1
|
Kim DK, Synn CB, Lee W, Jo HN, Lee CY, Lee S, Hwang JY, Kim Y, Kang SS, Baek S, Na K, Yang SM, Kim MH, Han H, Han YJ, Kim JH, Park SY, Park YJ, Lee GT, Choi SJ, Sohn JO, Ye SK, Lee JB, Lim SM, Hong MH, Pyo KH, Cho BC. Denfivontinib Activates Effector T Cells Through the NLRP3 Inflammasome, Yielding Potent Anticancer Effects by Combination with Pembrolizumab. Mol Cancer Ther 2025; 24:354-369. [PMID: 39632711 PMCID: PMC11876964 DOI: 10.1158/1535-7163.mct-24-0501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/30/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Various combination therapies have been investigated to overcome the limitations of using immune checkpoint inhibitors. However, determining the optimal combination therapy remains challenging. To overcome the therapeutic limitation, we conducted a translational research to elucidate the mechanisms by which AXL inhibition enhances antitumor effects when combined with anti-PD-1 antibody therapy. Herein, we demonstrated improved antitumor effects through combination treatment with denfivontinib and pembrolizumab which resulted in enhanced differentiation into effector CD4+ and CD8+ memory T cells, accompanied by an increase in IFN-γ expression in the YHIM-2004 xenograft model derived from patients with non-small cell lung cancer. Concurrently, a reduction in the number of immunosuppressive M2 macrophages and myeloid-derived suppressor cells was observed. Mechanistically, denfivontinib potentiated the NOD-like receptor pathway, thereby facilitating NLRP3 inflammasome formation. This leads to macrophage activation via NF-κB signaling pathway activation. We have confirmed that the positive interaction between macrophages and T cells arises from the enhanced antigen-presenting machinery of activated macrophages. Furthermore, the observed tumor effects in AXL knockout mice confirmed that AXL inhibition by denfivontinib enhances the antitumor effects, thus opening new avenues for therapeutic interventions aimed at overcoming limitations in immunotherapy. To demonstrate the extent to which our findings reflect clinical results, we analyzed bulk RNA sequencing data from 21 patients with non-small cell lung cancer undergoing anti-PD-1 immunotherapy. The NLRP3 inflammasome score influenced enhanced immune responses in patient data undergoing anti-PD-1 immunotherapy, suggesting a role for the NLRP3 inflammasome in activating immune responses during treatment.
Collapse
Affiliation(s)
- Dong Kwon Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chun-Bong Synn
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Wongeun Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha-Ni Jo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chai Young Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seul Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joon Yeon Hwang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Youngtaek Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong-san Kang
- JEUK Institute for Cancer Research, JEUK Co., Ltd., Gumi-City, Republic of Korea
| | - Sujeong Baek
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Na
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Yang
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Hyun Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heekyung Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yu Jin Han
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Hwan Kim
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Young Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Joon Park
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Gang-Taik Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su-Jin Choi
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jie-Ohn Sohn
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
| | - Sang-Kyu Ye
- Wide River Institute of Immunology, Seoul National University, Hongcheon, Republic of Korea
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jii Bum Lee
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung-Ho Pyo
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Research Support, Yonsei Biomedical Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine and Yonsei Cancer Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei New Il Han Institute for Integrative Lung Cancer Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Lei Y, Wang Y, Tang S, Yang J, Lai D, Qiu Q. The adaptive immune system in the retina of diabetics. Surv Ophthalmol 2025; 70:241-254. [PMID: 39566563 DOI: 10.1016/j.survophthal.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
As the prevalence of diabetes mellitus increases each year, its most common microvascular complication, diabetic retinopathy (DR), is also on the rise. DR is now regarded as an inflammatory disease in which innate immunity plays a crucial role, and a large number of innate immune cells with associated cytokines are involved in the pathologic process of DR. The role of adaptive immunity in DR is seldom mentioned, probably due to the general perception of the immune privileged environment of the retina; however, in recent years there has been a gradual increase in research on the role of adaptive immunity in DR, and with the discovery of the retinal lymphatic system, it seems that the role of adaptive immunity can no longer be ignored. Here, we discuss the immunosuppressive environment of the retina, the phenomenon and potential mechanisms of lymphocyte infiltration in DR, and the role of the adaptive immune system in the diabetic retina, which may point the way for future research.
Collapse
Affiliation(s)
- Yiou Lei
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yani Wang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Siao Tang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiaqi Yang
- Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China; Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Dongwei Lai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China.
| | - Qinghua Qiu
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
3
|
Wang D, Liu R. The IL-12 family of cytokines: pathogenetic role in diabetic retinopathy and therapeutic approaches to correction. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:125-133. [PMID: 39120722 DOI: 10.1007/s00210-024-03360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
One vision-threatening side effect of systematic diabetes mellitus is diabetic retinopathy (DR). Recent studies have revealed that the development and progression of DR depend critically on inflammation resulting from diabetes. By attracting leukocytes to endothelium, the higher production of the inflammatory mediators induces degeneration of retinal capillaries, hence increasing vascular permeability and thrombosis probability. The leukocytes that are recruited eventually generate additional proinflammatory and proangiogenic substances, resulting in the increased infiltration of leukocytes in the retina. This process also leads to changes in the blood retinal barrier and the formation of new blood vessels, which helps to counteract the damage caused by the blockage of blood flow. IL-12 family members, IL-12, IL-23, IL-27, and IL-35, play a crucial role in regulating the responses of T helper (Th)1 and Th17 cell populations. The collected data from studies investigating the levels of IL-12 family members in the blood and eye tissues suggest that IL-12 is linked to DR, indicating that it may have a role in the development of DR as a sequential component of the immune response. This review specifically examines the possibility of using IL-12 family cytokines as a therapeutic approach for diabetes, taking into consideration their involvement in the development of DR.
Collapse
Affiliation(s)
- Dan Wang
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Ruixia Liu
- The Fifth Department of Geriatrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
4
|
Zhao B, Zhao Y, Sun X. Mechanism and therapeutic targets of circulating immune cells in diabetic retinopathy. Pharmacol Res 2024; 210:107505. [PMID: 39547465 DOI: 10.1016/j.phrs.2024.107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Diabetic retinopathy (DR) continues to be the leading cause of preventable vision loss among working-aged adults, marked by immune dysregulation within the retinal microenvironment. Typically, the retina is considered as an immune-privileged organ, where circulating immune cells are restricted from entry under normal conditions. However, during the progression of DR, this immune privilege is compromised as circulating immune cells breach the barrier and infiltrate the retina. Increasing evidence suggests that vascular and neuronal degeneration in DR is largely driven by the infiltration of immune cells, particularly neutrophils, monocyte-derived macrophages, and lymphocytes. This review delves into the mechanisms and therapeutic targets associated with these immune cell populations in DR, offering a promising and innovative approach to managing the disease.
Collapse
Affiliation(s)
- Bowen Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Xufang Sun
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
5
|
Ding Y, Chen L, Xu J, Liu Q. NR2E3 inhibits the inflammation and apoptosis in diabetic retinopathy by regulating the AHR/IL-17A signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9081-9094. [PMID: 38884674 DOI: 10.1007/s00210-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
Diabetic retinopathy (DR) is the most prevalent microvascular complication of diabetes mellitus, and it is the primary cause of blindness in the working-age population worldwide. Nevertheless, the pathogenic molecular mechanisms of DR remain elusive. Hub genes were identified through bioinformatics analysis in the GSE102485 and GSE60436 datasets. The DR mouse model was induced using streptozotocin (STZ, 150 mg/kg), and pathological changes in retinal tissue were assessed via HE staining. Apoptosis in retinal tissue cells was evaluated by the TUNEL assay. RT-qPCR and ELISA assays were employed to measure hub genes and inflammatory factor levels, respectively. The aryl hydrocarbon receptor (AHR)/interleukin (IL)-17A (AHR/IL-17A) pathway-associated proteins were detected by western blot. In the high glucose (HG)-induced ARPE-19 cells, CCK-8 and flow cytometry were used to perform cell function studies. Six hub genes associated with DR were screened. The expression levels of RHO, PRPH2, CRX, RCVRN, and NR2E3 were reduced, while the COL1A2 was elevated. NR2E3 overexpression reduced inflammatory factor (TNF-α, IL-1β, and IL-6) and cell apoptosis levels in DR. Furthermore, NR2E3 overexpression promoted HG-induced ARPE-19 cell proliferation. Mechanistically, NR2E3 overexpression facilitated the protein expression of AHR, while suppressing the IL-17 and ACT1 expressions. The introduction of Kyn-101, an AHR inhibitor, notably reversed the inhibitory effects of NR2E3 overexpression on inflammation and apoptosis, which were validated both in vivo and in vitro. NR2E3 inhibits the inflammation and apoptosis by regulating the AHR/IL-17A pathway, providing new insights into the DR treatment.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Linjiang Chen
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Jing Xu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China
| | - Qiong Liu
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou City, 510515, Guangdong Province, China.
| |
Collapse
|
6
|
Zhang X, Hu Q, Peng H, Huang J, Sang W, Guan J, Huang Z, Jiang B, Sun D. Therapeutic potential of flavopiridol in diabetic retinopathy: Targeting DDX58. Int Immunopharmacol 2024; 137:112504. [PMID: 38897127 DOI: 10.1016/j.intimp.2024.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/02/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Diabetic retinopathy (DR), a common complication of diabetes, is characterized by inflammation and neovascularization, and is intricately regulated by the ubiquitin-proteasome system (UPS). Despite advancements, identifying ubiquitin-related genes and drugs specifically targeting DR remains a significant challenge. In this study, bioinformatics analyses and the Connectivity Map (CMAP) database were utilized to explore the therapeutic potential of genes and drugs for DR. Through these methodologies, flavopiridol was identified as a promising therapeutic candidate. To evaluate flavopiridol's therapeutic potential in DR, an in vitro model using Human Umbilical Vein Endothelial Cells (HUVECs) induced by high glucose (HG) conditions was established. Additionally, in vivo models using mice with streptozotocin (STZ)-induced DR and oxygen-induced retinopathy (OIR) were employed. The current study reveals that flavopiridol possesses robust anti-inflammatory and anti-neovascularization properties. To further elucidate the molecular mechanisms of flavopiridol, experimental validation and molecular docking techniques were employed. These efforts identified DDX58 as a predictive target for flavopiridol. Notably, our research demonstrated that flavopiridol modulates the DDX58/NLRP3 signaling pathway, thereby exerting its therapeutic effects in suppressing inflammation and neovascularization in DR. This study unveils groundbreaking therapeutic agents and innovative targets for DR, and establishes a progressive theoretical framework for the application of ubiquitin-related therapies in DR.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Hongsong Peng
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jiayang Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China; Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China.
| |
Collapse
|
7
|
Yuan H, Chen S, Duncan MR, de Rivero Vaccari JP, Keane RW, Dalton Dietrich W, Chou TH, Benny M, Schmidt AF, Young K, Park KK, Porciatti V, Elizabeth Hartnett M, Wu S. IC100, a humanized therapeutic monoclonal anti-ASC antibody alleviates oxygen-induced retinopathy in mice. Angiogenesis 2024; 27:423-440. [PMID: 38709389 PMCID: PMC11303442 DOI: 10.1007/s10456-024-09917-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/28/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation. METHODS We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR. RESULTS ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signaling caused by O2. IC100 also corrected the suppression of genes associated with cell junction assembly, neuron projection, and neuron recognition caused by O2. CONCLUSION These data demonstrate the crucial role of ASC in the pathogenesis of OIR and the efficacy of a humanized therapeutic anti-ASC antibody in treating OIR mice. Thus, this anti-ASC antibody may potentially be considered in diseases associated with oxygen stresses and retinopathy, such as ROP.
Collapse
Affiliation(s)
- Huijun Yuan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Shaoyi Chen
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Matthew R Duncan
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Juan Pablo de Rivero Vaccari
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- The Miami Project to Cure Paralysis and Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Merline Benny
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Augusto F Schmidt
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Karen Young
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA
| | - Kevin K Park
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Shu Wu
- Department of Pediatrics/Division of Neonatology, Batchelor Children's Research Institute and Holtz Children's Hospital, University of Miami Miller School of Medicine, P. O. Box 016960, Miami, FL, 33101, USA.
| |
Collapse
|
8
|
Li J, Zhao T, Sun Y. Interleukin-17A in diabetic retinopathy: The crosstalk of inflammation and angiogenesis. Biochem Pharmacol 2024; 225:116311. [PMID: 38788958 DOI: 10.1016/j.bcp.2024.116311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Diabetic retinopathy (DR) is a severe ocular complication of diabetes which can leads to irreversible vision loss in its late-stage. Chronic inflammation results from long-term hyperglycemia contributes to the pathogenesis and progression of DR. In recent years, the interleukin-17 (IL-17) family have attracted the interest of researchers. IL-17A is the most widely explored cytokine in IL-17 family, involved in various acute and chronic inflammatory diseases. Growing body of evidence indicate the role of IL-17A in the pathogenesis of DR. However, the pro-inflammatory and pro-angiogenic effect of IL-17A in DR have not hitherto been reviewed. Gaining an understanding of the pro-inflammatory role of IL-17A, and how IL-17A control/impact angiogenesis pathways in the eye will deepen our understanding of how IL-17A contributes to DR pathogenesis. Herein, we aimed to thoroughly review the pro-inflammatory role of IL-17A in DR, with focus in how IL-17A impact inflammation and angiogenesis crosstalk.
Collapse
Affiliation(s)
- Jiani Li
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Tantai Zhao
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yun Sun
- Department of Ophthalmology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
9
|
Wang C, Liu T, Wang Z, Li W, Zhao Q, Mi Z, Xue X, Shi P, Sun Y, Zhang Y, Wang N, Bao F, Chen W, Liu H, Zhang F. IL-23/IL-23R Promote Macrophage Pyroptosis and T Helper 1/T Helper 17 Cell Differentiation in Mycobacterial Infection. J Invest Dermatol 2023; 143:2264-2274.e18. [PMID: 37187409 DOI: 10.1016/j.jid.2023.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Pathogen-induced epigenetic modifications can reshape anti-infection immune processes and control the magnitude of host responses. DNA methylation profiling has identified crucial aberrant methylation changes associated with diseases, thus providing biological insights into the roles of epigenetic factors in mycobacterial infection. In this study, we performed a genome-wide methylation analysis of skin biopsies from patients with leprosy and healthy controls. T helper 17 differentiation pathway was found to be significantly associated with leprosy through functional enrichment analysis. As a key gene in this pathway, IL-23R was found to be critical to mycobacterial immunity in leprosy, according to integrated analysis with DNA methylation, RNA sequencing, and GWASs. Functional analysis revealed that IL-23/IL-23R-enhanced bacterial clearance by activating caspase-1/GSDMD-mediated pyroptosis in a manner dependent on NLRP3 through signal transducer and activator of transcription 3 signaling in macrophages. Moreover, IL23/IL-23R promoted T helper 1 and T helper 17 cell differentiation and proinflammatory cytokine secretion, thereby increasing host bactericidal activity. IL-23R knockout attenuated the effects and increased susceptibility to mycobacterial infection mentioned earlier. These findings illustrate the biological functions of IL-23/IL-23R in modulating intracellular bacterial clearance in macrophages and further support their regulatory effects in T helper cell differentiation. Our study highlights that IL-23/IL-23R might serve as potential targets for the prevention and treatment of leprosy and other mycobacterial infections.
Collapse
Affiliation(s)
- Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Li
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
10
|
Corrigendum. Immunology 2022; 166:265. [PMID: 35393634 DOI: 10.1111/imm.13474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Yang Y, Yue W, Wang N, Wang Z, Li B, Zeng J, Yoshida S, Ding C, Zhou Y. Altered Expressions of Transfer RNA-Derived Small RNAs and microRNAs in the Vitreous Humor of Proliferative Diabetic Retinopathy. Front Endocrinol (Lausanne) 2022; 13:913370. [PMID: 35903272 PMCID: PMC9315217 DOI: 10.3389/fendo.2022.913370] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE We sought to reveal the expression profiles of transfer RNA-derived small RNAs (tsRNAs) and microRNAs (miRNAs) in the vitreous humor of patients with proliferative diabetic retinopathy (PDR). METHODS Vitreous humor samples were obtained from PDR patients and a control group for this study. Sequencing of small RNAs was conducted to assess the expression profiles of tsRNAs and miRNAs in both groups, which was followed by validation using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Bioinformatics analyses were conducted to predict the target genes and their potential biological functions and signaling pathways. RESULTS A total of 37 tsRNAs and 70 miRNAs with significant differences were screened out from the vitreous humor samples of PDR patients compared to controls. Following validation by RT-qPCR, the target genes of the validated tsRNAs and miRNAs were predicted, and Gene Ontology analysis indicated that the target genes of the tsRNAs were most enriched in the cellular macromolecule metabolic process, cytoplasm, and ion-binding, while those of the miRNAs were most abundant in the regulation of major metabolic process, cytoplasm, and protein-binding. In addition, Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the target genes of said tsRNAs and miRNAs were most enriched in the adenosine monophosphate-activated protein kinase signaling pathway and Th17 cell differentiation, respectively. CONCLUSIONS The present study identified altered tsRNAs and miRNAs in vitreous humor samples of PDR patients, which may play important roles in the pathogenesis of PDR and could be considered potential therapeutic targets in the treatment of PDR.
Collapse
Affiliation(s)
- Yan Yang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Wenyun Yue
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Nan Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Zicong Wang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Jun Zeng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Japan
| | - Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, China
- *Correspondence: Yedi Zhou, ; Chun Ding,
| |
Collapse
|