rare myeloid-origin neoplasm characterized by the expansion and dissemination of CD1 a+/CD207+ dendritic cells (LCH cells), but the rarity of its occurrence has long impeded progress in understanding its pathology. We focus on the potentially important role that regulatory T cells (T-reg) play in the oral and maxillofacial LCH tumor microenvironment (TME). STUDY DESIGN Nine cases of oral and maxillofacial LCH, diagnosed from 2009 to 2019, were collected retrospectively from the affiliated hospitals of Southern Medical University. Immunohistochemistry was conducted characterizing T cells and T-reg phenotype. Data were evaluated by 1-sample Wilcoxon's test. RESULTS Significantly increased frequency and abnormal distributions of T-reg were identified in all the LCH lesion sections. Proliferating T-reg account for a mean average of 11.5% of the total T-cell subsets, with significant difference (Wilcoxon's test; P < .05). CONCLUSIONS T-reg expansion in the localized inflammatory TME leads to a failure of immune regulation by suppressing antitumor response, which can be a latent and significant factor contributing to LCH progression. However, T-reg may also acquire the capability for aiding in initiating T-cell responses under the "cytokine storm" at the beginning of LCH onset. T-reg might contribute to the augmentation of tissue repair by transforming growth factor-β (TGF-β), explaining the self-limiting character of LCH.
Collapse
Affiliation(s)
- Chuhan Zhang
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingyi Gao
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jianghai He
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chundong Liu
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaozhi Lv
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xuemin Yin
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yongjian Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhiyun Lu
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Zhihui Tian
- Department of Stomatology, School of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
41
|
A Head Start: CAR-T Cell Therapy for Primary Malignant Brain Tumors. Curr Treat Options Oncol 2020; 21:73. [PMID: 32725495 DOI: 10.1007/s11864-020-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Oncology is the midst of a therapeutic renaissance. The realization of immunotherapy as an efficacious and expanding treatment option has empowered physicians and patients alike. However, despite these remarkable advances, we have only just broached the potential immunotherapy has to offer and have yet to successfully expand these novel modalities to the field of neuro-oncology. In recent years, exciting results in preclinical studies of immune adjuvants, oncolytic viruses, or cell therapy have been met with only fleeting signs of response when taken to early phase trials. Although many have speculated why these innovative approaches result in impaired outcomes, we are left empty-handed in a field plagued by a drought of new therapies. Herein, we will review the recent advances across cellular therapy for primary malignant brain tumors, an approach that lends itself to overcoming the inherent resistance mechanisms which have impeded the success of prior treatment attempts.
Collapse
|
42
|
Bhattacharyya ND, Feng CG. Regulation of T Helper Cell Fate by TCR Signal Strength. Front Immunol 2020; 11:624. [PMID: 32508803 PMCID: PMC7248325 DOI: 10.3389/fimmu.2020.00624] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
T cells are critical in orchestrating protective immune responses to cancer and an array of pathogens. The interaction between a peptide MHC (pMHC) complex on antigen presenting cells (APCs) and T cell receptors (TCRs) on T cells initiates T cell activation, division, and clonal expansion in secondary lymphoid organs. T cells must also integrate multiple T cell-intrinsic and extrinsic signals to acquire the effector functions essential for the defense against invading microbes. In the case of T helper cell differentiation, while innate cytokines have been demonstrated to shape effector CD4+ T lymphocyte function, the contribution of TCR signaling strength to T helper cell differentiation is less understood. In this review, we summarize the signaling cascades regulated by the strength of TCR stimulation. Various mechanisms in which TCR signal strength controls T helper cell expansion and differentiation are also discussed.
Collapse
Affiliation(s)
- Nayan D Bhattacharyya
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Carl G Feng
- Immunology and Host Defense Group, Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.,Tuberculosis Research Program, Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
43
|
Alhabbab RY. Targeting Cancer Stem Cells by Genetically Engineered Chimeric Antigen Receptor T Cells. Front Genet 2020; 11:312. [PMID: 32391048 PMCID: PMC7188929 DOI: 10.3389/fgene.2020.00312] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The term cancer stem cell (CSC) starts 25 years ago with the evidence that CSC is a subpopulation of tumor cells that have renewal ability and can differentiate into several distinct linages. Therefore, CSCs play crucial role in the initiation and the maintenance of cancer. Moreover, it has been proposed throughout several studies that CSCs are behind the failure of the conventional chemo-/radiotherapy as well as cancer recurrence due to their ability to resist the therapy and their ability to re-regenerate. Thus, the need for targeted therapy to eliminate CSCs is crucial; for that reason, chimeric antigen receptor (CAR) T cells has currently been in use with high rate of success in leukemia and, to some degree, in patients with solid tumors. This review outlines the most common CSC populations and their common markers, in particular CD133, CD90, EpCAM, CD44, ALDH, and EGFRVIII, the interaction between CSCs and the immune system, CAR T cell genetic engineering and signaling, CAR T cells in targeting CSCs, and the barriers in using CAR T cells as immunotherapy to treat solid cancers.
Collapse
Affiliation(s)
- Rowa Y. Alhabbab
- Division of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
44
|
Richter K, Rufer AC, Muller M, Burger D, Casagrande F, Grossenbacher T, Huber S, Hug MN, Koldewey P, D'Osualdo A, Schlatter D, Stoll T, Rudolph MG. Small molecule AX-024 reduces T cell proliferation independently of CD3ϵ/Nck1 interaction, which is governed by a domain swap in the Nck1-SH3.1 domain. J Biol Chem 2020; 295:7849-7864. [PMID: 32317279 PMCID: PMC7278359 DOI: 10.1074/jbc.ra120.012788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of the T cell receptor (TCR) results in binding of the adapter protein Nck (noncatalytic region of tyrosine kinase) to the CD3ϵ subunit of the TCR. The interaction was suggested to be important for the amplification of TCR signals and is governed by a proline-rich sequence (PRS) in CD3ϵ that binds to the first Src homology 3 (SH3) domain of Nck (Nck-SH3.1). Inhibition of this protein/protein interaction ameliorated inflammatory symptoms in mouse models of multiple sclerosis, psoriasis, and asthma. A small molecule, AX-024, was reported to inhibit the Nck/CD3ϵ interaction by physically binding to the Nck1-SH3.1 domain, suggesting a route to develop an inhibitor of the Nck1/CD3ϵ interaction for modulating TCR activity in autoimmune and inflammatory diseases. We show here that AX-024 reduces T cell proliferation upon weak TCR stimulation but does not significantly affect phosphorylation of Zap70 (ζ chain of T cell receptor–associated protein kinase 70). We also find that AX-024 is likely not involved in modulating the Nck/TCR interaction but probably has other targets in T cells. An array of biophysical techniques did not detect a direct interaction between AX-024 and Nck-SH3.1 in vitro. Crystal structures of the Nck-SH3.1 domain revealed its binding mode to the PRS in CD3ϵ. The SH3 domain tends to generate homodimers through a domain swap. Domain swaps observed previously in other SH3 domains indicate a general propensity of this protein fold to exchange structural elements. The swapped form of Nck-SH3.1 is unable to bind CD3ϵ, possibly representing an inactive form of Nck in cells.
Collapse
Affiliation(s)
- Kirsten Richter
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Arne C Rufer
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Magali Muller
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Dominique Burger
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Casagrande
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Tabea Grossenbacher
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Melanie N Hug
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philipp Koldewey
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Andrea D'Osualdo
- I2O Disease Translational Area, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Daniel Schlatter
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Theodor Stoll
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Markus G Rudolph
- Therapeutic Modalities, Lead Discovery and Medicinal Chemistry, pRED Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
45
|
Biallelic Form of a Known CD3E Mutation in a Patient with Severe Combined Immunodeficiency. J Clin Immunol 2020; 40:539-542. [PMID: 32016651 DOI: 10.1007/s10875-020-00752-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
46
|
Karlovits S, Manz A, Allenspach K, Walter I, Kummer S, Tichy A, Richter B, Burgener IA, Luckschander-Zeller N. Ki-67/CD3 ratio in the diagnosis of chronic inflammatory enteropathy in dogs. J Vet Intern Med 2019; 34:92-97. [PMID: 31825538 PMCID: PMC6979107 DOI: 10.1111/jvim.15680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/26/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND T cells play a key role in the pathogenesis of chronic inflammatory enteropathy (CIE) in dogs. Cluster of differentiation 3 (CD3) antigen serves as a marker for T cells. In human medicine, Ki-67 is an indicator for cell growth but there are only a few studies in dogs with CIE. OBJECTIVE To investigate Ki-67 in relation to T cells as a marker for CIE in dogs. ANIMALS Eleven dogs with CIE and 6 healthy beagle controls (CO). METHODS Retrospective case-control study. Dogs were clinically assessed by the Canine Chronic Enteropathy Clinical Activity Index (CCECAI). Duodenal mucosal biopsy samples were endoscopically obtained for histopathologic examination by means of the World Small Animal Veterinary Association score. Double-labeled immunofluorescence was used to investigate colocalization of Ki-67 and CD3 in epithelium and lamina propria (LP) of villi and crypts. RESULTS Dogs with CIE had significantly higher clinical score (median, 5.0; interquartile range [IQR], 3-7) compared to CO (all 0; P < .001). The Ki-67/CD3 double-positive cells were significantly increased in the LP of the crypt region of CIE dogs (0.63 cells/mm2 ; IQR, 0-0.54) versus CO (0.08 cells/mm2 ; IQR, 0-0.26; P = .044). A significant correlation was found between CCECAI and the Ki-67/CD3 ratio in the LP of the crypt region (r = 0.670; P = .012) in dogs with CIE. CONCLUSIONS AND CLINICAL IMPORTANCE The Ki-67/CD3 ratio is upregulated in the LP crypt region of dogs with CIE and it correlates with clinical severity. Therefore, Ki-67/CD3 could be a useful tool for detection of CIE.
Collapse
Affiliation(s)
- Sonja Karlovits
- Department for Companion Animals and Horses, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Anita Manz
- Department for Companion Animals and Horses, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Karin Allenspach
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Ingrid Walter
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria.,Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - Alexander Tichy
- Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Barbara Richter
- Department for Pathobiology, Institute of Pathology, University of Veterinary Medicine, Vienna, Austria
| | - Iwan A Burgener
- Department for Companion Animals and Horses, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Nicole Luckschander-Zeller
- Department for Companion Animals and Horses, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
47
|
Yamaguchi T, Takizawa F, Furihata M, Soto-Lampe V, Dijkstra JM, Fischer U. Teleost cytotoxic T cells. FISH & SHELLFISH IMMUNOLOGY 2019; 95:422-439. [PMID: 31669897 DOI: 10.1016/j.fsi.2019.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Cell-mediated cytotoxicity is one of the major mechanisms by which vertebrates control intracellular pathogens. Two cell types are the main players in this immune response, natural killer (NK) cells and cytotoxic T lymphocytes (CTL). While NK cells recognize altered target cells in a relatively unspecific manner CTLs use their T cell receptor to identify pathogen-specific peptides that are presented by major histocompatibility (MHC) class I molecules on the surface of infected cells. However, several other signals are needed to regulate cell-mediated cytotoxicity involving a complex network of cytokine- and ligand-receptor interactions. Since the first description of MHC class I molecules in teleosts during the early 90s of the last century a remarkable amount of information on teleost immune responses has been published. The corresponding studies describe teleost cells and molecules that are involved in CTL responses of higher vertebrates. These studies are backed by functional investigations on the killing activity of CTLs in a few teleost species. The present knowledge on teleost CTLs still leaves considerable room for further investigations on the mechanisms by which CTLs act. Nevertheless the information on teleost CTLs and their regulation might already be useful for the control of fish diseases by designing efficient vaccines against such diseases where CTL responses are known to be decisive for the elimination of the corresponding pathogen. This review summarizes the present knowledge on CTL regulation and functions in teleosts. In a special chapter, the role of CTLs in vaccination is discussed.
Collapse
Affiliation(s)
- Takuya Yamaguchi
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Fumio Takizawa
- Laboratory of Marine Biotechnology, Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui, 917-0003, Japan
| | - Mitsuru Furihata
- Nagano Prefectural Fisheries Experimental Station, 2871 Akashina-nakagawate, Azumino-shi, Nagano-ken, 399-7102, Japan
| | - Veronica Soto-Lampe
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Johannes M Dijkstra
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Uwe Fischer
- Federal Research Institute for Animal Health, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany.
| |
Collapse
|
48
|
Moreira J, Platanias LC, Adekola KUA. It's all about the CD3+ T-cells: how circulating immune cell subset analyses can predict early relapse in Hodgkin lymphoma. Leuk Lymphoma 2019; 60:2345-2347. [PMID: 31451048 DOI: 10.1080/10428194.2019.1646909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jonathan Moreira
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , IL , USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , IL , USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA.,Department of Medicine, Jesse Brown VA Medical Center , Chicago , IL , USA
| | - Kehinde U A Adekola
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University , Chicago , IL , USA.,Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
49
|
Mercantepe T, Tümkaya L, Mercantepe F. Effects of Infliximab against Methotrexate Toxicity in Splenic Tissue via the Regulation of CD3, CD68, and C200R in Rats. Cells Tissues Organs 2019; 206:308-316. [PMID: 31284287 DOI: 10.1159/000500905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 05/13/2019] [Indexed: 01/03/2025] Open
Abstract
Methotrexate (MTX), which has been used in clinical practice for approximately 70 years, is still widely employed in the treatment of rheumatoid arthritis (RA), psoriasis, and cancer. Although MTX toxicity causes nephrotoxicity, hepatotoxicity, bone marrow suppression, pulmonary fibrosis, and gastrointestinal damage, previous studies have not addressed splenic toxicity. This is the first study to examine the effectiveness of infliximab (INF) against MTX-induced toxicity in splenic tissues via the regulation of CD3, CD68, and C200R. We investigated the effects of MTX on macrophages and T lymphocytes in the spleen at the molecular level and examined the protective potential of the tumor necrosis factor (TNF)-α antagonist INF against MTX toxicity. Three groups of rats were set up. Group 1 received saline solution only, group 2 a single dose of MTX (20 mg/kg), and group 3 INF (7 mg/kg) before administration of a single dose of MTX (20 mg/kg). All injections were given intraperitoneally. Spleen tissues were removed 5 days after MTX administration and evaluated for CD3, CD68, and CD200R using immunohistochemical staining. Finally, the mean numerical density of CD3+, CD68+, and CD200R+ cells was estimated by a histopathologist using StereoInvestigator 8. MTX increased the numerical densities of CD3+, CD68+, and CD200R+ cells (p < 0.05). We also observed that INF reduced the numerical densities of these cells following MTX administration (p < 0.05). INF may, therefore, be a promising candidate for the prevention of the deleterious effects on spleen tissue of MTX, used in the treatment of RA and cancer.
Collapse
Affiliation(s)
- Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey,
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Filiz Mercantepe
- Department of Internal Medicine, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
50
|
On the activation and deactivation pathways of the Lck kinase domain: a computational study. J Comput Aided Mol Des 2019; 33:597-603. [DOI: 10.1007/s10822-019-00204-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/02/2019] [Indexed: 10/26/2022]
|