1
|
Jo Y, Greene TT, Chiale C, Zhang K, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic analysis of progenitors in viral infection implicates glucocorticoids as suppressors of plasmacytoid dendritic cell generation. Proc Natl Acad Sci U S A 2025; 122:e2410092122. [PMID: 40294270 PMCID: PMC12067256 DOI: 10.1073/pnas.2410092122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 02/19/2025] [Indexed: 04/30/2025] Open
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and toward cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3+ (Flt3+) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound type I interferon (IFN-I)-dependent ablation of pre-pDCs, but not pre-DC precursors, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3+ DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides a potential explanation for the impaired pDC development following viral infection and links pDC numbers to the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Yeara Jo
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Trever T. Greene
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Carolina Chiale
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Kai Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
| | - Ziyan Fang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Simone Dallari
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Nuha Marooki
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA92093
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA92093
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA92093
| | - Elina I. Zuniga
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA92093
| |
Collapse
|
2
|
Jo Y, Greene TT, Zhang K, Chiale C, Fang Z, Dallari S, Marooki N, Wang W, Zuniga EI. Genomic Analysis of Progenitors in Viral Infection Implicates Glucocorticoids as Suppressors of Plasmacytoid Dendritic Cell Generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620771. [PMID: 39554106 PMCID: PMC11565824 DOI: 10.1101/2024.10.28.620771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Plasmacytoid Dendritic cells (pDCs) are the most potent producers of interferons, which are critical antiviral cytokines. pDC development is, however, compromised following a viral infection, and this phenomenon, as well as its relationship to conventional (c)DC development is still incompletely understood. By using lymphocytic choriomeningitis virus (LCMV) infection in mice as a model system, we observed that DC progenitors skewed away from pDC and towards cDC development during in vivo viral infection. Subsequent characterization of the transcriptional and epigenetic landscape of fms-like tyrosine kinase 3 + (Flt3 + ) DC progenitors and follow-up studies revealed increased apoptosis and reduced proliferation in different individual DC-progenitors as well as a profound IFN-I-dependent ablation of pre-pDCs, but not pre-DC precursor, after both acute and chronic LCMV infections. In addition, integrated genomic analysis identified altered activity of 34 transcription factors in Flt3 + DC progenitors from infected mice, including two regulators of Glucocorticoid (GC) responses. Subsequent studies demonstrated that addition of GCs to DC progenitors led to downregulated pDC-primed-genes while upregulating cDC-primed-genes, and that endogenous GCs selectively decreased pDC, but not cDC, numbers upon in-vivo LCMV infection. These findings demonstrate a significant ablation of pre-pDCs in infected mice and identify GCs as suppressors of pDC generation from early progenitors. This provides an explanation for the impaired pDC development following viral infection and links pDC generation to the hypothalamic-pituitary-adrenal axis. Significance Statement Plasmacytoid dendritic cells (pDCs) play critical roles in antiviral responses. However, adaptations of DC progenitors lead to compromised pDC generation after viral infection. Here, we characterized the transcriptional and epigenetic landscapes of DC progenitors after infection. We observed widespread changes in gene expression and chromatin accessibility, reflecting shifts in proliferation, apoptosis, and differentiation potential into various DC subsets. Notably, we identified alterations in the predicted activity of 34 transcription factors, including two regulators of glucocorticoid responses. Our data demonstrate that glucocorticoids inhibit pDC generation by reprogramming DC progenitors. These findings establish a molecular framework for understanding how DC progenitors adapt to infection and highlight the role of glucocorticoid signaling in this process.
Collapse
|
3
|
Wiedemann GM. Localization Matters: Epigenetic Regulation of Natural Killer Cells in Different Tissue Microenvironments. Front Immunol 2022; 13:913054. [PMID: 35707540 PMCID: PMC9191276 DOI: 10.3389/fimmu.2022.913054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Natural Killer cells (NK cells) are cytotoxic innate lymphoid cells (ILCs), which play a key role in the early protection against viral infection and cancer. In addition to mounting rapid effector responses, NK cells possess the capacity to generate long-lived memory cells in response to certain stimuli, thus blurring the lines between innate and adaptive immunity and making NK cells an ideal candidate for tumor immunotherapy. NK cell development, activation and memory formation are regulated by epigenetic alterations driven by a complex interplay of external and internal signals. These epigenetic modifications can convey long-lasting functional and phenotypic changes and critically modify their response to stimulation. Here, we review how NK cell functionality and plasticity are regulated at the epigenetic level in different tissue microenvironments and within tumor microenvironments. An in-depth understanding of the epigenetic modifications underlying NK cell functional diversity in different environments is an essential step in the development of NK cell-based cancer therapies.
Collapse
|
4
|
Zhang B, Zhang Y, Xiong L, Li Y, Zhang Y, Zhao J, Jiang H, Li C, Liu Y, Liu X, Liu H, Ping YF, Zhang QC, Zhang Z, Bian XW, Zhao Y, Hu X. CD127 imprints functional heterogeneity to diversify monocyte responses in inflammatory diseases. J Exp Med 2022; 219:e20211191. [PMID: 35015026 PMCID: PMC8757045 DOI: 10.1084/jem.20211191] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/21/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
Inflammatory monocytes are key mediators of acute and chronic inflammation; yet, their functional diversity remains obscure. Single-cell transcriptome analyses of human inflammatory monocytes from COVID-19 and rheumatoid arthritis patients revealed a subset of cells positive for CD127, an IL-7 receptor subunit, and such positivity rendered otherwise inert monocytes responsive to IL-7. Active IL-7 signaling engaged epigenetically coupled, STAT5-coordinated transcriptional programs to restrain inflammatory gene expression, resulting in inverse correlation between CD127 expression and inflammatory phenotypes in a seemingly homogeneous monocyte population. In COVID-19 and rheumatoid arthritis, CD127 marked a subset of monocytes/macrophages that retained hypoinflammatory phenotypes within the highly inflammatory tissue environments. Furthermore, generation of an integrated expression atlas revealed unified features of human inflammatory monocytes across different diseases and different tissues, exemplified by those of the CD127high subset. Overall, we phenotypically and molecularly characterized CD127-imprinted functional heterogeneity of human inflammatory monocytes with direct relevance for inflammatory diseases.
Collapse
Affiliation(s)
- Bin Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Yuan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Lei Xiong
- Ministry of Education Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuzhe Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yunliang Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunological Diseases, Beijing, China
| | - Hui Jiang
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunological Diseases, Beijing, China
| | - Can Li
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunological Diseases, Beijing, China
| | - Yunqi Liu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| | - Xindong Liu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haofei Liu
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yi-Fang Ping
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiangfeng Cliff Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen, China
- The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiu-Wu Bian
- Institute of Pathology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan Zhao
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunological Diseases, Beijing, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
- Center for Human Disease Immuno-monitoring, Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Georgolopoulos G, Psatha N, Iwata M, Nishida A, Som T, Yiangou M, Stamatoyannopoulos JA, Vierstra J. Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nat Commun 2021; 12:6790. [PMID: 34815405 PMCID: PMC8611072 DOI: 10.1038/s41467-021-27159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/20/2021] [Indexed: 11/08/2022] Open
Abstract
Lineage commitment and differentiation is driven by the concerted action of master transcriptional regulators at their target chromatin sites. Multiple efforts have characterized the key transcription factors (TFs) that determine the various hematopoietic lineages. However, the temporal interactions between individual TFs and their chromatin targets during differentiation and how these interactions dictate lineage commitment remains poorly understood. Here we perform dense, daily, temporal profiling of chromatin accessibility (DNase I-seq) and gene expression changes (total RNA-seq) along ex vivo human erythropoiesis to comprehensively define developmentally regulated DNase I hypersensitive sites (DHSs) and transcripts. We link both distal DHSs to their target gene promoters and individual TFs to their target DHSs, revealing that the regulatory landscape is organized in distinct sequential regulatory modules that regulate lineage restriction and maturation. Finally, direct comparison of transcriptional dynamics (bulk and single-cell) and lineage potential between erythropoiesis and megakaryopoiesis uncovers differential fate commitment dynamics between the two lineages as they exit the stem and progenitor stage. Collectively, these data provide insights into the temporally regulated synergy of the cis- and the trans-regulatory components underlying hematopoietic lineage commitment and differentiation.
Collapse
Affiliation(s)
- Grigorios Georgolopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | - Mineo Iwata
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Andrew Nishida
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Tannishtha Som
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Minas Yiangou
- Department of Genetics, Development & Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John A Stamatoyannopoulos
- Altius Institute for Biomedical Sciences, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Division of Oncology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jeff Vierstra
- Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|
6
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
7
|
Song R, Gao Y, Dozmorov I, Malladi V, Saha I, McDaniel MM, Parameswaran S, Liang C, Arana C, Zhang B, Wakeland B, Zhou J, Weirauch MT, Kottyan LC, Wakeland EK, Pasare C. IRF1 governs the differential interferon-stimulated gene responses in human monocytes and macrophages by regulating chromatin accessibility. Cell Rep 2021; 34:108891. [PMID: 33761354 PMCID: PMC8300000 DOI: 10.1016/j.celrep.2021.108891] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/27/2021] [Accepted: 03/01/2021] [Indexed: 02/06/2023] Open
Abstract
Myeloid lineage cells use TLRs to recognize and respond to diverse microbial ligands. Although unique transcription factors dictate the outcome of specific TLR signaling, whether lineage-specific differences exist to further modulate the quality of TLR-induced inflammation remains unclear. Comprehensive analysis of global gene transcription in human monocytes, monocyte-derived macrophages, and monocyte-derived dendritic cells stimulated with various TLR ligands identifies multiple lineage-specific, TLR-responsive gene programs. Monocytes are hyperresponsive to TLR7/8 stimulation that correlates with the higher expression of the receptors. While macrophages and monocytes express similar levels of TLR4, macrophages, but not monocytes, upregulate interferon-stimulated genes (ISGs) in response to TLR4 stimulation. We find that TLR4 signaling in macrophages uniquely engages transcription factor IRF1, which facilitates the opening of ISG loci for transcription. This study provides a critical mechanistic basis for lineage-specific TLR responses and uncovers IRF1 as a master regulator for the ISG transcriptional program in human macrophages.
Collapse
Affiliation(s)
- Ran Song
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajing Gao
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Venkat Malladi
- Bioinformatics Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Irene Saha
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Margaret M McDaniel
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chaoying Liang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carlos Arana
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bo Zhang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinchun Zhou
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Leah C Kottyan
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Center for Autoimmune Genetics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Edward K Wakeland
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
8
|
Rapid Enhancer Remodeling and Transcription Factor Repurposing Enable High Magnitude Gene Induction upon Acute Activation of NK Cells. Immunity 2020; 53:745-758.e4. [PMID: 33010223 DOI: 10.1016/j.immuni.2020.09.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/08/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022]
Abstract
Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.
Collapse
|
9
|
Herrera-Uribe J, Liu H, Byrne KA, Bond ZF, Loving CL, Tuggle CK. Changes in H3K27ac at Gene Regulatory Regions in Porcine Alveolar Macrophages Following LPS or PolyIC Exposure. Front Genet 2020; 11:817. [PMID: 32973863 PMCID: PMC7468443 DOI: 10.3389/fgene.2020.00817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Changes in chromatin structure, especially in histone modifications (HMs), linked with chromatin accessibility for transcription machinery, are considered to play significant roles in transcriptional regulation. Alveolar macrophages (AM) are important immune cells for protection against pulmonary pathogens, and must readily respond to bacteria and viruses that enter the airways. Mechanism(s) controlling AM innate response to different pathogen-associated molecular patterns (PAMPs) are not well defined in pigs. By combining RNA sequencing (RNA-seq) with chromatin immunoprecipitation and sequencing (ChIP-seq) for four histone marks (H3K4me3, H3K4me1, H3K27ac and H3K27me3), we established a chromatin state map for AM stimulated with two different PAMPs, lipopolysaccharide (LPS) and Poly(I:C), and investigated the potential effect of identified histone modifications on transcription factor binding motif (TFBM) prediction and RNA abundance changes in these AM. The integrative analysis suggests that the differential gene expression between non-stimulated and stimulated AM is significantly associated with changes in the H3K27ac level at active regulatory regions. Although global changes in chromatin states were minor after stimulation, we detected chromatin state changes for differentially expressed genes involved in the TLR4, TLR3 and RIG-I signaling pathways. We found that regions marked by H3K27ac genome-wide were enriched for TFBMs of TF that are involved in the inflammatory response. We further documented that TF whose expression was induced by these stimuli had TFBMs enriched within H3K27ac-marked regions whose chromatin state changed by these same stimuli. Given that the dramatic transcriptomic changes and minor chromatin state changes occurred in response to both stimuli, we conclude that regulatory elements (i.e. active promoters) that contain transcription factor binding motifs were already active/poised in AM for immediate inflammatory response to PAMPs. In summary, our data provides the first chromatin state map of porcine AM in response to bacterial and viral PAMPs, contributing to the Functional Annotation of Animal Genomes (FAANG) project, and demonstrates the role of HMs, especially H3K27ac, in regulating transcription in AM in response to LPS and Poly(I:C).
Collapse
Affiliation(s)
- Juber Herrera-Uribe
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Haibo Liu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, USDA-Agriculture Research Service, Ames, IA, United States
| | | |
Collapse
|
10
|
Abstract
Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin-binding factors and nucleosomes. In this Review, we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression.
Collapse
Affiliation(s)
- Sandy L Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA. .,Department of Applied Physics, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg BioHub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Wang Z, Liu S, Tao Y. Regulation of chromatin remodeling through RNA polymerase II stalling in the immune system. Mol Immunol 2019; 108:75-80. [PMID: 30784765 DOI: 10.1016/j.molimm.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/11/2022]
Abstract
RNA polymerase II (Pol II) binds to promoter-proximal regions of inducible target genes that are controlled and not transcribed by several negative elongation factors, which is known as Pol II stalling. The occurrence of stalling is due to particular modification signatures and structural conformations of chromatin that affect Pol II elongation. The existence and physiological importance of Pol II stalling implies that there is a dynamic balance in chromatin regulation prior to endogenous or exogenous stimulation. In this review, we discuss the effects of ATP-dependent chromatin remodeling complexes and histone modification via transcriptional machinery Pol II C-terminal domain phosphorylated at serine 5 (S5P RNAPII) initiation and S2P RNAPII elongation on the expression or silence of specific genes after the production of activated or differentiated signals or cytokines. The response occurs immediately during immune cell development and function, and it also includes the generation of immunological memories. This summary suggests that the host immune response genes involve a novel mechanism of selectively regulatory chromatin remodeling, a fundamental and crucial aspect of epigenetic regulation.
Collapse
Affiliation(s)
- Zuli Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Institute of Medical Sciences, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan, 410008, China; Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, China; Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Abstract
The development of rapid parallel sequencing in the last 20 years has begun a revolution in the field of genetics that is changing nearly all disciplines within biology and medicine. Genomic sequencing has become crucial to the diagnosis and clinical management of patients with constitutional diseases and cancer and has quickly become an integral part of the new era of personalized and precision medicine. The precision medicine initiative, released by the NIH in 2015, has catapulted genomic technologies to the forefront of the practice of medicine and biomedical research.This chapter focuses on the core technologies driving the genomic revolution from first generation (Sanger) sequencing to microarray-based technologies, to second, commonly referred to as next-generation sequencing (NGS) methods, and finally to the emerging third generation technologies capable of performing single-molecule and long-read sequencing. The goal of the chapter is to provide a broad overview of these methods of DNA analysis and highlight their strengths and weaknesses. Furthermore, with a knowledge of the different mutation types, we seek to provide the basis for understanding how these technologies work, and can be adopted, to explore other type of nucleic acids and epigenetic changes.
Collapse
Affiliation(s)
- Valerie A Arboleda
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rena R Xian
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
13
|
An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem Biophys Res Commun 2018; 506:378-386. [DOI: 10.1016/j.bbrc.2017.11.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
|
14
|
Vandenbon A, Kumagai Y, Lin M, Suzuki Y, Nakai K. Waves of chromatin modifications in mouse dendritic cells in response to LPS stimulation. Genome Biol 2018; 19:138. [PMID: 30231913 PMCID: PMC6146659 DOI: 10.1186/s13059-018-1524-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/04/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The importance of transcription factors (TFs) and epigenetic modifications in the control of gene expression is widely accepted. However, causal relationships between changes in TF binding, histone modifications, and gene expression during the response to extracellular stimuli are not well understood. Here, we analyze the ordering of these events on a genome-wide scale in dendritic cells in response to lipopolysaccharide (LPS) stimulation. RESULTS Using a ChIP-seq time series dataset, we find that the LPS-induced accumulation of different histone modifications follows clearly distinct patterns. Increases in H3K4me3 appear to coincide with transcriptional activation. In contrast, H3K9K14ac accumulates early after stimulation, and H3K36me3 at later time points. Integrative analysis with TF binding data reveals potential links between TF activation and dynamics in histone modifications. Especially, LPS-induced increases in H3K9K14ac and H3K4me3 are associated with binding by STAT1/2 and were severely impaired in Stat1-/- cells. CONCLUSIONS While the timing of short-term changes of some histone modifications coincides with changes in transcriptional activity, this is not the case for others. In the latter case, dynamics in modifications more likely reflect strict regulation by stimulus-induced TFs and their interactions with chromatin modifiers.
Collapse
Affiliation(s)
- Alexis Vandenbon
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan.
- Institute for Liberal Arts and Sciences, Kyoto University, Kyoto, 606-8507, Japan.
| | - Yutaro Kumagai
- Quantitative Immunology Research Unit, Immunology Frontier Research Center (IFReC), Osaka University, Suita, 565-0871, Japan
- Biotechnology Research Institute for Drug Discovery, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8565, Japan
| | - Mengjie Lin
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, 277-8561, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis in silico, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
15
|
Treuter E, Fan R, Huang Z, Jakobsson T, Venteclef N. Transcriptional repression in macrophages-basic mechanisms and alterations in metabolic inflammatory diseases. FEBS Lett 2017; 591:2959-2977. [DOI: 10.1002/1873-3468.12850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Eckardt Treuter
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Rongrong Fan
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Zhiqiang Huang
- Department of Biosciences and Nutrition; Center for Innovative Medicine (CIMED); Karolinska Institutet; Huddinge Sweden
| | - Tomas Jakobsson
- Department of Laboratory Medicine; Karolinska Institutet; Huddinge Sweden
| | - Nicolas Venteclef
- UMR_S 1138 Cordeliers Research; Institut National de la Santé et de la Recherche Médicale (INSERM); Sorbonne Universités; Université Pierre et Marie-Curie; Paris France
| |
Collapse
|
16
|
Abstract
Epigenetic regulation in myeloid cells is crucial for cell differentiation and activation in response to developmental and environmental cues. Epigenetic control involves posttranslational modification of DNA or chromatin, and is also coupled to upstream signaling pathways and transcription factors. In this review, we summarize key epigenetic events and how dynamics in the epigenetic landscape of myeloid cells shape the development, immune activation, and innate immune memory.
Collapse
|
17
|
Liu XF, Hummel M, Abecassis M. Epigenetic regulation of cellular and cytomegalovirus genes during myeloid cell development. ACTA ACUST UNITED AC 2017; 3. [PMID: 28707002 DOI: 10.18103/imr.v3i3.385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Myeloid cells are important cell types that carry human cytomegalovirus. Latent viral DNA is present in CD34+ progenitor cells and their derived monocytes. However, differentiation of latently infected monocytes to mature macrophages or dendritic cells causes reactivation of latent viruses. During hematopoietic development, pluripotent genes are repressed, and lineage specific genes are activated in a step-wise manner. This process is governed by cell-type specific chromatin states. Enhancers in the hematopoietic system are highly dynamic and established by pioneer (first tier) transcription factors (TFs), which set the stage for second and third tier TF binding. In this review, we examine the epigenetic mechanisms that regulate myeloid cell development, cell identity, and activation with a special focus on factors that regulate viral gene expression and the status of viral infection in myeloid cells.
Collapse
Affiliation(s)
- Xue-Feng Liu
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Mary Hummel
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| | - Michael Abecassis
- Comprehensive Transplant Center, Division of Organ Transplantation, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611
| |
Collapse
|
18
|
TET proteins regulate the lineage specification and TCR-mediated expansion of iNKT cells. Nat Immunol 2016; 18:45-53. [PMID: 27869820 DOI: 10.1038/ni.3630] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 10/25/2016] [Indexed: 12/12/2022]
Abstract
TET proteins oxidize 5-methylcytosine in DNA to 5-hydroxymethylcytosine and other oxidation products. We found that simultaneous deletion of Tet2 and Tet3 in mouse CD4+CD8+ double-positive thymocytes resulted in dysregulated development and proliferation of invariant natural killer T cells (iNKT cells). Tet2-Tet3 double-knockout (DKO) iNKT cells displayed pronounced skewing toward the NKT17 lineage, with increased DNA methylation and impaired expression of genes encoding the key lineage-specifying factors T-bet and ThPOK. Transfer of purified Tet2-Tet3 DKO iNKT cells into immunocompetent recipient mice resulted in an uncontrolled expansion that was dependent on the nonclassical major histocompatibility complex (MHC) protein CD1d, which presents lipid antigens to iNKT cells. Our data indicate that TET proteins regulate iNKT cell fate by ensuring their proper development and maturation and by suppressing aberrant proliferation mediated by the T cell antigen receptor (TCR).
Collapse
|
19
|
Epipolymorphisms associated with the clinical outcome of autoimmune arthritis affect CD4+ T cell activation pathways. Proc Natl Acad Sci U S A 2016; 113:13845-13850. [PMID: 27849614 DOI: 10.1073/pnas.1524056113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multifactorial diseases, including autoimmune juvenile idiopathic arthritis (JIA), result from a complex interplay between genetics and environment. Epigenetic mechanisms are believed to integrate such gene-environment interactions, fine-tuning gene expression, and possibly contributing to immune system dysregulation. Although anti-TNF therapy has strongly increased JIA remission rates, it is not curative and up to 80% of patients flare upon treatment withdrawal. Thus, a crucial unmet medical and scientific need is to understand the immunological mechanisms associated with remission or flare to inform clinical decisions. Here, we explored the CD4+ T-cell DNA methylome of 68 poly-articular and extended oligo-articular JIA patients, before and after anti-TNF therapy withdrawal, to identify features associated with maintenance of inactive disease. Individual CpG sites were clustered in coherent modules without a priori knowledge of their function through network analysis. The methylation level of several CpG modules, specifically those enriched in CpG sites belonging to genes that mediate T-cell activation, uniquely correlated with clinical activity. Differences in DNA methylation were already detectable at the time of therapy discontinuation, suggesting epigenetic predisposition. RNA profiling also detected differences in T-cell activation markers (including HLA-DR) but, overall, its sensitivity was lower than epigenetic profiling. Changes to the T-cell activation signature at the protein level were detectable by flow cytometry, confirming the biological relevance of the observed alterations in methylation. Our work proposes epigenetic discrimination between clinical activity states, and reveals T-cell-related biological functions tied to, and possibly predicting or causing, clinical outcome.
Collapse
|
20
|
Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M, Barnitz RA, Bartman C, Bengsch B, Huang AC, Schenkel JM, Vahedi G, Haining WN, Berger SL, Wherry EJ. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science 2016; 354:1160-1165. [PMID: 27789795 DOI: 10.1126/science.aaf2807] [Citation(s) in RCA: 966] [Impact Index Per Article: 107.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022]
Abstract
Blocking Programmed Death-1 (PD-1) can reinvigorate exhausted CD8 T cells (TEX) and improve control of chronic infections and cancer. However, whether blocking PD-1 can reprogram TEX into durable memory T cells (TMEM) is unclear. We found that reinvigoration of TEX in mice by PD-L1 blockade caused minimal memory development. After blockade, reinvigorated TEX became reexhausted if antigen concentration remained high and failed to become TMEM upon antigen clearance. TEX acquired an epigenetic profile distinct from that of effector T cells (TEFF) and TMEM cells that was minimally remodeled after PD-L1 blockade. This finding suggests that TEX are a distinct lineage of CD8 T cells. Nevertheless, PD-1 pathway blockade resulted in transcriptional rewiring and reengagement of effector circuitry in the TEX epigenetic landscape. These data indicate that epigenetic fate inflexibility may limit current immunotherapies.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan A Sammons
- Departments of Cell and Developmental Biology, Genetics, and Biology, Penn Epigenetics Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Pamela M Odorizzi
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sasikanth Manne
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jernej Godec
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Omar Khan
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam M Drake
- Departments of Cell and Developmental Biology, Genetics, and Biology, Penn Epigenetics Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Zeyu Chen
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Debattama R Sen
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Makoto Kurachi
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Anthony Barnitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Caroline Bartman
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bertram Bengsch
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander C Huang
- Department of Medicine and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason M Schenkel
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Golnaz Vahedi
- Department of Genetics and Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA
| | - W Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Division of Hematology/Oncology, Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shelley L Berger
- Departments of Cell and Developmental Biology, Genetics, and Biology, Penn Epigenetics Program, University of Pennsylvania, Philadelphia, PA, USA
| | - E John Wherry
- Department of Microbiology and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
21
|
Carson WF, Kunkel SL. Regulation of Cellular Immune Responses in Sepsis by Histone Modifications. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2016; 106:191-225. [PMID: 28057212 DOI: 10.1016/bs.apcsb.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe sepsis, septic shock, and related inflammatory syndromes are driven by the aberrant expression of proinflammatory mediators by immune cells. During the acute phase of sepsis, overexpression of chemokines and cytokines drives physiological stress leading to organ failure and mortality. Following recovery from sepsis, the immune system exhibits profound immunosuppression, evidenced by an inability to produce the same proinflammatory mediators that are required for normal responses to infectious microorganisms. Gene expression in inflammatory responses is influenced by the transcriptional accessibility of the chromatin, with histone posttranslational modifications determining whether inflammatory gene loci are set to transcriptionally active, repressed, or poised states. Experimental evidence indicates that histone modifications play a central role in governing the cytokine storm of severe sepsis, and that aberrant chromatin modifications induced during the acute phase of sepsis may mediate chronic immunosuppression in sepsis survivors. This review will focus on the role of histone modifications in governing immune responses in severe sepsis, with an emphasis on specific leukocyte subsets and the histone modifications observed in these cells during chronic stages of sepsis. Additionally, the expression and function of chromatin-modifying enzymes (CMEs) will be discussed in the context of severe sepsis, as potential mediators of epigenetic regulation of gene expression in sepsis responses. In summary, this review will argue for the use of chromatin modifications and CME expression in leukocytes as potential biomarkers of immunosuppression in patients with severe sepsis.
Collapse
Affiliation(s)
- W F Carson
- University of Michigan Medical School, Ann Arbor, MI, United States.
| | - S L Kunkel
- University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
22
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
23
|
Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S, Ben-Yehuda H, David E, Zelada González F, Perrin P, Keren-Shaul H, Gury M, Lara-Astaiso D, Thaiss CA, Cohen M, Bahar Halpern K, Baruch K, Deczkowska A, Lorenzo-Vivas E, Itzkovitz S, Elinav E, Sieweke MH, Schwartz M, Amit I. Microglia development follows a stepwise program to regulate brain homeostasis. Science 2016; 353:aad8670. [PMID: 27338705 DOI: 10.1126/science.aad8670] [Citation(s) in RCA: 877] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 06/10/2016] [Indexed: 12/15/2022]
Abstract
Microglia, the resident myeloid cells of the central nervous system, play important roles in life-long brain maintenance and in pathology. Despite their importance, their regulatory dynamics during brain development have not been fully elucidated. Using genome-wide chromatin and expression profiling coupled with single-cell transcriptomic analysis throughout development, we found that microglia undergo three temporal stages of development in synchrony with the brain--early, pre-, and adult microglia--which are under distinct regulatory circuits. Knockout of the gene encoding the adult microglia transcription factor MAFB and environmental perturbations, such as those affecting the microbiome or prenatal immune activation, led to disruption of developmental genes and immune response pathways. Together, our work identifies a stepwise microglia developmental program integrating immune response pathways that may be associated with several neurodevelopmental disorders.
Collapse
Affiliation(s)
- Orit Matcovitch-Natan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Giladi
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Stephanie Vargas Aguilar
- Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix-Marseille, UM2, Campus de Luminy, Marseille, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France. Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France. Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Robert-Rössle-Straß 10, 13125 Berlin, Germany
| | - Amit Spinrad
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel. Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Sandrine Sarrazin
- Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix-Marseille, UM2, Campus de Luminy, Marseille, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France. Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Hila Ben-Yehuda
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Fabiola Zelada González
- Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix-Marseille, UM2, Campus de Luminy, Marseille, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France. Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Pierre Perrin
- Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix-Marseille, UM2, Campus de Luminy, Marseille, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France. Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Gury
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - David Lara-Astaiso
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Christoph A Thaiss
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Cohen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kuti Baruch
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | - Shalev Itzkovitz
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael H Sieweke
- Centre d'Immunologie de Marseille-Luminy (CIML), Université Aix-Marseille, UM2, Campus de Luminy, Marseille, France. Institut National de la Santé et de la Recherche Médicale (INSERM), U1104, Marseille, France. Centre National de la Recherche Scientifique (CNRS), UMR7280, Marseille, France. Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC), Robert-Rössle-Straß 10, 13125 Berlin, Germany.
| | - Michal Schwartz
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Amit I, Winter DR, Jung S. The role of the local environment and epigenetics in shaping macrophage identity and their effect on tissue homeostasis. Nat Immunol 2016; 17:18-25. [PMID: 26681458 DOI: 10.1038/ni.3325] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/15/2015] [Indexed: 12/13/2022]
Abstract
Macrophages provide a critical systemic network cells of the innate immune system. Emerging data suggest that in addition, they have important tissue-specific functions that range from clearance of surfactant from the lungs to neuronal pruning and establishment of gut homeostasis. The differentiation and tissue-specific activation of macrophages require precise regulation of gene expression, a process governed by epigenetic mechanisms such as DNA methylation, histone modification and chromatin structure. We argue that epigenetic regulation of macrophages is determined by lineage- and tissue-specific transcription factors controlled by the built-in programming of myeloid development in combination with signaling from the tissue environment. Perturbation of epigenetic mechanisms of tissue macrophage identity can affect normal macrophage tissue function and contribute to pathologies ranging from obesity and autoimmunity to neurodegenerative diseases.
Collapse
Affiliation(s)
- Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Deborah R Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol 2016; 15:731-44. [PMID: 26603899 DOI: 10.1038/nri3920] [Citation(s) in RCA: 460] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage-stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - Arthur Mortha
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - Adeeb Rahman
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| | - Miriam Merad
- Department of Oncological Sciences, Tisch Cancer Institute and the Immunology Institute, Icahn School of Medicine at Mount Sinai, New York City, New York 10029, USA
| |
Collapse
|
26
|
Kuzmich AI, Tyulkina DV, Vinogradova TV, Sverdlov ED. Pioneer transcription factors in normal development and carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015; 41:636-43. [DOI: 10.1134/s1068162015060084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Outters P, Jaeger S, Zaarour N, Ferrier P. Long-Range Control of V(D)J Recombination & Allelic Exclusion: Modeling Views. Adv Immunol 2015; 128:363-413. [PMID: 26477371 DOI: 10.1016/bs.ai.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allelic exclusion of immunoglobulin (Ig) and T-cell receptor (TCR) genes ensures the development of B and T lymphocytes operating under the mode of clonal selection. This phenomenon associates asynchronous V(D)J recombination events at Ig or TCR alleles and inhibitory feedback control. Despite years of intense research, however, the mechanisms that sustain asymmetric choice in random Ig/TCR dual allele usage and the production of Ig/TCR monoallelic expressing B and T lymphocytes remain unclear and open for debate. In this chapter, we first recapitulate the biological evidence that almost from the start appeared to link V(D)J recombination and allelic exclusion. We review the theoretical models previously proposed to explain this connection. Finally, we introduce our own mathematical modeling views based on how the developmental dynamics of individual lymphoid cells combine to sustain allelic exclusion.
Collapse
Affiliation(s)
- Pernelle Outters
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Nancy Zaarour
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM2, Inserm, U1104, CNRS UMR7280, 13288 Marseille, France.
| |
Collapse
|
28
|
|
29
|
Making the case for chromatin profiling: a new tool to investigate the immune-regulatory landscape. Nat Rev Immunol 2015; 15:585-94. [DOI: 10.1038/nri3884] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Singh H. Transcriptional and epigenetic networks orchestrating immune cell development and function. Immunol Rev 2015; 261:5-8. [PMID: 25123273 DOI: 10.1111/imr.12210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Harinder Singh
- Division of Immunobiology and the Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
31
|
Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, Jung S, Amit I. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2015; 159:1312-26. [PMID: 25480296 DOI: 10.1016/j.cell.2014.11.018] [Citation(s) in RCA: 1620] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 02/09/2023]
Abstract
Macrophages are critical for innate immune defense and also control organ homeostasis in a tissue-specific manner. They provide a fitting model to study the impact of ontogeny and microenvironment on chromatin state and whether chromatin modifications contribute to macrophage identity. Here, we profile the dynamics of four histone modifications across seven tissue-resident macrophage populations. We identify 12,743 macrophage-specific enhancers and establish that tissue-resident macrophages have distinct enhancer landscapes beyond what can be explained by developmental origin. Combining our enhancer catalog with gene expression profiles and open chromatin regions, we show that a combination of tissue- and lineage-specific transcription factors form the regulatory networks controlling chromatin specification in tissue-resident macrophages. The environment is capable of shaping the chromatin landscape of transplanted bone marrow precursors, and even differentiated macrophages can be reprogrammed when transferred into a new microenvironment. These results provide a comprehensive view of macrophage regulatory landscape and highlight the importance of the microenvironment, along with pioneer factors in orchestrating identity and plasticity.
Collapse
Affiliation(s)
- Yonit Lavin
- Department of Oncological Sciences, Immunology Institute and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah Winter
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Keren-Shaul
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miriam Merad
- Department of Oncological Sciences, Immunology Institute and the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Ido Amit
- Department of Immunology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
32
|
Bornstein C, Winter D, Barnett-Itzhaki Z, David E, Kadri S, Garber M, Amit I. A negative feedback loop of transcription factors specifies alternative dendritic cell chromatin States. Mol Cell 2014; 56:749-62. [PMID: 25453760 DOI: 10.1016/j.molcel.2014.10.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/13/2014] [Accepted: 10/14/2014] [Indexed: 01/11/2023]
Abstract
During hematopoiesis, cells originating from the same stem cell reservoir differentiate into distinct cell types. The mechanisms enabling common progenitors to differentiate into alternative cell fates are not fully understood. Here, we identify cell-fate-determining transcription factors (TFs) governing dendritic cell (DC) development by annotating the enhancer landscapes of the DC lineage. Combining these analyses with detailed overexpression, knockdown, and ChIP-Seq studies, we show that Irf8 functions as a plasmacytoid DC epigenetic and fate-determining TF, regulating massive, cell-specific chromatin changes in thousands of pDC enhancers. Importantly, Irf8 forms a negative feedback loop with Cebpb, a monocyte-derived DC epigenetic fate-determining TF. We show that using this circuit logic, a pulse of TF expression can stably define epigenetic and transcriptional states, regardless of the microenvironment. More broadly, our study proposes a general paradigm that allows closely related cells with a similar set of signal-dependent factors to generate differential and persistent enhancer landscapes.
Collapse
Affiliation(s)
| | - Deborah Winter
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | | | - Eyal David
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel
| | - Sabah Kadri
- Broad Institute, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology and Program in Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ido Amit
- Department of Immunology, Weizmann Institute, Rehovot 76100, Israel.
| |
Collapse
|