1
|
Jang JH, Lee JE, Kim KT, Ahn DU, Paik HD. Immunostimulatory Effect of Ovomucin Hydrolysates by Pancreatin in RAW 264.7 Macrophages via Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway. Food Sci Anim Resour 2024; 44:885-898. [PMID: 38974730 PMCID: PMC11222692 DOI: 10.5851/kosfa.2024.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 07/09/2024] Open
Abstract
Ovomucin (OM), which has insoluble fractions is a viscous glycoprotein, found in egg albumin. Enzymatic hydrolysates of OM have water solubility and bioactive properties. This study investigated that the immunostimulatory effects of OM hydrolysates (OMHs) obtained by using various proteolytic enzymes (Alcalase®, bromelain, α-chymotrypsin, Neutrase®, pancreatin, papain, Protamax®, and trypsin) in RAW 264.7 cells. The results showed that OMH prepared with pancreatin (OMPA) produced the highest levels of nitrite oxide in RAW 264.7 cells, through upregulation of inducible nitric oxide synthase mRNA expression. The production of pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 were increased with the cytokines mRNA expression. The effect of OMPA on mitogen-activated protein kinase signaling pathway was increased the phosphorylation of p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase in a concentration-dependent manner. Therefore, OMPA could be used as a potential immune-stimulating agent in the functional food industry.
Collapse
Affiliation(s)
- Jin-Hong Jang
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Ji-Eun Lee
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| | - Kee-Tae Kim
- Research Institute, WithBio
Inc, Seoul 05029, Korea
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State
University, Ames, IA 50011, USA
| | - Hyun-Dong Paik
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University, Seoul
05029, Korea
| |
Collapse
|
2
|
Abascal J, Oh MS, Liclican EL, Dubinett SM, Salehi-Rad R, Liu B. Dendritic Cell Vaccination in Non-Small Cell Lung Cancer: Remodeling the Tumor Immune Microenvironment. Cells 2023; 12:2404. [PMID: 37830618 PMCID: PMC10571973 DOI: 10.3390/cells12192404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/23/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
Collapse
Affiliation(s)
- Jensen Abascal
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Michael S. Oh
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Elvira L. Liclican
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| | - Steven M. Dubinett
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095-1690, USA
| | - Ramin Salehi-Rad
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bin Liu
- Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1690, USA; (J.A.); (M.S.O.); (E.L.L.); (S.M.D.)
| |
Collapse
|
3
|
Moss CE, Phipps H, Wilson HL, Kiss-Toth E. Markers of the ageing macrophage: a systematic review and meta-analysis. Front Immunol 2023; 14:1222308. [PMID: 37520567 PMCID: PMC10373068 DOI: 10.3389/fimmu.2023.1222308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Ageing research is establishing macrophages as key immune system regulators that undergo functional decline. Due to heterogeneity between species and tissue populations, a plethora of data exist and the power of scientific conclusions can vary substantially. This meta-analysis by information content (MAIC) and systematic literature review (SLR) aims to determine overall changes in macrophage gene and protein expression, as well as function, with age. Methods PubMed was utilized to collate peer-reviewed literature relating to macrophage ageing. Primary studies comparing macrophages in at least two age groups were included. Data pertaining to gene or protein expression alongside method used were extracted for MAIC analysis. For SLR analysis, data included all macrophage-specific changes with age, as well as species, ontogeny and age of groups assessed. Results A total of 240 studies were included; 122 of which qualified for MAIC. The majority of papers focussed on changes in macrophage count/infiltration as a function of age, followed by gene and protein expression. The MAIC found iNOS and TNF to be the most commonly investigated entities, with 328 genes and 175 proteins showing consistent dysregulation with age across the literature. Overall findings indicate that cytokine secretion and phagocytosis are reduced and reactive oxygen species production is increased in the ageing macrophage. Discussion Collectively, our analysis identifies critical regulators in macrophage ageing that are consistently dysregulated, highlighting a plethora of targets for further investigation. Consistent functional changes with age found here can be used to confirm an ageing macrophage phenotype in specific studies and experimental models.
Collapse
Affiliation(s)
- Charlotte E. Moss
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Hew Phipps
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Heather L. Wilson
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| | - Endre Kiss-Toth
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
- Healthy Lifespan Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Franson A, McClellan BL, Varela ML, Comba A, Syed MF, Banerjee K, Zhu Z, Gonzalez N, Candolfi M, Lowenstein P, Castro MG. Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Front Med (Lausanne) 2022; 9:966458. [PMID: 36186781 PMCID: PMC9515652 DOI: 10.3389/fmed.2022.966458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
The preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations. Although several challenges exist for the successful development of immunotherapies for CNS tumors, recent insights into the genetic alterations that define the pathogenesis of HGG and their direct effects on the tumor microenvironment (TME) may allow for a more refined and targeted therapeutic approach. This review will focus on the TME in HGG, the genetic drivers frequently found in these tumors and their effect on the TME, the development of immunotherapy for HGG, and the practical challenges in clinical trials employing immunotherapy for HGG. Herein, we will discuss broadly the TME and immunotherapy development in HGG, with a specific focus on glioblastoma multiforme (GBM) as well as additional discussion in the context of the pediatric HGG diagnoses of diffuse midline glioma (DMG) and diffuse hemispheric glioma (DHG).
Collapse
Affiliation(s)
- Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammad Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Hu Z, Zhao TV, Huang T, Ohtsuki S, Jin K, Goronzy IN, Wu B, Abdel MP, Bettencourt JW, Berry GJ, Goronzy JJ, Weyand CM. The transcription factor RFX5 coordinates antigen-presenting function and resistance to nutrient stress in synovial macrophages. Nat Metab 2022; 4:759-774. [PMID: 35739396 PMCID: PMC9280866 DOI: 10.1038/s42255-022-00585-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Tissue macrophages (Mϕ) are essential effector cells in rheumatoid arthritis (RA), contributing to autoimmune tissue inflammation through diverse effector functions. Their arthritogenic potential depends on their proficiency to survive in the glucose-depleted environment of the inflamed joint. Here, we identify a mechanism that links metabolic adaptation to nutrient stress with the efficacy of tissue Mϕ to activate adaptive immunity by presenting antigen to tissue-invading T cells. Specifically, Mϕ populating the rheumatoid joint produce and respond to the small cytokine CCL18, which protects against cell death induced by glucose withdrawal. Mechanistically, CCL18 induces the transcription factor RFX5 that selectively upregulates glutamate dehydrogenase 1 (GLUD1), thus enabling glutamate utilization to support energy production. In parallel, RFX5 enhances surface expression of HLA-DR molecules, promoting Mϕ-dependent expansion of antigen-specific T cells. These data place CCL18 at the top of a RFX5-GLUD1 survival pathway and couple adaptability to nutrient conditions in the tissue environment to antigen-presenting function in autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Zhaolan Hu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tuantuan V Zhao
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Shozo Ohtsuki
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ke Jin
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Isabel N Goronzy
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Matthew P Abdel
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Jacob W Bettencourt
- Department of Orthopedic Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gerald J Berry
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Cornelia M Weyand
- Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Abstract
Obesity is a chronic and progressive process affecting whole-body energy balance and is associated with comorbidities development. In addition to increased fat mass, obesity induces white adipose tissue (WAT) inflammation and fibrosis, leading to local and systemic metabolic dysfunctions, such as insulin resistance (IR). Accordingly, limiting inflammation or fibrosis deposition may improve IR and glucose homeostasis. Although no targeted therapy yet exists to slow or reverse adipose tissue fibrosis, a number of findings have clarified the underlying cellular and molecular mechanisms. In this review, we highlight adipose tissue remodeling events shown to be associated with fibrosis deposition, with a focus on adipose progenitors involved in obesity-induced healthy as well as unhealthy WAT expansion. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Geneviève Marcelin
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; ,
| | | | - Karine Clément
- INSERM, Nutrition and Obesities: Systemic Approach (NutriOmics) Research Unit, UMRS U1269, Sorbonne Université, Paris, France; , .,Nutrition Department, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
7
|
Torregrossa M, Kakpenova A, Simon JC, Franz S. Modulation of macrophage functions by ECM-inspired wound dressings - a promising therapeutic approach for chronic wounds. Biol Chem 2021; 402:1289-1307. [PMID: 34390641 DOI: 10.1515/hsz-2021-0145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022]
Abstract
Nonhealing chronic wounds are among the most common skin disorders with increasing incidence worldwide. However, their treatment is still dissatisfying, that is why novel therapeutic concepts targeting the sustained inflammatory process have emerged. Increasing understanding of chronic wound pathologies has put macrophages in the spotlight of such approaches. Herein, we review current concepts and perspectives of therapeutic macrophage control by ECM-inspired wound dressing materials. We provide an overview of the current understanding of macrophage diversity with particular view on their roles in skin and in physiological and disturbed wound healing processes. Based on this we discuss strategies for their modulation in chronic wounds and how such strategies can be tailored in ECM-inspired wound dressing. The latter utilize and mimic general principles of ECM-mediated cell control, such as binding and delivery of signaling molecules and direct signaling to cells specifically adapted for macrophage regulation in wounds. In this review, we present examples of most recent approaches and discuss ideas for their further development.
Collapse
Affiliation(s)
- Marta Torregrossa
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Ainur Kakpenova
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Jan C Simon
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venerology and Allergology, Max Bürger Research Centre, Leipzig University, Johannisallee 30, D-04103 Leipzig, Germany
| |
Collapse
|
8
|
Gautier EL, Askia H, Murcy F, Yvan-Charvet L. Macrophage ontogeny and functional diversity in cardiometabolic diseases. Semin Cell Dev Biol 2021; 119:119-129. [PMID: 34229949 DOI: 10.1016/j.semcdb.2021.06.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022]
Abstract
Macrophages are the dominant immune cell types in the adipose tissue, the liver or the aortic wall and they were originally believed to mainly derived from monocytes to fuel tissue inflammation in cardiometabolic diseases. However, over the last decade the identification of tissue resident macrophages (trMacs) from embryonic origin in these metabolic tissues has provided a breakthrough in the field forcing to better comprehend macrophage diversity during pathological states. Infiltrated monocyte-derived macrophages (moMacs), similar to trMacs, adapt to the local metabolic environment that eventually shapes their functions. In this review, we will summarize the emerging versatility of macrophages in cardiometabolic diseases with a focus in the control of adipose tissue, liver and large vessels homeostasis.
Collapse
Affiliation(s)
- Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France.
| | - Haoussa Askia
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR-S 1166, Sorbonne Université, 75013 Paris, France
| | - Florent Murcy
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
9
|
Cai C, Zeng D, Gao Q, Ma L, Zeng B, Zhou Y, Wang H. Decreased ferroportin in hepatocytes promotes macrophages polarize towards an M2-like phenotype and liver fibrosis. Sci Rep 2021; 11:13386. [PMID: 34183746 PMCID: PMC8239022 DOI: 10.1038/s41598-021-92839-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/03/2021] [Indexed: 12/03/2022] Open
Abstract
Iron release from macrophages is closely regulated by the interaction of hepcidin, a peptide hormone produced by hepatocytes, with the macrophage iron exporter ferroportin (FPN1). However, the functions of FPN1 in hepatocyte secretion and macrophage polarization remain unknown. CD68 immunohistochemical staining and double immunofluorescence staining for F4/80 and Ki67 in transgenic mouse livers showed that the number of macrophages in FPN1−/+ and FPN1−/− mouse livers was significantly increased compared to that in WT (FPN+/+) mice. FPN1 downregulation in hepatic cells increased the levels of the M2 markers CD206, TGF- β, VEGF, MMP-9, Laminin, Collagen, IL-4 and IL-10. Furthermore, the expression of CD16/32 and iNOS, as M1 markers, exhibited the opposite trend. Meanwhile, α-SMA immunohistochemistry and Sirius red staining showed that the trend of liver fibrosis in FPN1−/− mice was more significant than that in control mice. Similarly, in vitro FPN1 knockdown in L02-Sh/L02-SCR liver cell lines yielded similar results. Taken together, we demonstrated that downregulated FPN1 expression in hepatocytes can promote the proliferation and polarization of macrophages, leading to hepatic fibrosis. Above all, the FPN1 axis might provide a potential target for hepatic fibrosis.
Collapse
Affiliation(s)
- Chengyuan Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Danning Zeng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Qing Gao
- Department of Healthy Food Development, Infinitus (China) Company Ltd., Guangzhou, 510024, Guangdong, People's Republic of China
| | - Lei Ma
- Key Laboratory of Molecular Clinical Pharmacology & Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, Guangdong, People's Republic of China
| | - Bohang Zeng
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China
| | - Yi Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - He Wang
- The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, Guangdong, People's Republic of China.
| |
Collapse
|
10
|
Yang P, Liu L, Sun L, Fang P, Snyder N, Saredy J, Ji Y, Shen W, Qin X, Wu Q, Yang X, Wang H. Immunological Feature and Transcriptional Signaling of Ly6C Monocyte Subsets From Transcriptome Analysis in Control and Hyperhomocysteinemic Mice. Front Immunol 2021; 12:632333. [PMID: 33717169 PMCID: PMC7947624 DOI: 10.3389/fimmu.2021.632333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background Murine monocytes (MC) are classified into Ly6Chigh and Ly6Clow MC. Ly6Chigh MC is the pro-inflammatory subset and the counterpart of human CD14++CD16+ intermediate MC which contributes to systemic and tissue inflammation in various metabolic disorders, including hyperhomocysteinemia (HHcy). This study aims to explore molecule signaling mediating MC subset differentiation in HHcy and control mice. Methods RNA-seq was performed in blood Ly6Chigh and Ly6Clow MC sorted by flow cytometry from control and HHcy cystathionine β-synthase gene-deficient (Cbs-/-) mice. Transcriptome data were analyzed by comparing Ly6Chigh vs. Ly6Clow in control mice, Ly6Chigh vs. Ly6Clow in Cbs-/- mice, Cbs-/- Ly6Chigh vs. control Ly6Chigh MC and Cbs-/- Ly6Clow vs. control Ly6Clow MC by using intensive bioinformatic strategies. Significantly differentially expressed (SDE) immunological genes and transcription factor (TF) were selected for functional pathways and transcriptional signaling identification. Results A total of 7,928 SDE genes and 46 canonical pathways derived from it were identified. Ly6Chigh MC exhibited activated neutrophil degranulation, lysosome, cytokine production/receptor interaction and myeloid cell activation pathways, and Ly6Clow MC presented features of lymphocyte immunity pathways in both mice. Twenty-four potential transcriptional regulatory pathways were identified based on SDE TFs matched with their corresponding SDE immunological genes. Ly6Chigh MC presented downregulated co-stimulatory receptors (CD2, GITR, and TIM1) which direct immune cell proliferation, and upregulated co-stimulatory ligands (LIGHT and SEMA4A) which trigger antigen priming and differentiation. Ly6Chigh MC expressed higher levels of macrophage (MΦ) markers, whereas, Ly6Clow MC highly expressed lymphocyte markers in both mice. HHcy in Cbs-/- mice reinforced inflammatory features in Ly6Chigh MC by upregulating inflammatory TFs (Ets1 and Tbx21) and strengthened lymphocytes functional adaptation in Ly6Clow MC by increased expression of CD3, DR3, ICOS, and Fos. Finally, we established 3 groups of transcriptional models to describe Ly6Chigh to Ly6Clow MC subset differentiation, immune checkpoint regulation, Ly6Chigh MC to MΦ subset differentiation and Ly6Clow MC to lymphocyte functional adaptation. Conclusions Ly6Chigh MC displayed enriched inflammatory pathways and favored to be differentiated into MΦ. Ly6Clow MC manifested activated T-cell signaling pathways and potentially can adapt the function of lymphocytes. HHcy reinforced inflammatory feature in Ly6Chigh MC and strengthened lymphocytes functional adaptation in Ly6Clow MC.
Collapse
Affiliation(s)
- Pingping Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lu Liu
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Lizhe Sun
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States.,Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pu Fang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Nathaniel Snyder
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Wen Shen
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuebin Qin
- Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaofeng Yang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Department of Pharmacology, Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
11
|
Domagala M, Laplagne C, Leveque E, Laurent C, Fournié JJ, Espinosa E, Poupot M. Cancer Cells Resistance Shaping by Tumor Infiltrating Myeloid Cells. Cancers (Basel) 2021; 13:E165. [PMID: 33418996 PMCID: PMC7825276 DOI: 10.3390/cancers13020165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Interactions between malignant cells and neighboring stromal and immune cells profoundly shape cancer progression. New forms of therapies targeting these cells have revolutionized the treatment of cancer. However, in order to specifically address each population, it was essential to identify and understand their individual roles in interaction between malignant cells, and the formation of the tumor microenvironment (TME). In this review, we focus on the myeloid cell compartment, a prominent, and heterogeneous group populating TME, which can initially exert an anti-tumoral effect, but with time actively participate in disease progression. Macrophages, dendritic cells, neutrophils, myeloid-derived suppressor cells, mast cells, eosinophils, and basophils act alone or in concert to shape tumor cells resistance through cellular interaction and/or release of soluble factors favoring survival, proliferation, and migration of tumor cells, but also immune-escape and therapy resistance.
Collapse
Affiliation(s)
- Marcin Domagala
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Chloé Laplagne
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Edouard Leveque
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Camille Laurent
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
- IUCT-O, 31000 Toulouse, France
| | - Jean-Jacques Fournié
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Eric Espinosa
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| | - Mary Poupot
- Centre de Recherches en Cancérologie de Toulouse, Inserm UMR1037, 31037 Toulouse, France; (M.D.); (C.L.); (E.L.); (C.L.); (J.-J.F.); (E.E.)
- Université Toulouse III Paul-Sabatier, 31400 Toulouse, France
- ERL 5294 CNRS, 31037 Toulouse, France
| |
Collapse
|
12
|
Ural BB, Yeung ST, Damani-Yokota P, Devlin JC, de Vries M, Vera-Licona P, Samji T, Sawai CM, Jang G, Perez OA, Pham Q, Maher L, Loke P, Dittmann M, Reizis B, Khanna KM. Identification of a nerve-associated, lung-resident interstitial macrophage subset with distinct localization and immunoregulatory properties. Sci Immunol 2020; 5:5/45/eaax8756. [PMID: 32220976 DOI: 10.1126/sciimmunol.aax8756] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Tissue-resident macrophages are a diverse population of cells that perform specialized functions including sustaining tissue homeostasis and tissue surveillance. Here, we report an interstitial subset of CD169+ lung-resident macrophages that are transcriptionally and developmentally distinct from alveolar macrophages (AMs). They are primarily localized around the airways and are found in close proximity to the sympathetic nerves in the bronchovascular bundle. These nerve- and airway-associated macrophages (NAMs) are tissue resident, yolk sac derived, self-renewing, and do not require CCR2+ monocytes for development or maintenance. Unlike AMs, the development of NAMs requires CSF1 but not GM-CSF. Bulk population and single-cell transcriptome analysis indicated that NAMs are distinct from other lung-resident macrophage subsets and highly express immunoregulatory genes under steady-state and inflammatory conditions. NAMs proliferated robustly after influenza infection and activation with the TLR3 ligand poly(I:C), and in their absence, the inflammatory response was augmented, resulting in excessive production of inflammatory cytokines and innate immune cell infiltration. Overall, our study provides insights into a distinct subset of airway-associated pulmonary macrophages that function to maintain immune and tissue homeostasis.
Collapse
Affiliation(s)
- Basak B Ural
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen T Yeung
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Payal Damani-Yokota
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Joseph C Devlin
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Maren de Vries
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Paola Vera-Licona
- Center for Quantitative Medicine, Uconn Health, Farmington, CT 06030, USA.,Department of Cell Biology, Department of Cell Biology, UConn Health, Farmington, CT 06030, USA.,Department of Pediatrics, UConn Health, Farmington, CT 06030, USA.,Institute for Systems Genomics, UConn Health, Farmington, CT 06030, USA
| | - Tasleem Samji
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | | | - Geunhyo Jang
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Oriana A Perez
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA
| | - Quynh Pham
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - Leigh Maher
- Department of Immunology, UConn Health, Farmington, CT 06030, USA
| | - P'ng Loke
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Meike Dittmann
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA
| | - Boris Reizis
- Department of Pathology, New York University Langone Medical Center, New York, NY 10016, USA.,Department of Medicine, New York University Langone Medical Center, New York, NY 10016, USA
| | - Kamal M Khanna
- Department of Microbiology, New York University Langone Health, New York, NY 10016, USA. .,Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
13
|
Felipe VLJ, Paula A V, Silvio UI. Chikungunya virus infection induces differential inflammatory and antiviral responses in human monocytes and monocyte-derived macrophages. Acta Trop 2020; 211:105619. [PMID: 32634389 DOI: 10.1016/j.actatropica.2020.105619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023]
Abstract
Chikungunya virus (CHIKV) is a zoonotic arthropod-borne virus that has caused several outbreaks in tropical and subtropical areas worldwide during the last 50 years. The virus is known to target different human cell types throughout the course of infection including epithelial and endothelial cells, fibroblasts, primary monocytes and monocyte-derived macrophages (MDMs). The two latter are phagocytic cell populations of the innate immune system which are involved in some aspects of CHIKV pathogenesis. However, monocytes and macrophages also potentially contribute to the control of viral replication through the expression of different pattern recognition receptors sensing viral pathogens and subsequently, inducing an type I interferone (IFN-I)-dependent antiviral immune response. The aim of this study was to determine the modulation of the expression of Toll-like receptors (TLRs), cytokine secretion capabilities and antiviral factor production in monocytes and MDMs following infection with CHIKV. Moreover, we sought to determine the replication kinetics of CHIKV in these two cell populations. We found that the maximum peak of CHIKV replication was observed between 18- and 24-hours post-infection (hpi), while after that the is strongly reduced. Furthermore, CHIKV infection induced the pro-inflammatory cytokine production starting from the first 6 hpi in both monocytes and MDMs, with similar kinetics but different protein levels. In contrast, the kinetics of transcriptional expression of some TLRs were different between both cell types. In addition, IFN-I, 2',5'-oligoadenylate synthetase 1 (OAS1), and double-stranded RNA-activated protein kinase R (PKR) mRNA levels were detected in response to CHIKV infection of monocytes and MDMs, resulting the highest expression levels at 48 hpi. In conclusion, our data provides evidence that CHIKV infection activates the TLR pathways in primary monocytes and MDMs, which play a crucial role in CHIKV pathogenesis and/or host defense, differentially. However, additional studies are required to determine the functional role of TLRs in monocytes and MDMs.
Collapse
Affiliation(s)
- Valdés López Juan Felipe
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Velilla Paula A
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| | - Urcuqui-Inchima Silvio
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
14
|
Sun F, Luo JH, Yue TT, Wang FX, Yang CL, Zhang S, Wang XQ, Wang CY. The role of hydrogen sulphide signalling in macrophage activation. Immunology 2020; 162:3-10. [PMID: 32876334 PMCID: PMC7730026 DOI: 10.1111/imm.13253] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/27/2020] [Accepted: 07/30/2020] [Indexed: 01/05/2023] Open
Abstract
Hydrogen sulphide (H2S) is the latest identified small gaseous mediator enabled by its lipophilic nature to freely permeate the biological membranes. Initially, H2S was recognized by its roles in neuronal activity and vascular relaxation, which makes it an important molecule involved in paracrine signalling pathways. Recently, the immune regulatory function of gasotransmitters, H2S in particular, is increasingly being appreciated. Endogenous H2S level has been linked to macrophage activation, polarization and inflammasome formation. Mechanistically, H2S‐induced protein S‐sulphydration suppresses several inflammatory pathways including NF‐κB and JNK signalling. Moreover, H2S serves as a potent cellular redox regulator to modulate epigenetic alterations and to promote mitochondrial biogenesis in macrophages. Here in this review, we intend to summarize the recent advancements of H2S studies in macrophages, and to discuss with focus on the therapeutic potential of H2S donors by targeting macrophages. The feasibility of H2S signalling component as a macrophage biomarker under disease conditions would be also discussed.
Collapse
Affiliation(s)
- Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Jia-Hui Luo
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Tian-Tian Yue
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Fa-Xi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Chun-Liang Yang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Shu Zhang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Xin-Qiang Wang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China.,Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan, China
| |
Collapse
|
15
|
Liu C, Zhang L, Zhu W, Guo R, Sun H, Chen X, Deng N. Barriers and Strategies of Cationic Liposomes for Cancer Gene Therapy. Mol Ther Methods Clin Dev 2020; 18:751-764. [PMID: 32913882 PMCID: PMC7452052 DOI: 10.1016/j.omtm.2020.07.015] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cationic liposomes (CLs) have been regarded as the most promising gene delivery vectors for decades with the advantages of excellent biodegradability, biocompatibility, and high nucleic acid encapsulation efficiency. However, the clinical use of CLs in cancer gene therapy is limited because of many uncertain factors in vivo. Extracellular barriers such as opsonization, rapid clearance by the reticuloendothelial system and poor tumor penetration, and intracellular barriers, including endosomal/lysosomal entrapped network and restricted diffusion to the nucleus, make CLs not the ideal vector for transferring extrinsic genes in the body. However, the obstacles in achieving productive therapeutic effects of nucleic acids can be addressed by tailoring the properties of CLs, which are influenced by lipid compositions and surface modification. This review focuses on the physiological barriers of CLs against cancer gene therapy and the effects of lipid compositions on governing transfection efficiency, and it briefly discusses the impacts of particle size, membrane charge density, and surface modification on the fate of CLs in vivo, which may provide guidance for their preclinical studies.
Collapse
Affiliation(s)
- Chunyan Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Wenhui Zhu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Raoqing Guo
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Huamin Sun
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Xi Chen
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Yvan-Charvet L, Ng LG. Granulopoiesis and Neutrophil Homeostasis: A Metabolic, Daily Balancing Act. Trends Immunol 2020; 40:598-612. [PMID: 31256783 DOI: 10.1016/j.it.2019.05.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 02/07/2023]
Abstract
Granulopoiesis is part of the hematopoietic hierarchic architecture, where hematopoietic stem cells give rise to highly proliferative multipotent and lineage-committed granulocytic progenitor cells that differentiate into unipotent neutrophil progenitors. Given their short lifespan, neutrophils are rapidly cleared from circulation through specialized efferocytic macrophages. Together with an intrinsic clock, these processes contribute to circadian fluctuations, preserving self-tolerance and protection against invading pathogens. However, metabolic perturbation of granulopoiesis and neutrophil homeostasis can result in low-grade chronic inflammation, as observed with aging. During acute pathogenic infections, hematopoiesis can also be switched into emergency mode, which has been recently associated with significant neutrophil functional heterogeneity. This review focuses on a new reassessment of regulatory mechanisms governing neutrophil production, life-cycle, and diversity in health and disease.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR, Biopolis, Singapore 138648, Singapore; State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences, 288 Nanjing Road, Tianjin 300020, China; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore; Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
17
|
Daemen S, Schilling JD. The Interplay Between Tissue Niche and Macrophage Cellular Metabolism in Obesity. Front Immunol 2020; 10:3133. [PMID: 32038642 PMCID: PMC6987434 DOI: 10.3389/fimmu.2019.03133] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 12/13/2022] Open
Abstract
Obesity is associated with the development of metabolic diseases such as type 2 diabetes and non-alcoholic fatty liver disease. The presence of chronic, low-grade inflammation appears to be an important mechanistic link between excess nutrients and clinical disease. The onset of these metabolic disorders coincides with changes in the number and phenotype of macrophages in peripheral organs, particularly in the liver and adipose tissue. Macrophage accumulation in these tissues has been implicated in tissue inflammation and fibrosis, contributing to metabolic disease progression. Recently, the concept has emerged that changes in macrophage metabolism affects their functional phenotype, possibly triggered by distinct environmental metabolic cues. This may be of particular importance in the setting of obesity, where both liver and adipose tissue are faced with a high metabolic burden. In the first part of this review we will discuss current knowledge regarding macrophage dynamics in both adipose tissue and liver in obesity. Then in the second part, we will highlight data linking macrophage metabolism to functional phenotype with an emphasis on macrophage activation in metabolic disease. The importance of understanding how tissue niche influences macrophage function in obesity will be highlighted. In addition, we will identify important knowledge gaps and outstanding questions that are relevant for future research in this area and will facilitate the identification of novel targets for therapeutic intervention in associated metabolic diseases.
Collapse
Affiliation(s)
- Sabine Daemen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel D Schilling
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
18
|
Lai B, Wang J, Fagenson A, Sun Y, Saredy J, Lu Y, Nanayakkara G, Yang WY, Yu D, Shao Y, Drummer C, Johnson C, Saaoud F, Zhang R, Yang Q, Xu K, Mastascusa K, Cueto R, Fu H, Wu S, Sun L, Zhu P, Qin X, Yu J, Fan D, Shen YH, Sun J, Rogers T, Choi ET, Wang H, Yang X. Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Front Immunol 2019; 10:2612. [PMID: 31824480 PMCID: PMC6880770 DOI: 10.3389/fimmu.2019.02612] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/21/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanisms underlying pathophysiological regulation of tissue macrophage (Mφ) subsets remain poorly understood. From the expression of 207 Mφ genes comprising 31 markers for 10 subsets, 45 transcription factors (TFs), 56 immunometabolism enzymes, 23 trained immunity (innate immune memory) enzymes, and 52 other genes in microarray data, we made the following findings. (1) When 34 inflammation diseases and tumor types were grouped into eight categories, there was differential expression of the 31 Mφ markers and 45 Mφ TFs, highlighted by 12 shared and 20 group-specific disease pathways. (2) Mφ in lung, liver, spleen, and intestine (LLSI-Mφ) express higher M1 Mφ markers than lean adipose tissue Mφ (ATMφ) physiologically. (3) Pro-adipogenic TFs C/EBPα and PPARγ and proinflammatory adipokine leptin upregulate the expression of M1 Mφ markers. (4) Among 10 immune checkpoint receptors (ICRs), LLSI-Mφ and bone marrow (BM) Mφ express higher levels of CD274 (PDL-1) than ATMφ, presumably to counteract the M1 dominant status via its reverse signaling behavior. (5) Among 24 intercellular communication exosome mediators, LLSI- and BM- Mφ prefer to use RAB27A and STX3 than RAB31 and YKT6, suggesting new inflammatory exosome mediators for propagating inflammation. (6) Mφ in peritoneal tissue and LLSI-Mφ upregulate higher levels of immunometabolism enzymes than does ATMφ. (7) Mφ from peritoneum and LLSI-Mφ upregulate more trained immunity enzyme genes than does ATMφ. Our results suggest that multiple new mechanisms including the cell surface, intracellular immunometabolism, trained immunity, and TFs may be responsible for disease group-specific and shared pathways. Our findings have provided novel insights on the pathophysiological regulation of tissue Mφ, the disease group-specific and shared pathways of Mφ, and novel therapeutic targets for cancers and inflammations.
Collapse
Affiliation(s)
- Bin Lai
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiwei Wang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Alexander Fagenson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Abdominal Organ Transplantation, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yu Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Jason Saredy
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Yifan Lu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani Nanayakkara
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daohai Yu
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Charles Drummer
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Candice Johnson
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fatma Saaoud
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ruijing Zhang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Qian Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Keman Xu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Kevin Mastascusa
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ramon Cueto
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hangfei Fu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Susu Wu
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Lizhe Sun
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Peiqian Zhu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuebin Qin
- Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Jun Yu
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Ying H Shen
- Cardiothoracic Surgery Research Laboratory, Texas Heart Institute, Houston, TX, United States.,Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Jianxin Sun
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Thomas Rogers
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Division of Vascular and Endovascular Surgery, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Tulane National Primate Research Center, School of Medicine, Tulane University, Covington, LA, United States
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Centers for Inflammation, Translational and Clinical Lung Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
19
|
Bruggeman CW, Houtzager J, Dierdorp B, Kers J, Pals ST, Lutter R, van Gulik T, den Haan JMM, van den Berg TK, van Bruggen R, Kuijpers TW. Tissue-specific expression of IgG receptors by human macrophages ex vivo. PLoS One 2019; 14:e0223264. [PMID: 31613876 PMCID: PMC6793881 DOI: 10.1371/journal.pone.0223264] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Recently it was discovered that tissue-resident macrophages derive from embryonic precursors, not only from peripheral blood monocytes, and maintain themselves by self-renewal. Most in-vitro studies on macrophage biology make use of in-vitro cultured human monocyte-derived macrophages. Phagocytosis of IgG-opsonized particles by tissue-resident macrophages takes place via interaction with IgG receptors, the Fc-gamma receptors (FcγRs). We investigated the FcγR expression on macrophages both in-vivo and ex-vivo from different human tissues. Upon isolation of primary human macrophages from bone marrow, spleen, liver and lung, we observed that macrophages from all studied tissues expressed high levels of FcγRIII, which was in direct contrast with the low expression on blood monocyte-derived macrophages. Expression levels of FcγRI were highly variable, with bone marrow macrophages showing the lowest and alveolar macrophages the highest expression. Kupffer cells in the liver were the only tissue-resident macrophages that expressed the inhibitory IgG receptor, FcγRIIB. This inhibitory receptor was also found to be expressed by sinusoidal endothelial cells in the liver. In sum, our immunofluorescence data combined with ex-vivo stainings of isolated macrophages indicated that tissue-resident macrophages are remarkably unique and different from monocyte-derived macrophages in their phenotypic expression of IgG receptors. Tissue macrophages show distinct tissue-specific FcγR expression patterns.
Collapse
Affiliation(s)
- Christine W. Bruggeman
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| | - Julia Houtzager
- Department of Experimental Surgery, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Barbara Dierdorp
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Jesper Kers
- Department of Pathology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Steven T. Pals
- Department of Pathology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - René Lutter
- Department of Experimental Immunology, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Thomas van Gulik
- Department of Experimental Surgery, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | - Timo K. van den Berg
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Taco W. Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Emma Children's Hospital, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Bohlen CJ, Friedman BA, Dejanovic B, Sheng M. Microglia in Brain Development, Homeostasis, and Neurodegeneration. Annu Rev Genet 2019; 53:263-288. [PMID: 31518519 DOI: 10.1146/annurev-genet-112618-043515] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.
Collapse
Affiliation(s)
- Christopher J Bohlen
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| | - Brad A Friedman
- Department of Bioinformatics, Genentech, South San Francisco, California 94080, USA
| | - Borislav Dejanovic
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| | - Morgan Sheng
- Department of Neuroscience, Genentech, South San Francisco, California 94080, USA; ,
| |
Collapse
|
21
|
Theret M, Mounier R, Rossi F. The origins and non-canonical functions of macrophages in development and regeneration. Development 2019; 146:146/9/dev156000. [PMID: 31048317 DOI: 10.1242/dev.156000] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of new non-canonical (i.e. non-innate immune) functions of macrophages has been a recurring theme over the past 20 years. Indeed, it has emerged that macrophages can influence the development, homeostasis, maintenance and regeneration of many tissues and organs, including skeletal muscle, cardiac muscle, the brain and the liver, in part by acting directly on tissue-resident stem cells. In addition, macrophages play crucial roles in diseases such as obesity-associated diabetes or cancers. Increased knowledge of their regulatory roles within each tissue will therefore help us to better understand the full extent of their functions and could highlight new mechanisms modulating disease pathogenesis. In this Review, we discuss recent studies that have elucidated the developmental origins of various macrophage populations and summarize our knowledge of the non-canonical functions of macrophages in development, regeneration and tissue repair.
Collapse
Affiliation(s)
- Marine Theret
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada.,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Remi Mounier
- Institut Neuromyogène, CNRS UMR 5310, INSERM U1217, Université de Lyon, 69008 Lyon, France
| | - Fabio Rossi
- Department of Medical Genetics, The Biomedical Research Centre, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada .,Faculty of Medicine, The University of British Columbia, 317-2194 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
22
|
Guilbaud E, Gautier EL, Yvan-Charvet L. Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers (Basel) 2019; 11:E298. [PMID: 30832375 PMCID: PMC6468621 DOI: 10.3390/cancers11030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue integrity, preserve self-tolerance and protect against invading pathogens. Lung macrophages within the distal airways face around 8000⁻9000 L of air every day and for that reason are continuously exposed to a variety of inhaled particles, allergens or airborne microbes. Chronic exposure to irritant particles can prime macrophages to mediate a smoldering inflammatory response creating a mutagenic environment and favoring cancer initiation. Tumor-associated macrophages (TAMs) represent the majority of the tumor stroma and maintain intricate interactions with malignant cells within the tumor microenvironment (TME) largely influencing the outcome of cancer growth and metastasis. A number of macrophage-centered approaches have been investigated as potential cancer therapy and include strategies to limit their infiltration or exploit their antitumor effector functions. Recently, strategies aimed at targeting IL-1 signaling pathway using a blocking antibody have unexpectedly shown great promise on incident lung cancer. Here, we review the current understanding of the bridge between TAM metabolism, IL-1 signaling, and effector functions in lung adenocarcinoma and address the challenges to successfully incorporating these pathways into current anticancer regimens.
Collapse
Affiliation(s)
- Emma Guilbaud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR_S 1166, Sorbonnes Universités, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
23
|
Valdés López JF, Urcuqui-Inchima S. Synergism between phorbol-12-myristate-13-acetate and vitamin D3 in the differentiation of U937 cells to monocytes and macrophages. Morphologie 2018; 102:205-218. [PMID: 30075941 DOI: 10.1016/j.morpho.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/17/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Phorbol-12-myristate-13-acetate (PMA) and 1,25-dihydroxyvitamin D3 (VD3) are stimuli commonly used to induce macrophage differentiation in monocytic cell lines, but the extent of differentiation in comparison to primary tissue macrophages is unclear. Here, we examine the morphological/phenotypic markers associated with differentiation of U937 cells into monocytes/macrophages, in response to PMA or VD3 treatment. PMA stimulus but not with VD3, induced changes in cell morphology indicative of differentiation, but did not show differentiation comparable to monocyte-derive macrophage (MDM). The cells treated with PMA+VD3 for 2 days (d) acquired morphological/phenotypic features similar to those acquired by monocytes. In contrast, U937 cells treated for 2d with PMA and VD3 followed by 6d of resting in culture without PMA but in the presence of VD3 acquired morphological and phenotypic markers similar to those of MDM; i.e. reduced nucleus/cytoplasmic ratio, high auto-fluorescence and cytoplasmic complexity. Furthermore, low expression of CD14/TLR2 and high expression of CD68/CD86 were observed. In conclusion, our results indicate a synergistic effect between PMA and VD3 in U937 cells differentiation into both monocytes or macrophages and we propose a modified PMA differentiation protocol to enhance monocyte/macrophage differentiation of U937 cells.
Collapse
Affiliation(s)
- J F Valdés López
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| | - S Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Calle 70 No. 52-21, Medellín, Colombia.
| |
Collapse
|
24
|
Abstract
Obesity is a worldwide public health concern yet no safe therapies are currently available. The activity of sympathetic neurons is necessary and sufficient for fat mass reduction, via norepinephrine (NE) signaling. Macrophage accumulation in the adipose tissue is thought to play the central role in the onset of obesity, yet their relation to NE has been controversial. We have identified a population of sympathetic neuron-associated macrophages (SAMs) that control obesity via the uptake and clearing of NE. Here we focus on the neuro-immune regulation of obesity by discussing the genetic, cellular and functional signatures of SAMs vis-a-vis adipose tissue macrophages (ATMs).
Collapse
|
25
|
The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124:44-53. [DOI: 10.1016/j.jri.2017.10.045] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
|
26
|
On phagocytes and macular degeneration. Prog Retin Eye Res 2017; 61:98-128. [DOI: 10.1016/j.preteyeres.2017.06.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/29/2017] [Accepted: 06/05/2017] [Indexed: 12/17/2022]
|
27
|
Sierro F, Evrard M, Rizzetto S, Melino M, Mitchell AJ, Florido M, Beattie L, Walters SB, Tay SS, Lu B, Holz LE, Roediger B, Wong YC, Warren A, Ritchie W, McGuffog C, Weninger W, Le Couteur DG, Ginhoux F, Britton WJ, Heath WR, Saunders BM, McCaughan GW, Luciani F, MacDonald KPA, Ng LG, Bowen DG, Bertolino P. A Liver Capsular Network of Monocyte-Derived Macrophages Restricts Hepatic Dissemination of Intraperitoneal Bacteria by Neutrophil Recruitment. Immunity 2017; 47:374-388.e6. [PMID: 28813662 DOI: 10.1016/j.immuni.2017.07.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 03/03/2017] [Accepted: 07/23/2017] [Indexed: 12/17/2022]
Abstract
The liver is positioned at the interface between two routes traversed by pathogens in disseminating infection. Whereas blood-borne pathogens are efficiently cleared in hepatic sinusoids by Kupffer cells (KCs), it is unknown how the liver prevents dissemination of peritoneal pathogens accessing its outer membrane. We report here that the hepatic capsule harbors a contiguous cellular network of liver-resident macrophages phenotypically distinct from KCs. These liver capsular macrophages (LCMs) were replenished in the steady state from blood monocytes, unlike KCs that are embryonically derived and self-renewing. LCM numbers increased after weaning in a microbiota-dependent process. LCMs sensed peritoneal bacteria and promoted neutrophil recruitment to the capsule, and their specific ablation resulted in decreased neutrophil recruitment and increased intrahepatic bacterial burden. Thus, the liver contains two separate and non-overlapping niches occupied by distinct resident macrophage populations mediating immunosurveillance at these two pathogen entry points to the liver.
Collapse
Affiliation(s)
- Frederic Sierro
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Simone Rizzetto
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Michelle Melino
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Andrew J Mitchell
- Department of Chemical & Biomolecular Engineering, Materials Characterization and Fabrication Platform, University of Melbourne, Melbourne, VIC, Australia
| | - Manuela Florido
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Shaun B Walters
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Szun Szun Tay
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Bo Lu
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia; Immunology Research Centre, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Ben Roediger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Yik Chun Wong
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Alessandra Warren
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - William Ritchie
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - Claire McGuffog
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Wolfgang Weninger
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - David G Le Couteur
- CERA and ANZAC Research Institute, Concord RG Hospital and University of Sydney, Sydney, NSW, Australia
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - Warwick J Britton
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia
| | - William R Heath
- Department of Microbiology and Immunology at Peter Doherty Institute for Infection and Immunity and the ARC Centre of Excellence in Advanced Molecular Imaging at the University of Melbourne, Melbourne, VIC, Australia
| | - Bernadette M Saunders
- Centenary Institute and the University of Sydney, Newtown, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Fabio Luciani
- Systems Immunology, Viral Immunology Systems Program, the Kirby Institute, UNSW, Sydney, NSW, Australia
| | - Kelli P A MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Biopolis, Singapore, Singapore
| | - David G Bowen
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Patrick Bertolino
- Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
28
|
Falkenham A, Myers T, Wong C, Legare JF. Implications for the role of macrophages in a model of myocardial fibrosis: CCR2(-/-) mice exhibit an M2 phenotypic shift in resident cardiac macrophages. Cardiovasc Pathol 2016; 25:390-8. [PMID: 27327107 DOI: 10.1016/j.carpath.2016.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/25/2016] [Accepted: 05/25/2016] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Macrophages (MΦ) are functionally diverse and dynamic. Until recently, cardiac MΦ were assumed to be monocyte derived; however, resident cardiac MΦ (rCMΦ), present at baseline, were identified in myocardia and have been implicated in cardiac healing. Previously, we demonstrated that CCR2(-/-) mice are protected from myocardial fibrosis - an observation initially attributed to changes in infiltrating monocytes. Here, we reexplored this observation in the context of our new understanding of rCMΦ. METHODS Male CCR2(-/-) and C57BL/6 hearts were digested and purified to a single cell suspension, incubated with fluorophore-linked antibodies (CCR2, CX3CR1, CD11b, Ly6C, TNF-α, and IL-10), and assessed by flow cytometry. Differentiated MΦ were cocultured with fibroblasts in order to characterize how MΦ phenotype influences fibroblast activation. Fibroblasts were characterized for their expression of smooth muscle cell actin (SMA). RESULTS A significant decrease in Ly6C expression was observed in the CCR2(-/-) cardiac MΦ population relative to WT, which corresponded with significantly lower TNF-α expression and significantly higher IL-10 expression. Using in vitro coculture system, classical MΦ promoted fibroblast activation relative to nonclassical MΦ. CONCLUSION CCR2(-/-) rCMΦ favor a more antiinflammatory phenotype relative to WT controls. Moreover, a shift toward the antiinflammatory promotes proliferation, but not activation in vitro. Together, these observations suggest that antiinflammatory cardiac MΦ populations may inhibit myocardial fibrosis in a pathological setting by preventing the activation of fibroblasts. NEWS AND NOTEWORTHY Here, we provide novel evidence for baseline differences in rCMΦ phenotypes (i.e. classical vs. nonclassical) and how these differences could modulate cardiac healing. Importantly, we observed differences in how classical vs. nonclassical MΦ influenced fibroblast activation, which could, in turn, affect fibrosis.
Collapse
Affiliation(s)
- Alec Falkenham
- Department of Pathology, Dalhousie University, Halifax, NS, Canada.
| | - Tanya Myers
- Department of Surgery, Dalhousie University, Halifax, NS, Canada
| | - Chloe Wong
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Jean Francois Legare
- Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Surgery, Dalhousie University, Halifax, NS, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
29
|
Abstract
Inflammation originating from the adipose tissue is considered to be one of the main driving forces for the development of insulin resistance and type 2 diabetes in obese individuals. Although a plethora of different immune cells shapes adipose tissue inflammation, this review is specifically focused on the contribution of macrophages that reside in adipose tissue in lean and obese conditions. Both conventional and tissue-specific functions of adipose tissue macrophages (ATMs) in lean and obese adipose tissue are discussed and linked with metabolic and inflammatory changes that occur during the development of obesity. Furthermore, we will address various circulating and adipose tissue-derived triggers that may be involved in shaping the ATM phenotype and underlie ATM function in lean and obese conditions. Finally, we will highlight how these changes affect adipose tissue inflammation and may be targeted for therapeutic interventions to improve insulin sensitivity in obese individuals.
Collapse
Affiliation(s)
- Lily Boutens
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands
| | - Rinke Stienstra
- Department of Medicine, Radboud University Medical Center, Nijmegen, the Netherlands.
- Nutrition, Metabolism and Genomics Group, Wageningen University, Bomenweg 2, 6703 HD, Wageningen, the Netherlands.
| |
Collapse
|
30
|
Ning F, Liu H, Lash GE. The Role of Decidual Macrophages During Normal and Pathological Pregnancy. Am J Reprod Immunol 2016; 75:298-309. [PMID: 26750089 DOI: 10.1111/aji.12477] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/11/2022] Open
Abstract
Macrophages perform many specific functions including host defense, homeostasis, angiogenesis, and tissue development. Macrophages are the second most abundant leukocyte population in the non-pregnant endometrium and pregnant decidua and likely play a central role in the establishment and maintenance of normal pregnancy. Importantly, aberrantly activated uterine macrophages can affect trophoblast function and placental development, which may result in various adverse pregnancy outcomes ranging from pre-eclampsia to fetal growth restriction or demise. Only by fully understanding the roles of macrophage in pregnancy will we be able to develop interventions for the treatment of these various pregnancy complications. This review discusses the general origin and classification of monocytes and macrophages and focuses on the phenotype and functional roles of decidual macrophage at the maternal-fetal interface in normal pregnancy, as well as discussing the potential contribution of the abnormal state of these cells to various aspects of pregnancy pathologies.
Collapse
Affiliation(s)
- Fen Ning
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Department of Obstetrics, Preterm Birth Prevention and Treatment Research Unit, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Huishu Liu
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China.,Guangzhou Medical University, Guangzhou, China
| | - Gendie E Lash
- Division of Uterine Vascular Biology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| |
Collapse
|
31
|
Micro-RNAs and macrophage diversity in atherosclerosis: new players, new challenges…new opportunities for therapeutic intervention? Biochem Biophys Rep 2015; 3:202-206. [PMID: 26457329 PMCID: PMC4594832 DOI: 10.1016/j.bbrep.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Efforts in experimental therapeutics of atherosclerosis are mostly focused on identifying candidate targets that can be exploited in developing new strategies to reduce plaque progression, induce its regression and/or improve stability of advanced lesions. Plaque macrophages are central players in all these processes, and consequently a significant amount of research is devoted to understanding mechanisms that regulate, for instance, macrophage apoptosis, necrosis or migration. Macrophage diversity is a key feature of the macrophage population in the plaque and can impact many aspects of lesion development. Thus, searching for molecular entities that contribute to atherorelevant functions of a specific macrophage type but not others may lead to identification of targets that can be exploited in phenotype selective modulation of the lesional macrophage. This however, remains an unmet goal. In recent years several studies have revealed critical functions of micro-RNAs (miRs) in mechanisms of macrophage polarization, and a number of miRs have emerged as being specific of distinctive macrophage subsets. Not only can these miRs represent the first step towards recognition of phenotype specific targets, but they may also pave the way to reveal novel atherorelevant pathways within macrophage subsets. This article discusses some of these recent findings, speculates on their potential relevance to atherosclerosis and elaborates on the prospective use of miRs to affect the function of plaque macrophages in a phenotype selective manner. Micro-RNAs are critical in macrophage polarization and atherosclerosis. Macrophage subsets have distinctive miRs. The use of miRs to target plaque macrophage subsets is discussed.
Collapse
|
32
|
Italiani P, Boraschi D. New Insights Into Tissue Macrophages: From Their Origin to the Development of Memory. Immune Netw 2015; 15:167-76. [PMID: 26330802 PMCID: PMC4553254 DOI: 10.4110/in.2015.15.4.167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 07/25/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
Abstract
Macrophages are the main effector cells of innate immunity and are involved in inflammatory and anti-infective processes. They also have an essential role in maintaining tissue homeostasis, supporting tissue development, and repairing tissue damage. Until few years ago, it was believed that tissue macrophages derived from circulating blood monocytes, which terminally differentiated in the tissue and unable to proliferate. Recent evidence in the biology of tissue macrophages has uncovered a series of immune and ontogenic features that had been neglected for long, despite old observations. These include origin, heterogeneity, proliferative potential (or self-renewal), polarization, and memory. In recent years, the number of publications on tissue resident macrophages has grown rapidly, highlighting the renewed interest of the immunologists for these key players of innate immunity. This mini-review aims to summarizing the new current knowledge in macrophage immunobiology, in order to offer a clear and immediate overview of the field.
Collapse
Affiliation(s)
- Paola Italiani
- Institute of Protein Biochemistry, National Research Council, Naples 80131, Italy
| | - Diana Boraschi
- Institute of Protein Biochemistry, National Research Council, Naples 80131, Italy
| |
Collapse
|
33
|
Affiliation(s)
- Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|