1
|
Saadh MJ, Saeed TN, Alfarttoosi KH, Sanghvi G, Roopashree R, Thakur V, Lakshmi L, Kubaev A, Taher WM, Alwan M, Jawad MJ, Al-Nuaimi AMA. Exosomes and MicroRNAs: key modulators of macrophage polarization in sepsis pathophysiology. Eur J Med Res 2025; 30:298. [PMID: 40247413 PMCID: PMC12007276 DOI: 10.1186/s40001-025-02561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/06/2025] [Indexed: 04/19/2025] Open
Abstract
Sepsis is a highly dangerous and complex condition that can result in death. It is characterized by a strong reaction to an infection, causing dysfunction in multiple bodily systems and a high risk of mortality. The transformation of macrophages is a vital stage in the procedure as they possess the capability to interchange between two separate types: M1, which promotes inflammation, and M2, which inhibits inflammation. The choice greatly affects the immune response of the host. This analysis underscores the rapidly expanding roles of exosomes and microRNAs (miRNAs) in regulating the trajectory of macrophage polarization during episodes of sepsis. Exosomes, extremely small extracellular vesicles, facilitate cellular communication by transferring biologically active compounds, including miRNAs, proteins, and lipids. We investigate the impact of changes in exosome production and composition caused by sepsis on macrophage polarization and function. Unique microRNAs present in exosomes play a significant role in controlling crucial signaling pathways that govern the phenotype of macrophages. Through thorough examination of recent progress in this area, we clarify the ways in which miRNAs derived from exosomes can either aggravate or alleviate the inflammatory reactions that occur during sepsis. This revelation not only deepens our comprehension of the underlying mechanisms of sepsis, but it also reveals potential new biomarkers and targets for treatment. This assessment aims to amalgamate diverse research investigations and propose potential avenues for future investigations on the influence that exosomes and miRNAs have on macrophage polarization and the body's response to sepsis. These entities are essential for controlling the host's reaction to sepsis and hold important functions in this mechanism.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Tamara Nazar Saeed
- Department of Medical Laboratory Technics, College of Health and Medical Technology, Alnoor University, Mosul, Iraq.
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Vishal Thakur
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - L Lakshmi
- Department of Nursing, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, 140100, Samarkand, Uzbekistan
| | - Waam Mohammed Taher
- College of Nursing, National University of Science and Technology, Dhi Qar, Iraq
| | - Mariem Alwan
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | | | | |
Collapse
|
2
|
Al-Hussaini M, Al-Ani A, Amarin JZ, Al Sharie S, Obeidat M, Musharbash A, Al Shurbaji AA, Ibrahimi AK, Al-Mousa A, Sarhan N, Amayiri N, Amarin R, Alawabdeh T, Alzoubi Q, Abu Laban D, Maraqa B, Jamal K, Mansour A. Epidemiology and Outcome of Primary Central Nervous System Tumors Treated at King Hussein Cancer Center. Cancers (Basel) 2025; 17:590. [PMID: 40002185 PMCID: PMC11852727 DOI: 10.3390/cancers17040590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Primary central nervous system (CNS) tumors are often associated with relatively poor outcomes. Data on the epidemiology and outcome of CNS tumors in Jordan are scarce. We aim to report the epidemiology and outcome of primary CNS tumors of patients managed at a comprehensive cancer care center in Jordan. METHODS We performed a retrospective chart review of all Jordanian patients with a primary CNS tumor diagnosis who were managed at the center between July 2003 and June 2019. We included all entities described in the 2021 CNS WHO classification system, in addition to pituitary neuroendocrine tumors (PitNETs). We used the Kaplan-Meier method to estimate the 1-year, 2-year, and 5-year overall survival (OS) rates for each entity. RESULTS AND FINDINGS We included 2094 cases. The numbers of pediatrics and adults were 652 (31.1%) and 1442 (68.9%), respectively. The three most common groups of tumors were "gliomas, glioneuronal tumors, and neuronal tumors" (n = 1200 [57.30%]), followed by meningiomas (n = 261 [12.5%]), embryonal tumors (n = 234 [11.2%]). The three most common tumor families were adult-type diffuse gliomas (n = 709 [33.8%]), medulloblastoma (n = 199 [9.5%]), and circumscribed astrocytic gliomas (n = 183 [8.7%]). The median survival for the entire cohort was 97 months (95CI; 81-112). Survival was significantly worse for males and adults compared to their respective counterparts. Among the most common tumor group, "gliomas, glioneuronal tumors, and neuronal tumors", OS rates for adult-type diffuse gliomas were significantly lower than all other types. Overall, adult gliomas with IDH-mutations had a survival advantage over wildtype cases (IDH-mutant 1-year OS, 89% [82-97%] vs. IDH-wildtype 1-year OS, 60% [52-70%]; p < 0.001). CONCLUSIONS We present a detailed analysis of the primary CNS tumors diagnosed in the largest cancer center in Jordan between 2003 and 2019. We compared the epidemiology and overall survival of these patients to worldwide estimates and found the epidemiology and outcome of these tumors comparable to worldwide trends.
Collapse
Affiliation(s)
- Maysa Al-Hussaini
- Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman 11941, Jordan
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Abdallah Al-Ani
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Justin Z. Amarin
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Sarah Al Sharie
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Mouness Obeidat
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Awni Musharbash
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Amer A. Al Shurbaji
- Department of Surgery, King Hussein Cancer Center, Amman 11941, Jordan; (M.O.); (A.M.); (A.A.A.S.)
| | - Ahmad Kh. Ibrahimi
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Abdellatif Al-Mousa
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Nasim Sarhan
- Department of Radiation Oncology, King Hussein Cancer Center, Amman 11941, Jordan; (A.K.I.); (A.A.-M.); (N.S.)
| | - Nisreen Amayiri
- Department of Pediatrics, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Rula Amarin
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Tala Alawabdeh
- Department of Internal Medicine, King Hussein Cancer Center, Amman 11941, Jordan; (R.A.); (T.A.)
| | - Qasem Alzoubi
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| | - Dima Abu Laban
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| | - Bayan Maraqa
- Department of Pathology and Laboratory Medicine, King Hussein Cancer Center, Amman 11941, Jordan;
| | - Khaled Jamal
- Office of Scientific Affairs and Research, King Hussein Cancer Center, Amman 11941, Jordan; (A.A.-A.); (J.Z.A.); (S.A.S.); (K.J.)
| | - Asem Mansour
- Department of Radiology, King Hussein Cancer Center, Amman 11941, Jordan; (Q.A.); (D.A.L.); (A.M.)
| |
Collapse
|
3
|
Zhang Y, Zhang F, Zhang Y, Wang M, Gao Y, Li H, Sun J, Xie Z. Investigating the therapeutic mechanism of Jiedu-Quyu-Ziyin Fang on systemic lupus erythematosus through the ERα-miRNA-TLR7 immune axis. Heliyon 2024; 10:e32752. [PMID: 38948043 PMCID: PMC11209013 DOI: 10.1016/j.heliyon.2024.e32752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Jiedu-Quyu-Ziyin Fang (JQZF) is a formula that has been empirically used for the treatment of SLE in clinical practice. JQZF has become an approved hospital prescription in China. Fifteen MRL/lpr mice were randomly divided into three groups: Model, JQZF, and JQZF + GC, with five mice in each group. Five MRL/MPJ mice were used as the Blank group. After 8 weeks of administration, peripheral blood serum was collected to detect anti-dsDNA antibodies and complement C3 levels. Spleen B cells were collected to detect the expression of TLR7 and NF-κBp65 mRNA, and correlation analysis was performed. Transcriptome sequencing analysis was also performed on spleen B cells. Further, key miRNA and key gene mRNA expression were detected by RT-qPCR, and key protein expression levels were detected by Western blot method. Bioinformatics methods predicted that ESR1 is a key target of JQZF action on SLE, hsa-miR-146a-5p is one of the key miRNAs, and KEGG pathway analysis showed that NF-κB signaling pathway is its key signaling pathway. Transcriptome sequencing of MRL/lpr mouse spleen B cells revealed that the differential genes between the JQZF and Model groups were enriched in Toll-like receptor signaling pathway, NF-κB signaling pathway, Estrogen signaling pathway, etc. Animal studies show that JQZF treatment significantly boosts serum C3 and lowers anti-dsDNA antibodies (P < 0.01). On the molecular level, JQZF suppresses TLR7 and NF-κBp65 mRNA in spleen B cells, with TLR7 mRNA positively linked to anti-dsDNA titers and negatively to serum C3. Further cellular work demonstrates that JQZF reverses the increased IRAK1 and TRAF6 expression seen after miR146a inhibition. Additionally, post-ERα inhibition, JQZF continues to upregulate miR146a and more significantly reduces TLR7 mRNA expression (P < 0.01), pointing to ERα's pivotal role in the miR146a-TLR7 axis. These results indicate JQZF alleviates SLE by adjusting the ERα-miR146a-TLR7 loop, showcasing its mechanism and therapeutic potential for SLE.
Collapse
Affiliation(s)
| | | | | | - MeiJiao Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Yan Gao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - HaiChang Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - Jing Sun
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| | - ZhiJun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310000, Zhejiang Province, China
| |
Collapse
|
4
|
Plazzi F, Le Cras Y, Formaggioni A, Passamonti M. Mitochondrially mediated RNA interference, a retrograde signaling system affecting nuclear gene expression. Heredity (Edinb) 2024; 132:156-161. [PMID: 37714959 PMCID: PMC10923801 DOI: 10.1038/s41437-023-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several functional classes of short noncoding RNAs are involved in manifold regulatory processes in eukaryotes, including, among the best characterized, miRNAs. One of the most intriguing regulatory networks in the eukaryotic cell is the mito-nuclear crosstalk: recently, miRNA-like elements of mitochondrial origin, called smithRNAs, were detected in a bivalve species, Ruditapes philippinarum. These RNA molecules originate in the organelle but were shown in vivo to regulate nuclear genes. Since miRNA genes evolve easily de novo with respect to protein-coding genes, in the present work we estimate the probability with which a newly arisen smithRNA finds a suitable target in the nuclear transcriptome. Simulations with transcriptomes of 12 bivalve species suggest that this probability is high and not species specific: one in a hundred million (1 × 10-8) if five mismatches between the smithRNA and the 3' mRNA are allowed, yet many more are allowed in animals. We propose that novel smithRNAs may easily evolve as exaptation of the pre-existing mitochondrial RNAs. In turn, the ability of evolving novel smithRNAs may have played a pivotal role in mito-nuclear interactions during animal evolution, including the intriguing possibility of acting as speciation trigger.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy.
| | - Youn Le Cras
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
- Magistère Européen de Génétique, Université Paris Cité, 85 Boulevard Saint Germain, 75006, Paris, Italy
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| |
Collapse
|
5
|
Pandey S, Jain A, Vagha S. Insights Into Colorectal Carcinoma: A Comprehensive Review of MicroRNA Expression Patterns. Cureus 2024; 16:e56739. [PMID: 38650823 PMCID: PMC11033970 DOI: 10.7759/cureus.56739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Colorectal carcinoma (CRC) remains a significant contributor to cancer-related morbidity and mortality worldwide. MicroRNAs (miRNAs) have emerged as crucial regulators of gene expression and play critical roles in various biological processes, including carcinogenesis. This comprehensive review aims to elucidate the role of miRNAs in CRC by analyzing their expression patterns and functional implications. An extensive literature review identified dysregulated miRNAs associated with different stages of CRC progression, from initiation to metastasis. These miRNAs modulate key signaling pathways in tumor growth, invasion, and metastasis. Furthermore, we discuss the potential of miRNAs as diagnostic biomarkers and therapeutic targets in CRC management. Future research directions include elucidating the functional significance of dysregulated miRNAs using advanced experimental models and computational approaches and exploring the therapeutic potential of miRNA-based interventions in personalized treatment strategies for CRC patients. Collaboration among researchers, clinicians, and industry partners will be essential to translate these findings into clinically impactful interventions that improve patient outcomes in CRC.
Collapse
Affiliation(s)
- Shweta Pandey
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akriti Jain
- Pathology, Delhi State Cancer Institute, Delhi, IND
| | - Sunita Vagha
- Pathology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
6
|
Zaki MB, Abulsoud AI, Ashraf A, Abdelmaksoud NM, Sallam AAM, Aly SH, Sa'eed El-Tokhy F, Rashad AA, El-Dakroury WA, Abdel Mageed SS, Nomier Y, Elrebehy MA, Elshaer SS, Elballal MS, Mohammed OA, Abdel-Reheim MA, Doghish AS. The potential role of miRNAs in the pathogenesis of schizophrenia - A focus on signaling pathways interplay. Pathol Res Pract 2024; 254:155102. [PMID: 38211386 DOI: 10.1016/j.prp.2024.155102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Alaa Ashraf
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| |
Collapse
|
7
|
Legaz I, Jimenez-Coll V, González-López R, Fernández-González M, Alegría-Marcos MJ, Galián JA, Botella C, Moya-Quiles R, Muro-Pérez M, Minguela A, Llorente S, Muro M. MicroRNAs as Potential Graft Rejection or Tolerance Biomarkers and Their Dilemma in Clinical Routines Behaving like Devilish, Angelic, or Frightening Elements. Biomedicines 2024; 12:116. [PMID: 38255221 PMCID: PMC10813128 DOI: 10.3390/biomedicines12010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Allograft rejection is a widespread complication in allograft recipients with chronic kidney disease. Undertreatment of subclinical and clinical rejection and later post-transplant problems are caused by an imperfect understanding of the mechanisms at play and a lack of adequate diagnostic tools. Many different biomarkers have been analyzed and proposed to detect and monitor these crucial events in transplant outcomes. In this sense, microRNAs may help diagnose rejection or tolerance and indicate appropriate treatment, especially in patients with chronic allograft rejection. As key epigenetic regulators of physiological homeostasis, microRNAs have therapeutic potential and may indicate allograft tolerance or rejection. However, more evidence and clinical validation are indispensable before microRNAs are ready for clinical prime time.
Collapse
Affiliation(s)
- Isabel Legaz
- Department of Legal and Forensic Medicine, Biomedical Research Institute of Murcia (IMIB), Regional Campus of International Excellence “Campus Mare Nostrum,” Faculty of Medicine, University of Murcia (UMU), 30100 Murcia, Spain
| | - Víctor Jimenez-Coll
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosana González-López
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | | | | | - José Antonio Galián
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Carmen Botella
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Rosa Moya-Quiles
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Manuel Muro-Pérez
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| | - Santiago Llorente
- Service of Nephrology, Unit Hospital Clinic Universitario Virgen de la Arrixaca, IMIB-Arrixaca, 30120 Murcia, Spain
| | - Manuel Muro
- Immunology Service, University Clinical Hospital “Virgen de la Arrixaca”—IMIB, 30120 Murcia, Spain
| |
Collapse
|
8
|
Pan W, Yao X, Lin L, Liu X, Jin P, Ma F. The Relish/miR-275/Dredd mediated negative feedback loop is crucial to restoring immune homeostasis of Drosophila Imd pathway. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104013. [PMID: 37804878 DOI: 10.1016/j.ibmb.2023.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/13/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023]
Abstract
The NF-κB/Relish, as a core transcription factor of Drosophila immune deficiency (Imd) pathway, activates the transcriptions of antimicrobial peptides (AMPs) to combat gram-negative bacterial infections, but its role in regulating miRNA expression during immune response has less been reported. We here describe a negative feedback loop of Imd signaling mediated by Relish/miR-275/Dredd that controls Drosophila immune homeostasis after Escherichia coli (E. coli) infection. Our results demonstrate that Relish may directly activate the transcription of miR-275 via binding to its promoter in vitro and vivo, particularly miR-275 further inhibits the expression of Dredd through binding to its 3'UTR to negatively control Drosophila Imd immune response. Remarkably, the ectopic expression of miR-275 significantly reduces Drosophila lifespan. More importantly, our work uncovers a new mechanism by which Relish can flexibly switch its role to maintain Drosophila immune response and homeostasis during infection. Collectively, our study not only reveals the functional duality of Relish in regulating immune response of Drosophila Imd pathway, but also provides a new insight into the maintenance of animal innate immune homeostasis.
Collapse
Affiliation(s)
- Wanwan Pan
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaolong Yao
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Lu Lin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xiaoqi Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China.
| |
Collapse
|
9
|
Le MT, Nguyen HT, Nguyen XH, Do XH, Mai BT, Ngoc Nguyen HT, Trang Than UT, Nguyen TH. Regulation and therapeutic potentials of microRNAs to non-small cell lung cancer. Heliyon 2023; 9:e22080. [PMID: 38058618 PMCID: PMC10696070 DOI: 10.1016/j.heliyon.2023.e22080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, accounting for 80%-85% of total cases and leading to millions of deaths worldwide. Drug resistance is the primary cause of treatment failure in NSCLC, which urges scientists to develop advanced approaches for NSCLC treatment. Among novel approaches, the miRNA-based method has emerged as a potential approach as it allows researchers to modulate target gene expression. Subsequently, cell behaviors are altered, which leads to the death and the depletion of cancer cells. It has been reported that miRNAs possess the capacity to regulate multiple genes that are involved in various signaling pathways, including the phosphoinositide 3-kinase, receptor tyrosine kinase/rat sarcoma virus/mitogen-activated protein kinase, wingless/integrated, retinoblastoma, p53, transforming growth factor β, and nuclear factor-kappa B pathways. Dysregulation of these signaling pathways in NSCLC results in abnormal cell proliferation, tissue invasion, and drug resistance while inhibiting apoptosis. Thus, understanding the roles of miRNAs in regulating these signaling pathways may enable the development of novel NSCLC treatment therapies. However, a comprehensive review of potential miRNAs in NSCLC treatment has been lacking. Therefore, this review aims to fill the gap by summarizing the up-to-date information on miRNAs regarding their targets, impact on cancer-associated pathways, and prospective outcomes in treating NSCLC. We also discuss current technologies for delivering miRNAs to the target cells, including virus-based, non-viral, and emerging extracellular vesicle-based delivery systems. This knowledge will support future studies to develop an innovative miRNA-based therapy and select a suitable carrier to treat NSCLC effectively.
Collapse
Affiliation(s)
- Mai Thi Le
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Faculty of Biology, VNU University of Science, Vietnam National University, Hanoi, 100000, Viet Nam
| | - Huyen-Thu Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hung Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- College of Health Sciences, Vin University, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Xuan-Hai Do
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Viet Nam
| | - Binh Thanh Mai
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Viet Nam
| | - Ha Thi Ngoc Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Uyen Thi Trang Than
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
- Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| | - Thanh-Hong Nguyen
- Vinmec Hi-tech Center, Vinmec Healthcare System, Hanoi, 100000, Viet Nam
| |
Collapse
|
10
|
Liang Y, Gu M, Liang X, Zhou Y, Yang Q, Wang Z, Yao W, Gao X, Chen S. von Hippel-Lindau-targeting microRNA-143-3p attenuates mitochondrial abnormality via AMPK/PGC-1α axis in Parkinson's disease. Exp Cell Res 2023:113684. [PMID: 37307940 DOI: 10.1016/j.yexcr.2023.113684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease characterized by selective loss of dopaminergic neurons. We previously found that inhibition of von Hippel-Lindau (VHL) can alleviate dopaminergic neuron degeneration in PD models via regulation of mitochondrial homeostasis, however, the disease-related alterations of VHL and the regulatory mechanisms of VHL level in PD need to be further investigated. In this study, we found that the levels of VHL were markedly increased in multiple cell models of PD and identified microRNA-143-3p (miR-143-3p) as a promising candidate for regulating VHL expression involved in PD. MiR-143-3p directly bound to the 3'untranslated region of human VHL mRNA and inhibited its translation, and exerted neuroprotective effects by improving cell viability, apoptosis and tyrosine hydroxylase abnormality. Furthermore, we demonstrated that miR-143-3p exerted neuroprotection by attenuating mitochondrial abnormality via AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) axis, and AMPK inhibitor abolished the beneficial effects of miR-143-3p on the cell model of PD. Therefore, we identify the dysregulated VHL and miR-143-3p in PD, and propose the therapeutic potential of miR-143-3p to alleviate PD by improving mitochondrial homeostasis via AMPK/PGC-1α axis.
Collapse
Affiliation(s)
- Yucui Liang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Mengyu Gu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiao Liang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yueqian Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qianhua Yang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zhiwen Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
11
|
Cui B, Chen XJ, Sun J, Li SP, Zhou GP, Sun LY, Wei L, Zhu ZJ. Dendritic cells originating exosomal miR-193b-3p induces regulatory T cells to alleviate liver transplant rejection. Int Immunopharmacol 2023; 114:109541. [PMID: 36700764 DOI: 10.1016/j.intimp.2022.109541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Exosomes exert considerable influence in mediating regulatory T (Treg) cells differentiation, which attach great importance to attenuating acute cellular rejection after liver transplantation (LT). And, miRNAs are known to play essential roles in cell-cell communication delivered by exosomes. However, the function of exosomal miRNAs in regulating Treg cells after LT remains unknown. Here, we performed an expression profiling analysis of exosome-miRNAs from human plasma after LT and investigated their immunoregulatory effects on Treg cells. METHODS Fifty-eight LT patients and nine donors were included in this report. miRNA profiles in plasma exosomes were analyzed using next-generation sequencing. Flow cytometry, HE and multiplex immunofluorescent staining were used to identify Treg cells in the liver and peripheral blood. A lentiviral vector system was used to overexpress miR-193b-3p in dendritic cells (DCs), and exosomes isolated from these transfected cells were co-cultured with spleen lymphocytesin vitro. A quantitative Real-time PCR and enzyme-linked immunosorbent assay were used to detect the expression of cytokines. RESULTS Treg cell infiltration was increased in the liver along with Th17 and CD8+ T cell, and it was down-regulated in peripheral blood in the acute rejection group. High-throughput sequencing revealed that miR-193b-3p was markedly up-regulated in plasma exosomes of non-rejection LT patients. The NLRP3 inflammasome was screened as a target for miR-193b-3p based on target prediction and functional enrichment analyses. Exosomal miR-193b-3p derived from DCs increased Treg cells as demonstrated in vitro. miR-193b-3p overexpression down-regulated NLRP3 as well as the inflammatory cytokines IL-1β and IL-17A while increasing levels of the cytokines IL-10 and TGF-β. CONCLUSION DC derived exosomal miR-193b-3p promoted Treg cells by inhibiting NLRP3 expression. These findings not only provide a new perspective on the mechanisms, but also hold great promise for the treatment or prevention of liver allograft rejection.
Collapse
Affiliation(s)
- Bin Cui
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Department of Neurosurgery, Aviation General Hospital, Beijing 100012, China
| | - Xiao-Jie Chen
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Jie Sun
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Shi-Peng Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Guang-Peng Zhou
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Li-Ying Sun
- Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China; Department of Critical Liver Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China
| | - Lin Wei
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing 101100, China; Clinical Center for Pediatric Liver Transplantation, Capital Medical University, Beijing 101100, China; National Clinical Research Center for Digestive Diseases, Beijing 101100, China.
| |
Collapse
|
12
|
Vitamin-D ameliorates sepsis-induced acute lung injury via augmenting miR-149-5p and downregulating ER stress. J Nutr Biochem 2022; 110:109130. [PMID: 35988833 DOI: 10.1016/j.jnutbio.2022.109130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 01/13/2023]
Abstract
Acute lung injury is a life-threatening medical problem induced by sepsis or endotoxins and may be associated with enhanced Endoplasmic reticulum stress (ER stress). Vitamin-D (Vit-D) possesses an anti-inflammatory effect; however, this specific mechanism on acute lung injury is still unknown. Here we scrutinize the mechanism of Vit-D on Acute lung injury (ALI) models and explored the Vit-D augmented miRNA's role in regulating the ER stress pathway in ALI. Sepsis was induced by CLP, and Endotoxemia was caused by lipopolysaccharide (LPS). We found that Vit-D alleviates pulmonary edema, improves lung histoarchitecture, infiltration of neutrophils, endothelial barrier in mice, and improves ER stress markers Activating Transcription Factor 6 (ATF6) and CHOP (C/EBP Homologous Protein) expression elevated by CLP/LPS induce ALI. Vit-D decreases the nitric oxide production and ATF6 in macrophages induced by LPS. Vit-D augments miR (miR-149-5p) in LPS-induce macrophages, CLP, and LPS-induced ALI models. Vit-D enhanced miRNA-149-5p when overexpressed, inhibited ER-specific ATF6 inflammatory pathway in LPS-stimulated macrophages, and improved histoarchitecture of the lung in LPS/CLP-induced mice models. This vitro and vivo studies demonstrate that Vit-D could improve ALI induced by CLP/LPS. In this regard, miR-149-5p may play a crucial role in vitamin-D inhibiting LPS/CLP induce ALI. The mechanism might be an association of increased miR-149-5p and its regulated gene target ATF6, and downstream CHOP proteins were suppressed. Thus, these findings demonstrate that the anti-inflammatory effect of Vit-D is achieved by augmentation of miRNA-149-5p expression, which may be a key physiologic mediator in the prevention and treatment of ALI.
Collapse
|
13
|
Zhang Y, Zhang F, Gao Y, Wang M, Gao Y, Li H, Sun J, Wen C, Xie Z. Triptolide in the treatment of systemic lupus erythematosus - regulatory effects on miR-146a in B cell TLR7 signaling pathway in mice. Front Pharmacol 2022; 13:952775. [PMID: 36210830 PMCID: PMC9539794 DOI: 10.3389/fphar.2022.952775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: To clarify the mechanism of triptolide (TP) in alleviating the conditions underlying SLE. Methods: Eight-week-old MRL/lpr mice were randomly divided into a model group (n = 5), low-dose TP (TP-L) group (n = 5), and high-dose TP (TP-H) group (n = 5). Mice in these groups were gavaged with normal saline, low-dose TP solution, and high-dose TP solution for 8 weeks, respectively. The expression levels of anti-dsDNA, IgG, IgM, IgA, C3, C4, and CREA, BUN, ALT, AST, ALB, and ALP indexes in the serum of mice were detected. The proportion of CD19+CD138+B220− cells in the spleen and the pathological changes of kidney tissue in the mice were also evaluated. The possible signaling pathways and microRNA (miRNA) targets of TP in the treatment of SLE were analyzed using network pharmacology. The expressions of TLR7 mRNA and miR-146a in Raji cells (a B lymphocyte line) were detected using qPCR before and after intervention with a miR-146a inhibitor. The protein expression levels of TLR7, MyD88, p-IRAK1, and p-NF-κBp65 were detected using western blot analysis. Results: TP could significantly decrease the levels of ds-DNA and IgG, alleviate pathological injury in renal tissue, and upregulate miR-146a expression in the B cells of MRL/lpr mice without obvious liver and kidney toxicity. Network pharmacology analysis showed that TP could mainly regulate the Toll-like receptor signaling pathway, and NF-κB signaling pathway, among others. miRNA target prediction suggested that TP could regulate miRNAs such as miR-146a. In vitro cell experiments further confirmed that TP could significantly upregulate miR-146a expression and downregulate the expression of TLR7 mRNA and protein levels TLR7, MyD88, p-IRAK1, and p-NF-κBp65. After intervention with a miR-146a inhibitor, TP had no obvious inhibitory effects on TLR7, MyD88, p-IRAK1, and p-NF-κBp65 expression. Conclusion: TP may exert therapeutic effects on SLE by regulating miR-146a expression, inhibiting the TLR7/NF-κB signaling pathway, and affecting B cell activation.
Collapse
Affiliation(s)
- Yi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - FengQi Zhang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - YiNi Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - MeiJiao Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yan Gao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - HaiChang Li
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - ChengPing Wen
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| | - ZhiJun Xie
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: ChengPing Wen, ; ZhiJun Xie,
| |
Collapse
|
14
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
15
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
16
|
Luan P, Chen X, Zhang X, Hu G, Zhang Z. Role of miR-451 in mediating cadmium induced head kidney injury in common carp via targeting cacna1ab through autophagy pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 248:106201. [PMID: 35605490 DOI: 10.1016/j.aquatox.2022.106201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is a common environmental pollutant, which leads to Cd residue in aquatic animals. The Cd in aquatic animals will be enriched into the human body through the food chain and seriously harm human health. The research aims to investigate the molecular mechanism of Cd poisoning in common carps. Our previous studies have confirmed that 23 differentially expressed miRNAs were potential biomarkers for Cd exposure in common carp head kidney lymphocytes. Herein, based on the prediction of the website and previous studies, miR-451 and cacna1ab were selected and their targeting relationship was verified again by dual-luciferase. Subsequently, we established the miR-451 overexpression/knockdown models and miR-451 inhibitor, cacna1ab co-knockdown models in common carp head kidney lymphocytes respectively. Immunofluorescence staining, MDC staining, calcium staining, qRT-PCR (Quantitative Real-time PCR) and western blot were used to detect the levels of autophagy. Our results demonstrated that Cd significantly decreased the expression of miR-451, miR-451 suppression thereby induced increased cacna1ab and the expression of ATG5, LC3-I, LC3-II and Beclin 1, while significantly inhibiting the expression of mTOR, P62 and Bcl-2, which indicated that autophagy was triggered. Moreover, the miR-451 knockdown group activated the expression of autophagy related factors as well as the Cd group. However, cacna1ab knockdown can reduce autophagy activation induced by miR-451 knockdown. Our results indicated that Cd induced autophagy in head kidney lymphocytes through the inhibition of miR-451 and the excitation of cacna1ab.
Collapse
Affiliation(s)
- Peixian Luan
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofeng Zhang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
| | - Guo Hu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, 150070, China; Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
18
|
Bozzini S, Del Fante C, Morosini M, Berezhinskiy HO, Auner S, Cattaneo E, Della Zoppa M, Pandolfi L, Cacciatore R, Perotti C, Hoetzenecker K, Jaksch P, Benazzo A, Meloni F. Mechanisms of Action of Extracorporeal Photopheresis in the Control of Bronchiolitis Obliterans Syndrome (BOS): Involvement of Circulating miRNAs. Cells 2022; 11:cells11071117. [PMID: 35406680 PMCID: PMC8997705 DOI: 10.3390/cells11071117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical evidence suggests an improvement or stabilization of lung function in a fraction of patients with bronchiolitis obliterans syndrome (BOS) treated by extracorporeal photopheresis (ECP); however, few studies have explored the epigenetic and molecular regulation of this therapy. The aim of present study was to evaluate whether a specific set of miRNAs were significantly regulated by ECP. Total RNA was isolated from serum of patients with established BOS grade 1–2 prior to the start and after 6 months of ECP treatment. We observed a significant downregulation of circulating hsa-miR-155-5p, hsa-miR-146a-5p and hsa-miR-31-5p in BOS patients at the start of ECP when compared to healthy subjects. In responders, increased miR-155-5p and decreased miR-23b-3p expression levels at 6 months were found. SMAD4 mRNA was found to be a common target of these two miRNAs in prediction pathways analysis, and a significant downregulation was found at 6 months in PBMCs of a subgroup of ECP-treated patients. According to previous evidence, the upregulation of miR-155 might be correlated with a pro-tolerogenic modulation of the immune system. Our analysis also suggests that SMAD4 might be a possible target for miR-155-5p. Further longitudinal studies are needed to address the possible role of miR-155 and its downstream targets.
Collapse
Affiliation(s)
- Sara Bozzini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
- Correspondence: ; Tel.: +39-0382-501-001
| | - Claudia Del Fante
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Monica Morosini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Hatice Oya Berezhinskiy
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Sophia Auner
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Elena Cattaneo
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Matteo Della Zoppa
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Laura Pandolfi
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (M.M.); (E.C.); (M.D.Z.); (L.P.)
| | - Rosalia Cacciatore
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Cesare Perotti
- Immunohaematology and Transfusion Service, Apheresis and Cell Therapy Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (C.D.F.); (R.C.); (C.P.)
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Peter Jaksch
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Alberto Benazzo
- Department of Thoracic Surgery, Medical University of Vienna, 1090 Wien, Austria; (H.O.B.); (S.A.); (K.H.); (P.J.); (A.B.)
| | - Federica Meloni
- UOS Transplant Center, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
19
|
Newton DA, Baatz JE, Chetta KE, Walker PW, Washington RO, Shary JR, Wagner CL. Maternal Vitamin D Status Correlates to Leukocyte Antigenic Responses in Breastfeeding Infants. Nutrients 2022; 14:1266. [PMID: 35334923 PMCID: PMC8952362 DOI: 10.3390/nu14061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
It is unknown if vitamin D (vitD) sufficiency in breastfeeding mothers can lead to physiological outcomes for their children that are discernible from infant vitD sufficiency per se. In a 3-month, randomized vitD supplementation study of mothers and their exclusively breastfeeding infants, the effects of maternal vitD sufficiency were determined on infant plasma concentrations of 25-hydroxyvitamin D (i.e., vitD status) and 11 cytokines. An inverse correlation was seen between maternal vitD status and infant plasma TNF concentration (r = −0.27; p < 0.05). Infant whole blood was also subjected to in vitro antigenic stimulation. TNF, IFNγ, IL-4, IL-13, and TGFβ1 responses by infant leukocytes were significantly higher if mothers were vitD sufficient but were not as closely correlated to infants’ own vitD status. Conversely, IL-10 and IL-12 responses after antigenic challenge were more correlated to infant vitD status. These data are consistent with vitD-mediated changes in breast milk composition providing immunological signaling to breastfeeding infants and indicate differential physiological effects of direct-infant versus maternal vitD supplementation. Thus, consistent with many previous studies that focused on the importance of vitD sufficiency during pregnancy, maintenance of maternal sufficiency likely continues to affect the health of breastfed infants.
Collapse
Affiliation(s)
- Danforth A. Newton
- Department of Pediatrics/Neonatology, Shawn Jenkins Children’s Hospital, Medical University of South Carolina, Charleston, SC 29425, USA; (J.E.B.); (K.E.C.); (P.W.W.); (R.O.W.); (J.R.S.); (C.L.W.)
| | | | | | | | | | | | | |
Collapse
|
20
|
Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 2021; 225:681.e1-681.e20. [PMID: 34181894 PMCID: PMC8633060 DOI: 10.1016/j.ajog.2021.06.075] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Mark Bustoros
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY; Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Ellen Gurzenda
- Research and Academic Center, New York University Long Island School of Medicine, Mineola, NY
| | - Martin Chavez
- Department of Obstetrics-Gynecology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Iman Hanna
- Department of Pathology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY.
| |
Collapse
|
21
|
Yang X, Toyofuku WM, Scott MD. Differential Leukocyte MicroRNA Responses Following Pan T Cell, Allorecognition and Allosecretome-Based Therapeutic Activation. Arch Immunol Ther Exp (Warsz) 2021; 69:30. [PMID: 34677693 PMCID: PMC8536625 DOI: 10.1007/s00005-021-00634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
Effective immunomodulation of T-cell responses is critical in treating both autoimmune diseases and cancer. Our previous studies have demonstrated that secretomes derived from control or methoxypolyethylene glycol mixed lymphocyte alloactivation assays exerted potent immunomodulatory activity that was mediated by microRNAs (miRNA). The immunomodulatory effects of biomanufactured miRNA-based allo-secretome therapeutics (SYN, TA1, IA1 and IA2) were compared to Pan T-cell activators (PHA and anti-CD3/CD28) and lymphocyte alloactivation. The differential effects of these activation strategies on resting peripheral blood mononuclear cells (PBMC) were assessed via T-cell proliferation, subset analysis and miRNA expression profiles. Mitogen-induced PBMC proliferation (> 85%) significantly exceeded that arising from either allostimulation (~ 30%) or the pro-inflammatory IA1 secretome product (~ 12%). Consequent to stimulation, the ratio of CD4 to CD8 cells of the resting PBMC (CD4:CD8; 1.7 ± 0.1) decreased in the Pan T cell, allrecognition and IA1 activated cells (averages of 1.1 ± 0.2; 1.2 ± 0.1 and 1.0 ± 0.1). These changes arose consequent to the expansion of both CD4+CD8+ and CD4–CD8– populations as well as the shrinkage of the CD4 subset and the expansion of the CD8 T cells. Importantly, these activation strategies induced vastly different miRNA expression profiles which were associated with significant differences in cellular differentiation and biological function. These findings support the concept that the “differential patterns of miRNA expression” regulate the biologic immune response in a “lock and key” manner. The biomanufacturing of miRNA-enriched secretome biotherapeutics may be a successful therapeutic approach for the systemic treatment of autoimmune diseases (TA1) and cancer (IA1).
Collapse
Affiliation(s)
- Xining Yang
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, V5Z 1L3, Canada
| | - Wendy M Toyofuku
- University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada.,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark D Scott
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,University of British Columbia Centre for Blood Research, Vancouver, BC, V6T 1Z3, Canada. .,Canadian Blood Services and the Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
22
|
Zárate-Potes A, Yang W, Andresen B, Nakad R, Haase D, Rosenstiel P, Dierking K, Schulenburg H. The effects of nested miRNAs and their host genes on immune defense against Bacillus thuringiensis infection in Caenorhabditis elegans. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104144. [PMID: 34051205 DOI: 10.1016/j.dci.2021.104144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNA-molecules that influence translation by binding to the target gene mRNA. Many miRNAs are found in nested arrangements within larger protein-coding host genes. miRNAs and host genes in a nested arrangement are often transcribed simultaneously, which may indicate that both have similar functions. miRNAs have been implicated in regulating defense responses against pathogen infection in C. elegans and in mammals. Here, we asked if miRNAs in nested arrangements and their host genes are involved in the C. elegans response against infection with Bacillus thuringiensis (Bt). We performed miRNA sequencing and subsequently focused on four nested miRNA-host gene arrangements for a functional genetic analysis. We identified mir-58.1 and mir-2 as negative regulators of C. elegans resistance to Bt infection. However, we did not find any miRNA/host gene pair in which both contribute to defense against Bt.
Collapse
Affiliation(s)
- Alejandra Zárate-Potes
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Wentao Yang
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Bentje Andresen
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Rania Nakad
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Daniela Haase
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology (IKMB), Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Katja Dierking
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Hinrich Schulenburg
- Department of Evolutionary Ecology and Genetics, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany; Max Planck Institute for Evolutionary Biology, 24306, Ploen, Germany.
| |
Collapse
|
23
|
Xu D, Zhou Q, Yan B, Ma A. Identification and physiological function of one microRNA ( Po-MilR-1) in oyster mushroom Pleurotus ostreatus. MYCOSCIENCE 2021; 62:182-188. [PMID: 37091326 PMCID: PMC9157778 DOI: 10.47371/mycosci.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 01/08/2023]
Abstract
MicroRNAs are essential regulators of gene expression and have been extensively studied in plants and animals; however, few reports have been published in mushrooms. Po-MilR-1 is a novel microRNA with a length of 22 bp in Pleurotus ostreatus. The secondary structures of five precursors and the target genes of Po-MilR-1 were predicted. Expression profile analysis showed Po-MilR-1 had specific expression in the primordium and fruiting body. To explore its physiological function, Po-MilR-1 was overexpressed in P. ostreatus. The transformants showed slow mycelium growth rate and abnormal pileus with irregular edge, which suggested Po-MilR-1 plays an important role in P. ostreatus development. Additionally, Po-MilR-1 and one of its target hydrophobin genes POH1 had opposite temporal expression profiles in the primordium and fruiting body, which revealed that Po-MilR-1 may perform its physiological function through the negative regulation of POH1. This study explored the development-related function of a mushroom microRNA and will provide a reference for other microRNAs.
Collapse
Affiliation(s)
- Danyun Xu
- College of Food Science and Technology, Huazhong Agricultural University
| | - Qixia Zhou
- College of Food Science and Technology, Huazhong Agricultural University
| | - Biyun Yan
- College of Food Science and Technology, Huazhong Agricultural University
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University
- Key Laboratory of Agro-Microbial Resources and Utilization, Ministry of Agriculture, Huazhong Agricultural University
| |
Collapse
|
24
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
25
|
Ye Z, Gould TM, Zhang H, Jin J, Weyand CM, Goronzy JJ. The GSK3β-β-catenin-TCF1 pathway improves naive T cell activation in old adults by upregulating miR-181a. NPJ Aging Mech Dis 2021; 7:4. [PMID: 33558531 PMCID: PMC7870817 DOI: 10.1038/s41514-021-00056-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs play an important role in the regulation of T cell development, activation, and differentiation. One of the most abundant microRNAs in lymphocytes is miR-181a, which controls T cell receptor (TCR) activation thresholds in thymic selection as well as in peripheral T cell responses. We previously found that miR-181a levels decline in T cells in the elderly. In this study, we identified TCF1 as a transcriptional regulator of pri-miR-181a. A decline in TCF1 levels in old individuals accounted for the reduced miR-181a expression impairing TCR signaling. Inhibition of GSK3ß restored expression of miR-181a by inducing TCF1 in T cells from old adults. GSK3ß inhibition enhanced TCR signaling to increase downstream expression of activation markers and production of IL-2. The effect involved the upregulation of miR-181a and the inhibition of DUSP6 expression. Thus, inhibition of GSK3ß can restore responses of old T cells by inducing miR-181a expression through TCF1.
Collapse
Affiliation(s)
- Zhongde Ye
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Timothy M Gould
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Huimin Zhang
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Jun Jin
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Cornelia M Weyand
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA.,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA
| | - Jörg J Goronzy
- From the Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA, 94305, USA. .,Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94306, USA.
| |
Collapse
|
26
|
Li R, Yao X, Zhou H, Jin P, Ma F. The Drosophila miR-959-962 Cluster Members Repress Toll Signaling to Regulate Antibacterial Defense during Bacterial Infection. Int J Mol Sci 2021; 22:ijms22020886. [PMID: 33477373 PMCID: PMC7831006 DOI: 10.3390/ijms22020886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of ~22 nt non-coding RNA molecules in metazoans capable of down-regulating target gene expression by binding to the complementary sites in the mRNA transcripts. Many individual miRNAs are implicated in a broad range of biological pathways, but functional characterization of miRNA clusters in concert is limited. Here, we report that miR-959-962 cluster (miR-959/960/961/962) can weaken Drosophila immune response to bacterial infection evidenced by the reduced expression of antimicrobial peptide Drosomycin (Drs) and short survival within 24 h upon infection. Each of the four miRNA members is confirmed to contribute to the reduced Drs expression and survival rate of Drosophila. Mechanically, RT-qPCR and Dual-luciferase reporter assay verify that tube and dorsal (dl) mRNAs, key components of Toll pathway, can simultaneously be targeted by miR-959 and miR-960, miR-961, and miR-962, respectively. Furthermore, miR-962 can even directly target to the 3' untranslated region (UTR) of Toll. In addition, the dynamic expression pattern analysis in wild-type flies reveals that four miRNA members play important functions in Drosophila immune homeostasis restoration at the late stage of Micrococcus luteus (M. luteus) infection. Taken together, our results identify four miRNA members from miR-959-962 cluster as novel suppressors of Toll signaling and enrich the repertoire of immune-modulating miRNA in Drosophila.
Collapse
Affiliation(s)
| | | | | | - Ping Jin
- Correspondence: (P.J.); (F.M.); Tel.: +86-25-85891852 (P.J.); +86-25-85891852 (F.M.)
| | - Fei Ma
- Correspondence: (P.J.); (F.M.); Tel.: +86-25-85891852 (P.J.); +86-25-85891852 (F.M.)
| |
Collapse
|
27
|
Shirani K, Riahi Zanjani B, Mehri S, Razavi-Azarkhiavi K, Badiee A, Hayes AW, Giesy JP, Karimi G. miR-155 influences cell-mediated immunity in Balb/c mice treated with aflatoxin M 1. Drug Chem Toxicol 2021; 44:39-46. [PMID: 30739504 DOI: 10.1080/01480545.2018.1556682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/02/2018] [Accepted: 11/27/2018] [Indexed: 10/27/2022]
Abstract
Aflatoxin M1 (AFM1) is a 4-hydroxylated metabolite of aflatoxin B1 (AFB1). It induces various toxicological effects including immunotoxicity. In the present study, we investigated the effects of AFM1 on immune system and its modulation by MicroRNA (miR)-155. AFM1 was administered intraperitoneally at doses of 25 and 50 µg/kg for 28 days to Balb/c mice and different immune system parameters were analyzed. The levels of miR-155 and targeted proteins were evaluated in isolated T cells from spleens of mice. Spleen weight was reduced in mice exposed to AFM1 compared to negative control. Proliferation of splenocytes in response to phytohemagglutinin-A was reduced in mice exposed to AFM1. IFN-γ was decreased in mice exposed to AFM1, whereas IL-10 was increased. Concentration of IL-4 did not change different in mice exposed to AFM1 compared to negative control. Exposure to AFM1 reduced the expression of miR-155. Significant upregulation of phosphatidylinositol-3, 4, 5-trisphosphate 5-phosphatase 1 (Ship1) and suppressor of cytokine signaling 1 (Socs1) was observed in isolated T cells from spleens of mice treated with AFM1, but the transcription factor Maf (c-MAF) was not affected. These results suggest that miR-155 and targeted proteins might be involved in the immunotoxicity observed in mice exposed to AFM1.
Collapse
Affiliation(s)
- Kobra Shirani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bamdad Riahi Zanjani
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamal Razavi-Azarkhiavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
- Michigan State University, East Lansing, MI, USA
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
- School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
28
|
Tazi J, Begon-Pescia C, Campos N, Apolit C, Garcel A, Scherrer D. Specific and selective induction of miR-124 in immune cells by the quinoline ABX464: a transformative therapy for inflammatory diseases. Drug Discov Today 2020; 26:1030-1039. [PMID: 33387693 DOI: 10.1016/j.drudis.2020.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/02/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
Inflammatory diseases are believed to develop as a result of dysregulated inflammatory responses to environmental factors on susceptible genetic backgrounds. Operating at the level of post-transcriptional gene regulation, miRNAs are a class of endogenous, small noncoding RNAs that can promote downregulation of protein expression by translational repression and/or mRNA degradation of target mRNAs involved in inflammation. MiR-124 is a crucial modulator of inflammation and innate immunity that could provide therapeutic restitution of physiological pathways lost in inflammatory diseases. A recently discovered small quinoline, ABX464, was shown to upregulate miR-124 in human immune cells. In vivo, in a proof-of-concept clinical study, ABX464 showed robust and consistent efficacy in ulcerative colitis (UC). In this review, we examine the current therapeutic options proposed for UC and discuss the drug candidate ABX464 in this context.
Collapse
Affiliation(s)
- Jamal Tazi
- Cooperative Laboratory CNRS-Montpellier University, Montpellier, France; ABIVAX, 1919 Route de Mende, 34293 Montpellier, France.
| | | | - Noëlie Campos
- Cooperative Laboratory CNRS-Montpellier University, Montpellier, France; ABIVAX, 1919 Route de Mende, 34293 Montpellier, France
| | - Cécile Apolit
- Cooperative Laboratory CNRS-Montpellier University, Montpellier, France
| | - Aude Garcel
- Cooperative Laboratory CNRS-Montpellier University, Montpellier, France; ABIVAX, 1919 Route de Mende, 34293 Montpellier, France
| | - Didier Scherrer
- Cooperative Laboratory CNRS-Montpellier University, Montpellier, France; ABIVAX, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
29
|
LAMP2A-mediated autophagy involved in Huntington's disease progression. Biochem Biophys Res Commun 2020; 534:561-567. [PMID: 33239172 DOI: 10.1016/j.bbrc.2020.11.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Huntington's disease (HD) is caused by a mutant huntingtin (mHtt) protein that contains abnormally extended polyglutamine (polyQ) repeats. The process of autophagy has been implicated in clearing mHtt aggregates, and microRNAs (miRNAs) have been reported as new players to regulate autophagy. However, the autophagy-associated target molecule of let7b miRNA remains unclear in HD. The present study showed that extended polyQ in mouse striatal neurons increased lysosomal membrane-associated protein 2A (LAMP2A) levels and influenced the inflammatory conditions, and these augmented levels correlated to the let7b miRNA expression level. The upregulated let7b increased LAMP2A and reduced the extended polyQ in mouse striatal cells. The let7b level was highly expressed in the striatum of pre-onset HD mice, whereas it was significantly reduced in the post-onset HD striatum. Considering the level changing pattern of let7b, LAMP2A protein levels were increased in the striatum of pre-onset HD mice, but decreased in the striatum of post-onset HD mice. These results suggest that LAMP2A related to chaperone-mediated autophagy (CMA) capacity might play an important role in HD symptom onset and progression.
Collapse
|
30
|
Fatmi A, Rebiahi SA, Chabni N, Zerrouki H, Azzaoui H, Elhabiri Y, Benmansour S, Ibáñez-Cabellos JS, Smahi MCE, Aribi M, García-Giménez JL, Pallardó FV. miRNA-23b as a biomarker of culture-positive neonatal sepsis. Mol Med 2020; 26:94. [PMID: 33032520 PMCID: PMC7542968 DOI: 10.1186/s10020-020-00217-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neonatal sepsis remains an important cause of morbidity and mortality. The ability to quickly and accurately diagnose neonatal sepsis based on clinical assessments and laboratory blood tests remains difficult, where haemoculture is the gold standard for detecting bacterial sepsis in blood culture. It is also very difficult to study because neonatal samples are lacking. METHODS Forty-eight newborns suspected of sepsis admitted to the Neonatology Department of the Mother-Child Specialized Hospital of Tlemcen. From each newborn, a minimum of 1-2 ml of blood was drawn by standard sterile procedures for blood culture. The miRNA-23b level in haemoculture was evaluated by RT-qPCR. RESULTS miR-23b levels increased in premature and full-term newborns in early onset sepsis (p < 0.001 and p < 0.005 respectively), but lowered in late onset sepsis in full-term neonates (p < 0.05) compared to the respective negative controls. miR-23b levels also increased in late sepsis in the negative versus early sepsis negative controls (p < 0.05). miR-23b levels significantly lowered in the newborns who died from both sepsis types (p < 0.0001 and p < 0.05 respectively). In early sepsis, miR-23b and death strongly and negatively correlated (correlation coefficient = - 0.96, p = 0.0019). In late sepsis, miRNA-23b and number of survivors (correlation coefficient = 0.70, p = 0.506) positively correlated. CONCLUSIONS Lowering miR-23b levels is an important factor that favours sepsis development, which would confirm their vital protective role, and strongly suggest that they act as a good marker in molecular diagnosis and patient monitoring.
Collapse
Affiliation(s)
- Ahlam Fatmi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Sid Ahmed Rebiahi
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Nafissa Chabni
- Faculty of Medicine, Tlemcen Medical Centre University, 13000, Tlemcen, Algeria
| | - Hanane Zerrouki
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Hafsa Azzaoui
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - Yamina Elhabiri
- Laboratory of Microbiology Applied in Food, Biomedical and Environment, Tlemcen, Algeria
| | - Souheila Benmansour
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - José Santiago Ibáñez-Cabellos
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Mohammed Chems-Eddine Smahi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria.,Neonatal Department of Specialized Maternal and Child Hospital of Tlemcen, 13000, Tlemcen, Algeria
| | - Mourad Aribi
- Laboratory of Applied Molecular Biology and Immunology, W0414100, Tlemcen, Algeria
| | - José Luis García-Giménez
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain.,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain.,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain
| | - Federico V Pallardó
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, Valencia, Spain. .,INCLIVA Health Research Institute, Mixed Unit for rare diseases INCLIVA-CIPF, Valencia, Spain. .,Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, Avenida Blasco Ibañez 15, 46010, Valencia, Spain.
| |
Collapse
|
31
|
Ruiz P, Millán O, Ríos J, Díaz A, Sastre L, Colmenero J, Crespo G, Brunet M, Navasa M. MicroRNAs 155-5p, 122-5p, and 181a-5p Identify Patients With Graft Dysfunction Due to T Cell-Mediated Rejection After Liver Transplantation. Liver Transpl 2020; 26:1275-1286. [PMID: 32615025 DOI: 10.1002/lt.25842] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that can be detected in plasma and whose expression is associated with pathological processes. The role of miRNAs in the noninvasive diagnosis of T cell-mediated rejection (TCMR) after liver transplantation (LT) is unclear. Thus, we aimed to assess the effectiveness of a panel of 4 miRNAs (155-5p, 122-5p, 181a-5p, and 148-3p) in diagnosing TCMR in LT recipients with graft dysfunction (GD), and we compared its accuracy with previously published tests for diagnosing TCMR based on routine laboratory parameters. From a prospective cohort of 145 patients followed during the first year after transplant, 49 developed GD and underwent a liver biopsy and plasma collection for miRNA analysis using quantitative real-time polymerase chain reaction. Patients with GD due to TCMR (n = 21) exhibited significantly higher (P < 0.001) expression of miRNA 155-5p (2.05 versus 0.07), 122-5p (19.36 versus 1.66), and 181a-5p (1.33 versus 0.37) compared with those with GD from other causes (n = 28). The area under the receiver operating characteristic curve of miRNAs 155-5p, 122-5p, and 181a-5p for the diagnosis of TCMR was 0.87, 0.91, and 0.89, respectively, significantly higher than those of the other noninvasive tests (P < 0.001). Furthermore, miRNA 155-5p identified all patients who presented TCMR during the first 2 weeks after transplant. miRNA plasmatic expression differentiates TCMR from other causes of GD in patients who have undergone LT and may be a useful tool in clinical practice.
Collapse
Affiliation(s)
- Pablo Ruiz
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Olga Millán
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Jose Ríos
- Pathology Department, Biochemical Diagnostic Centre, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain.,Biostatistics Unit, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Díaz
- Medical Statistics Core Facility, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Lydia Sastre
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Jordi Colmenero
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Gonzalo Crespo
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Mercè Brunet
- Pharmacology and Toxicology, Biochemistry and Molecular Genetics, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Miquel Navasa
- Liver Transplant Unit, Hospital Clínic Barcelona, Institut d'Investigacions Biomèdiques August Pi I Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| |
Collapse
|
32
|
Li R, Zhou H, Jia C, Jin P, Ma F. Drosophila Myc restores immune homeostasis of Imd pathway via activating miR-277 to inhibit imd/Tab2. PLoS Genet 2020; 16:e1008989. [PMID: 32810129 PMCID: PMC7455005 DOI: 10.1371/journal.pgen.1008989] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 08/28/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Drosophila Myc (dMyc), as a broad-spectrum transcription factor, can regulate the expression of a large number of genes to control diverse cellular processes, such as cell cycle progression, cell growth, proliferation and apoptosis. However, it remains largely unknown about whether dMyc can be involved in Drosophila innate immune response. Here, we have identified dMyc to be a negative regulator of Drosophila Imd pathway via the loss- and gain-of-function screening. We demonstrate that dMyc inhibits Drosophila Imd immune response via directly activating miR-277 transcription, which further inhibit the expression of imd and Tab2-Ra/b. Importantly, dMyc can improve the survival of flies upon infection, suggesting inhibiting Drosophila Imd pathway by dMyc is vital to restore immune homeostasis that is essential for survival. Taken together, our study not only reports a new dMyc-miR-277-imd/Tab2 axis involved in the negative regulation of Drosophila Imd pathway, and provides a new insight into the complex regulatory mechanism of Drosophila innate immune homeostasis maintenance.
Collapse
Affiliation(s)
- Ruimin Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Chaolong Jia
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
- * E-mail: (PJ); (FM)
| |
Collapse
|
33
|
Guo Y, Huang N, Tian M, Fan M, Liu Q, Liu Z, Sun T, Huang J, Xia H, Zhao Y, Ping J. Integrated Analysis of microRNA-mRNA Expression in Mouse Lungs Infected With H7N9 Influenza Virus: A Direct Comparison of Host-Adapting PB2 Mutants. Front Microbiol 2020; 11:1762. [PMID: 32849388 PMCID: PMC7399063 DOI: 10.3389/fmicb.2020.01762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators involved in the antiviral response to influenza virus infection, however, an analytical comparison of miRNA and mRNA expression changes induced by several H7N9 host-adapting PB2 mutants remains undone. Here, miRNA microarray and transcriptome sequencing of BALB/c mouse lungs infected with A/Anhui/1/2013 (H7N9) [hereafter referred to as H7N9/AH1-PB2-627K(WT)] and mutant variants with PB2 amino acid substitutions (avian-like H7N9/AH1-PB2-627E and mammalian-adapted H7N9/AH1-PB2-627E/701N) were directly compared. The results showed that influenza virus infection induced dysregulation of numerous host cell processes. In a miRNA-mRNA network associated with immunity, changes in the expression of 38 miRNAs and 58 mRNAs were detected following influenza virus infection. Notably, the miRNAs of mmu-miR-188-5p, mmu-miR-511-5p, mmu-miR-483-5p, and mmu-miR-690 were specifically associated with the replication of the avian-like virus H7N9/AH1-PB2-627E. Likewise, the miRNAs of mmu-miR-691, mmu-miR-329-3p, and mmu-miR-144-3p were specifically associated with the mammalian-adapted virus H7N9/AH1-PB2-627E/701N. Finally, the miRNAs of mmu-miR-98-5p, mmu-miR-103-3p, mmu-miR-199a-5p, and mmu-miR-378a-3p were specifically associated with H7N9/AH1-PB2-627K(WT) virus replication. This is the first report of comparative integration analysis of miRNA-mRNA expression of these three H7N9 influenza viruses with different host-adapting PB2 mutations. Our results highlight potential miRNAs of importance in influenza virus pathogenesis.
Collapse
Affiliation(s)
- Yanna Guo
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Nan Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Miao Tian
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Menglu Fan
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Qingzheng Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Liu
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Tongtong Sun
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jingjin Huang
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Huizhi Xia
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Yongzhen Zhao
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| | - Jihui Ping
- MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, Institute of Immunology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
MicroRNAs and Their Influence on the ZEB Family: Mechanistic Aspects and Therapeutic Applications in Cancer Therapy. Biomolecules 2020; 10:biom10071040. [PMID: 32664703 PMCID: PMC7407563 DOI: 10.3390/biom10071040] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 02/07/2023] Open
Abstract
Molecular signaling pathways involved in cancer have been intensively studied due to their crucial role in cancer cell growth and dissemination. Among them, zinc finger E-box binding homeobox-1 (ZEB1) and -2 (ZEB2) are molecules that play vital roles in signaling pathways to ensure the survival of tumor cells, particularly through enhancing cell proliferation, promoting cell migration and invasion, and triggering drug resistance. Importantly, ZEB proteins are regulated by microRNAs (miRs). In this review, we demonstrate the impact that miRs have on cancer therapy, through their targeting of ZEB proteins. MiRs are able to act as onco-suppressor factors and inhibit the malignancy of tumor cells through ZEB1/2 down-regulation. This can lead to an inhibition of epithelial-mesenchymal transition (EMT) mechanism, therefore reducing metastasis. Additionally, miRs are able to inhibit ZEB1/2-mediated drug resistance and immunosuppression. Additionally, we explore the upstream modulators of miRs such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as these regulators can influence the inhibitory effect of miRs on ZEB proteins and cancer progression.
Collapse
|
35
|
Khosravi N, Mokhtarzadeh A, Baghbanzadeh A, Hajiasgharzadeh K, Shahgoli VK, Hemmat N, Safarzadeh E, Baradaran B. Immune checkpoints in tumor microenvironment and their relevance to the development of cancer stem cells. Life Sci 2020; 256:118005. [PMID: 32593711 DOI: 10.1016/j.lfs.2020.118005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Cancer is the second cause of mortality in the world after cardiovascular disease. Various studies attribute the emergence of therapeutic resistance in tumors to the presence of cancer stem cells or cancer-initiating cells (CSC/CIC). These relatively rare cells because of their typical stemness features, are responsible for tumor cell progression and recurrence. Moreover, CSCs have immunomodulatory capabilities and through orchestrating, some immunological profiles can stay safe from host anticancer immunity, and provide immunotherapy resistance in cancer patients. Many studies have shown that CSCs by producing immune system inhibitory factors and interacting with immune checkpoint molecules like CD47, PDL-1, CTLA4, Tim3, and LAG3, are able to communicate with tumor microenvironment (TME) components and protect cancer cells from immune clearance. In this review, we summarize the CSCs immunological mechanisms and comprehensively discuss interactions between these cells and factors that are present in the TME to repress immune system responses and enhance tumor survival. Therefore, it seems that further studies on this topic will open new doors to improve the therapeutic approaches of malignant cancers.
Collapse
Affiliation(s)
- Neda Khosravi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Khaze Shahgoli
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
36
|
Cui M, Chen S, Zhang S, Cheng A, Pan Y, Huang J, Hu Z, Zhang X, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Liu Y, Zhang L, Yu Y, Yin Z, Jing B, Rehman MU, Tian B, Pan L, Jia R. Duck Tembusu Virus Utilizes miR-221-3p Expression to Facilitate Viral Replication via Targeting of Suppressor of Cytokine Signaling 5. Front Microbiol 2020; 11:596. [PMID: 32373087 PMCID: PMC7186361 DOI: 10.3389/fmicb.2020.00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
Duck Tembusu virus (DTMUV), a member of Flaviviridae family, causes acute egg-drop syndrome in ducks. MicroRNAs (miRNAs) have been found to be involved in various biological processes, including tumor genesis, viral infection, and immune response. However, the functional effect of miRNAs on DTMUV replication remains largely unclear. This study aimed to elucidate the role of host microRNA-221-3p (miR-221-3p) in regulating DTMUV replication. Here, we indicated that the expression of miR-221-3p was significantly upregulated in duck embryo fibroblasts (DEFs) during DTMUV infection. Transfection of miR-221-3p mimic significantly reduced interferon (IFN) β production, whereas transfection of miR-221-3p inhibitor conversely significantly increased the expression of IFN-β in DTMUV-infected DEF. Moreover, we found that viral RNA copies, viral E protein expression level, and virus titer, which represent the replication and proliferation of virus, were all enhanced when transfecting the miR-221-3p mimic into DEF; reverse results were also observed by transfecting the miR-221-3p inhibitor. We also found that the expression of suppressor of cytokine signaling 5 (SOCS5) was downregulated in DEF infected with DTMUV. Besides, we further proved that SOCS5 is a target of miR-221-3p and that miR-221-3p could negatively modulate SOCS5 expression at both mRNA and protein levels. Finally, our results showed that overexpression of SOCS5 inhibited DTMUV replication and knockdown of SOCS5 enhanced DTMUV replication. Thus, our findings reveal a novel host evasion mechanism adopted by DTMUV via miR-221-3p, which may hew out novel strategies for designing miRNA-based vaccines and therapies.
Collapse
Affiliation(s)
- Min Cui
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shuling Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuhong Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiang Hu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingcui Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yin Wu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yunya Liu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanling Yu
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mujeeb Ur Rehman
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Leichang Pan
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Avian Diseases Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Ekiz HA, Ramstead AG, Lee SH, Nelson MC, Bauer KM, Wallace JA, Hu R, Round JL, Rutter J, Drummond MJ, Rao DS, O'Connell RM. T Cell-Expressed microRNA-155 Reduces Lifespan in a Mouse Model of Age-Related Chronic Inflammation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2064-2075. [PMID: 32161096 PMCID: PMC7325601 DOI: 10.4049/jimmunol.1901484] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/31/2020] [Indexed: 01/13/2023]
Abstract
Aging-related chronic inflammation is a risk factor for many human disorders through incompletely understood mechanisms. Aged mice deficient in microRNA (miRNA/miR)-146a succumb to life-shortening chronic inflammation. In this study, we report that miR-155 in T cells contributes to shortened lifespan of miR-146a-/- mice. Using single-cell RNA sequencing and flow cytometry, we found that miR-155 promotes the activation of effector T cell populations, including T follicular helper cells, and increases germinal center B cells and autoantibodies in mice aged over 15 months. Mechanistically, aerobic glycolysis genes are elevated in T cells during aging, and upon deletion of miR-146a, in a T cell miR-155-dependent manner. Finally, skewing T cell metabolism toward aerobic glycolysis by deleting mitochondrial pyruvate carrier recapitulates age-dependent T cell phenotypes observed in miR-146a-/- mice, revealing the sufficiency of metabolic reprogramming to influence immune cell functions during aging. Altogether, these data indicate that T cell-specific miRNAs play pivotal roles in regulating lifespan through their influences on inflammaging.
Collapse
Affiliation(s)
- H Atakan Ekiz
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Andrew G Ramstead
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Soh-Hyun Lee
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Morgan C Nelson
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Kaylyn M Bauer
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared A Wallace
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Ruozhen Hu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - June L Round
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| | - Jared Rutter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112
- Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112
| | - Micah J Drummond
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, UT 84112
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT 84112; and
| | - Dinesh S Rao
- Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA 90095
| | - Ryan M O'Connell
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112;
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
38
|
Cabău G, Crișan TO, Klück V, Popp RA, Joosten LAB. Urate-induced immune programming: Consequences for gouty arthritis and hyperuricemia. Immunol Rev 2020; 294:92-105. [PMID: 31853991 PMCID: PMC7065123 DOI: 10.1111/imr.12833] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/04/2019] [Indexed: 12/13/2022]
Abstract
Trained immunity is a process in which innate immune cells undergo functional reprogramming in response to pathogens or damage-associated molecules leading to an enhanced non-specific immune response to subsequent stimulation. While this capacity to respond more strongly to stimuli is beneficial for host defense, in some circumstances it can lead to maladaptive programming and chronic inflammation. Gout is characterized by persistent low-grade inflammation and is associated with an increased number of comorbidities. Hyperuricemia is the main risk factor for gout and is linked to the development of comorbidities. Several experimental studies have shown that urate can mechanistically alter the inflammatory capacity of myeloid cells, while observational studies have indicated an association of hyperuricemia to a wide spectrum of common adult inflammatory diseases. In this review, we argue that hyperuricemia is a main culprit in the development of the long-term systemic inflammation seen in gout. We revisit existing evidence for urate-induced transcriptional and epigenetic reprogramming that could lead to an altered functional state of circulating monocytes consisting in enhanced responsiveness and maladaptive immune responses. By discussing specific functional adaptations of monocytes and macrophages induced by soluble urate or monosodium urate crystals and their contribution to inflammation in vitro and in vivo, we further enforce that urate is a metabolite that can induce innate immune memory and we discuss future research and possible new therapeutic approaches for gout and its comorbidities.
Collapse
Affiliation(s)
- Georgiana Cabău
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Tania O. Crișan
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Viola Klück
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| | - Radu A. Popp
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
| | - Leo A. B. Joosten
- Department of Medical GeneticsIuliu Haţieganu” University of Medicine and PharmacyCluj‐NapocaRomania
- Department of Internal MedicineRadboud Institute of Molecular Life Sciences (RIMLS)Radboud University Medical CenterNijmegenThe Netherlands
| |
Collapse
|
39
|
Liu S, Ning XH, Guan XL, Li XP, Sun L. Characterization of Streptococcus iniae-induced microRNA profiles in Paralichthys olivaceus and identification of pol-3p-10740_175 as a regulator of antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2020; 98:860-867. [PMID: 31756455 DOI: 10.1016/j.fsi.2019.11.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
MicroRNAs (miRNAs) are involved in many biological activities including immune defense against pathogens. In this study, we applied high-throughput sequencing technology to examine miRNAs in Japanese flounder (Paralichthys olivaceus) infected with Streptococcus iniae at different times. A total of 1038 miRNAs were identified, of which, 249 were novel miRNAs, and 81 showed differential expression (named DEmiRNAs) after S. iniae infection. Of the 81 DEmiRNAs identified, 34 and 58 occurred at 6 h and 24 h post-infection, respectively; most DEmiRNAs were strongly time-specific, and only 13.6% of the DEmiRNAs were shared between the two time points. A total of 9582 target genes were predicted for the 81 DEmiRNAs. The putative target genes were enriched in various GO and KEGG pathways of biological processes and molecular/cellular functions, in particular endocytosis, regulation of transcription, lysososme, and the signaling pathways of MAPK, ErbB, and AMPK. One of the DEmiRNAs, pol-3p-10740_175, was found to target dual specificity phosphatase 6 (Dusp6) and repress the expression of the latter. Transfection of flounder FG cells with pol-3p-10740_175 caused a significant inhibition on S. iniae invasion. The results of this study provided the first S. iniae-induced miRNA profile in Japanese flounder and indicated that flounder miRNAs play an important role in antibacterial immunity.
Collapse
Affiliation(s)
- Shuang Liu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xian-Hui Ning
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Lu Guan
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
40
|
Abstract
Abdominal tumors (AT) in children account for approximately 17% of all pediatric solid tumor cases, and frequently exhibit embryonal histological features that differentiate them from adult cancers. Current molecular approaches have greatly improved the understanding of the distinctive pathology of each tumor type and enabled the characterization of novel tumor biomarkers. As seen in abdominal adult tumors, microRNAs (miRNAs) have been increasingly implicated in either the initiation or progression of childhood cancer. Moreover, besides predicting patient prognosis, they represent valuable diagnostic tools that may also assist the surveillance of tumor behavior and treatment response, as well as the identification of the primary metastatic sites. Thus, the present study was undertaken to compile up-to-date information regarding the role of dysregulated miRNAs in the most common histological variants of AT, including neuroblastoma, nephroblastoma, hepatoblastoma, hepatocarcinoma, and adrenal tumors. Additionally, the clinical implications of dysregulated miRNAs as potential diagnostic tools or indicators of prognosis were evaluated.
Collapse
|
41
|
Takakura S, Oka T, Sudo N. Changes in circulating microRNA after recumbent isometric yoga practice by patients with myalgic encephalomyelitis/chronic fatigue syndrome: an explorative pilot study. Biopsychosoc Med 2019; 13:29. [PMID: 31827600 PMCID: PMC6886179 DOI: 10.1186/s13030-019-0171-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 11/13/2019] [Indexed: 12/15/2022] Open
Abstract
Background Yoga is a representative mind-body therapy. Our previous studies have demonstrated that isometric yoga (i.e. yoga programs that we developed so individuals can practice yoga poses with a self-adjustable isometric load) reduces the fatigue of patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS); however, the underlying mechanisms remain unclear. Several studies have suggested that the micro-ribonucleic acid (miRNA) expression of ME/CFS patients is different from that of healthy subjects. However, it has not to date been determined if the practice of isometric yoga can affect miRNA expression. Therefore, we sought to investigate if isometric yoga is associated with changes in the expression levels of serum miRNA of patients with ME/CFS. Methods The study included nine patients with ME/CFS who failed to show satisfactory improvement after at least 6 months of treatment administered at our hospital. Patients practiced recumbent isometric yoga for 3 months; they met with a yoga instructor every 2 to 4 weeks and participated in daily in-home sessions. The effect of recumbent isometric yoga on fatigue was assessed by comparing pre- and post-intervention scores on the Japanese version of the 11-item Chalder fatigue scale (CFQ 11). Patient blood samples were drawn pre- and post-intervention, just prior to practicing recumbent isometric yoga with an instructor. The serum was used for miRNA array analysis with known human miRNAs. Results The average CFQ 11 score decreased significantly (from 25.3 ± 5.5 to 17.0 ± 5.8, p < 0.0001) after practicing recumbent isometric yoga for 3 months. The miRNA microarray analysis revealed that four miRNAs were significantly upregulated, and 42 were downregulated after the intervention period. Conclusions This explorative pilot study is the first to demonstrate changes in the serum levels of several miRNAs after regular practice of recumbent isometric yoga. These miRNAs might represent biomarkers for the fatigue-relieving effects of isometric yoga of patients with ME/CFS. Trial registration University Hospital Medical Information Network (UMIN CTR) 000023472. Registered Aug 4, 2016.
Collapse
Affiliation(s)
- Shu Takakura
- 1Department of Psychosomatic Medicine, Kyushu University Hospital, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takakazu Oka
- 1Department of Psychosomatic Medicine, Kyushu University Hospital, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582 Japan.,2Department of Psychosomatic Medicine, International University of Health and Welfare Hospital, Iguchi 537-3, Nasushiobara-shi, Tochigi-ken 329-2763 Japan
| | - Nobuyuki Sudo
- 1Department of Psychosomatic Medicine, Kyushu University Hospital, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582 Japan.,3Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582 Japan
| |
Collapse
|
42
|
Amon L, Lehmann CHK, Baranska A, Schoen J, Heger L, Dudziak D. Transcriptional control of dendritic cell development and functions. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 349:55-151. [PMID: 31759434 DOI: 10.1016/bs.ircmb.2019.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are major regulators of adaptive immunity, as they are not only capable to induce efficient immune responses, but are also crucial to maintain peripheral tolerance and thereby inhibit autoimmune reactions. DCs bridge the innate and the adaptive immune system by presenting peptides of self and foreign antigens as peptide MHC complexes to T cells. These properties render DCs as interesting target cells for immunomodulatory therapies in cancer, but also autoimmune diseases. Several subsets of DCs with special properties and functions have been described. Recent achievements in understanding transcriptional programs on single cell level, together with the generation of new murine models targeting specific DC subsets, advanced our current understanding of DC development and function. Thus, DCs arise from precursor cells in the bone marrow with distinct progenitor cell populations splitting the monocyte populations and macrophage populations from the DC lineage, which upon lineage commitment can be separated into conventional cDC1, cDC2, and plasmacytoid DCs (pDCs). The DC populations harbor intrinsic programs enabling them to react for specific pathogens in dependency on the DC subset, and thereby orchestrate T cell immune responses. Similarities, but also varieties, between human and murine DC subpopulations are challenging, and will require further investigation of human specimens under consideration of the influence of the tissue micromilieu and DC subset localization in the future.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christian H K Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Janina Schoen
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
43
|
Vietsch EE, Peran I, Suker M, van den Bosch TPP, van der Sijde F, Kros JM, van Eijck CHJ, Wellstein A. Immune-Related Circulating miR-125b-5p and miR-99a-5p Reveal a High Recurrence Risk Group of Pancreatic Cancer Patients after Tumor Resection. APPLIED SCIENCES (BASEL, SWITZERLAND) 2019; 9:4784. [PMID: 34484811 PMCID: PMC8415800 DOI: 10.3390/app9224784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Clinical follow-up aided by changes in the expression of circulating microRNAs (miRs) may improve prognostication of pancreatic ductal adenocarcinoma (PDAC) patients. Changes in 179 circulating miRs due to cancer progression in the transgenic Kras G12D/+; Trp53 R172H/+; P48-Cre (KPC) animal model of PDAC were analyzed for serum miRs that are altered in metastatic disease. In addition, expression levels of 250 miRs were profiled before and after pancreaticoduodenectomy in the serum of two patients with resectable PDAC with different progression free survival (PFS) and analyzed for changes indicative of PDAC recurrence after resection. Three miRs that were upregulated ≥3-fold in progressive PDAC in both mice and patients were selected for validation in 26 additional PDAC patients before and after resection. We found that high serum miR-125b-5p and miR-99a-5p levels after resection are significantly associated with shorter PFS (HR 1.34 and HR 1.73 respectively). In situ hybridization for miR detection in the paired resected human PDAC tissues showed that miR-125b-5p and miR-99a-5p are highly expressed in inflammatory cells in the tumor stroma, located in clusters of CD79A expressing cells of the B-lymphocyte lineage. In conclusion, we found that circulating miR-125b-5p and miR-99a-5p are potential immune-cell related prognostic biomarkers in PDAC patients after surgery.
Collapse
Affiliation(s)
- Eveline E. Vietsch
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Ivana Peran
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Mustafa Suker
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | | | - Fleur van der Sijde
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Johan M. Kros
- Department of Pathology, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Casper H. J. van Eijck
- Department of Surgery, Erasmus MC, University Medical Center Rotterdam, 3015GD Rotterdam, The Netherlands
| | - Anton Wellstein
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
44
|
Association of Breastfeeding Duration with Susceptibility to Allergy, Influenza, and Methylation Status of TLR1 Gene. ACTA ACUST UNITED AC 2019; 55:medicina55090535. [PMID: 31454983 PMCID: PMC6780093 DOI: 10.3390/medicina55090535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
Background and Objectives: This study aimed to investigate the possible association between exclusive breastfeeding duration during early infancy and susceptibility to allergy and influenza in adulthood. Furthermore, we also investigated the association of breastfeeding duration with DNA methylation at two sites in the promoter of the toll-like receptor-1 (TLR1) gene, as well as the association between DNA methylation of the toll-like receptor-1 (TLR1) gene and susceptibility to different diseases. Materials and Methods: Blood samples were collected from 100 adults and classified into two groups according to breastfeeding duration (<6 months and ≥6 months) during infancy. Subjects were asked to complete a questionnaire on their susceptibilities to different diseases and sign a consent form separately. Fifty-three samples underwent DNA extraction, and the DNA samples were divided into two aliquots, one of which was treated with bisulfite reagent. The promoter region of the TLR1 gene was then amplified by polymerase chain reaction (PCR) and sequenced. Results: We found a significant association between increased breastfeeding duration and a reduction in susceptibility to influenza and allergy, as well asa significant reduction in DNA methylation within the promoter of the TLR1 gene. No association was found between DNA methylation and susceptibility to different diseases. Conclusions: The findings demonstrate the significance of increased breastfeeding duration for improved health outcomes at the gene level.
Collapse
|
45
|
Tay SH, Yaung KN, Leong JY, Yeo JG, Arkachaisri T, Albani S. Immunomics in Pediatric Rheumatic Diseases. Front Med (Lausanne) 2019; 6:111. [PMID: 31231652 PMCID: PMC6558393 DOI: 10.3389/fmed.2019.00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/03/2019] [Indexed: 02/04/2023] Open
Abstract
The inherent complexity in the immune landscape of pediatric rheumatic disease necessitates a holistic system approach. Uncertainty in the mechanistic workings and etiological driving forces presents difficulty in personalized treatments. The development and progression of immunomics are well suited to deal with this complexity. Immunomics encompasses a spectrum of biological processes that entail genomics, transcriptomics, epigenomics, proteomics, and cytomics. In this review, we will discuss how various high dimensional technologies in immunomics have helped to grow a wealth of data that provide salient clues and biological insights into the pathogenesis of autoimmunity. Interfaced with critical unresolved clinical questions and unmet medical needs, these platforms have helped to identify candidate immune targets, refine patient stratification, and understand treatment response or resistance. Yet the unprecedented growth in data has presented both opportunities and challenges. Researchers are now facing huge heterogeneous data sets from different origins that need to be integrated and exploited for further data mining. We believe that the utilization and integration of these platforms will help unravel the complexities and expedite both discovery and validation of clinical targets.
Collapse
Affiliation(s)
| | | | - Jing Yao Leong
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Joo Guan Yeo
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Thaschawee Arkachaisri
- Duke-NUS Medical School, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| | - Salvatore Albani
- Duke-NUS Medical School, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore.,Rheumatology and Immunology Service, Department of Pediatric Subspecialties, KK Women's and Children's Hospital, Singapore, Singapore
| |
Collapse
|
46
|
Chen H, Liu K, Li Z, Wang P. Point of care testing for infectious diseases. Clin Chim Acta 2019; 493:138-147. [PMID: 30853460 PMCID: PMC6462423 DOI: 10.1016/j.cca.2019.03.008] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/06/2023]
Abstract
Infectious diseases are caused by pathogenic microorganisms and can be transmitted between individuals and populations thus threatening the general public health and potentially the economy. Efficient diagnostic tools are needed to provide accurate and timely guidance for case identification, transmission disruption and appropriate treatment administration. Point of care (POC) tests provide actionable results near the patient and thereby serve as a personal "radar". In this review, we review clinical needs for POC testing for several major pathogens, including malaria parasites, human immunodeficiency virus (HIV), human papillomavirus (HPV), dengue, Ebola and Zika viruses and Mycobacterium tuberculosis (TB). We compare different molecular approaches, including pathogen nucleic acid and protein, circulating microRNA and antibodies, used in the POC tests. Finally, we review recent advances in novel POC technologies focusing on microfluidic and plasmonic-based approaches.
Collapse
Affiliation(s)
- Hui Chen
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Kengku Liu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Zhao Li
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Ping Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| |
Collapse
|
47
|
Zhang L, Zhang X, Si F. MicroRNA-124 represents a novel diagnostic marker in human lupus nephritis and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1578-1588. [PMID: 31933975 PMCID: PMC6947142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/27/2019] [Indexed: 06/10/2023]
Abstract
microRNAs (miRs) are short non-coding RNAs that function as guide molecules in RNA silencing by inducing mRNA degradation or blocking protein translation. Increasing evidence has shown that miRNAs play an important role in regulating the pathological process of lupus nephritis (LN), but the precise role of miR-124 in LN is still unknown. Here, we found that miR-124 expression is significantly reduced in patients with active LN compared with those patients with non-active LN and the absence of LN. Additionally, the miR-124 level was negatively correlated with serum IL-1β, IL-6, TNF-α, and TRAF6 mRNA expressions in active LN patients. Receiver operating characteristic and logistic regression analyses revealed miR-124 is a significant diagnostic biomarker for active LN. Furthermore, transfection of the miR-124 mimic into human renal mesangial cells (HRMCs) resulted in significantly reduced cell proliferation, induced cell apoptosis, and decreased synthesis of inflammatory factors. Moreover, a dual luciferase assay showed that TRAF6 was a direct target of miR-124, and the expression of TRAF6 was suppressed by miR-124 through direct binding to the 3'-UTR of mRNA. Mechanistic studies demonstrated that the over-expression of TRAF6 could abrogate miR-124-related effects on cell proliferation, apoptosis and the synthesis of inflammatory factors in HRMCs. Taken together, these findings indicate that downregulated miR-124 represents a novel diagnostic marker in human LN and plays an inhibitory effect on the growth and inflammation of renal mesangial cells by targeting TRAF6.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephropathy, Tianjin Nankai HospitalTianjin, China
| | - Xingkun Zhang
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| | - Fuquan Si
- Department of Nephropathy, Affiliated Hospital of Tianjin Academy of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
48
|
Kamity R, Sharma S, Hanna N. MicroRNA-Mediated Control of Inflammation and Tolerance in Pregnancy. Front Immunol 2019; 10:718. [PMID: 31024550 PMCID: PMC6460512 DOI: 10.3389/fimmu.2019.00718] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023] Open
Abstract
Gestational age-dependent immune intolerance at the maternal-fetal interface might be a contributing factor to placental pathology and adverse pregnancy outcomes. Although the intrauterine setting is highly choreographed and considered to be a protective environment for the fetus, unscheduled inflammation might overwhelm the intrauterine milieu to cause a cascade of events leading to adverse pregnancy outcomes. The old paradigm of a sterile intrauterine microenvironment has been challenged, and altered microflora has been detected in gestational tissues and amniotic fluid in the absence of induction of significant inflammation. Is there a role for endotoxin tolerance at the maternal-fetal interface? Endotoxin tolerance is a phenomenon in which tissues or cells exposed to the bacterial product, particularly lipopolysaccharide, become less responsive to subsequent exposures accompanied by decreased expression of pro-inflammatory mediators. This could also be related to trained or experienced immunity that leads to the successful outcome of subsequent pregnancies. Adaptation to endotoxin tolerance or trained immunity might be critical in preventing rejection of the fetus by the maternal immune system and protecting the fetus from excessive maternal inflammatory responses to infectious agents; however, to date, the exact mechanisms contributing to the establishment and maintenance of tolerance at the maternal-fetal interface remain incompletely understood. There is now extensive evidence suggesting that microRNAs (miRNAs) play important roles in the maintenance of a healthy pregnancy. miRNAs not only circulate freely in extracellular fluids but are also packaged within extracellular vesicles (EVs) produced by various cells and tissues. The placenta is a known, abundant, and transient source of EVs; therefore, our proposed model suggests that repeated exposure to infectious agents induces a tolerant phenotype at the maternal-fetal interface mediated by specific miRNAs mostly contained within placental EVs. We hypothesize that impaired endotoxin tolerance or failed trained immunity at the maternal-fetal interface will result in a pathological inflammatory response contributing to early or late pregnancy maladies.
Collapse
Affiliation(s)
- Ranjith Kamity
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - Nazeeh Hanna
- Women and Children Research Laboratory, Division of Neonatology, Department of Pediatrics, NYU Winthrop Hospital, Mineola, NY, United States
| |
Collapse
|
49
|
Ladomersky E, Scholtens DM, Kocherginsky M, Hibler EA, Bartom ET, Otto-Meyer S, Zhai L, Lauing KL, Choi J, Sosman JA, Wu JD, Zhang B, Lukas RV, Wainwright DA. The Coincidence Between Increasing Age, Immunosuppression, and the Incidence of Patients With Glioblastoma. Front Pharmacol 2019; 10:200. [PMID: 30971917 PMCID: PMC6446059 DOI: 10.3389/fphar.2019.00200] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most aggressive primary brain tumor in adults and is associated with a median overall survival (mOS) of 16-21 months. Our previous work found a negative association between advanced aging and the survival benefit after treatment with immunotherapy in an experimental brain tumor model. Given the recent phase III clinical success of immunotherapy in patients with many types of cancer, but not for patients with GBM, we hypothesize that aging enhances immunosuppression in the brain and contributes to the lack of efficacy for immunotherapy to improve mOS in patients with malignant glioma. Herein, we compare epidemiological data for the incidence and mortality of patients with central nervous system (CNS) cancers, in addition to immune-related gene expression in the normal human brain, as well as peripheral blood immunological changes across the adult lifespan. Methods: Data were extracted from the National Cancer Institute's surveillance, epidemiology, and end results (SEER)-, the Broad Institute's Genotype Tissue Expression project (GTEx)-, and the University of California San Francisco's 10k Immunomes-databases and analyzed for associations with aging. Results: The proportion of elderly individuals, defined as ≥65 years of age, has predominantly increased for more than 100 years in the United States. Over time, the rise in elderly United States citizens has correlated with an increased incidence and mortality rate associated with primary brain and other CNS cancer. With advanced aging, human mRNA expression for factors associated with immunoregulation including immunosuppressive indoleamine 2,3 dioxygenase 1 (IDO) and programmed death-ligand 1 (PD-L1), as well as the dendritic cell surface marker, CD11c, increase in the brain of normal human subjects, coincident with increased circulating immunosuppressive Tregs and decreased cytolytic CD8+ T cells in the peripheral blood. Strikingly, these changes are maximally pronounced in the 60-69 year old group; consistent with the median age of a diagnosis for GBM. Conclusion: These data demonstrate a significant association between normal human aging and increased immunosuppression in the circulation and CNS; particularly late in life. Our data raise several hypotheses including that, aging: (i) progressively suppresses normal immunosurveillance and thereby contributes to GBM cell initiation and/or outgrowth; (ii) decreases immunotherapeutic efficacy against malignant glioma.
Collapse
Affiliation(s)
- Erik Ladomersky
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Denise M Scholtens
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Masha Kocherginsky
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Elizabeth A Hibler
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sebastian Otto-Meyer
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lijie Zhai
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Kristen L Lauing
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jaehyuk Choi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey A Sosman
- Department of Medicine-Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jennifer D Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bin Zhang
- Department of Medicine-Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rimas V Lukas
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Derek A Wainwright
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Medicine-Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
50
|
Yu Q, Xiang L, Chen Z, Liu X, Ou H, Zhou J, Yang D. MALAT1 functions as a competing endogenous RNA to regulate SMAD5 expression by acting as a sponge for miR-142-3p in hepatocellular carcinoma. Cell Biosci 2019; 9:39. [PMID: 31168355 PMCID: PMC6509837 DOI: 10.1186/s13578-019-0299-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/22/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Long non-coding RNAs are involved in the pathology of various tumors, including hepatocellular carcinoma. The expression of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is increased in numerous types of tumors and is involved in tumor cell proliferation, migration, invasion and apoptosis. MALAT1 level was reported to be upregulated in hepatocellular carcinoma tissues, but its roles and the specific molecular mechanisms are still unclear. METHODS The expression of MALAT1 and miR-142-3p in hepatocellular carcinoma tissues, cell lines and adjacent non-tumor tissues was assessed by Q-PCR. The putative-binding sites between MALAT1 and miR-142-3p were predicted by bioinformatics analysis. The expression of MALAT1 in HepG2 and SMMC-7721 cells was knocked down by transfection with MALAT1 siRNAs. Cell viability was assessed by the Cell Counting Kit-8 (CCK-8) assay after the indicated transfection in HepG2 and SMMC-7721 cells. Cell proliferation was assessed by EdU assay, and cell apoptosis was explored by flow cytometry. The migration and invasion potency of HepG2 and SMMC-7721 cells was assessed by the cell migration assay and matrigel invasion assay. Protein level of vimentin, E-cadherin and SMAD5 were assessed by Western blot. RESULTS Overexpressed MALAT1 acts as a competing endogenous RNA sponge for miR-142-3p in hepatocellular carcinoma. The knockdown of MALAT1 inhibited the proliferation, migration, invasion, and epithelial cell-to-mesenchymal transition (EMT), and promoted apoptosis of hepatocellular carcinoma cells via miR-142-3p. MiR-142-3p inhibited cell proliferation, migration, invasion and EMT, and promoted the cell apoptosis by targeting SMAD5 in hepatocellular carcinoma. MALAT1 promoted tumor growth by regulating the expression of miR-142-3p in vivo. CONCLUSION MALAT1 promoted cell proliferation, migration, and invasion of hepatocellular carcinoma cells by antagonizing miR-142-3p.
Collapse
Affiliation(s)
- Qiangfeng Yu
- Department of Hepatobiliary Surgery, The Second Hospital of Longyan, Fujian, China
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Leyang Xiang
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Zhanjun Chen
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Xincheng Liu
- The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Huohui Ou
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Jianyin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Dinghua Yang
- Department of Hepatobiliary Surgery, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| |
Collapse
|