1
|
Mansour RM, El-Sayyad GS, Rizk NI, Mageed SSA, Basiouny MS, El-Sayed SA, Fayez SZ, Abdelaziz MM, Abuelhaded K, Fahmy HA, Mohammed OA, Abdel-Reheim MA, Doghish AS. MicroRNAs in HIV infection: dual regulators of viral replication and host immunity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03893-7. [PMID: 40029387 DOI: 10.1007/s00210-025-03893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in regulating gene expression by binding to target messenger RNAs (mRNAs), leading to their degradation or translational repression. Over the past few years, significant progress has been made in understanding the role of miRNAs in various biological processes, including viral infections such as human immunodeficiency virus (HIV). HIV infection is characterized by a complex interaction between the virus and the host's immune system, where miRNAs have emerged as key regulators. MiRNAs influence HIV infection by modulating both viral replication and the host immune response. Researchers have identified several host miRNAs that suppress or enhance HIV replication by targeting viral genes or host factors essential for the virus life cycle. Conversely, HIV has evolved mechanisms to manipulate the host's miRNA machinery to its advantage. The virus can downregulate or upregulate specific host miRNAs to create a more favorable environment for replication and persistence. Moreover, HIV infection can alter the expression profiles of various miRNAs in infected cells, which can contribute to immune dysregulation and disease progression. Dysregulation of miRNAs is associated with HIV-associated complications, such as neurocognitive disorders and cardiovascular diseases. Understanding the specific roles of miRNAs in HIV pathogenesis could lead to the development of novel therapeutic strategies, such as miRNA-based therapies, to control HIV infection and its associated comorbidities. Understanding the role of miRNAs in HIV infection reveals their significant influence on the complex interactions between the virus and the host, impacting the course of infection and disease progression. Also, continued research in miRNA-mediated mechanisms in HIV holds the potential for uncovering new insights into viral pathogenesis and developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Gharieb S El-Sayyad
- Medical Laboratory Technology Department, Faculty of Applied Health Sciences Technology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt.
- Drug Microbiology Lab, Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | | | - Salma A El-Sayed
- Department of Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | - Salma Zaki Fayez
- Department of Molecular Biology, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Moustafa Mahmoud Abdelaziz
- Department of Molecular Biology, School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Khaled Abuelhaded
- School of Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Haidy Adel Fahmy
- Department of Pharmaceutical Biotechnology, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, 61922, Bisha, Saudi Arabia
| | | | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Morando N, Rosenzvit MC, Pando MA, Allmer J. The Role of MicroRNAs in HIV Infection. Genes (Basel) 2024; 15:574. [PMID: 38790203 PMCID: PMC11120859 DOI: 10.3390/genes15050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
MicroRNAs (miRNAs), a class of small, non-coding RNAs, play a pivotal role in regulating gene expression at the post-transcriptional level. These regulatory molecules are integral to many biological processes and have been implicated in the pathogenesis of various diseases, including Human Immunodeficiency Virus (HIV) infection. This review aims to cover the current understanding of the multifaceted roles miRNAs assume in the context of HIV infection and pathogenesis. The discourse is structured around three primary focal points: (i) elucidation of the mechanisms through which miRNAs regulate HIV replication, encompassing both direct targeting of viral transcripts and indirect modulation of host factors critical for viral replication; (ii) examination of the modulation of miRNA expression by HIV, mediated through either viral proteins or the activation of cellular pathways consequent to viral infection; and (iii) assessment of the impact of miRNAs on the immune response and the progression of disease in HIV-infected individuals. Further, this review delves into the potential utility of miRNAs as biomarkers and therapeutic agents in HIV infection, underscoring the challenges and prospects inherent to this line of inquiry. The synthesis of current evidence positions miRNAs as significant modulators of the host-virus interplay, offering promising avenues for enhancing the diagnosis, treatment, and prevention of HIV infection.
Collapse
Affiliation(s)
- Nicolas Morando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina;
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | - Maria A. Pando
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires 1121, Argentina; (N.M.); (M.A.P.)
| | - Jens Allmer
- Medical Informatics and Bioinformatics, Institute for Measurement Engineering and Sensor Technology, Hochschule Ruhr West, University of Applied Sciences, 45479 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
4
|
De La Torre-Tarazona E, Ayala-Suárez R, Díez-Fuertes F, Alcamí J. Omic Technologies in HIV: Searching Transcriptional Signatures Involved in Long-Term Non-Progressor and HIV Controller Phenotypes. Front Immunol 2022; 13:926499. [PMID: 35844607 PMCID: PMC9284212 DOI: 10.3389/fimmu.2022.926499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
This article reviews the main discoveries achieved by transcriptomic approaches on HIV controller (HIC) and long-term non-progressor (LTNP) individuals, who are able to suppress HIV replication and maintain high CD4+ T cell levels, respectively, in the absence of antiretroviral therapy. Different studies using high throughput techniques have elucidated multifactorial causes implied in natural control of HIV infection. Genes related to IFN response, calcium metabolism, ribosome biogenesis, among others, are commonly differentially expressed in LTNP/HIC individuals. Additionally, pathways related with activation, survival, proliferation, apoptosis and inflammation, can be deregulated in these individuals. Likewise, recent transcriptomic studies include high-throughput sequencing in specific immune cell subpopulations, finding additional gene expression patterns associated to viral control and/or non-progression in immune cell subsets. Herein, we provide an overview of the main differentially expressed genes and biological routes commonly observed on immune cells involved in HIV infection from HIC and LTNP individuals, analyzing also different technical aspects that could affect the data analysis and the future perspectives and gaps to be addressed in this field.
Collapse
Affiliation(s)
- Erick De La Torre-Tarazona
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Rubén Ayala-Suárez
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Francisco Díez-Fuertes
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Francisco Díez-Fuertes,
| | - José Alcamí
- Acquired Immunodeficiency Syndrome (AIDS) Immunopathology Unit, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Human Immunodeficiency Virus (HIV) Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Leo CG, Mincarone P, Tumolo MR, Panico A, Guido M, Zizza A, Guarino R, De Santis G, Sedile R, Sabina S. MiRNA expression profiling in HIV pathogenesis, disease progression and response to treatment: a systematic review. Epigenomics 2021; 13:1653-1671. [PMID: 34693727 DOI: 10.2217/epi-2021-0237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: A systematic review was conducted to identify the association of miRNA expression with HIV pathogenesis, progression and treatment. Methods: A search of articles was conducted in MEDLINE®, Cochrane Central Register of Controlled Trials and Global Health. Results: 35 articles were included. Due to the heterogeneity of HIV phenotypes, a harmonization based on key progression parameters was proposed. The hsa-miR-29 family, hsa-miR-146b-5p and hsa-miR-150-5p, are the most frequently differentially expressed in HIV. Direct comparison of studies was not possible due to heterogeneity in biological samples and miRNA analysis techniques. Conclusion: This is the first attempt to systematically identify miRNA's different expression in well-defined patient phenotypes and could represent a helpful way to increase general knowledge in this field.
Collapse
Affiliation(s)
- Carlo Giacomo Leo
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Pierpaolo Mincarone
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Maria Rosaria Tumolo
- Institute for Research on Population & Social Policies National Research Council, Research Unit of Brindisi, 72100, Italy
| | - Alessandra Panico
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Marcello Guido
- University of Salento, Department of Biological & Environmental Sciences & Technologies, Lecce, 73039, Italy
| | - Antonella Zizza
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Roberto Guarino
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Giuseppe De Santis
- Department of Neurology, Card. G. Panico Hospital, Tricase, 73039, Italy
| | - Raffaella Sedile
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| | - Saverio Sabina
- Institute of Clinical Physiology National Research Council, Branch of Lecce, 73100, Italy
| |
Collapse
|
6
|
Zheng Y, Yang Z, Jin C, Chen C, Wu N. hsa-miR-191-5p inhibits replication of human immunodeficiency virus type 1 by downregulating the expression of NUP50. Arch Virol 2021; 166:755-766. [PMID: 33420627 DOI: 10.1007/s00705-020-04899-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/13/2020] [Indexed: 01/24/2023]
Abstract
MicroRNAs (miRNAs) are important host molecules involved in human immunodeficiency virus type 1 (HIV-1) infection. Antiretroviral therapy (ART) can affect the miRNA expression profile, but differentially expressed miRNAs still remain to be identified. In this study, we used gene chips to analyze miRNA expression profiles in peripheral blood mononuclear cells from ART-naive HIV-1 patients and those receiving ART, as well as from uninfected individuals. We measured differences in miRNA expression by quantitative polymerase chain reaction (qPCR) in an expanded sample. We found significant differences in the expression of has-miR-191-5p among the three groups (P < 0.05). Furthermore, we showed that hsa-miR-191-5p has an inhibitory effect on HIV-1 replication in cell models in vitro. We identified CCR1 and NUP50 as target molecules of hsa-miR-191-5p and found that hsa-miR-191-5p inhibits the expression of CCR1 and NUP50. Knockdown of NUP50 resulted in significant inhibition of HIV-1 replication. In summary, our research shows that hsa-miR-191-5p expression is reduced in HIV-1-infected patients and acts an inhibitor of HIV-1 infection via a mechanism that may involve targeted repression of NUP50 expression.
Collapse
Affiliation(s)
- Yanghao Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | | | - Changzhong Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Chaoyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Boliar S, Russell DG. Lnc(ing)RNAs to the "shock and kill" strategy for HIV-1 cure. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 23:1272-1280. [PMID: 33717648 PMCID: PMC7907223 DOI: 10.1016/j.omtn.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The advent of antiretroviral therapy almost 25 years ago has transformed HIV-1 infection into a manageable chronic condition, albeit still incurable. The inability of the treatment regimen to eliminate latently infected cells that harbor the virus in an epigenetically silent state poses a major hurdle. Current cure approaches are focused on a "shock and kill" strategy that uses latency-reversing agents to chemically reverse the proviral quiescence in latently infected cells, followed by immune-mediated clearance of reactivated cells. To date, hundreds of compounds have been investigated for viral reactivation, yet none has resulted in a functional cure. The insufficiency of these latency-reversing agents (LRAs) alone indicates a critical need for additional, alternate approaches such as genetic manipulation. Long non-coding RNAs (lncRNAs) are an emerging class of regulatory RNAs with functional roles in many cellular processes, including epigenetic modulation. A number of lncRNAs have already been implicated to play important roles in HIV-1 latency and, as such, pharmacological modulation of lncRNAs constitutes a rational alternative approach in HIV-1 cure research. In this review, we discuss the current state of knowledge of the role of lncRNAs in HIV-1 infection and explore the scope for a lncRNA-mediated genetic approach within the shock and kill strategy of HIV-1 cure.
Collapse
Affiliation(s)
- Saikat Boliar
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- Corresponding author: Saikat Boliar, Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - David G. Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Bazié WW, Boucher J, Vitry J, Goyer B, Routy JP, Tremblay C, Trottier S, Jenabian MA, Provost P, Alary M, Gilbert C. Plasma Extracellular Vesicle Subtypes May be Useful as Potential Biomarkers of Immune Activation in People With HIV. Pathog Immun 2021; 6:1-28. [PMID: 33987483 PMCID: PMC8109236 DOI: 10.20411/pai.v6i1.384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Background Extracellular vesicles (EVs) are intercellular messengers with epigenetic potential since they can shuttle microRNA (miRNA). EVs and miRNA play a role in human immunodeficiency virus (HIV) infection immunopathogenesis. Chronic immune activation and systemic inflammation during HIV infection despite effective antiretroviral therapy (ART) are associated with non-acquired immunodeficiency syndrome (AIDS) comorbidities in people living with HIV (PLWH). Analysis of plasma EVs and their miRNA content may be useful as immune activation or inflammatory biomarkers in PLWH receiving ART. In this study, we hypothesized that the number, size, and miRNA of large and small EVs could reflect immune activation associated with an elevated CD8 T-cell count or a low CD4/CD8 ratio in PLWH. Methods Plasma EVs subtype purified from PLWH and uninfected controls were sized using dynamic light scattering and quantified using flow cytometry and acetylcholine esterase (AChE) activity. Expression of mature miRNAs miR-92, miR-155, miR-223 was measured by quantitative reverse-transcriptase polymerase chain reaction in EVs and leucocytes. Results HIV infection induces increased production of small EVs in plasma. EV subtypes were differentially enriched in miR-92, miR-155, and miR-223. Positive correlations between CD8 T-cell count and large EVs abundance and small EVs AChE activity were observed. CD4/CD8 ratio was negatively correlated with small EV AChE activity, and miRNA-155 level per small EV was negatively correlated with CD8 T-cell count. Conclusions These findings suggest that quantifying large or small EVs and profiling miRNA content per EV might provide new functional biomarkers of immune activation and inflammation.
Collapse
Affiliation(s)
- Wilfried Wenceslas Bazié
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada.,Programme de recherche sur les maladies infectieuses, Centre Muraz, Institut National de Santé Publique, Bobo-Dioulasso, Burkina Faso
| | - Julien Boucher
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Julien Vitry
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Benjamin Goyer
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| | - Sylvie Trottier
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Mohammad-Ali Jenabian
- Département des sciences biologiques, Université de Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Patrick Provost
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Michel Alary
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de médecine sociale et préventive, Faculté de médecine, Université de Laval, Québec, C, Canada.,Institut national de santé publique du Québec, Québec, QC, Canada
| | - Caroline Gilbert
- Centre de recherche du CHU de Québec-Université Laval, Québec, QC, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Zhao Z, Muth DC, Mulka K, Liao Z, Powell BH, Hancock GV, Metcalf Pate KA, Witwer KW. miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential antiretroviral factor in macrophages. FEBS Open Bio 2020; 10:2021-2039. [PMID: 33017084 PMCID: PMC7530394 DOI: 10.1002/2211-5463.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/03/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Cervicovaginal secretions, or their components collected, are referred to as cervicovaginal lavage (CVL). CVL constituents have utility as biomarkers and play protective roles in wound healing and against HIV-1 infection. However, several components of cervicovaginal fluids are less well understood, such as extracellular RNAs and their carriers, for example, extracellular vesicles (EVs). EVs comprise a wide array of double-leaflet membrane extracellular particles and range in diameter from 30 nm to over one micron. The aim of this study was to determine whether differentially regulated CVL microRNAs (miRNAs) might influence retrovirus replication. To this end, we characterized EVs and miRNAs of primate CVL during the menstrual cycle and simian immunodeficiency virus (SIV) infection of macaques. EVs were enriched by stepped ultracentrifugation, and miRNA profiles were assessed with a medium-throughput stem-loop/hydrolysis probe qPCR platform. Whereas hormone cycling was abnormal in infected subjects, EV concentration correlated with progesterone concentration in uninfected subjects. miRNAs were present predominantly in the EV-depleted CVL supernatant. Only a small number of CVL miRNAs changed during the menstrual cycle or SIV infection, for example, miR-186-5p, which was depleted in retroviral infection. This miRNA inhibited HIV replication in infected macrophages in vitro. In silico target prediction and pathway enrichment analyses shed light on the probable functions of miR-186-5p in hindering HIV infections via immunoregulation, T-cell regulation, disruption of viral pathways, etc. These results provide further evidence for the potential of EVs and small RNAs as biomarkers or effectors of disease processes in the reproductive tract.
Collapse
Affiliation(s)
- Zezhou Zhao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dillon C. Muth
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kathleen Mulka
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Zhaohao Liao
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Bonita H. Powell
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | | | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
- Department of NeurologyThe Johns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
10
|
The Role of MicroRNA in the Airway Surface Liquid Homeostasis. Int J Mol Sci 2020; 21:ijms21113848. [PMID: 32481719 PMCID: PMC7312818 DOI: 10.3390/ijms21113848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.
Collapse
|
11
|
Li H, Chi X, Li R, Ouyang J, Chen Y. A Novel lncRNA, AK130181, Contributes to HIV-1 Latency by Regulating Viral Promoter-Driven Gene Expression in Primary CD4 + T Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 20:754-763. [PMID: 32408053 PMCID: PMC7225600 DOI: 10.1016/j.omtn.2020.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/16/2020] [Accepted: 04/24/2020] [Indexed: 01/31/2023]
Abstract
The functions and mechanisms of long non-coding RNAs (lncRNAs) in latent HIV-1 infection are not yet fully understood and warrant further research. In this study, we identified the newly inhibitory lncRNA AK130181 (also named LOC105747689), which is highly expressed in CD4+ T lymphocytes latently infected with HIV, using bioinformatics. We also found that AK130181 is involved in HIV-1 latency by inhibiting long terminal repeat (LTR)-driven HIV-1 gene transcription in a nuclear factor κB (NF-κB)-dependent manner. Furthermore, silencing AK130181 significantly reactivates viral production from HIV-1 latently infected Jurkat T cells and primary CD4+ T cells. Interestingly, we found that inhibition of AK130181 in resting CD4+ T cells from HIV-1-infected individuals treated with highly active antiretroviral therapy significantly increased viral reactivation upon T cell activation in vivo. We provide new insights and a better understanding of lncRNAs that play a role in HIV-1 latency, and suggest that silencing AK130181 expression to activate HIV-1 latently infected cells may be a potential therapeutic target for HIV-infected individuals.
Collapse
Affiliation(s)
- Haiyu Li
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| | - Xiangbo Chi
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| | - Rong Li
- Department of Department of Gastroenterology, Chongqing Public Health Medical Center, Chongqing, China
| | - Jing Ouyang
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Disease, Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
12
|
Ramachandran SR, Mueth NA, Zheng P, Hulbert SH. Analysis of miRNAs in Two Wheat Cultivars Infected With Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1574. [PMID: 31998329 PMCID: PMC6965360 DOI: 10.3389/fpls.2019.01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/11/2019] [Indexed: 05/27/2023]
Abstract
MicroRNAs are small RNAs that regulate gene expression in eukaryotes. In this study, we analyzed the small RNA profiles of two cultivars that exhibit different reactions to stripe rust infection: one susceptible, the other partially resistant. Using small RNA libraries prepared from the two wheat cultivars infected with stripe rust fungus (Puccinia striiformis f. sp. tritici), we identified 182 previously known miRNAs, 91 variants of known miRNAs, and 163 candidate novel wheat miRNAs. Known miRNA loci were usually copied in all three wheat sub-genomes, whereas novel miRNA loci were often specific to a single sub-genome. DESeq2 analysis of differentially expressed microRNAs revealed 23 miRNAs that exhibit cultivar-specific differences. TA078/miR399b showed cultivar-specific differential regulation in response to infection. Using different target prediction algorithms, 145 miRNAs were predicted to target wheat genes, while 69 miRNAs were predicted to target fungal genes. We also confirmed reciprocal expression of TA078/miR399b and tae-miR9664 and their target genes in different treatments, providing evidence for miRNA-mediated regulation during infection. Both known and novel miRNAs were predicted to target fungal genes, suggesting trans-kingdom regulation of gene expression. Overall, this study contributes to the current repository of wheat miRNAs and provides novel information on the yet-uncharacterized roles for miRNAs in the wheat-stripe rust pathosystem.
Collapse
Affiliation(s)
| | - Nicholas A. Mueth
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Ping Zheng
- Department of Horticulture, Washington State University, Pullman, WA, United States
| | - Scot H. Hulbert
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
13
|
HIV-1 infection increases microRNAs that inhibit Dicer1, HRB and HIV-EP2, thereby reducing viral replication. PLoS One 2019; 14:e0211111. [PMID: 30682089 PMCID: PMC6347224 DOI: 10.1371/journal.pone.0211111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 01/08/2019] [Indexed: 01/18/2023] Open
Abstract
HIV-1 is the causative agent of AIDS (Autoimmune Deficiency Syndrome). HIV-1 infection results in systemic CD4+ T cell depletion, thereby impairing cell-mediated immunity. MicroRNAs are short (~22 nucleotides long), endogenous single-stranded RNA molecules that regulate gene expression by binding to the 3' untranslated regions (3' UTR) of mRNA transcripts. The relation between HIV-1 infection and human miRNA expression profile has been previously investigated, and studies have shown that the virus can alter miRNA expression and vice versa. Here, we broaden the understanding of the HIV-1 infection process, and show that miRNA-186, 210 and 222 are up-regulated following HIV-1 infection of human Sup-T1 cells. As a result, the host miRNA target genes: Dicer1 (Double-Stranded RNA-Specific Endoribonuclease), HRB (HIV-1 Rev-binding protein) and HIV-EP2 (Human Immunodeficiency Virus Type I Enhancer Binding Protein 2), are down-regulated. Moreover, testing the miRNA-gene anti- correlation on the Jurkat and the HeLa-MAGI cell lines demonstrated the ability of the miRNAs to down-regulate viral expression as well. To conclude, we found that human miR-186, 210 and 222 directly regulate the human genes Dicer1, HRB and HIV-EP2, thus may be filling key roles during HIV-1 replication and miRNA biogenesis. This finding may contribute to the development of new therapeutic strategies.
Collapse
|
14
|
Moghoofei M, Bokharaei-Salim F, Esghaei M, Keyvani H, Honardoost M, Mostafaei S, Ghasemi A, Tavakoli A, Javanmard D, Babaei F, Garshasbi S, Monavari SH. microRNAs 29, 150, 155, 223 level and their relation to viral and immunological markers in HIV-1 infected naive patients. Future Virol 2018. [DOI: 10.2217/fvl-2018-0055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Aim: The aim of this study was to assess the relationship between microRNAs and viral and immunological markers in HIV-1 infection. Materials & methods: The expression level of miRNAs was evaluated in 60 HIV-1 patients and 20 healthy controls using real-time PCR assays. Results: The results showed that among all miRNAs, miR-29 and miR-150 were significantly downregulated in HIV-1 patients compared with healthy controls, while miR-155 and miR-223 were significantly upregulated compared with healthy controls (p < 0.001 for all comparisons). Conclusion: The mentioned miRNAs seem to influence the clinical progression of HIV-1 infection in naive patients. Moreover, determining the profiles of miRNAs involved in the pathogenesis of HIV infection and manipulating these miRNAs could lead to opening a new gate to HIV-1 infection control.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- HIV Laboratory of National Center, Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Keyvani
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology & Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science & Engineering, Sharif University of Technology, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Davod Javanmard
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Garshasbi
- HIV Laboratory of National Center, Vice Chancellor for Health, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
15
|
Are microRNAs Important Players in HIV-1 Infection? An Update. Viruses 2018; 10:v10030110. [PMID: 29510515 PMCID: PMC5869503 DOI: 10.3390/v10030110] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/21/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
HIV-1 has already claimed over 35 million human lives globally. No curative treatments are currently available, and the only treatment option for over 36 million people currently living with HIV/AIDS are antiretroviral drugs that disrupt the function of virus-encoded proteins. However, such virus-targeted therapeutic strategies are constrained by the ability of the virus to develop drug-resistance. Despite major advances in HIV/AIDS research over the years, substantial knowledge gaps exist in many aspects of HIV-1 replication, especially its interaction with the host. Hence, understanding the mechanistic details of virus–host interactions may lead to novel therapeutic strategies for the prevention and/or management of HIV/AIDS. Notably, unprecedented progress in deciphering host gene silencing processes mediated by several classes of cellular small non-coding RNAs (sncRNA) presents a promising and timely opportunity for developing non-traditional antiviral therapeutic strategies. Cellular microRNAs (miRNA) belong to one such important class of sncRNAs that regulate protein synthesis. Evidence is mounting that cellular miRNAs play important roles in viral replication, either usurped by the virus to promote its replication or employed by the host to control viral infection by directly targeting the viral genome or by targeting cellular proteins required for productive virus replication. In this review, we summarize the findings to date on the role of miRNAs in HIV-1 biology.
Collapse
|
16
|
Wu X, Zhang LL, Yin LB, Fu YJ, Jiang YJ, Ding HB, Chu ZX, Shang H, Zhang ZN. Deregulated MicroRNA-21 Expression in Monocytes from HIV-Infected Patients Contributes to Elevated IP-10 Secretion in HIV Infection. Front Immunol 2017; 8:1122. [PMID: 28955339 PMCID: PMC5601991 DOI: 10.3389/fimmu.2017.01122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/25/2017] [Indexed: 01/12/2023] Open
Abstract
Persistent activation and inflammation impair immune response and trigger disease progression in HIV infection. Emerging evidence supports the supposition that excessive production of interferon-inducible protein 10 (IP-10), a critical inflammatory cytokine, leads to immune dysfunction and disease progression in HIV infection. In this study, we sought to elucidate the cause of the upregulated production of IP-10 in HIV infection and explore the underlying mechanisms. Bolstering miR-21 levels using mimics resulted in the obvious suppression of lipopolysaccharide (LPS)-induced IP-10 in monocyte leukemia cells THP-1 and vice versa. The analysis of the primary monocytes of HIV patients revealed significantly less miR-21 than in healthy controls; this was opposite to the tendency of IP-10 levels in plasma. The secretion of IP-10 due to LPS stimulation was not affected by miR-21 modulation in the differentiated THP-1 macrophages (THP-1-MA). We found a novel switch, IFN-stimulated gene 15 (ISG15), which triggers the expression of IP-10 and is significantly upregulated during the differentiation of THP-1 into THP-1-MA. The inhibition of ISG15 can restore the regulation of IP-10 by miR-21. In summary, IP-10 expression in monocytes is regulated by miR-21, whereas in macrophages, this fine-tuning is attenuated by the enhanced expression of ISG15. This study paves the way to a comprehensive understanding of the molecular regulatory mechanism of IP-10, a key point in immune intervention strategy.
Collapse
Affiliation(s)
- Xian Wu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Le-Le Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Lin-Bo Yin
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ya-Jing Fu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yong-Jun Jiang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hai-Bo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zhen-Xing Chu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Zi-Ning Zhang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, The First Affiliated Hospital, China Medical University, Shenyang, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
17
|
MicroRNA-210, MicroRNA-331, and MicroRNA-7 Are Differentially Regulated in Treated HIV-1-Infected Individuals and Are Associated With Markers of Systemic Inflammation. J Acquir Immune Defic Syndr 2017; 74:e104-e113. [PMID: 27749601 DOI: 10.1097/qai.0000000000001191] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Inflammation may contribute to an increased risk of cardiovascular disease (CVD) in HIV-1 infection. MicroRNAs (miRNAs) are involved in the regulation of inflammation. In treated HIV-1-infected individuals, we aimed to identify differentially expressed miRNAs with known roles in inflammation and CVD risk and to investigate associations between these and systemic inflammation. METHODS In a screening cohort including 14 HIV-1-infected individuals and 9 uninfected controls, microarray profiling was performed using peripheral blood mononuclear cells (PBMCs). Differentially regulated miRNAs previously related to inflammation and CVD were validated using real-time quantitative reverse-transcription polymerase chain reaction in 26 HIV-1-infected individuals and 20 uninfected controls. Validated miRNAs were measured in PBMCs, CD4 and CD8 T cells. Interleukin-6, tumor necrosis factor-alpha, high-sensitivity C-reactive protein, lipopolysaccharide (LPS), cytomegalovirus immunoglobulin G, lipids, and fasting glucose were measured, and associations with validated miRNAs were assessed with multiple linear regression analysis. RESULTS Upregulation of miR-210, miR-7, and miR-331 was found in PBMCs from HIV-1-infected individuals when compared with those from uninfected controls (P < 0.005). In contrast, miR-210 and miR-331 were downregulated in CD8 T cells. In multivariate analysis, miR-210 in CD8 T cells was negatively associated with LPS (P = 0.023) and triglycerides (P = 0.003) but positively associated with tumor necrosis factor-alpha (P = 0.004). MiR-7 in PBMC was positively associated with interleukin-6 (P = 0.025) and fasting glucose (P = 0.005), whereas miR-331 was negatively associated with LPS (P = 0.006). In PBMCs from HIV-1-infected individuals with low cytomegalovirus immunoglobulin G, miR-7, miR-29a, miR-221, and miR-222 were downregulated. CONCLUSION In 2 independent cohorts, miR-210, miR-7, and miR-331 were differentially regulated in treated HIV-1-infected individuals and associated with markers of systemic inflammation.
Collapse
|
18
|
Das K, Garnica O, Dhandayuthapani S. Modulation of Host miRNAs by Intracellular Bacterial Pathogens. Front Cell Infect Microbiol 2016; 6:79. [PMID: 27536558 PMCID: PMC4971075 DOI: 10.3389/fcimb.2016.00079] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment.
Collapse
Affiliation(s)
| | | | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases and Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El PasoEl Paso, TX, USA
| |
Collapse
|
19
|
Piedade D, Azevedo-Pereira JM. MicroRNAs, HIV and HCV: a complex relation towards pathology. Rev Med Virol 2016; 26:197-215. [PMID: 27059433 DOI: 10.1002/rmv.1881] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 12/13/2022]
Abstract
MicroRNAs are small non-coding RNAs that modulate protein production by post-transcriptional gene regulation. They impose gene expression control by interfering with mRNA translation and stability in cell cytoplasm through a mechanism involving specific binding to mRNA based on base pair complementarity. Because of their intracellular replication cycle it is no surprise that viruses evolved in a way that allows them to use microRNAs to infect, replicate and persist in host cells. Several ways of interference between virus and host-cell microRNA machinery have been described. Most of the time, viruses drastically alter host-cell microRNA expression or synthesize their own microRNA to facilitate infection and pathogenesis. HIV and HCV are two prominent examples of this complex interplay revealing how fine-tuning of microRNA expression is crucial for controlling key host pathways that allow viral infection and replication, immune escape and persistence. In this review we delve into the mechanisms underlying cellular and viral-encoded microRNA functions in the context of HIV and HCV infections. We focus on which microRNAs are differently expressed and deregulated upon viral infection and how these alterations dictate the fate of virus and cell. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de Lisboa, Portugal
| | | |
Collapse
|
20
|
Brief Report: Coordinated Modulation of Circulating miR-21 in HIV, HIV-Associated Pulmonary Arterial Hypertension, and HIV/Hepatitis C Virus Coinfection. J Acquir Immune Defic Syndr 2016; 70:236-41. [PMID: 26473639 DOI: 10.1097/qai.0000000000000741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of microRNA-21 (miR-21) is independently associated with HIV infection, pulmonary arterial hypertension (PAH), and hepatitis C virus (HCV) infection. To assess the expression of miR-21 in these overlapping comorbidities, we measured plasma miR-21 in HIV with and without PAH and then stratified by concomitant HCV infection. MiR-21 was increased in HIV and HIV-PAH versus uninfected subjects, but it did not differ between these groups. HIV/HCV coinfection correlated with even higher miR-21 levels within the HIV-infected population. These data reveal specific regulation of plasma miR-21 in HIV, HIV/HCV coinfection, and PAH and suggest that miR-21 may integrate complex disease-specific signaling in the setting of HIV infection.
Collapse
|
21
|
Louten J, Beach M, Palermino K, Weeks M, Holenstein G. MicroRNAs Expressed during Viral Infection: Biomarker Potential and Therapeutic Considerations. Biomark Insights 2016; 10:25-52. [PMID: 26819546 PMCID: PMC4718089 DOI: 10.4137/bmi.s29512] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 10/22/2015] [Accepted: 10/24/2015] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are short sequences of noncoding single-stranded RNAs that exhibit inhibitory effects on complementary target mRNAs. Recently, it has been discovered that certain viruses express their own miRNAs, while other viruses activate the transcription of cellular miRNAs for their own benefit. This review summarizes the viral and/or cellular miRNAs that are transcribed during infection, with a focus on the biomarker and therapeutic potential of miRNAs (or their antagomirs). Several human viruses of clinical importance are discussed, namely, herpesviruses, polyomaviruses, hepatitis B virus, hepatitis C virus, human papillomavirus, and human immunodeficiency virus.
Collapse
Affiliation(s)
- Jennifer Louten
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Michael Beach
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Kristina Palermino
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Maria Weeks
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| | - Gabrielle Holenstein
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA, USA
| |
Collapse
|
22
|
Murray DD, Suzuki K, Law M, Trebicka J, Neuhaus J, Wentworth D, Johnson M, Vjecha MJ, Kelleher AD, Emery S, INSIGHT ESPRIT and SMART Study Groups. Circulating microRNAs in Sera Correlate with Soluble Biomarkers of Immune Activation but Do Not Predict Mortality in ART Treated Individuals with HIV-1 Infection: A Case Control Study. PLoS One 2015; 10:e0139981. [PMID: 26465293 PMCID: PMC4605674 DOI: 10.1371/journal.pone.0139981] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/18/2015] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION The use of anti-retroviral therapy (ART) has dramatically reduced HIV-1 associated morbidity and mortality. However, HIV-1 infected individuals have increased rates of morbidity and mortality compared to the non-HIV-1 infected population and this appears to be related to end-organ diseases collectively referred to as Serious Non-AIDS Events (SNAEs). Circulating miRNAs are reported as promising biomarkers for a number of human disease conditions including those that constitute SNAEs. Our study sought to investigate the potential of selected miRNAs in predicting mortality in HIV-1 infected ART treated individuals. MATERIALS AND METHODS A set of miRNAs was chosen based on published associations with human disease conditions that constitute SNAEs. This case: control study compared 126 cases (individuals who died whilst on therapy), and 247 matched controls (individuals who remained alive). Cases and controls were ART treated participants of two pivotal HIV-1 trials. The relative abundance of each miRNA in serum was measured, by RTqPCR. Associations with mortality (all-cause, cardiovascular and malignancy) were assessed by logistic regression analysis. Correlations between miRNAs and CD4+ T cell count, hs-CRP, IL-6 and D-dimer were also assessed. RESULTS None of the selected miRNAs was associated with all-cause, cardiovascular or malignancy mortality. The levels of three miRNAs (miRs -21, -122 and -200a) correlated with IL-6 while miR-21 also correlated with D-dimer. Additionally, the abundance of miRs -31, -150 and -223, correlated with baseline CD4+ T cell count while the same three miRNAs plus miR-145 correlated with nadir CD4+ T cell count. DISCUSSION No associations with mortality were found with any circulating miRNA studied. These results cast doubt onto the effectiveness of circulating miRNA as early predictors of mortality or the major underlying diseases that contribute to mortality in participants treated for HIV-1 infection.
Collapse
Affiliation(s)
- Daniel D. Murray
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Kazuo Suzuki
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Matthew Law
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Jonel Trebicka
- Department of Internal Medicine, University of Bonn, Bonn, Germany
| | - Jacquie Neuhaus
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Deborah Wentworth
- University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Margaret Johnson
- Ian Charleson Day Centre, Royal Free Hampstead NHS Trust, London, United Kingdom
| | - Michael J. Vjecha
- Institute for Clinical Research, Veterans Affairs Medical Center, Washington D.C., United States of America
| | - Anthony D. Kelleher
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | - Sean Emery
- The Kirby Institute for Infection and Immunity in Society, University of New South Wales, Sydney, Australia
| | | |
Collapse
|
23
|
Adoro S, Cubillos-Ruiz JR, Chen X, Deruaz M, Vrbanac VD, Song M, Park S, Murooka TT, Dudek TE, Luster AD, Tager AM, Streeck H, Bowman B, Walker BD, Kwon DS, Lazarevic V, Glimcher LH. IL-21 induces antiviral microRNA-29 in CD4 T cells to limit HIV-1 infection. Nat Commun 2015; 6:7562. [PMID: 26108174 PMCID: PMC4481879 DOI: 10.1038/ncomms8562] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/20/2015] [Indexed: 01/15/2023] Open
Abstract
Initial events after exposure determine HIV-1 disease progression, underscoring a critical need to understand host mechanisms that interfere with initial viral replication. Although associated with chronic HIV-1 control, it is not known whether interleukin-21 (IL-21) contributes to early HIV-1 immunity. Here we take advantage of tractable primary human lymphoid organ aggregate cultures to show that IL-21 directly suppresses HIV-1 replication, and identify microRNA-29 (miR-29) as an antiviral factor induced by IL-21 in CD4 T cells. IL-21 promotes transcription of all miR-29 species through STAT3, whose binding to putative regulatory regions within the MIR29 gene is enriched by IL-21 signalling. Notably, exogenous IL-21 limits early HIV-1 infection in humanized mice, and lower viremia in vivo is associated with higher miR-29 expression. Together, these findings reveal a novel antiviral IL-21-miR-29 axis that promotes CD4 T-cell-intrinsic resistance to HIV-1 infection, and suggest a role for IL-21 in initial HIV-1 control in vivo. HIV-infected patients who maintain undetectable virus levels possess elevated plasma concentrations of IL-21. Here, Adoro et al. show that IL-21 inhibits early viral infection in humanized mice and suppresses HIV-1 replication in vitro by upregulating a microRNA via the regulatory protein STAT3.
Collapse
Affiliation(s)
- Stanley Adoro
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Juan R Cubillos-Ruiz
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Xi Chen
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Maud Deruaz
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Vladimir D Vrbanac
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Minkyung Song
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Suna Park
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA
| | - Thomas T Murooka
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Timothy E Dudek
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Andrew M Tager
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | - Hendrik Streeck
- Institute for Medical Biology, University Hospital Essen, University of Duisburg-Essen, Essen D-45147, Germany
| | - Brittany Bowman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20814, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | - Laurie H Glimcher
- Department of Medicine, Weill Cornell Medical College, Cornell University, 1300 York Avenue, New York, New York 10065, USA.,Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
24
|
Bela-ong DB, Schyth BD, Zou J, Secombes CJ, Lorenzen N. Involvement of two microRNAs in the early immune response to DNA vaccination against a fish rhabdovirus. Vaccine 2015; 33:3215-22. [PMID: 25957662 DOI: 10.1016/j.vaccine.2015.04.092] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/22/2015] [Accepted: 04/27/2015] [Indexed: 01/07/2023]
Abstract
Mechanisms that account for the high protective efficacy in teleost fish of a DNA vaccine expressing the glycoprotein (G) of Viral hemorrhagic septicemia virus (VHSV) are thought to involve early innate immune responses mediated by interferons (IFNs). Microribonucleic acids (miRNAs) are a diverse class of small (18-22 nucleotides) endogenous RNAs that potently mediate post-transcriptional silencing of a wide range of genes and are emerging as critical regulators of cellular processes, including immune responses. We have recently reported that miR-462 and miR-731 were strongly induced in rainbow trout infected with VHSV. In this study, we analyzed the expression of these miRNAs in fish following administration of the DNA vaccine and their potential functions. Quantitative RT-PCR analysis revealed the increased levels of miR-462, and miR-731 in the skeletal muscle tissue at the site of vaccine administration and in the liver of vaccinated fish relative to empty plasmid backbone-injected controls. The increased expression of these miRNAs in the skeletal muscle correlated with the increased levels of the type I interferon (IFN)-inducible gene Mx, type I IFN and IFN-γ genes at the vaccination site. Intramuscular injection of fish with either type I IFN or IFN-γ plasmid construct resulted in the upregulation of miR-462 and miR-731 at the site of injection, suggesting that the induction of these miRNAs is elicited by IFNs. To analyze the function of miR-462 and miR-731, specific silencing of these miRNAs using anti-miRNA oligonucleotides was conducted in poly I:C-treated rainbow trout fingerlings. Following VHSV challenge, anti-miRNA-injected fish had faster development of disease and higher mortalities than control fish, indicating that miR-462/731 may be involved in IFN-mediated protection conferred by poly I:C.
Collapse
Affiliation(s)
- Dennis Berbulla Bela-ong
- Fish Health Section, Department of Animal Science, University of Aarhus, Hangøvej 2, DK-8200 Århus N, Denmark; Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bulowsvej 27, DK-1870 Frederiksberg C, Denmark.
| | - Brian Dall Schyth
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Bulowsvej 27, DK-1870 Frederiksberg C, Denmark
| | - Jun Zou
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen AB24 2TZ, Scotland, United Kingdom
| | - Niels Lorenzen
- Fish Health Section, Department of Animal Science, University of Aarhus, Hangøvej 2, DK-8200 Århus N, Denmark.
| |
Collapse
|
25
|
Swaminathan S, Kelleher AD. MicroRNA modulation of key targets associated with T cell exhaustion in HIV-1 infection. Curr Opin HIV AIDS 2015; 9:464-71. [PMID: 25023625 DOI: 10.1097/coh.0000000000000089] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE OF REVIEW The emergence of studies linking microRNAs (miRNAs), a species of small RNA molecules important in gene regulation, with HIV-1 infection has led to a better understanding of the complex molecular changes that occur following infection. We aim to discuss these changes and show how miRNAs may be involved with regulating key immunomodulatory molecules linked to T cell exhaustion at the post-transcriptional level. RECENT FINDINGS Blimp-1 is a recently described T cell exhaustion marker. Reduced levels of miR-9 have been shown to have a functional role in the higher levels of Blimp-1 in CD4 T cells from patients with HIV-1 infection. Reduced levels of let-7 miRNAs have been linked to higher levels of IL-10, again with potential pathophysiological significance in HIV-1 infection. The advent of deep sequencing technologies is allowing detection of virally derived miRNAs expressed at extremely low levels, although some controversy still exists. SUMMARY miRNAs have emerged as important players in the T cell dysfunction observed with HIV-1 infection. It is likely that they may emerge as novel markers of T cell dysfunction and provide potential targets for new therapeutics to reverse dysfunction.
Collapse
Affiliation(s)
- Sanjay Swaminathan
- aDepartment of Clinical Immunology, Westmead and Blacktown Hospitals bSydney Medical School, University of Sydney cSchool of Medicine, University of Western Sydney, Sydney dImmunovirology Laboratory, St Vincent's Centre for Applied Medical Research, Darlinghurst eThe Kirby Institute, University of New South Wales, Kensington, New South Wales, Australia
| | | |
Collapse
|
26
|
Barichievy S, Naidoo J, Mhlanga MM. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment. Front Genet 2015; 6:108. [PMID: 25859257 PMCID: PMC4374539 DOI: 10.3389/fgene.2015.00108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 11/13/2022] Open
Abstract
On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection.
Collapse
Affiliation(s)
- Samantha Barichievy
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Discovery Sciences, Research & Development, AstraZeneca, Mölndal Sweden
| | - Jerolen Naidoo
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa
| | - Musa M Mhlanga
- Gene Expression and Biophysics Group, Synthetic Biology Emerging Research Area, Council for Scientific and Industrial Research, Pretoria South Africa ; Gene Expression and Biophysics Unit, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisbon Portugal
| |
Collapse
|
27
|
Promoter Targeting RNAs: Unexpected Contributors to the Control of HIV-1 Transcription. MOLECULAR THERAPY-NUCLEIC ACIDS 2015; 4:e222. [PMID: 25625613 PMCID: PMC4345301 DOI: 10.1038/mtna.2014.67] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/01/2014] [Indexed: 11/22/2022]
Abstract
In spite of prolonged and intensive treatment with combined antiretroviral therapy (cART), which efficiently suppresses plasma viremia, the integrated provirus of HIV-1 persists in resting memory CD4+ T cells as latent infection. Treatment with cART does not substantially reduce the burden of latent infection. Once cART is ceased, HIV-1 replication recrudesces from these reservoirs in the overwhelming majority of patients. There is increasing evidence supporting a role for noncoding RNAs (ncRNA), including microRNAs (miRNAs), antisense (as)RNAs, and short interfering (si)RNA in the regulation of HIV-1 transcription. This appears to be mediated by interaction with the HIV-1 promoter region. Viral miRNAs have the potential to act as positive or negative regulators of HIV transcription. Moreover, inhibition of virally encoded long-asRNA can induce positive transcriptional regulation, while antisense strands of siRNA targeting the NF-κB region suppress viral transcription. An in-depth understanding of the interaction between ncRNAs and the HIV-1 U3 promoter region may lead to new approaches for the control of HIV reservoirs. This review focuses on promoter associated ncRNAs, with particular emphasis on their role in determining whether HIV-1 establishes active or latent infection.
Collapse
|
28
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
29
|
Meulendyke KA, Croteau JD, Zink MC. HIV life cycle, innate immunity and autophagy in the central nervous system. Curr Opin HIV AIDS 2014; 9:565-71. [PMID: 25203639 PMCID: PMC4212891 DOI: 10.1097/coh.0000000000000106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW In this era of modern combination antiretroviral therapy (cART) HIV-associated neurocognitive disorders (HAND) continue to affect a large portion of the infected population. In this review, we highlight recent discoveries that help to define the interplay between HIV life cycle, the innate immune system and cellular autophagy in the context of the central nervous system (CNS). RECENT FINDINGS Investigators have recently elucidated themes in HAND, which place it in a unique framework. Cells of macrophage lineage and probably astrocytes play a role in disseminating virus through the CNS. Each of these cell types responds to a diverse population of constantly evolving virus existing in an inflammatory environment. This occurs though the failure of both host antiviral mechanisms, such as autophagy, and innate immunological signalling pathways to control viral replication. SUMMARY The newest findings detailed in this review help define why HIV CNS disease is a difficult target for therapeutics and create hope that these new mechanisms may be exploited to attenuate viral replication and eliminate disease.
Collapse
Affiliation(s)
- Kelly A. Meulendyke
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Joshua D. Croteau
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - M. Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
30
|
Orecchini E, Doria M, Michienzi A, Giuliani E, Vassena L, Ciafrè SA, Farace MG, Galardi S. The HIV-1 Tat protein modulates CD4 expression in human T cells through the induction of miR-222. RNA Biol 2014; 11:334-8. [PMID: 24717285 PMCID: PMC4075518 DOI: 10.4161/rna.28372] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Several cellular microRNAs show substantial changes in expression during HIV-1 infection and their active role in the viral life cycle is progressively emerging. In the present study, we found that HIV-1 infection of Jurkat T cells significantly induces the expression of miR-222. We show that this induction depends on HIV-1 Tat protein, which is able to increase the transcriptional activity of NFkB on miR-222 promoter. Moreover, we demonstrate that miR-222 directly targets CD4, a key receptor for HIV-1, thus reducing its expression. We propose that Tat, by inducing miR-222 expression, complements the CD4 downregulation activity exerted by other viral proteins (i.e., Nef, Vpu, and Env), and we suggest that this represents a novel mechanism through which HIV-1 efficiently represses CD4 expression in infected cells.
Collapse
Affiliation(s)
- Elisa Orecchini
- Deptartment of Biomedicine and Prevention; University of Rome "Tor Vergata"; Rome, Italy
| | - Margherita Doria
- Laboratory of Immunoinfectivology; Bambino Gesù Children's Hospital; IRCCS, Rome, Italy
| | - Alessandro Michienzi
- Deptartment of Biomedicine and Prevention; University of Rome "Tor Vergata"; Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology; Bambino Gesù Children's Hospital; IRCCS, Rome, Italy
| | - Lia Vassena
- Laboratory of Immunoinfectivology; Bambino Gesù Children's Hospital; IRCCS, Rome, Italy
| | - Silvia Anna Ciafrè
- Deptartment of Biomedicine and Prevention; University of Rome "Tor Vergata"; Rome, Italy
| | - Maria Giulia Farace
- Deptartment of Biomedicine and Prevention; University of Rome "Tor Vergata"; Rome, Italy
| | - Silvia Galardi
- Deptartment of Biomedicine and Prevention; University of Rome "Tor Vergata"; Rome, Italy
| |
Collapse
|
31
|
Affiliation(s)
- Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| |
Collapse
|
32
|
Liu J, Sisk JM, Gama L, Clements JE, Witwer KW. Tristetraprolin expression and microRNA-mediated regulation during simian immunodeficiency virus infection of the central nervous system. Mol Brain 2013; 6:40. [PMID: 24103357 PMCID: PMC3766027 DOI: 10.1186/1756-6606-6-40] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 08/28/2013] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND The RNA-binding protein tristetraprolin (TTP) participates in normal post-transcriptional control of cytokine and chemokine gene expression, dysregulation of which contributes to the HIV-associated neurocognitive disorders. Transcriptional and post-transcriptional regulation of TTP has been described, including regulation by microRNA-29a. In the simian immunodeficiency virus (SIV) model of HIV CNS disease, control of cytokine/chemokine expression coincides with the end of acute phase infection. This control is lost during progression to disease. In this study, we assessed TTP regulation and association with cytokine regulation in the brain during SIV infection. RESULTS Quantitation of TTP expression over the course of SIV infection revealed downregulation of TTP during acute infection, maintenance of relatively low levels during asymptomatic phase, and increased expression only during late-stage CNS disease, particularly in association with severe disease. The ability of miR-29a to regulate TTP was confirmed, and evidence for additional miRNA targeters of TTP was found. However, increased miR-29a expression in brain was not found to be significantly negatively correlated with TTP. Similarly, increased TTP during late-stage disease was not associated with lower cytokine expression. CONCLUSIONS TTP expression is regulated during SIV infection of the CNS. The lack of significant negative correlation of miR-29a and TTP expression levels suggests that while miR-29a may contribute to TTP regulation, additional factors are involved. Reduced TTP expression during acute infection is consistent with increased cytokine production during this phase of infection, but the increases in TTP observed during late-stage infection were insufficient to halt runaway cytokine levels. While antisense inhibitors of the post-transcriptional targeters of TTP identified here could conceivably be used further to augment TTP regulation of cytokines, it is possible that high levels of TTP are undesirable. Additional research is needed to characterize members of the miRNA/TTP/cytokine regulatory network and identify nodes that may be best targeted therapeutically to ameliorate the effects of chronic inflammation in retrovirus-associated CNS disease.
Collapse
Affiliation(s)
- Jonathan Liu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, 733 N, Broadway, Miller Research Building Rm, 829, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
33
|
Sisk JM, Witwer KW, Tarwater PM, Clements JE. SIV replication is directly downregulated by four antiviral miRNAs. Retrovirology 2013; 10:95. [PMID: 23988154 PMCID: PMC3766675 DOI: 10.1186/1742-4690-10-95] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 12/30/2022] Open
Abstract
Background Host cell microRNAs (miRNAs) have been shown to regulate the expression of both cellular and viral RNAs, in particular impacting both Hepatitis C Virus (HCV) and Human Immunodeficiency Virus (HIV). To investigate the role of miRNAs in regulating replication of the simian immunodeficiency virus (SIV) in macrophage lineage cells, we used primary macrophages to study targeting of SIV RNA by miRNAs. We examined whether specific host miRNAs directly target SIV RNA early in infection and might be induced via type I interferon pathways. Results miRNA target prediction programs identified miRNA binding sites within SIV RNA. Predicted binding sites for miRs-29a, -29b, -9 and -146a were identified in the SIV Nef/U3 and R regions, and all four miRNAs decreased virus production and viral RNA expression in primary macrophages. To determine whether levels of these miRNAs were affected by SIV infection, IFNβ or TNFα treatments, miRNA RT-qPCR assays measured miRNA levels after infection or treatment of macrophages. SIV RNA levels as well as virus production was downregulated by direct targeting of the SIV Nef/U3 and R regions by four miRNAs. miRs-29a, -29b, -9 and -146a were induced in primary macrophages after SIV infection. Each of these miRNAs was regulated by innate immune signaling through TNFα and/or the type I IFN, IFNβ. Conclusions The effects on miRNAs caused by HIV/SIV infection are illustrated by changes in their cellular expression throughout the course of disease, and in different patient populations. Our data demonstrate that levels of primary transcripts and mature miRs-29a, -29b, -9 and -146a are modulated by SIV infection. We show that the SIV 3′ UTR contains functional miRNA response elements (MREs) for all four miRNAs. Notably, these miRNAs regulate virus production and viral RNA levels in macrophages, the primary cells infected in the CNS that drive inflammation leading to HIV-associated neurocognitive disorders. This report may aid in identification miRNAs that target viral RNAs and HIV/SIV specifically, as well as in identification of miRNAs that may be targets of new therapies to treat HIV.
Collapse
Affiliation(s)
- Jeanne M Sisk
- Department of Molecular and Comparative Pathobiology, Edward D, Miller Research Building, The Johns Hopkins University School of Medicine, 733 N Broadway, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|