1
|
Torres JSS, Tamayo-Giraldo FJ, Bejarano-Zuleta A, Nati-Castillo HA, Quintero DA, Ospina-Mejía MJ, Salazar-Santoliva C, Suárez-Sangucho I, Ortiz-Prado E, Izquierdo-Condoy JS. Sepsis and post-sepsis syndrome: a multisystem challenge requiring comprehensive care and management-a review. Front Med (Lausanne) 2025; 12:1560737. [PMID: 40265185 PMCID: PMC12011779 DOI: 10.3389/fmed.2025.1560737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
Sepsis, a medical emergency with high mortality rates, demands comprehensive care spanning from early identification to patient rehabilitation. The sepsis survival chain encompasses early recognition, severity assessment, activation of emergency services, initial antimicrobial therapy, hemodynamic stabilization, and integrated rehabilitation. These interconnected steps are critical to reducing morbidity and mortality. Despite advancements in international guidelines, adherence remains limited, contributing to a significant disease burden. Beyond its acute phase, post-sepsis syndrome (PSS) is characterized by long-term immune dysregulation, chronic inflammation, and metabolic dysfunction, predisposing survivors to recurrent infections, cardiovascular disease, and neurocognitive decline. Mitochondrial dysfunction and epigenetic modifications play a central role in prolonged immunosuppression, impairing adaptive and innate immune responses. Sepsis-induced organ dysfunction impacts multiple systems, including the brain, heart, and kidneys. In the brain, it is associated with neuroinflammation, blood-brain barrier dysfunction, and the accumulation of neurotoxic proteins, leading to acute and chronic cognitive impairment. Myocardial dysfunction involves inflammatory mediators such as TNF-α and IL-6, while sepsis-associated acute kidney injury (SA-AKI) arises from hypoperfusion and inflammation, heightening the risk of progression to chronic kidney disease. Additionally, immune alterations such as neutrophil dysfunction, continuous platelet activation, and suppressed antitumoral responses contribute to increased infection risk and long-term complications. Timely and targeted interventions, including antimicrobial therapy, cytokine modulation, immune restoration, metabolic support, and structured rehabilitation strategies, are pivotal for improving outcomes. However, financial and infrastructural limitations in low-resource settings pose significant barriers to effective sepsis management. Precision medicine, AI-driven early warning systems, and optimized referral networks can enhance early detection and personalized treatments. Promoting public and professional awareness of sepsis, strengthening multidisciplinary post-sepsis care, and integrating long-term follow-up programs are imperative priorities for reducing mortality and improving the quality of life in sepsis survivors.
Collapse
Affiliation(s)
| | | | - Alejandro Bejarano-Zuleta
- Servicio de Cuidado intensivo Adulto, Clínica Versalles, Cali, Colombia
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - H. A. Nati-Castillo
- Interinstitutional Group on Internal Medicine (GIMI 1), Department of Internal Medicine, Universidad Libre, Cali, Colombia
| | - Diego A. Quintero
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | - M. J. Ospina-Mejía
- Facultad de Ciencias de la Salud, Universidad del Quindío, Armenia, Colombia
| | | | | | | | | |
Collapse
|
2
|
Xiao ZF, Chai WH, Shu XL, Yuan HR, Guo F. Immune cell traits and causal relationships with cholecystitis: a mendelian randomization analysis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3817-3827. [PMID: 39358644 DOI: 10.1007/s00210-024-03493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Cholecystitis, characterized by inflammation of the gallbladder, is intricately linked to immune cells and the cytokines they produce. Despite this association, the specific contributions of immune cells to the onset and progression of cholecystitis remain to be fully understood. To delineate this relationship, we utilized the Mendelian randomization (MR) method to scrutinize the causal connections between 731 immune cell phenotypes and cholecystitis. By conducting MR analysis on 731 immune cell markers from public datasets, this study seeks to understand their potential impact on the risk of cholecystitis. It aims to elucidate the interactions between immune phenotypes and the disease, aiming to lay the groundwork for advancing precision medicine and developing effective treatment strategies for cholecystitis. Taking immune cell phenotypes as the exposure factor and cholecystitis as the outcome event, this study used single nucleotide polymorphisms (SNPs) closely associated with both immune cell phenotypes and cholecystitis as genetic instrumental variables. We conducted a two-sample MR analysis on genome-wide association studies (GWAS) data. Our research thoroughly examined 731 immune cell markers, to determine potential causal relationships with susceptibility to cholecystitis. Sensitivity analyses were performed to ensure the robustness of our findings, excluding the potential impacts of heterogeneity and pleiotropy. To avoid reverse causality, we conducted reverse MR analyses with cholecystitis as the exposure factor and immune cell phenotypes as the outcome event. Among the 731 immune phenotypes, our study identified 21 phenotypes with a causal relationship to cholecystitis (P < 0.05). Of these, eight immune phenotypes exhibited a protective effect against cholecystitis (odds ratio (OR) < 1), while the other 13 immune phenotypes were associated with an increased risk of developing cholecystitis (OR > 1). Additionally, employing the false discovery rate (FDR) method at a significance level of 0.2, no significant causal relationship was found between cholecystitis and immune phenotypes. Our research has uncovered a significant causal relationship between immune cell phenotypes and cholecystitis. This discovery not only enhances our understanding of the role of immune cells in the onset and progression of cholecystitis but also establishes a foundation for developing more precise biomarkers and targeted therapeutic strategies. It provides a scientific basis for more effective and personalized treatments in the future. These findings are expected to substantially improve the quality of life for patients with cholecystitis and mitigate the impact of the disease on patients and their families.
Collapse
Affiliation(s)
- Ze-Fa Xiao
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wei-Hao Chai
- Department of Graduate School, Xinjiang Medical University, Urumqi, China
| | - Xiao-Long Shu
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Rui Yuan
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Guo
- Department of Emergency Trauma Surgery, The First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
3
|
Jie F, Dong F, Xu L, Deng S, Wang Q, Wu Q. Cytokine Expression and Cytolytic Effect of Natural Killer Cells are Suppressed in Septic Shock. Scand J Immunol 2025; 101:e70023. [PMID: 40254928 DOI: 10.1111/sji.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Septic shock is the most severe stage of sepsis. How immune dysregulation contributes to the pathogenesis of septic shock has not been thoroughly understood. In the current research, the phenotype and function of circulating natural killer (NK) cells of septic patients were characterised. The absolute number of NK cells was comparably reduced in septic shock survivors and non-survivors, probably owing to elevated NK cell apoptosis. Activating receptors including signalling lymphocytic activation molecule 4 (SLAMF4), natural killer cell p30-related protein (NKp30), natural killer group 2, member D (NKG2D), and DNAX accessory molecule 1 (DNAM-1) were significantly downregulated on NK cell surface in septic shock patients, especially non-survivors. Furthermore, the patients' NK cells exhibited lower expression of granzyme B and perforin, weaker target cell-induced degranulation and cytokine expression, as well as incompetent cytolytic effect. These alterations were more profound in septic shock non-survivors. Importantly, serum interleukin-35 (IL-35), which is an immunosuppressive cytokine, was remarkably elevated in septic shock patients. Besides, serum interleukin-35 concentration was positively correlated with disease scores but negatively correlated with NK cell activating receptor expression. In vitro assays indicated IL-35-induced strong suppression of NK cell activity, as evidenced by concomitant downregulation of cytokines and activating receptors along with inhibition of cytolytic capacity. Therefore, we uncovered for the first time the contributing role of IL-35 in septic shock-related human NK cell dysfunction.
Collapse
Affiliation(s)
- Fengying Jie
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Fang Dong
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Lingwen Xu
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Shuping Deng
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Qian Wang
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| | - Qun Wu
- The Department of Intensive Care Medicine, Wuhan Third Hospital (Tongren Hospital of Wuhan University), Wuhan, Hubei Province, China
| |
Collapse
|
4
|
Alharbi AS, Sanyi RH, Azhar EI. Bacteria and host: what does this mean for sepsis bottleneck? World J Emerg Med 2025; 16:10-17. [PMID: 39906111 PMCID: PMC11788106 DOI: 10.5847/wjem.j.1920-8642.2025.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/20/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Sepsis is a life-threatening inflammatory condition in which the invading pathogen avoids the host's defense mechanisms and continuously stimulates and damages host cells. Consequently, many immune responses initially triggered for protection become harmful because of the failure to restore homeostasis, resulting in ongoing hyperinflammation and immunosuppression. METHODS A literature review was conducted to address bacterial sepsis, describe advances in understanding complex immunological reactions, critically assess diagnostic approaches, and emphasize the importance of studying bacterial bottlenecks in the detection and treatment of sepsis. RESULTS Diagnosing sepsis via a single laboratory test is not feasible; therefore, multiple key biomarkers are typically monitored, with a focus on trends rather than absolute values. The immediate interpretation of sepsis-associated clinical signs and symptoms, along with the use of specific and sensitive laboratory tests, is crucial for the survival of patients in the early stages. However, long-term mortality associated with sepsis is now recognized, and alongside the progression of this condition, there is an in vivo selection of adapted pathogens. CONCLUSION Bacterial sepsis remains a significant cause of mortality across all ages and societies. While substantial progress has been made in understanding the immunological mechanisms underlying the inflammatory response, there is growing recognition that the ongoing host-pathogen interactions, including the emergence of adapted virulent strains, shape both the acute and long-term outcomes in sepsis. This underscores the urgent need for novel high-throughput diagnostic methods and a shift toward more pre-emptive, rather than reactive, treatment strategies in sepsis care.
Collapse
Affiliation(s)
- Azzah S Alharbi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| | - Raghad Hassan Sanyi
- College of Health and Medical Technology, Middle Technical University, Baghdad 10047, Iraq
| | - Esam I Azhar
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21362, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21362, Saudi Arabia
| |
Collapse
|
5
|
Su J, Deng X, Hu S, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S, Zheng L. Aloe-emodin plus TIENAM ameliorate cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating microbiota. Front Microbiol 2024; 15:1491169. [PMID: 39726955 PMCID: PMC11669710 DOI: 10.3389/fmicb.2024.1491169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
Despite the high sepsis-associated mortality, effective and specific treatments remain limited. Using conventional antibiotics as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging due to increasing bacterial resistance, diminishing their efficacy and leading to adverse effects. We previously found that aloe-emodin (AE) exerts therapeutic effects on sepsis by reducing systemic inflammation and regulating the gut microbiota. Here, we investigated whether administering AE and TIE post-sepsis onset, using a cecal ligation and puncture (CLP)-induced sepsis model, extends survival and improves physiological functions. Survival rates, inflammatory cytokines, tissue damage, immune cell populations, ascitic fluid microbiota, and key signaling pathways were assessed. Combining AE and TIE significantly enhanced survival rates, and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Moreover, substantial improvements in survival rates of AE + TIE-treated mice (10% to 60%) within 168 h were observed relative to the CLP group. This combination therapy also effectively modulated inflammatory marker (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) levels and immune cell counts by decreasing those of B, NK, and TNFR2+ Treg cells, while increasing that of CD8+ T cells; alleviated tissue damage; reduced bacterial load in the peritoneal cavity; and suppressed the NF-κB signaling pathway. We also observed a significantly altered peritoneal cavity microbiota composition post-treatment, characterized by reduced pathogenic bacteria (Bacteroides) abundance. Our findings underscore the potential of AE + TIE in treating sepsis, and encourage further research and possible clinical implementations to surmount the limitations of TIE and amplify the therapeutic potential of AE.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
6
|
Zhao J, Zhang M, Wang Y, He F, Zhang Q. Identification of cuproptosis-related genes in septic shock based on bioinformatic analysis. PLoS One 2024; 19:e0315219. [PMID: 39652607 PMCID: PMC11627398 DOI: 10.1371/journal.pone.0315219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Septic shock is a life-threatening condition characterized by a failure of organ systems and a high mortality rate. Cuproptosis is a new form of cell death that is triggered by copper overload. However, the relationship between cuproptosis-related genes and septic shock remains unclear. METHODS The GSE26440 dataset from the GEO database was used to screen differentially expressed genes (DEGs) between control and septic shock samples. Additionally, hub genes related to the progression of septic shock and cuproptosis were screened by Venn analysis. RT-qPCR was utilized to validate the expression of hub genes in peripheral blood lymphocytes from septic shock patients and healthy controls. Next, functional analysis and immune cells infiltration were performed. RESULTS SLC31A1 and MTF1 levels were obviously elevated and LIAS and LIPT1 levels were downregulated in septic shock samples, compared to normal controls. The diagnostic values of the four genes were confirmed with receiver operating characteristic (ROC) curves. Additionally, SLC31A1 and MTF1 showed a positive correlation with natural killer cells and LIAS and LIPT1 exhibited a positive correlation with CD8+ T cells. Furthermore, compared to low-level groups, MAPK signaling was activated in the high-SLC31A1 level group, VEGF signaling was activated in the high-MTF1 level group and lipoic acid metabolism was activated in high-LIAS and high-LIPT1 level groups. CONCLUSION This study demonstrates that SLC31A1, MTF1, LIAS, and LIPT1 are dysregulated in septic shock samples, and these genes exhibit potential diagnostic efficacy in septic shock, suggesting that these genes may be potential biomarkers for the diagnosis of septic shock.
Collapse
Affiliation(s)
- Jintong Zhao
- Department of Critical Medicine, Zibo Central Hospital, Zibo, China
| | - Meng Zhang
- Department of Critical Medicine, Qingdao Central Hospital, Qingdao, China
| | - Ying Wang
- Department of Nosocomial Infection, Qingdao Cancer Hospital, Qingdao, China
| | - Feifei He
- Department of Critical Medicine, Qingdao Hiser Hospital, Affiliated Hospital of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, China
| | - Qiang Zhang
- Department of Critical Medicine, Zibo Central Hospital, Zibo, China
| |
Collapse
|
7
|
Zhang L, Lin Y, Zhang Z, Chen Y, Zhong J. Immune regulation and organ damage link adiponectin to sepsis. Front Immunol 2024; 15:1444884. [PMID: 39664383 PMCID: PMC11632310 DOI: 10.3389/fimmu.2024.1444884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Sepsis is a life-threatening syndrome characterized by organ dysfunction, resulting from an uncontrolled or abnormal immune response to infection, which leads to septicemia. It involves a disruption of immune homeostasis, marked by the release of Inflammatory factors and dysfunction of immune cells. Adiponectin is widely recognized as an anti-inflammatory mediator, playing a crucial role in regulating immune cell function and exerting protective effects on tissues and organs. However, the physiological role of adiponectin in septicemia remains unclear due to the condition's association with immune response dysregulation and organ damage. This study focuses on the potential relationship between adiponectin and excessive immune responses, along with organ injury in septicemia. Additionally, we investigate possible explanations for the observed discrepancies in adiponectin levels among critically ill or deceased patients compared to theoretical expectations, aiming to provide valuable insights for clinical diagnostics and therapeutic interventions in sepsis.
Collapse
Affiliation(s)
| | | | - Zhongying Zhang
- Medical Laboratory Center, Xiamen Humanity Hospital, Xiamen, Fujian, China
| | | | | |
Collapse
|
8
|
Su J, Xiao J, Deng X, Lin X, Xie L, Ye H, Lin C, Zhou F, Wu S. Combining Aloin with TIENAM ameliorates cecal ligation and puncture-induced sepsis in mice by attenuating inflammation and modulating abdominal cavity microbiota. Int Immunopharmacol 2024; 141:112925. [PMID: 39154534 DOI: 10.1016/j.intimp.2024.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 08/20/2024]
Abstract
Despite the high mortality rate, sepsis lacks specific and effective treatment options. Conventional antibiotics, such as TIENAM (TIE; imipenem and cilastatin sodium for injection), face challenges owing to the emergence of bacterial resistance, which reduces their effectiveness and causes adverse effects. Addressing resistance and judicious drug use is crucial. Our research revealed that aloin (Alo) significantly boosts survival rates and reduces inflammation and bacterial load in mice with sepsis, demonstrating strong antimicrobial activity. Using a synergistic Alo + TIE regimen in a cecal ligation and puncture (CLP)-induced sepsis model, we observed a remarkable increase in survival rates from 10 % to 75 % within 72 h compared with the CLP group alone. This combination therapy also modulated inflammatory markers interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, mitigated tissue damage, regulated immune cells by lowering NK, activated CD8+ and CD4+ T cells while increasing peritoneal macrophages, and decreased the bacterial load in the peritoneal cavity. We noted a significant shift in the abdominal cavity microbiota composition post-treatment, with a decrease in harmful bacteria, such as Lachnospiraceae_NK4A136_group, Klebsiella, Bacillus, and Escherichia, and an increase in beneficial bacteria, such as Lactobacillus and Mucispirillum. Our study emphasizes the efficacy of combining Alo with TIE to combat sepsis, and paves the way for further investigations and potential clinical applications aiming to overcome the limitations of TIE and enhance the therapeutic prospects of Alo.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jianbin Xiao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
9
|
Su J, Lin C, Lin X, Hu S, Deng X, Xie L, Ye H, Zhou F, Wu S. Combining ulinastatin with TIENAM improves the outcome of sepsis induced by cecal ligation and puncture in mice by reducing inflammation and regulating immune responses. Int Immunopharmacol 2024; 141:112927. [PMID: 39163689 DOI: 10.1016/j.intimp.2024.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Despite the high mortality associated with sepsis, effective and targeted treatments remain scarce. The use of conventional antibiotics such as TIENAM (imipenem and cilastatin sodium for injection, TIE) is challenging because of the increasing bacterial resistance, which diminishes their efficacy and leads to adverse effects. Our previous studies demonstrated that ulinastatin (UTI) exerts a therapeutic impact on sepsis by reducing systemic inflammation and modulating immune responses. In this study, we examined the possibility of administering UTI and TIE after inducing sepsis in a mouse model using cecal ligation and puncture (CLP). We assessed the rates of survival, levels of inflammatory cytokines, the extent of tissue damage, populations of immune cells, microbiota in ascites, and important signaling pathways. The combination of UTI and TIE significantly improved survival rates and reduced inflammation and bacterial load in septic mice, indicating potent antimicrobial properties. Notably, the survival rates of UTI+TIE-treated mice increased from 10 % to 75 % within 168 h compared to those of mice that were subjected to CLP. The dual treatment successfully regulated the levels of inflammatory indicators (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) and immune cell numbers by reducing B cells, natural killer cells, and TNFR2+ Treg cells and increasing CD8+ T cells. Additionally, the combination of UTI and TIE alleviated tissue damage, reduced bacterial load in the peritoneal cavity, and suppressed the NF-κB signaling pathway. Our findings indicate that UTI and TIE combination therapy can significantly enhance sepsis outcomes by reducing inflammation and boosting the immune system. The results offer a promising therapeutic approach for future sepsis treatment.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shan Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China
| |
Collapse
|
10
|
Hu W, Zhang X, Wu Z, Luo Y, Hu B, Zou X. Exploring and Validating the Mechanism of Ulinastatin in the Treatment of Sepsis-Associated Encephalopathy Based on Transcriptome Sequencing. J Inflamm Res 2024; 17:8753-8773. [PMID: 39564549 PMCID: PMC11573691 DOI: 10.2147/jir.s488400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024] Open
Abstract
Purpose Sepsis can induce sepsis-associated encephalopathy (SAE), with Ulinastatin (UTI) serving a critical anti-inflammatory role. This study aimed to identify the hub genes in an SAE mouse model following UTI intervention and investigate the underlying molecular mechanisms. Materials and Methods Through differential expression analysis to obtain differentially expressed genes (DEGs), ie, UTI vs CLP (DEGs1) and Con vs CLP (DEGs2). After taking the intersection of the genes with opposite differential trends in these two parts and immune-related genes (IRGs), DE-IRGs were obtained. Hub genes in the protein-protein interaction (PPI) network were then determined using six algorithms from the Cytohubba plugin in Cytoscape. Gene set enrichment analysis (GSEA) was employed to explore the functional relevance of these hub genes. Additionally, the immune microenvironment across the three groups was compared, and hub gene-related drugs were predicted using an online database. Finally, qRT-PCR was used to validate the expression of the hub genes in hippocampal tissue from CLP mice. Results RNA sequencing obtained 864 differentially expressed genes (DEGs) (CLP vs Con) and 279 DEGs (UTI vs CLP). Taking the intersection of DEGs with opposite expression trends yielded 165 DEGs. Six key genes (ICAM - 1, IRF7, IL - 1β, CCL2, IL - 6 and SOCS3) were screened by six algorithms. Immune infiltration analysis found that Treg cells were reversed after treatment with UTI in the diseased state. A total of 106 hub - gene - related drugs were predicted, among which BINDARIT - CCL2 and LIFITEGRAST - ICAM1 showed particularly high affinities. The qRT - PCR verification results were consistent with the sequencing results. Conclusion In conclusion, ICAM-1, IRF7, IL-1β, CCL2, IL-6, and SOCS3 were identified as potential therapeutic targets in SAE mice treated with UTI. This study offers theoretical support for UTI as a treatment option for SAE.
Collapse
Affiliation(s)
- Wen Hu
- Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xiaoyuan Zhang
- Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Zhen Wu
- Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Yushan Luo
- Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Bailong Hu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| | - Xiaohua Zou
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China
| |
Collapse
|
11
|
Liao XY, Chen YT, Liu MJ, Liao QX, Lin JD, Lin HR, Huang YH, Zhou Y. COMPARISON OF OXIRIS AND CONVENTIONAL CONTINUOUS RENAL REPLACEMENT THERAPY IN MANAGING SEVERE ABDOMINAL INFECTIONS: IMPACT ON SEPTIC SHOCK MORTALITY. Shock 2024; 62:529-538. [PMID: 39158926 DOI: 10.1097/shk.0000000000002437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Objective: The objective of this study is to assess and compare the efficacy of oXiris with conventional continuous renal replacement therapy (CRRT) in managing severe abdominal infections. Methods: A retrospective analysis encompassing cases from 2017 to 2023 was conducted at the Department of Critical Care Medicine within the First Affiliated Hospital of Fujian Medical University. Parameters including heart rate (HR), mean arterial pressure (MAP), oxygenation index, lactate (Lac), platelet count, neutrophil ratio, procalcitonin, C-reactive protein (CRP), interleukin 6 (IL-6), norepinephrine dosage, Acute Physiology and Chronic Health Evaluation II (APACHE II), and Sequential Organ Failure Assessment (SOFA) were recorded prior to treatment initiation, at 24 h, and 72 h after treatment for both the oXiris and conventional CRRT groups. In addition, the duration of respiratory support, CRRT treatment, length of stay in the intensive care unit (ICU), total hospitalization period, and mortality rates at 14 and 28 days for both groups were recorded. Results: 1) Within the conventional CRRT group, notable enhancement was observed solely in Lac levels at 24 h after treatment compared with pretreatment levels. In addition, at 72 h after treatment, improvements were evident in HR, Lac, CRP, and IL-6 levels. 2) Conversely, the oXiris group exhibited improvements in HR, MAP, Lac, oxygenation index, neutrophil ratio, and IL-6 at 24 h after treatment when compared with baseline values. In addition, reductions were observed in APACHE II and SOFA scores. At 72 h after treatment, all parameters demonstrated enhancement except for platelet count. 3) Analysis of the changes in the indexes (Δ) between the two groups at 24 h after treatment revealed variances in HR, MAP, Lac, norepinephrine dosage, CRP levels, IL-6 levels, APACHE II scores, and SOFA scores. 4) The Δ indexes at 72 h after treatment indicated more significant improvements following oXiris treatment for both groups, except for procalcitonin. 5) The 14-day mortality rate (24.4%) exhibited a significant reduction in the oXiris group when compared with the conventional group (43.6%). However, no significant difference was observed in the 28-day mortality rate between the two groups. 6) Subsequent to multifactorial logistic regression analysis, the results indicated that oXiris treatment correlated with a noteworthy decrease in the 14-day and 28-day mortality rates associated with severe abdominal infections, by 71.3% and 67.6%, respectively. Conclusion: oXiris demonstrates clear advantages over conventional CRRT in the management of severe abdominal infections. Notably, it reduces the fatality rates, thereby establishing itself as a promising and potent therapeutic option.
Collapse
Affiliation(s)
- Xiu-Yu Liao
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yu-Ting Chen
- Department of Gastroenterology, Fuzhou NO.1 Hospital, Fuzhou, Fujian Province, China
| | - Ming-Jun Liu
- Department of Infection, People's Hospital of YangJiang, YangJiang, Guangdong Province, China
| | - Qiu-Xia Liao
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jian-Dong Lin
- Department of Intensive Care Unit, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Hai-Rong Lin
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ying-Hong Huang
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ye Zhou
- Department of Intensive Care Unit, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
12
|
Zhang T, Chen L, Kueth G, Shao E, Wang X, Ha T, Williams DL, Li C, Fan M, Yang K. Lactate's impact on immune cells in sepsis: unraveling the complex interplay. Front Immunol 2024; 15:1483400. [PMID: 39372401 PMCID: PMC11449721 DOI: 10.3389/fimmu.2024.1483400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Lactate significantly impacts immune cell function in sepsis and septic shock, transcending its traditional view as just a metabolic byproduct. This review summarizes the role of lactate as a biomarker and its influence on immune cell dynamics, emphasizing its critical role in modulating immune responses during sepsis. Mechanistically, key lactate transporters like MCT1, MCT4, and the receptor GPR81 are crucial in mediating these effects. HIF-1α also plays a significant role in lactate-driven immune modulation. Additionally, lactate affects immune cell function through post-translational modifications such as lactylation, acetylation, and phosphorylation, which alter enzyme activities and protein functions. These interactions between lactate and immune cells are central to understanding sepsis-associated immune dysregulation, offering insights that can guide future research and improve therapeutic strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Linjian Chen
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Gatkek Kueth
- James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Emily Shao
- Program in Neuroscience, College of Arts and Science, Vanderbilt University, Nashville, TN, United States
| | - Xiaohui Wang
- Department of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Tuanzhu Ha
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - David L. Williams
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Chuanfu Li
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Min Fan
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Kun Yang
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
- Center of Excellence in Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
13
|
Cummings MJ, Guichard V, Owor N, Ochar T, Kiwubeyi M, Nankwanga R, Kibisi R, Kassaja C, Ross JE, Postler TS, Kayiwa J, Reynolds SJ, Nakibuuka MC, Nakaseegu J, Lutwama JJ, Lipkin WI, Ghosh S, Bakamutumaho B, O'Donnell MR. HETEROGENEOUS EXPANSION OF POLYMORPHONUCLEAR MYELOID-DERIVED SUPPRESSOR CELLS DISTINGUISHES HIGH-RISK SEPSIS IMMUNOPHENOTYPES IN UGANDA. Shock 2024; 62:336-343. [PMID: 39012778 DOI: 10.1097/shk.0000000000002403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
ABSTRACT Background: Understanding of immune cell phenotypes associated with inflammatory and immunosuppressive host responses in sepsis is imprecise, particularly in low- and middle-income countries, where the global sepsis burden is concentrated. In these settings, elucidation of clinically relevant immunophenotypes is necessary to determine the relevance of emerging therapeutics and refine mechanistic investigations of sepsis immunopathology. Methods: In a prospective cohort of adults hospitalized with suspected sepsis in Uganda (N = 43; median age 46 years [IQR 36-59], 24 [55.8%] living with HIV, 16 [37.2%] deceased at 60 days), we combined high-dimensional flow cytometry with unsupervised machine learning and manual gating to define peripheral immunophenotypes associated with increased risk of 60-day mortality. Results: Patients who died showed heterogeneous expansion of polymorphonuclear myeloid-derived suppressor cells, with increased and decreased abundance of CD16 - PD-L1 dim and CD16 bright PD-L1 bright subsets, respectively, significantly associated with mortality. While differences between CD16 - PD-L1 dim cell abundance and mortality risk appeared consistent throughout the course of illness, those for the CD16 bright PD-L1 bright subset were more pronounced early after illness onset. Independent of HIV co-infection, depletion of CD4 + T cells, dendritic cells, and CD56 - CD16 bright NK cells were significantly associated with mortality risk, as was expansion of immature, CD56 + CD16 - CD11c + NK cells. Abundance of T cells expressing inhibitory checkpoint proteins (PD-1, CTLA-4, LAG-3) was similar between patients who died versus those who survived. Conclusions: This is the first study to define high-risk immunophenotypes among adults with sepsis in sub-Saharan Africa, an immunologically distinct region where biologically informed treatment strategies are needed. More broadly, our findings highlight the clinical importance and complexity of myeloid derived suppressor cell expansion during sepsis and support emerging data that suggest a host-protective role for PD-L1 myeloid checkpoints in acute critical illness.
Collapse
Affiliation(s)
| | - Vincent Guichard
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Nicholas Owor
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Thomas Ochar
- Tororo General Hospital, Ministry of Health, Tororo, Uganda
| | - Moses Kiwubeyi
- Tororo General Hospital, Ministry of Health, Tororo, Uganda
| | | | - Richard Kibisi
- Tororo General Hospital, Ministry of Health, Tororo, Uganda
| | | | - Jesse E Ross
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Thomas S Postler
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - John Kayiwa
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | | | - Joweria Nakaseegu
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | - Julius J Lutwama
- Department of Arbovirology, Emerging and Re-emerging Infectious Diseases, Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Sankar Ghosh
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | | | | |
Collapse
|
14
|
Su J, Tan Q, Wu S, Zhou F, Xu C, Zhao H, Lin C, Deng X, Xie L, Lin X, Ye H, Yang M. Administration of turmeric kombucha ameliorates lipopolysaccharide-induced sepsis by attenuating inflammation and modulating gut microbiota. Front Microbiol 2024; 15:1452190. [PMID: 39282561 PMCID: PMC11392888 DOI: 10.3389/fmicb.2024.1452190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Our research team previously reported the immunomodulatory effects of kombucha fermentation liquid. This study investigated the protective effects of turmeric kombucha (TK) against lipopolysaccharide (LPS)-induced sepsis and its impact on the intestinal microbiota of mice. A turmeric culture medium without kombucha served as the control (TW). Non-targeted metabolomics analysis was employed to analyze the compositional differences between TK and TW. Qualitative analysis identified 590 unique metabolites that distinguished TK from TW. TK improved survival from 40 to 90%, enhanced thermoregulation, and reduced pro-inflammatory factor expression and inflammatory cell infiltration in the lung tissue, suppressing the NF-κB signaling pathway. TK also altered the microbiome, promoting Allobaculum growth. Our findings shed light on the protective effects and underlying mechanisms of TK in mitigating LPS-induced sepsis, highlighting TK as a promising anti-inflammatory agent and revealing new functions of kombucha prepared through traditional fermentation methods.
Collapse
Affiliation(s)
- Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Qingqing Tan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Shun Wu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Fen Zhou
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Chen Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Heng Zhao
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Congfan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xiaohui Deng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Lian Xie
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Xinrui Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Hui Ye
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, China
| |
Collapse
|
15
|
Shyanti RK, Greggs J, Malik S, Mishra M. Gut dysbiosis impacts the immune system and promotes prostate cancer. Immunol Lett 2024; 268:106883. [PMID: 38852888 PMCID: PMC11249078 DOI: 10.1016/j.imlet.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/11/2024]
Abstract
The gut microbiota is a system of microorganisms in the human gastrointestinal (GI) system, consisting of trillions of microorganisms residing in epithelial surfaces of the body. Gut microbiota are exposed to various external and internal factors and form a unique gut-associated immunity maintained through a balancing act among diverse groups of microorganisms. The role of microbiota in dysbiosis of the gut in aiding prostate cancer development has created an urgency for extending research toward comprehension and preventative measures. The gut microbiota varies among persons based on diet, race, genetic background, and geographic location. Bacteriome, mainly, has been linked to GI complications, metabolism, weight gain, and high blood sugar. Studies have shown that manipulating the microbiome (bacteriome, virome, and mycobiome) through the dietary intake of phytochemicals positively influences physical and emotional health, preventing and delaying diseases caused by microbiota. In this review, we discuss the wealth of knowledge about the GI tract and factors associated with dysbiosis-mediated compromised gut immunity. This review also focuses on the relationship of dysbiosis to prostate cancer, the impact of microbial metabolites short-chain fatty acids (SCFAs) on host health, and the phytochemicals improving health while inhibiting prostate cancer.
Collapse
Affiliation(s)
- Ritis K Shyanti
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Jazmyn Greggs
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh 226007, India
| | - Manoj Mishra
- Cancer Biology Research and Training Program, Department of Biological Sciences, Alabama State University, AL 36104, USA.
| |
Collapse
|
16
|
Park S, Perumalsamy H, Gerelkhuu Z, Sunderraj S, Lee Y, Yoon TH. Phenotypic Landscape of Immune Cells in Sepsis: Insights from High-Dimensional Mass Cytometry. ACS Infect Dis 2024; 10:2390-2402. [PMID: 38850242 DOI: 10.1021/acsinfecdis.4c00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
Understanding the sepsis-induced immunological response can be facilitated by identifying phenotypic changes in immune cells at the single-cell level. Mass cytometry, a novel multiparametric single-cell analysis technique, offers considerable benefits in characterizing sepsis-induced phenotypic changes in peripheral blood mononuclear cells. Here, we analyzed peripheral blood mononuclear cells from 20 sepsis patients and 10 healthy donors using mass cytometry and employing 23 markers. Both manual gating and automated clustering approaches (PhenoGraph) were used for cell identification, complemented by uniform manifold approximation and projection (UMAP) for dimensionality reduction and visualization. Our study revealed that patients with sepsis exhibited a unique immune cell profile, marked by an increased presence of monocytes, B cells, and dendritic cells, alongside a reduction in natural killer (NK) cells and CD4/CD8 T cells. Notably, significant changes in the distributions of monocytes and B and CD4 T cells were observed. Clustering with PhenoGraph unveiled the subsets of each cell type and identified elevated CCR6 expression in sepsis patients' monocyte subset (PG#5), while further PhenoGraph clustering on manually gated T and B cells discovered sepsis-specific CD4 T cell subsets (CCR4low CD20low CD38low) and B cell subsets (HLA-DRlow CCR7low CCR6high), which could potentially serve as novel diagnostic markers for sepsis.
Collapse
Affiliation(s)
- Sehee Park
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Haribalan Perumalsamy
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Zayakhuu Gerelkhuu
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
| | - Sneha Sunderraj
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yangsoon Lee
- Department of Laboratory Medicine, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Tae Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Republic of Korea
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Yoon Idea Lab Co., Ltd., Seoul 04763, Republic of Korea
| |
Collapse
|
17
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
18
|
Zheng J, Li Y, Kong X, Guo J. Exploring immune-related pathogenesis in lung injury: Providing new insights Into ALI/ARDS. Biomed Pharmacother 2024; 175:116773. [PMID: 38776679 DOI: 10.1016/j.biopha.2024.116773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) represent a significant global burden of morbidity and mortality, with lung injury being the primary cause of death in affected patients. The pathogenesis of lung injury, however, remains a complex issue. In recent years, the role of the immune system in lung injury has attracted extensive attention worldwide. Despite advancements in our understanding of various lung injury subtypes, significant limitations persist in both prevention and treatment. This review investigates the immunopathogenesis of ALI/ARDS, aiming to elucidate the pathological processes of lung injury mediated by dendritic cells (DCs), natural killer (NK) cells, phagocytes, and neutrophils. Furthermore, the article expounds on the critical contributions of gut microbiota, inflammatory pathways, and cytokine storms in the development of ALI/ARDS.
Collapse
Affiliation(s)
- Jiajing Zheng
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Li
- Pharmacy Department of the First Affiliated Hospital, Henan University of Science and Technology, Luoyang 471000, China
| | - Xianbin Kong
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jinhe Guo
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
19
|
Roychowdhury S, Pant B, Cross E, Scheraga R, Vachharajani V. Effect of ethanol exposure on innate immune response in sepsis. J Leukoc Biol 2024; 115:1029-1041. [PMID: 38066660 PMCID: PMC11136611 DOI: 10.1093/jleuko/qiad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/08/2023] [Accepted: 11/17/2023] [Indexed: 01/06/2024] Open
Abstract
Alcohol use disorder, reported by 1 in 8 critically ill patients, is a risk factor for death in sepsis patients. Sepsis, the leading cause of death, kills over 270,000 patients in the United States alone and remains without targeted therapy. Immune response in sepsis transitions from an early hyperinflammation to persistent inflammation and immunosuppression and multiple organ dysfunction during late sepsis. Innate immunity is the first line of defense against pathogen invasion. Ethanol exposure is known to impair innate and adaptive immune response and bacterial clearance in sepsis patients. Specifically, ethanol exposure is known to modulate every aspect of innate immune response with and without sepsis. Multiple molecular mechanisms are implicated in causing dysregulated immune response in ethanol exposure with sepsis, but targeted treatments have remained elusive. In this article, we outline the effects of ethanol exposure on various innate immune cell types in general and during sepsis.
Collapse
Affiliation(s)
- Sanjoy Roychowdhury
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Bishnu Pant
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Emily Cross
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| | - Rachel Scheraga
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| | - Vidula Vachharajani
- Department of Inflammation and Immunity, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH 44195, United States
- Department of Pulmonary and Critical Care Medicine, Integrated Hospital-Care Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland OH 44195, United States
| |
Collapse
|
20
|
Santacroce E, D’Angerio M, Ciobanu AL, Masini L, Lo Tartaro D, Coloretti I, Busani S, Rubio I, Meschiari M, Franceschini E, Mussini C, Girardis M, Gibellini L, Cossarizza A, De Biasi S. Advances and Challenges in Sepsis Management: Modern Tools and Future Directions. Cells 2024; 13:439. [PMID: 38474403 PMCID: PMC10931424 DOI: 10.3390/cells13050439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Sepsis, a critical condition marked by systemic inflammation, profoundly impacts both innate and adaptive immunity, often resulting in lymphopenia. This immune alteration can spare regulatory T cells (Tregs) but significantly affects other lymphocyte subsets, leading to diminished effector functions, altered cytokine profiles, and metabolic changes. The complexity of sepsis stems not only from its pathophysiology but also from the heterogeneity of patient responses, posing significant challenges in developing universally effective therapies. This review emphasizes the importance of phenotyping in sepsis to enhance patient-specific diagnostic and therapeutic strategies. Phenotyping immune cells, which categorizes patients based on clinical and immunological characteristics, is pivotal for tailoring treatment approaches. Flow cytometry emerges as a crucial tool in this endeavor, offering rapid, low cost and detailed analysis of immune cell populations and their functional states. Indeed, this technology facilitates the understanding of immune dysfunctions in sepsis and contributes to the identification of novel biomarkers. Our review underscores the potential of integrating flow cytometry with omics data, machine learning and clinical observations to refine sepsis management, highlighting the shift towards personalized medicine in critical care. This approach could lead to more precise interventions, improving outcomes in this heterogeneously affected patient population.
Collapse
Affiliation(s)
- Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Linda Masini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Irene Coloretti
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Center for Sepsis Control and Care, Jena University Hospital, 07747 Jena, Germany;
| | - Marianna Meschiari
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Erica Franceschini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Cristina Mussini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy; (I.C.); (S.B.); (M.M.); (E.F.); (C.M.); (M.G.)
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy; (E.S.); (M.D.); (A.L.C.); (L.M.); (D.L.T.); (L.G.); (A.C.)
| |
Collapse
|
21
|
Yang J, Zhu X, Feng J. The Changes in the Quantity of Lymphocyte Subpopulations during the Process of Sepsis. Int J Mol Sci 2024; 25:1902. [PMID: 38339179 PMCID: PMC10855580 DOI: 10.3390/ijms25031902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Sepsis remains a global challenge, especially in low- and middle-income countries, where there is an urgent need for easily accessible and cost-effective biomarkers to predict the occurrence and prognosis of sepsis. Lymphocyte counts are easy to measure clinically, and a large body of animal and clinical research has shown that lymphocyte counts are closely related to the incidence and prognosis of sepsis. This review extensively collected experimental articles related to lymphocyte counts since the unification of the definition of sepsis. The article categorizes and discusses the relationship between absolute lymphocyte counts, intrinsic lymphocyte subsets, effector T-lymphocytes, B-lymphocytes, dendritic cells, and the incidence and prognosis of sepsis. The results indicate that comparisons of absolute lymphocyte counts alone are meaningless. However, in addition to absolute lymphocyte counts, innate lymphocyte subsets, effector T-cells, B-lymphocytes, and dendritic cells have shown certain research value in related studies.
Collapse
Affiliation(s)
- Jiale Yang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Jun Feng
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Wang Y, Chi Y, Zhu C, Zhang Y, Li K, Chen J, Jiang X, Chen K, Li S. A novel anoikis-related gene signature predicts prognosis in patients with sepsis and reveals immune infiltration. Sci Rep 2024; 14:2313. [PMID: 38281996 PMCID: PMC10822872 DOI: 10.1038/s41598-024-52742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024] Open
Abstract
Sepsis is a common acute and severe medical condition with a high mortality rate. Anoikis, an emerging form of cell death, plays a significant role in various diseases. However, the role of anoikis in sepsis remains poorly understood. Based on the datasets from Gene Expression Omnibus and anoikis-related genes from GeneCards, the differentially expressed anoikis-related genes (DEARGs) were identified. Based on hub genes of DEARGs, a novel prognostic risk model was constructed, and the pattern of immune infiltration was investigated by CIBERSORT algorithm. And small molecule compounds targeting anoikis in sepsis were analyzed using Autodock. Of 23 DEARGs, CXCL8, CFLAR, FASLG and TP53 were significantly associated with the prognosis of sepsis (P < 0.05). Based on the prognostic risk model constructed with these four genes, high-risk population of septic patients had significant lower survival probability than low-risk population (HR = 3.30, P < 0.001). And the level of CFLAR was significantly correlated with the number of neutrophils in septic patients (r = 0.54, P < 0.001). Moreover, tozasertib had low binding energy with CXCL8, CFLAR, FASLG and TP53, and would be a potential compound for sepsis. Conclusively, our results identified a new prognostic model and potential therapeutic molecular for sepsis, providing new insights on mechanism and treatment of sepsis.
Collapse
Affiliation(s)
- Yonghua Wang
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yanqi Chi
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Cheng Zhu
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Yuxuan Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Ke Li
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Jiajia Chen
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Xiying Jiang
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China.
| | - Shuping Li
- Department of Emergency, The First Affiliated Hospital of Chengdu Medical College, Chengdu, 610500, Sichuan, People's Republic of China.
| |
Collapse
|
23
|
Tao L, Zhu Y, Wu L, Liu J. Comprehensive analysis of senescence-associated genes in sepsis based on bulk and single-cell sequencing data. Front Mol Biosci 2024; 10:1322221. [PMID: 38259686 PMCID: PMC10801732 DOI: 10.3389/fmolb.2023.1322221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Sepsis is a pathological state resulting from dysregulated immune response in host during severe infection, leading to persistent organ dysfunction and ultimately death. Senescence-associated genes (SAGs) have manifested their potential in controlling the proliferation and dissemination of a variety of diseases. Nevertheless, the correlation between sepsis and SAGs remains obscure and requires further investigation. Methods: Two RNA expression datasets (GSE28750 and GSE57065) specifically related to sepsis were employed to filter hub SAGs, based on which a diagnostic model predictive of the incidence of sepsis was developed. The association between the expression of the SAGs identified and immune-related modules was analyzed employing Cell-type Identification By Estimating Relative Subsets Of RNA Transcripts (CIBERSORT) and Microenvironment Cell Populations-counter (MCP-counter) analysis. The identified genes in each cohort were clustered by unsupervised agreement clustering analysis and weighted gene correlation network analysis (WGCNA). Results: A diagnostic model for sepsis established based on hub genes (IGFBP7, GMFG, IL10, IL18, ETS2, HGF, CD55, and MMP9) exhibited a strong clinical reliability (AUC = 0.989). Sepsis patients were randomly assigned and classified by WGCNA into two clusters with distinct immune statuses. Analysis on the single-cell RNA sequencing (scRNA-seq) data revealed high scores of SAGs in the natural killer (NK) cells of the sepsis cohort than the healthy cohort. Conclusion: These findings suggested a close association between SAGs and sepsis alterations. The identified hub genes had potential to serve as a viable diagnostic marker for sepsis.
Collapse
Affiliation(s)
- Linfeng Tao
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| | - Yue Zhu
- Department of Breast and Thyroid Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifang Wu
- Department of Critical Care Medicine of Kunshan Third People’s Hospital, Suzhou, China
| | - Jun Liu
- Gusu School of Nanjing Medical University, Department of Critical Care Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou Clinical Medical Center of Critical Care Medicine, Suzhou, China
| |
Collapse
|
24
|
Cao M, Wang G, Xie J. Immune dysregulation in sepsis: experiences, lessons and perspectives. Cell Death Discov 2023; 9:465. [PMID: 38114466 PMCID: PMC10730904 DOI: 10.1038/s41420-023-01766-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction syndrome caused by dysregulated host responses to infection. Not only does sepsis pose a serious hazard to human health, but it also imposes a substantial economic burden on the healthcare system. The cornerstones of current treatment for sepsis remain source control, fluid resuscitation, and rapid administration of antibiotics, etc. To date, no drugs have been approved for treating sepsis, and most clinical trials of potential therapies have failed to reduce mortality. The immune response caused by the pathogen is complex, resulting in a dysregulated innate and adaptive immune response that, if not promptly controlled, can lead to excessive inflammation, immunosuppression, and failure to re-establish immune homeostasis. The impaired immune response in patients with sepsis and the potential immunotherapy to modulate the immune response causing excessive inflammation or enhancing immunity suggest the importance of demonstrating individualized therapy. Here, we review the immune dysfunction caused by sepsis, where immune cell production, effector cell function, and survival are directly affected during sepsis. In addition, we discuss potential immunotherapy in septic patients and highlight the need for precise treatment according to clinical and immune stratification.
Collapse
Affiliation(s)
- Min Cao
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Guozheng Wang
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L69 7BE, UK
- Coagulation, Liverpool University Hospitals NHS Foundation Trust, Liverpool, L7 8XP, UK
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| |
Collapse
|
25
|
Martínez-Banaclocha H, García-Palenciano C, Martínez-Alarcón L, Amores-Iniesta J, Martín-Sánchez F, Ercole GA, González-Lisorge A, Fernández-Pacheco J, Martínez-Gil P, Padilla-Rodríguez J, Baroja-Mazo A, Pelegrín P, Martínez-García JJ. Purinergic P2X7 receptor expression increases in leukocytes from intra-abdominal septic patients. Front Immunol 2023; 14:1297249. [PMID: 38094297 PMCID: PMC10716420 DOI: 10.3389/fimmu.2023.1297249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation is a tightly coordinated response of the host immune system to bacterial and viral infections, triggered by the production of inflammatory cytokines. Sepsis is defined as a systemic inflammatory response followed by immunosuppression of the host and organ dysfunction. This imbalance of the immune response increases the risk of mortality of patients with sepsis, making it a major problem for critical care units worldwide. The P2X7 receptor plays a crucial role in activating the immune system by inducing the activation of peripheral blood mononuclear cells. In this study, we analyzed a cohort of abdominal origin septic patients and found that the expression of the P2X7 receptor in the plasma membrane is elevated in the different subsets of lymphocytes. We observed a direct relationship between the percentage of P2X7-expressing lymphocytes and the early inflammatory response in sepsis. Additionally, in patients whose lymphocytes presented a higher percentage of P2X7 surface expression, the total lymphocytes populations proportionally decreased. Furthermore, we found a correlation between elevated soluble P2X7 receptors in plasma and inflammasome-dependent cytokine IL-18. In summary, our work demonstrates that P2X7 expression is highly induced in lymphocytes during sepsis, and this correlates with IL-18, along with other inflammatory mediators such as IL-6, IL-8, and procalcitonin.
Collapse
Affiliation(s)
- Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Joaquín Amores-Iniesta
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Fátima Martín-Sánchez
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Giovanni A. Ercole
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ada González-Lisorge
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José Fernández-Pacheco
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Piedad Martínez-Gil
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Juan José Martínez-García
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
26
|
Hu Z, Dong D, Peng F, Zhou X, Sun Q, Chen H, Chang W, Gu Q, Xie J, Yang Y. Combination of NK and Other Immune Markers at Early Phase Stratify the Risk of Sepsis Patients: A Retrospective Study. J Inflamm Res 2023; 16:4725-4732. [PMID: 37872958 PMCID: PMC10590563 DOI: 10.2147/jir.s426828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
Purpose Immune dysfunction plays a pivotal role in sepsis pathogenesis. Previous studies have revealed the crucial role of T cells and human leukocyte antigen-DR (HLA-DR) in sepsis. However, the function of natural killer (NK) cells remains unclear. This study aimed to investigate whether NK cells are associated with sepsis prognosis. In addition, we aimed to explore the interrelation and influence between NK and other immunological features in patients with sepsis. Patients and Methods This retrospective, observational study included patients with sepsis from two hospitals in mainland China. The clinical characteristics and immune results during the early phase were collected. Patients were classified according to the level of immune cells to analyze the relationship between immunological features and 28-day mortality. Results A total of 984 patients were included in this study. Non-survivors were older and had lower levels of lymphocytes, monocytes, NK cells, HLA-DR, and T cells. Patients were classified into eight groups according to their levels of NK cells, HLA-DR, and T cells. Only patients with decreased NK and T cell counts showed a significant increase in 28-day mortality. An increase in CD8+ T cells was correlated with the alleviation of 28-day mortality only among patients with high NK cell levels. Conclusion This study provides novel insights into the association between NK cells and 28-day mortality as well as the interrelation between NK cells and other immune cells in sepsis. The relationship between CD8+ T cells and 28-day mortality in sepsis is dependent on NK cell count.
Collapse
Affiliation(s)
- Zihan Hu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Danjiang Dong
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xing Zhou
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hui Chen
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
- Department of Critical Care Medicine, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215000, People’s Republic of China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Qin Gu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
27
|
Lin X, Abdalla M, Yang J, Liu L, Fu Y, Zhang Y, Yang S, Yu H, Ge Y, Zhang S, Kang G, Dang W, Jiang Q, Wang Y, Gai Z. Relationship between gut microbiota dysbiosis and immune indicator in children with sepsis. BMC Pediatr 2023; 23:516. [PMID: 37845615 PMCID: PMC10578006 DOI: 10.1186/s12887-023-04349-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ injury caused by disordered host immune response to microbial infection. However, the correlation between gut microbiota dysbiosis and immune indicators remains unexplored. To address this gap in knowledge, we carried out 16 S rDNA sequencing, analyzed clinical fecal samples from children with sepsis (n = 30) and control children (n = 25), and obtained immune indicators, including T cell subtypes (CD3+, CD3+CD4+, CD3+CD8+, and CD4/CD8), NK cells, cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α and IFN-γ), and immunoglobulin indices (IgA, IgE, IgM and IgG). In addition, we analyzed the correlation between gut microbiota dysbiosis and immune indicators, and evaluated the clinical discriminatory power of discovered bacterial biomarkers. We found that children with sepsis exhibited gut bacterial dysbiosis and low alpha diversity. The Spearman's rank correlation coefficient suggested that Rhodococcus erythropolis had a significantly positive correlation with IFN-γ and CD3+ T cells. Klebsiella pneumoniae and Streptococcus mitis were significantly correlated with NK cells. Bacteroides uniformis was significantly positively correlated with IgM and erythrocyte sedimentation rate, and Eubacterium eligens was significantly positively correlated with IL-4 and CD3+CD8+ T cells. The biomarkers discovered in this study had strong discriminatory power. These changes in the gut microbiome may be closely related to immunologic dysfunction and to the development or exacerbation of sepsis. However, a large sample size is required for verification.
Collapse
Affiliation(s)
- Xia Lin
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Mohnad Abdalla
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Junjie Yang
- College of Life Science, Qilu Normal University, Jinan, Shandong, 250200, China
| | - Lei Liu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yali Fu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yanli Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Shuchun Yang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Han Yu
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Yongsheng Ge
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Sufang Zhang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Guiyun Kang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Wei Dang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| | - Qin Jiang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China.
- Jinan Children's Hospital, Jinan, 250022, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China.
| | - Ying Wang
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China.
- Jinan Children's Hospital, Jinan, 250022, China.
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China.
| | - Zhongtao Gai
- Children's Hospital Affiliated to Shandong University, Jinan, 250022, China
- Jinan Children's Hospital, Jinan, 250022, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, Shandong, 250200, China
| |
Collapse
|
28
|
Fu X, Liu Z, Wang Y. Advances in the Study of Immunosuppressive Mechanisms in Sepsis. J Inflamm Res 2023; 16:3967-3981. [PMID: 37706064 PMCID: PMC10497210 DOI: 10.2147/jir.s426007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Sepsis is a life-threatening disease caused by a systemic infection that triggers a dysregulated immune response. Sepsis is an important cause of death in intensive care units (ICUs), poses a major threat to human health, and is a common cause of death in ICUs worldwide. The pathogenesis of sepsis is intricate and involves a complex interplay of pro- and anti-inflammatory mechanisms that can lead to excessive inflammation, immunosuppression, and potentially long-term immune disorders. Recent evidence highlights the importance of immunosuppression in sepsis. Immunosuppression is recognized as a predisposing factor for increased susceptibility to secondary infections and mortality in patients. Immunosuppression due to sepsis increases a patient's chance of re-infection and increases organ load. In addition, antibiotics, fluid resuscitation, and organ support therapy have limited impact on the prognosis of septic patients. Therapeutic approaches by suppressing excessive inflammation have not achieved the desired results in clinical trials. Research into immunosuppression has brought new hope for the treatment of sepsis, and a number of therapeutic approaches have demonstrated the potential of immunostimulatory therapies. In this article, we will focus on the mechanisms of immunosuppression and markers of immune monitoring in sepsis and describe various targets for immunostimulatory therapy in sepsis.
Collapse
Affiliation(s)
- Xuzhe Fu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhi Liu
- Department of Ophthalmology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yu Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
29
|
Balkrishna A, Sinha S, Kumar A, Arya V, Gautam AK, Valis M, Kuca K, Kumar D, Amarowicz R. Sepsis-mediated renal dysfunction: Pathophysiology, biomarkers and role of phytoconstituents in its management. Biomed Pharmacother 2023; 165:115183. [PMID: 37487442 DOI: 10.1016/j.biopha.2023.115183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Sepsis has evolved as an enormous health issue amongst critically ill patients. It is a major risk factor that results in multiple organ failure and shock. Acute kidney injury (AKI) is one of the most frequent complications underlying sepsis, which portends a heavy burden of mortality and morbidity. Thus, the present review is aimed to provide an insight into the recent progression in the molecular mechanisms targeting dysregulated immune response and cellular dysfunction involved in the development of sepsis-associated AKI, accentuating the phytoconstituents as eligible candidates for attenuating the onset and progression of sepsis-associated AKI. The pathogenesis of sepsis-mediated AKI entails a complicated mechanism and is likely to involve a distinct constellation of hemodynamic, inflammatory, and immune mechanisms. Novel biomarkers like neutrophil gelatinase-associated lipocalin, soluble triggering receptor expressed on myeloid cells 1, procalcitonin, alpha-1-microglobulin, and presepsin can help in a more sensitive diagnosis of sepsis-associated AKI. Many bioactive compounds like curcumin, resveratrol, baicalin, quercetin, and polydatin are reported to play an important role in the prevention and management of sepsis-associated AKI by decreasing serum creatinine, blood urea nitrogen, cystatin C, lipid peroxidation, oxidative stress, IL-1β, TNF-α, NF-κB, and increasing the activity of antioxidant enzymes and level of PPARγ. The plant bioactive compounds could be developed into a drug-developing candidate in managing sepsis-mediated acute kidney injury after detailed follow-up studies. Lastly, the gut-kidney axis may be a more promising therapeutic target against the onset of septic AKI, but a deeper understanding of the molecular pathways is still required.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Sugandh Sinha
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India.
| | - Vedpriya Arya
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Ajay Kumar Gautam
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar, India
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital in Hradec Kralove, Sokolska 581, Hradec Kralove, Czech Republic.
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
30
|
Vajdi M, Sefidmooye Azar P, Mahmoodpoor A, Dashti F, Sanaie S, Kiani Chalmardi F, Karimi A. A comprehensive insight into the molecular and cellular mechanisms of action of resveratrol on complications of sepsis a systematic review. Phytother Res 2023; 37:3780-3808. [PMID: 37405908 DOI: 10.1002/ptr.7917] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/08/2023] [Accepted: 05/27/2023] [Indexed: 07/07/2023]
Abstract
Sepsis and septic shock are still one of the most important medical challenges. Sepsis is an extreme and uncontrolled response of the innate immune system to invading pathogenesis. Resveratrol (3,5,4'-trihydroxytrans-stilbene), is a phenolic and non-flavonoid compound naturally produced by some plants and fruits. The object of the current study is to systematically review the impacts of resveratrol and its mechanisms of function in the management of sepsis and its related complications. The guidelines of the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) statements were applied to perform the study (PROSPERO: CRD42021289357). We searched Embase, Web of Science, Google Scholar, Science Direct, PubMed, ProQuest, and Scopus databases up to January 2023 by using the relevant keywords. Study criteria were met by 72 out of 1415 articles screened. The results of this systematic review depict that resveratrol can reduces the complications of sepsis by affecting inflammatory pathways, oxidative stress, and modulating immune responses. Future human randomized clinical trials are necessary due to the promising therapeutic effects of resveratrol on sepsis complications and the lack of clinical trials in this regard.
Collapse
Affiliation(s)
- Mahdi Vajdi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouria Sefidmooye Azar
- Department of Nutrition and Hospitality Management, School of Applied Sciences, The University of Mississippi, Oxford, Mississippi, USA
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Dashti
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Arash Karimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Chen H, Zhang X, Su H, Zeng J, Chan H, Li Q, Liu X, Zhang L, Wu WKK, Chan MTV, Chen H. Immune dysregulation and RNA N6-methyladenosine modification in sepsis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1764. [PMID: 36149809 DOI: 10.1002/wrna.1764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 05/13/2023]
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by the host immune dysregulation to infection. It is a highly heterogeneous syndrome with complex pathophysiological mechanisms. The host immune response to sepsis can be divided into hyper-inflammatory and immune-suppressive phases which could exist simultaneously. In the initial stage, systemic immune response is activated after exposure to pathogens. Both innate and adaptive immune cells undergo epigenomic, transcriptomic, and functional reprogramming, resulting in systemic and persistent inflammatory responses. Following the hyper-inflammatory phase, the body is in a state of continuous immunosuppression, which is related to immune cell apoptosis, metabolic failure, and epigenetic reprogramming. Immunosuppression leads to increased susceptibility to secondary infections in patients with sepsis. RNA N6-Methyladenosine (m6A) has been recognized as an indispensable epitranscriptomic modification involved in both physiological and pathological processes. Recent studies suggest that m6A could reprogram both innate and adaptive immune cells through posttranscriptional regulation of RNA metabolism. Dysregulated m6A modifications contribute to the pathogenesis of immune-related diseases. In this review, we summarize immune cell changes and the potential role of m6A modification in sepsis. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Hongyan Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Su
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Judeng Zeng
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Li
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, Guangdong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
32
|
Wu D, Shi Y, Zhang H, Miao C. Epigenetic mechanisms of Immune remodeling in sepsis: targeting histone modification. Cell Death Dis 2023; 14:112. [PMID: 36774341 PMCID: PMC9922301 DOI: 10.1038/s41419-023-05656-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/13/2023]
Abstract
Sepsis is a life-threatening disorder disease defined as infection-induced dysregulated immune responses and multiple organ dysfunction. The imbalance between hyperinflammation and immunosuppression is a crucial feature of sepsis immunity. Epigenetic modifications, including histone modifications, DNA methylation, chromatin remodeling, and non-coding RNA, play essential roles in regulating sepsis immunity through epi-information independent of the DNA sequence. In recent years, the mechanisms of histone modification in sepsis have received increasing attention, with ongoing discoveries of novel types of histone modifications. Due to the capacity for prolonged effects on immune cells, histone modifications can induce immune cell reprogramming and participate in the long-term immunosuppressed state of sepsis. Herein, we systematically review current mechanisms of histone modifications involved in the regulation of sepsis, summarize their role in sepsis from an immune perspective and provide potential therapeutic opportunities targeting histone modifications in sepsis treatment.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuxin Shi
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Wang F, Cui Y, He D, Gong L, Liang H. Natural killer cells in sepsis: Friends or foes? Front Immunol 2023; 14:1101918. [PMID: 36776839 PMCID: PMC9909201 DOI: 10.3389/fimmu.2023.1101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Sepsis is one of the major causes of death in the hospital worldwide. The pathology of sepsis is tightly associated with dysregulation of innate immune responses. The contribution of macrophages, neutrophils, and dendritic cells to sepsis is well documented, whereas the role of natural killer (NK) cells, which are critical innate lymphoid lineage cells, remains unclear. In some studies, the activation of NK cells has been reported as a risk factor leading to severe organ damage or death. In sharp contrast, some other studies revealed that triggering NK cell activity contributes to alleviating sepsis. In all, although there are several reports on NK cells in sepsis, whether they exert detrimental or protective effects remains unclear. Here, we will review the available experimental and clinical studies about the opposing roles of NK cells in sepsis, and we will discuss the prospects for NK cell-based immunotherapeutic strategies for sepsis.
Collapse
Affiliation(s)
- Fangjie Wang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiqin Cui
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dongmei He
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lisha Gong
- School of Laboratory Medicine and Technology, Harbin Medical University, Daqing, China
| | - Huaping Liang
- State Key Laboratory of Trauma, Burns and Combines Injury, Department of Wound Infection and Drug, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
34
|
Martí‐Chillón G, Muntión S, Preciado S, Osugui L, Navarro‐Bailón A, González‐Robledo J, Sagredo V, Blanco JF, Sánchez‐Guijo F. Therapeutic potential of mesenchymal stromal/stem cells in critical-care patients with systemic inflammatory response syndrome. Clin Transl Med 2023; 13:e1163. [PMID: 36588089 PMCID: PMC9806020 DOI: 10.1002/ctm2.1163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Despite notable advances in the support and treatment of patients admitted to the intensive care unit (ICU), the management of those who develop a systemic inflammatory response syndrome (SIRS) still constitutes an unmet medical need. MAIN BODY Both the initial injury (trauma, pancreatitis, infections) and the derived uncontrolled response promote a hyperinflammatory status that leads to systemic hypotension, tissue hypoperfusion and multiple organ failure. Mesenchymal stromal/stem cells (MSCs) are emerging as a potential therapy for severe ICU patients due to their potent immunomodulatory, anti-inflammatory, regenerative and systemic homeostasis-regulating properties. MSCs have demonstrated clinical benefits in several inflammatory-based diseases, but their role in SIRS needs to be further explored. CONCLUSION In the current review, after briefly overviewing SIRS physiopathology, we explore the potential mechanisms why MSC therapy could aid in the recovery of this condition and the pre-clinical and early clinical evidence generated to date.
Collapse
Affiliation(s)
| | - Sandra Muntión
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Silvia Preciado
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Lika Osugui
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Almudena Navarro‐Bailón
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| | - Javier González‐Robledo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
| | | | - Juan F. Blanco
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
- Department of SurgeryUniversity of SalamancaSalamancaSpain
| | - Fermín Sánchez‐Guijo
- IBSAL‐University Hospital of SalamancaSalamancaSpain
- Department of MedicineUniversity of SalamancaSalamancaSpain
- RICORS TERAVISCIIIMadridSpain
- Regenerative Medicine and Cellular Therapy Network Center of Castilla y LeónSalamancaSpain
| |
Collapse
|
35
|
Liu D, Huang SY, Sun JH, Zhang HC, Cai QL, Gao C, Li L, Cao J, Xu F, Zhou Y, Guan CX, Jin SW, Deng J, Fang XM, Jiang JX, Zeng L. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res 2022; 9:56. [PMID: 36209190 PMCID: PMC9547753 DOI: 10.1186/s40779-022-00422-y] [Citation(s) in RCA: 189] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/27/2022] [Indexed: 12/02/2022] Open
Abstract
Sepsis is a common complication of combat injuries and trauma, and is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It is also one of the significant causes of death and increased health care costs in modern intensive care units. The use of antibiotics, fluid resuscitation, and organ support therapy have limited prognostic impact in patients with sepsis. Although its pathophysiology remains elusive, immunosuppression is now recognized as one of the major causes of septic death. Sepsis-induced immunosuppression is resulted from disruption of immune homeostasis. It is characterized by the release of anti-inflammatory cytokines, abnormal death of immune effector cells, hyperproliferation of immune suppressor cells, and expression of immune checkpoints. By targeting immunosuppression, especially with immune checkpoint inhibitors, preclinical studies have demonstrated the reversal of immunocyte dysfunctions and established host resistance. Here, we comprehensively discuss recent findings on the mechanisms, regulation and biomarkers of sepsis-induced immunosuppression and highlight their implications for developing effective strategies to treat patients with septic shock.
Collapse
Affiliation(s)
- Di Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Si-Yuan Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Jian-Hui Sun
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Hua-Cai Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Qing-Li Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Ju Cao
- Department of Laboratory Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Fang Xu
- Department of Critical Care Medicine, the First Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, 410078, China
| | - Sheng-Wei Jin
- Department of Anesthesia and Critical Care, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325027, Wenzhou, China
| | - Jin Deng
- Department of Emergency, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, 550001, Guiyang, China
| | - Xiang-Ming Fang
- Department of Anesthesiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| | - Jian-Xin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| | - Ling Zeng
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma, Burns and Combined Injury, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
36
|
Cortistatin-14 Exerts Neuroprotective Effect Against Microglial Activation, Blood-brain Barrier Disruption, and Cognitive Impairment in Sepsis-associated Encephalopathy. J Immunol Res 2022; 2022:3334145. [PMID: 36148090 PMCID: PMC9489378 DOI: 10.1155/2022/3334145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a life-threatening deterioration of mental status in relation to long-term and disabling cognitive dysfunction that is common in intensive care units worldwide. Cortistatin-14 is a neuropeptide structurally resembling somastostatin, which has been proven to play a crucial role in sepsis. The present study aimed to explore the neuroprotective role of cortistatin-14 in sepsis-associated encephalopathy and its underlying mechanisms in a mouse model. A septic mice model was established using the cecal ligation and puncture (CLP) method. The novel object recognition test (NORT), open field test (OFT), elevated plus maze test (EPMT), and tail suspension test (TST) were used to explore the behavioral performance of the mice. Transmission electron microscopy was used to observe the microstructure of the blood-brain barrier (BBB). Evans Blue staining was used to examine the integrity of the BBB. Immunofluorescence was used to examine the morphology and infiltration of microglia. A multiplex cytokine bead array assay was used to determine cytokine and chemokine levels in mouse serum and brain tissues. NORT revealed that cortistatin treatment improved cognitive impairment in septic mice. OFT, EPMT, and TST indicated that cortistatin-14 relieved the anxiety-related behaviors of CLP mice. In addition, cortistatin-14 treatment decreased the levels of various inflammatory cytokines, including interleukin-1β, interleukin-6, interferon-γ, and tumor necrosis factor-α in both the serum and brain of septic mice. Cortistatin reduced sepsis-induced blood-brain barrier disruption and inhibited microglial activation after the onset of sepsis. Cortistatin exerts neuroprotective effects against SAE and cognitive dysfunction in a CLP-induced mouse model of sepsis.
Collapse
|
37
|
Penatzer JA, Alexander R, Simon S, Wolfe A, Breuer J, Hensley J, Fabia R, Hall M, Thakkar RK. Early detection of soluble CD27, BTLA, and TIM-3 predicts the development of nosocomial infection in pediatric burn patients. Front Immunol 2022; 13:940835. [PMID: 35958579 PMCID: PMC9360547 DOI: 10.3389/fimmu.2022.940835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Thermal injury induces concurrent inflammatory and immune dysfunction, which is associated with adverse clinical outcomes. However, these effects in the pediatric population are less studied and there is no standard method to identify those at risk for developing infections. Our goal was to better understand immune dysfunction and identify soluble protein markers following pediatric thermal injury. Further we wanted to determine which early inflammatory, soluble, or immune function markers are most predictive of the development of nosocomial infections (NI) after burn injury. We performed a prospective observational study at a single American Burn Association-verified Pediatric Burn Center. A total of 94 pediatric burn subjects were enrolled and twenty-three of those subjects developed a NI with a median time to diagnosis of 8 days. Whole blood samples, collected within the first 72 hours after injury, were used to compare various markers of inflammation, immune function, and soluble proteins between those who recovered without developing an infection and those who developed a NI after burn injury. Within the first three days of burn injury, innate and adaptive immune function markers (ex vivo lipopolysaccharide-induced tumor necrosis factor alpha production capacity, and ex vivo phytohemagglutinin-induced interleukin-10 production capacity, respectively) were decreased for those subjects who developed a subsequent NI. Further analysis of soluble protein targets associated with these pathways displayed significant increases in soluble CD27, BTLA, and TIM-3 for those who developed a NI. Our findings indicate that suppression of both the innate and adaptive immune function occurs concurrently within the first 72 hours following pediatric thermal injury. At the same time, subjects who developed NI have increased soluble protein biomarkers. Soluble CD27, BTLA, and TIM-3 were highly predictive of the development of subsequent infectious complications. This study identifies early soluble protein makers that are predictive of infection in pediatric burn subjects. These findings should inform future immunomodulatory therapeutic studies.
Collapse
Affiliation(s)
- Julia A. Penatzer
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Robin Alexander
- Biostatistics Resource, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Shan Simon
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Amber Wolfe
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Julie Breuer
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Josey Hensley
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Renata Fabia
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Mark Hall
- Biostatistics Resource, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Critical Care Medicine, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Rajan K. Thakkar
- Center for Clinical and Translation Research, The Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatric Surgery, Burn Center, Nationwide Children’s Hospital, Columbus, OH, United States
- *Correspondence: Rajan K. Thakkar,
| |
Collapse
|
38
|
Yang Q, Zhang S, Wu S, Yao B, Wang L, Li Y, Peng H, Huang M, Bi Q, Xiong P, Li L, Deng Y, Deng Y. Identification of nafamostat mesylate as a selective stimulator of NK cell IFN-γ production via metabolism-related compound library screening. Immunol Res 2022; 70:354-364. [PMID: 35167033 PMCID: PMC8852993 DOI: 10.1007/s12026-022-09266-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/27/2022] [Indexed: 12/11/2022]
Abstract
Natural killer (NK) cells play important roles in controlling virus-infected and malignant cells. The identification of new molecules that can activate NK cells may effectively improve the antiviral and antitumour activities of these cells. In this study, by using a commercially available metabolism-related compound library, we initially screened the capacity of compounds to activate NK cells by determining the ratio of interferon-gamma (IFN-γ)+ NK cells by flow cytometry after the incubation of peripheral blood mononuclear cells (PBMCs) with IL-12 or IL-15 for 18 h. Our data showed that eight compounds (nafamostat mesylate (NM), loganin, fluvastatin sodium, atorvastatin calcium, lovastatin, simvastatin, rosuvastatin calcium, and pitavastatin calcium) and three compounds (NM, elesclomol, and simvastatin) increased the proportions of NK cells and CD3+ T cells that expressed IFN-γ among PBMCs cultured with IL-12 and IL-15, respectively. When incubated with enriched NK cells (purity ≥ 80.0%), only NM enhanced NK cell IFN-γ production in the presence of IL-12 or IL-15. When incubated with purified NK cells (purity ≥ 99.0%), NM promoted NK cell IFN-γ secretion in the presence or absence of IL-18. However, NM showed no effect on NK cell cytotoxicity. Collectively, our study identifies NM as a selective stimulator of IFN-γ production by NK cells, providing a new strategy for the prevention and treatment of infection or cancer in select populations.
Collapse
Affiliation(s)
- Qinglan Yang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuju Zhang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Shuting Wu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Baige Yao
- Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Lili Wang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Yana Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Hongyan Peng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Minghui Huang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Qinghua Bi
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Peiwen Xiong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China.,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China
| | - Liping Li
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Yafei Deng
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, 410007, China. .,Pediatric Intensive Care Unit, Hunan Children's Hospital, University of South China, Changsha, 410007, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
39
|
Wu D, Wang L, Hong D, Zheng C, Zeng Y, Ma H, Lin J, Chen J, Zheng R. Interleukin 35 contributes to immunosuppression by regulating inflammatory cytokines and T cell populations in the acute phase of sepsis. Clin Immunol 2022; 235:108915. [PMID: 34995813 DOI: 10.1016/j.clim.2021.108915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/17/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Cytokines interact closely with each other and play a crucial role in the progression of sepsis. We focused on the associations of a cytokine network with IL-35 in sepsis. First, the retrospective study included 42 patients with sepsis and 23 healthy controls. Blood samples were collected from patients on days 1, 2, 4. Levels of IL-35, IL-1β, IL-4, IL-6, IL-10, IL-17A, TNF-α and IFN-γ were measured. They all increased to various extend on days 1, 2, 4, and strongly associated with markers of disease severity. Network analysis revealed a network formed by IL-35, with IL-6, IL-10, IL-17A, TNF-α and IFN-γ throughout the acute phase of sepsis(days 1, 2 and4). Then, the CLP-induced septic rats were used. The recombinant human IL-35(rIL-35) upregulated the levels of IL-10, but downregulated IL-4, IL-6, IL-17A, TNF-α and IFN-γ, while it had no significant effect on IL-1β, and upregulated the percentages of CD4+CD25+Tregs, and iTR35, but downregulated Teff cells in the peripheral blood. The rIL-35 reduced inflammation damage and improved prognosis of the septic rats. IL-35 forms a network with other cytokines and plays a major role in the immunopathogenesis of sepsis.
Collapse
Affiliation(s)
- Dansen Wu
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China.
| | - Liming Wang
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Donghuang Hong
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Caifa Zheng
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Yongping Zeng
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Huolan Ma
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Jing Lin
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Jialong Chen
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| | - Ronghui Zheng
- Department of Critical Care Medicine, Fujian Provincial Hospital, Fujian Provincial Center for Critical Care Medicine, Fujian Medical University, Fuzhou 350001, Fujian, China
| |
Collapse
|
40
|
Yao Y, Zhao J, Hu J, Song H, Wang S, Ying W. Identification of potential biomarkers and immune infiltration in pediatric sepsis via multiple-microarray analysis. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221144392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immune adjustment has become a sepsis occurring in the development of an important mechanism that cannot be ignored. This article from the perspective of immune infiltration of pediatric sepsis screening markers, and promote the understanding of disease mechanisms. Bioinformatics integrated six data sets of pediatric sepsis by using the surrogate variable analysis package and then analyzed differentially expressed genes (DEGs), immune infiltration and weighted gene co-expression network analysis of characteristics (WGCNA) of immune infiltration between pediatric sepsis and the control. Common genes of WGCNA and DEGs were used to functional annotation, pathway enrichment analysis and protein-protein interaction network. Support vector machine (SVM), least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were used to confirm the key genes for the diagnosis of pediatric sepsis. Receiver operating characteristic (ROC) curve, C index, principal component analysis (PCA) and GiViTi calibration band were used to evaluate the diagnostic performance of key genes. Decision curve analysis (DCA) was used to evaluate the clinical application value of key genes. Lastly, the correlation between key genes and immune cells was analyze. NK cells Resting and NK cell activated in pediatric sepsis during immune infiltration were significantly lower than those in the control group, while M1 Macrophages were higher than those in the control group. ROC, C-index, PCA, GiViTi calibration band and DCA indicated that MCEMP1, CD177, MMP8 and OLFM4 had high diagnostic performance for pediatric sepsis. There is a negative correlation between 4 key genes and NK cells resting, NK cells activated. Except for MCEMP1, the other 3 genes were positively correlated with M1 Macrophages. This study revealed differences in immune responses in pediatric sepsis and identified four key genes as potential biomarkers. Pediatric sepsis in pathology maybe understood better by learning about how it develops.
Collapse
Affiliation(s)
- Yinhui Yao
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Jingyi Zhao
- Department of Functional Center, Chengde Medical University, Chengde, China
| | - Junhui Hu
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hong Song
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Sizhu Wang
- Office of Drug and Medical Device Clinical Trial Institution, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Wang Ying
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
41
|
O’Reilly D, Murphy CA, Drew R, El-Khuffash A, Maguire PB, Ainle FN, Mc Callion N. Platelets in pediatric and neonatal sepsis: novel mediators of the inflammatory cascade. Pediatr Res 2022; 91:359-367. [PMID: 34711945 PMCID: PMC8816726 DOI: 10.1038/s41390-021-01715-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/14/2021] [Accepted: 08/16/2021] [Indexed: 02/07/2023]
Abstract
Sepsis, a dysregulated host response to infection, has been difficult to accurately define in children. Despite a higher incidence, especially in neonates, a non-specific clinical presentation alongside a lack of verified biomarkers has prevented a common understanding of this condition. Platelets, traditionally regarded as mediators of haemostasis and thrombosis, are increasingly associated with functions in the immune system with involvement across the spectrum of innate and adaptive immunity. The large number of circulating platelets (approx. 150,000 cells per microlitre) mean they outnumber traditional immune cells and are often the first to encounter a pathogen at a site of injury. There are also well-described physiological differences between platelets in children and adults. The purpose of this review is to place into context the platelet and its role in immunology and examine the evidence where available for its role as an immune cell in childhood sepsis. It will examine how the platelet interacts with both humoral and cellular components of the immune system and finally discuss the role the platelet proteome, releasate and extracellular vesicles may play in childhood sepsis. This review also examines how platelet transfusions may interfere with the complex relationships between immune cells in infection. IMPACT: Platelets are increasingly being recognised as important "first responders" to immune threats. Differences in adult and paediatric platelets may contribute to differing immune response to infections. Adult platelet transfusions may affect infant immune responses to inflammatory/infectious stimuli.
Collapse
Affiliation(s)
- Daniel O’Reilly
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
| | - Claire A. Murphy
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Richard Drew
- grid.416068.d0000 0004 0617 7587Clinical Innovation Unit, Rotunda Hospital, Dublin, Ireland ,Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland at Temple Street, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Afif El-Khuffash
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| | - Patricia B. Maguire
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland
| | - Fionnuala Ni Ainle
- grid.7886.10000 0001 0768 2743Conway-SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland ,grid.411596.e0000 0004 0488 8430Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland ,grid.416068.d0000 0004 0617 7587Department of Haematology, Rotunda Hospital, Dublin, Ireland ,grid.7886.10000 0001 0768 2743School of Medicine, University College Dublin, Dublin, Ireland
| | - Naomi Mc Callion
- grid.416068.d0000 0004 0617 7587Department of Neonatology, Rotunda Hospital, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Department of Paediatrics, Royal College of Surgeons in Ireland, Dubin, Ireland
| |
Collapse
|
42
|
Udovicic I, Stanojevic I, Djordjevic D, Zeba S, Rondovic G, Abazovic T, Lazic S, Vojvodic D, To K, Abazovic D, Khan W, Surbatovic M. Immunomonitoring of Monocyte and Neutrophil Function in Critically Ill Patients: From Sepsis and/or Trauma to COVID-19. J Clin Med 2021; 10:5815. [PMID: 34945111 PMCID: PMC8706110 DOI: 10.3390/jcm10245815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022] Open
Abstract
Immune cells and mediators play a crucial role in the critical care setting but are understudied. This review explores the concept of sepsis and/or injury-induced immunosuppression and immuno-inflammatory response in COVID-19 and reiterates the need for more accurate functional immunomonitoring of monocyte and neutrophil function in these critically ill patients. in addition, the feasibility of circulating and cell-surface immune biomarkers as predictors of infection and/or outcome in critically ill patients is explored. It is clear that, for critically ill, one size does not fit all and that immune phenotyping of critically ill patients may allow the development of a more personalized approach with tailored immunotherapy for the specific patient. In addition, at this point in time, caution is advised regarding the quality of evidence of some COVID-19 studies in the literature.
Collapse
Affiliation(s)
- Ivo Udovicic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Ivan Stanojevic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Dragan Djordjevic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Snjezana Zeba
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Goran Rondovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| | - Tanja Abazovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
| | - Srdjan Lazic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute of Epidemiology, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Danilo Vojvodic
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Kendrick To
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Dzihan Abazovic
- Emergency Medical Centar of Montenegro, Vaka Djurovica bb, 81000 Podgorica, Montenegro;
| | - Wasim Khan
- Division of Trauma & Orthopaedic Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 2QQ, UK; (K.T.); (W.K.)
| | - Maja Surbatovic
- Clinic of Anesthesiology and Intensive Therapy, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia; (I.U.); (D.D.); (S.Z.); (G.R.); (T.A.)
- Faculty of Medicine of the Military Medical Academy, University of Defence, Crnotravska 17, 11000 Belgrade, Serbia; (I.S.); (S.L.); (D.V.)
| |
Collapse
|
43
|
Duni A, Vartholomatos G, Balafa O, Ikonomou M, Tseke P, Lakkas L, Rapsomanikis KP, Kitsos A, Theodorou I, Pappas C, Naka KK, Mitsis M, Dounousi E. The Association of Circulating CD14++CD16+ Monocytes, Natural Killer Cells and Regulatory T Cells Subpopulations With Phenotypes of Cardiovascular Disease in a Cohort of Peritoneal Dialysis Patients. Front Med (Lausanne) 2021; 8:724316. [PMID: 34746172 PMCID: PMC8565661 DOI: 10.3389/fmed.2021.724316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
The altered expression of immune cells including monocyte subsets, natural killer (NK) cells and CD4+CD25+ regulatory T cells (Tregs) in end-stage kidney disease, affect the modulation of inflammation and immunity with significant clinical implications. The aim of this study was to investigate the profile of specific immune cells subpopulations and their correlations with phenotypes of established cardiovascular disease (CVD), including coronary artery disease (CAD) and heart failure (HF) in peritoneal dialysis (PD) patients. Materials and Methods: 29 stable PD patients and 13 healthy volunteers were enrolled. Demographic, laboratory, bioimpedance measurements, lung ultrasound and echocardiography data were collected. The peripheral blood immune cell subsets analysis was performed using flow cytometry. Results: PD patients compared to normal controls had lower total lymphocytes (22.3 ± 6.28 vs. 31.3 ± 5.54%, p = <0.001) and B-lymphocytes (6.39 ± 3.75 vs. 9.72 ± 3.63%, p = 0.01) as well as higher CD14++CD16+ monocytes numbers (9.28 ± 6.36 vs. 4.75 ± 2.75%, p = 0.0002). PD patients with prevalent CAD had NK cells levels elevated above median values (85.7 vs. 40.9%, p = 0.04) and lower B cells counts (3.85 ± 2.46 vs. 7.2 ± 3.77%, p = 0.03). Patients with increased NK cells (>15.4%) had 3.8 times higher risk of CAD comparing with patients with lower NK cell levels (95% CI, 1.86 – 77.87; p = 0.034). B cells were inversely associated with the presence of CAD (increase of B-lymphocyte by 1% was associated with 30% less risk for presence of CAD (95% CI, −0.71 – 0.01; p = 0.05). Overhydrated patients had lower lymphocytes counts (18.3 ± 4.29% vs. 24.7 ± 6.18%, p = 0.006) and increased NK cells [20.5% (14.3, 23.6) vs. 13.21% (6.23, 19.2), p = 0.04)]. In multiple logistic regression analysis the CRP (OR 1.43; 95% CI, 1.00 – 2.05; p = 0.04)] and lymphocytes counts (OR 0.79; 95% CI, 0.63–0.99; p = 0.04)] were associated with the presence of lung comets. Patients with higher NK cells (>15.4%, n = 15) were more likely to be rapid transporters (D/P creatinine 0.76 ± 0.1 vs. 0.69 ± 0.08, p = 0.04). Patients displaying higher Tregs (>1.79%) were older (70.8 ± 10.7 years vs. 57.7 ± 14.7years, p = 0.011) and had higher nPCR (0.83 ± 0.14 vs. 0.91 ± 0.17, p = 0.09). Conclusion: Future research is required to evaluate the role of immune cells subsets as potential tools to identify patients at the highest risk for complications and guide interventions.
Collapse
Affiliation(s)
- Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Georgios Vartholomatos
- Laboratory of Haematology - Unit of Molecular Biology, University Hospital of Ioannina, Ioannina, Greece
| | - Olga Balafa
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Margarita Ikonomou
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | | - Lampros Lakkas
- Second Department of Cardiology and Michaelidion Cardiac Center, Medical School University of Ioannina, Ioannina, Greece
| | | | - Athanasios Kitsos
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Ioanna Theodorou
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Charalambos Pappas
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | - Katerina K Naka
- Second Department of Cardiology and Michaelidion Cardiac Center, Medical School University of Ioannina, Ioannina, Greece
| | - Michael Mitsis
- Department of Surgery, University Hospital of Ioannina, Ioannina, Greece.,Department of Surgery, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.,Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
44
|
Beran J, Špajdel M, Slíva J. Inosine Pranobex Deserves Attention as a Potential Immunomodulator to Achieve Early Alteration of the COVID-19 Disease Course. Viruses 2021; 13:2246. [PMID: 34835052 PMCID: PMC8619495 DOI: 10.3390/v13112246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 12/18/2022] Open
Abstract
Since its licensing in 1971, the synthetic compound inosine pranobex has been effectively combating viral infections, including herpes zoster, varicella, measles, and infections caused by the herpes simplex virus, human papillomavirus, Epstein-Barr virus, cytomegalovirus, and respiratory viruses. With the emergence of SARS-CoV-2, new and existing drugs have been intensively evaluated for their potential as COVID-19 medication. Due to its potent immunomodulatory properties, inosine pranobex, an orally administered drug with pleiotropic effects, can, during early treatment, alter the course of the disease. We describe the action of inosine pranobex in the body and give an overview of existing evidence collected to support further efforts to study this drug in a rigorous clinical trial setup.
Collapse
Affiliation(s)
- Jiří Beran
- Department for Tropical, Travel Medicine and Immunization, Institute of Postgraduate Health Education, 100 05 Prague, Czech Republic
| | - Marián Špajdel
- Department of Psychology, Faculty of Philosophy and Arts, Trnava University, 918 43 Trnava, Slovakia;
| | - Jiří Slíva
- Department of Pharmacology, Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic;
| |
Collapse
|
45
|
Immel A, Key FM, Szolek A, Barquera R, Robinson MK, Harrison GF, Palmer WH, Spyrou MA, Susat J, Krause-Kyora B, Bos KI, Forrest S, Hernández-Zaragoza DI, Sauter J, Solloch U, Schmidt AH, Schuenemann VJ, Reiter E, Kairies MS, Weiß R, Arnold S, Wahl J, Hollenbach JA, Kohlbacher O, Herbig A, Norman PJ, Krause J. Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of Yersinia pestis on Human Immunity Genes. Mol Biol Evol 2021; 38:4059-4076. [PMID: 34002224 PMCID: PMC8476174 DOI: 10.1093/molbev/msab147] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pathogens and associated outbreaks of infectious disease exert selective pressure on human populations, and any changes in allele frequencies that result may be especially evident for genes involved in immunity. In this regard, the 1346-1353 Yersinia pestis-caused Black Death pandemic, with continued plague outbreaks spanning several hundred years, is one of the most devastating recorded in human history. To investigate the potential impact of Y. pestis on human immunity genes, we extracted DNA from 36 plague victims buried in a mass grave in Ellwangen, Germany in the 16th century. We targeted 488 immune-related genes, including HLA, using a novel in-solution hybridization capture approach. In comparison with 50 modern native inhabitants of Ellwangen, we find differences in allele frequencies for variants of the innate immunity proteins Ficolin-2 and NLRP14 at sites involved in determining specificity. We also observed that HLA-DRB1*13 is more than twice as frequent in the modern population, whereas HLA-B alleles encoding an isoleucine at position 80 (I-80+), HLA C*06:02 and HLA-DPB1 alleles encoding histidine at position 9 are half as frequent in the modern population. Simulations show that natural selection has likely driven these allele frequency changes. Thus, our data suggest that allele frequencies of HLA genes involved in innate and adaptive immunity responsible for extracellular and intracellular responses to pathogenic bacteria, such as Y. pestis, could have been affected by the historical epidemics that occurred in Europe.
Collapse
Affiliation(s)
- Alexander Immel
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Felix M Key
- Max Planck Institute for the Science of Human History, Jena, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - András Szolek
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
| | - Rodrigo Barquera
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Madeline K Robinson
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Maria A Spyrou
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Julian Susat
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Ben Krause-Kyora
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Kirsten I Bos
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Stephen Forrest
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Diana I Hernández-Zaragoza
- Max Planck Institute for the Science of Human History, Jena, Germany
- Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | | | | | | | - Verena J Schuenemann
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Ella Reiter
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Madita S Kairies
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Tübingen, Germany
| | - Rainer Weiß
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Susanne Arnold
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Joachim Wahl
- Institute for Archaeological Sciences, WG Palaeoanthropology, University of Tübingen, Tübingen, Germany
- State Office for Cultural Heritage Management, Stuttgart Regional Council, Esslingen, Germany
| | - Jill A Hollenbach
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Oliver Kohlbacher
- Applied Bioinformatics, Department for Computer Science, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany
- Quantitative Biology Center, University of Tübingen, Tübingen, Germany
- Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Alexander Herbig
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, and Department of Immunology & Microbiology, University of Colorado, Boulder, CO, USA
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany
- Institute of Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
46
|
Leite GGF, Ferreira BL, Tashima AK, Nishiduka ES, Cunha-Neto E, Brunialti MKC, Assuncao M, Azevedo LCP, Freitas F, van der Poll T, Scicluna BP, Salomão R. Combined Transcriptome and Proteome Leukocyte's Profiling Reveals Up-Regulated Module of Genes/Proteins Related to Low Density Neutrophils and Impaired Transcription and Translation Processes in Clinical Sepsis. Front Immunol 2021; 12:744799. [PMID: 34594344 PMCID: PMC8477441 DOI: 10.3389/fimmu.2021.744799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/24/2021] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a global health emergency, which is caused by various sources of infection that lead to changes in gene expression, protein-coding, and metabolism. Advancements in "omics" technologies have provided valuable tools to unravel the mechanisms involved in the pathogenesis of this disease. In this study, we performed shotgun mass spectrometry in peripheral blood mononuclear cells (PBMC) from septic patients (N=24) and healthy controls (N=9) and combined these results with two public microarray leukocytes datasets. Through combination of transcriptome and proteome profiling, we identified 170 co-differentially expressed genes/proteins. Among these, 122 genes/proteins displayed the same expression trend. Ingenuity Pathway Analysis revealed pathways related to lymphocyte functions with decreased status, and defense processes that were predicted to be strongly increased. Protein-protein interaction network analyses revealed two densely connected regions, which mainly included down-regulated genes/proteins that were related to the transcription of RNA, translation of proteins, and mitochondrial translation. Additionally, we identified one module comprising of up-regulated genes/proteins, which were mainly related to low-density neutrophils (LDNs). LDNs were reported in sepsis and in COVID-19. Changes in gene expression level were validated using quantitative real-time PCR in PBMCs from patients with sepsis. To further support that the source of the upregulated module of genes/proteins found in our results were derived from LDNs, we identified an increase of this population by flow cytometry in PBMC samples obtained from the same cohort of septic patients included in the proteomic analysis. This study provides new insights into a reprioritization of biological functions in response to sepsis that involved a transcriptional and translational shutdown of genes/proteins, with exception of a set of genes/proteins related to LDNs and host-defense system.
Collapse
Affiliation(s)
- Giuseppe Gianini Figueirêdo Leite
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Bianca Lima Ferreira
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Erika Sayuri Nishiduka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratorio de Imunologia, Instituto do Coracao, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil
| | - Milena Karina Colo Brunialti
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Murillo Assuncao
- Intensive Care Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | | | - Flávio Freitas
- Intensive Care Unit, Hospital São Paulo, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Brendon P. Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Applied Biomedical Sciences, Faculty of Health Sciences, Mater Dei hospital, University of Malta, Msida, Malta
| | - Reinaldo Salomão
- Division of Infectious Diseases, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
47
|
Littera R, Chessa L, Deidda S, Angioni G, Campagna M, Lai S, Melis M, Cipri S, Firinu D, Santus S, Lai A, Porcella R, Rassu S, Meloni F, Schirru D, Cordeddu W, Kowalik MA, Ragatzu P, Vacca M, Cannas F, Alba F, Carta MG, Del Giacco S, Restivo A, Deidda S, Palimodde A, Congera P, Perra R, Orrù G, Pes F, Loi M, Murru C, Urru E, Onali S, Coghe F, Giglio S, Perra A. Natural killer-cell immunoglobulin-like receptors trigger differences in immune response to SARS-CoV-2 infection. PLoS One 2021; 16:e0255608. [PMID: 34352002 PMCID: PMC8341547 DOI: 10.1371/journal.pone.0255608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The diversity in the clinical course of COVID-19 has been related to differences in innate and adaptative immune response mechanisms. Natural killer (NK) lymphocytes are critical protagonists of human host defense against viral infections. It would seem that reduced circulating levels of these cells have an impact on COVID-19 progression and severity. Their activity is strongly regulated by killer-cell immuno-globulin-like receptors (KIRs) expressed on the NK cell surface. The present study's focus was to investigate the impact of KIRs and their HLA Class I ligands on SARS-CoV-2 infection. METHODS KIR gene frequencies, KIR haplotypes, KIR ligands and combinations of KIRs and their HLA Class I ligands were investigated in 396 Sardinian patients with SARS-CoV-2 infection. Comparisons were made between 2 groups of patients divided according to disease severity: 240 patients were symptomatic or paucisymptomatic (Group A), 156 hospitalized patients had severe disease (Group S). The immunogenetic characteristics of patients were also compared to a population group of 400 individuals from the same geographical areas. RESULTS Substantial differences were obtained for KIR genes, KIR haplotypes and KIR-HLA ligand combinations when comparing patients of Group S to those of Group A. Patients in Group S had a statistically significant higher frequency of the KIR A/A haplotype compared to patients in Group A [34.6% vs 23.8%, OR = 1.7 (95% CI 1.1-2.6); P = 0.02, Pc = 0.04]. Moreover, the KIR2DS2/HLA C1 combination was poorly represented in the group of patients with severe symptoms compared to those of the asymptomatic-paucisymptomatic group [33.3% vs 50.0%, OR = 0.5 (95% CI 0.3-0.8), P = 0.001, Pc = 0.002]. Multivariate analysis confirmed that, regardless of the sex and age of the patients, the latter genetic variable correlated with a less severe disease course [ORM = 0.4 (95% CI 0.3-0.7), PM = 0.0005, PMC = 0.005]. CONCLUSIONS The KIR2DS2/HLA C1 functional unit resulted to have a strong protective effect against the adverse outcomes of COVID-19. Combined to other well known factors such as advanced age, male sex and concomitant autoimmune diseases, this marker could prove to be highly informative of the disease course and thus enable the timely intervention needed to reduce the mortality associated with the severe forms of SARS-CoV-2 infection. However, larger studies in other populations as well as experimental functional studies will be needed to confirm our findings and further pursue the effect of KIR receptors on NK cell immune-mediated response to SARS-Cov-2 infection.
Collapse
Affiliation(s)
- Roberto Littera
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
| | - Luchino Chessa
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Silvia Deidda
- Complex Structure of Pneumology, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Goffredo Angioni
- Complex Structure of Infectious Diseases, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Sara Lai
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Maurizio Melis
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
| | - Selene Cipri
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Davide Firinu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Alberto Lai
- Local Crisis Unit (UCL), ATS Sardegna, Cagliari, Italy
| | - Rita Porcella
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Stefania Rassu
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Federico Meloni
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Daniele Schirru
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - William Cordeddu
- Complex Structure of Infectious Diseases, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Marta Anna Kowalik
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Ragatzu
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Monica Vacca
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Federica Cannas
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Francesco Alba
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
| | - Mauro Giovanni Carta
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Angelo Restivo
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Simona Deidda
- Colorectal Surgery Unit, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Antonella Palimodde
- Complex Structure of Pneumology, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Paola Congera
- Complex Structure of Pneumology, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Roberto Perra
- Complex Structure of Pneumology, SS Trinità Hospital, ASSL Cagliari, ATS Sardegna, Cagliari, Italy
| | - Germano Orrù
- Molecular Biology Service Laboratory, Department of Surgical Science, University of Cagliari, Cagliari, Italy
| | - Francesco Pes
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Martina Loi
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Claudia Murru
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Enrico Urru
- Liver Unit, Department of Internal Medicine, University Hospital of Cagliari, Cagliari, Italy
| | - Simona Onali
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Ferdinando Coghe
- Clinical Chemical and Microbiology Laboratory, University Hospital of Cagliari, Cagliari, Italy
| | - Sabrina Giglio
- Complex Structure of Medical Genetics, R. Binaghi Hospital, Local Public Health and Social Care Unit (ASSL) of Cagliari, Sardinian Regional Company for the Protection of Health (ATS Sardegna), Cagliari, Italy
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Association for the Advancement of Research on Transplantation O.d.V., Non Profit Organisation, Cagliari, Italy
- Unit of Oncology and Molecular Pathology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
48
|
Abstract
Sepsis is a host immune disorder induced by infection. It can lead to multiple organ dysfunction syndrome (MODS), which has high morbidity and mortality. There has been great progress in the clinical diagnosis and treatment of sepsis, such as improvements in pathogen detection technology, innovations regarding anti-infection drugs, and the development of organ function support. Abnormal immune responses triggered by pathogens, ranging from excessive inflammation to immunosuppression, are recognized to be an important cause of the high mortality rate. However, no drugs have been approved specifically for treating sepsis. Here, we review the recent research progress on immune responses in sepsis to provide a theoretical basis for the treatment of sepsis. Constructing and optimizing a dynamic immune system treatment regimen based on anti-infection treatment, fluid replacement, organ function support, and timely use of immunomodulatory interventions may improve the prognosis of sepsis patients.
Collapse
Affiliation(s)
- Jian Chen
- Department of Intensive Care Medicine, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Department of Geriatrics, The First Affiliated Hospital of, USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.,Institute of Immunology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
49
|
Nedeva C. Inflammation and Cell Death of the Innate and Adaptive Immune System during Sepsis. Biomolecules 2021; 11:1011. [PMID: 34356636 PMCID: PMC8301842 DOI: 10.3390/biom11071011] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Sepsis is a life-threatening medical condition that occurs when the host has an uncontrolled or abnormal immune response to overwhelming infection. It is now widely accepted that sepsis occurs in two concurrent phases, which consist of an initial immune activation phase followed by a chronic immunosuppressive phase, leading to immune cell death. Depending on the severity of the disease and the pathogen involved, the hosts immune system may not fully recover, leading to ongoing complications proceeding the initial infection. As such, sepsis remains one of the leading causes of morbidity and mortality world-wide, with treatment options limited to general treatment in intensive care units (ICU). Lack of specific treatments available for sepsis is mostly due to our limited knowledge of the immuno-physiology associated with the disease. This review will provide a comprehensive overview of the mechanisms and cell types involved in eliciting infection-induced immune activation from both the innate and adaptive immune system during sepsis. In addition, the mechanisms leading to immune cell death following hyperactivation of immune cells will be explored. The evaluation and better understanding of the cellular and systemic responses leading to disease onset could eventuate into the development of much needed therapies to combat this unrelenting disease.
Collapse
Affiliation(s)
- Christina Nedeva
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| |
Collapse
|
50
|
Denstaedt SJ, Bustamante AC, Newstead MW, Moore BB, Standiford TJ, Zemans RL, Singer BH. Long-term survivors of murine sepsis are predisposed to enhanced LPS-induced lung injury and proinflammatory immune reprogramming. Am J Physiol Lung Cell Mol Physiol 2021; 321:L451-L465. [PMID: 34161747 DOI: 10.1152/ajplung.00123.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.
Collapse
Affiliation(s)
- Scott J Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|