1
|
Schmied L, Luu TT, Søndergaard JN, Hald SH, Meinke S, Mohammad DK, Singh SB, Mayer C, Perinetti Casoni G, Chrobok M, Schlums H, Rota G, Truong HM, Westerberg LS, Guarda G, Alici E, Wagner AK, Kadri N, Bryceson YT, Saeed MB, Höglund P. SHP-1 localization to the activating immune synapse promotes NK cell tolerance in MHC class I deficiency. Sci Signal 2023; 16:eabq0752. [PMID: 37040441 DOI: 10.1126/scisignal.abq0752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.
Collapse
Affiliation(s)
- Laurent Schmied
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Thuy T Luu
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Jonas N Søndergaard
- Center for Infectious Disease Education and Research (CIDER), Osaka University, Suita 565-0871, Japan
| | - Sophia H Hald
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil KRG-Kurdistan Region, Iraq
| | - Sunitha B Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Corinna Mayer
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hieu M Truong
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Greta Guarda
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Evren Alici
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Arnika K Wagner
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Jonas Lies vei 87, Laboratory Building 5th floor, N-5021 Bergen, Norway
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
| |
Collapse
|
2
|
Luu TT, Søndergaard JN, Peña-Pérez L, Kharazi S, Krstic A, Meinke S, Schmied L, Frengen N, Heshmati Y, Kierczak M, Bouderlique T, Wagner AK, Gustafsson C, Chambers BJ, Achour A, Kutter C, Höglund P, Månsson R, Kadri N. FOXO1 and FOXO3 Cooperatively Regulate Innate Lymphoid Cell Development. Front Immunol 2022; 13:854312. [PMID: 35757763 PMCID: PMC9218573 DOI: 10.3389/fimmu.2022.854312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Natural killer (NK) cells play roles in viral clearance and early surveillance against malignant transformation, yet our knowledge of the underlying mechanisms controlling their development and functions remain incomplete. To reveal cell fate-determining pathways in NK cell progenitors (NKP), we utilized an unbiased approach and generated comprehensive gene expression profiles of NK cell progenitors. We found that the NK cell program was gradually established in the CLP to preNKP and preNKP to rNKP transitions. In line with FOXO1 and FOXO3 being co-expressed through the NK developmental trajectory, the loss of both perturbed the establishment of the NK cell program and caused stalling in both NK cell development and maturation. In addition, we found that the combined loss of FOXO1 and FOXO3 caused specific changes to the composition of the non-cytotoxic innate lymphoid cell (ILC) subsets in bone marrow, spleen, and thymus. By combining transcriptome and chromatin profiling, we revealed that FOXO TFs ensure proper NK cell development at various lineage-commitment stages through orchestrating distinct molecular mechanisms. Combined FOXO1 and FOXO3 deficiency in common and innate lymphoid cell progenitors resulted in reduced expression of genes associated with NK cell development including ETS-1 and their downstream target genes. Lastly, we found that FOXO1 and FOXO3 controlled the survival of committed NK cells via gene regulation of IL-15Rβ (CD122) on rNKPs and bone marrow NK cells. Overall, we revealed that FOXO1 and FOXO3 function in a coordinated manner to regulate essential developmental genes at multiple stages during murine NK cell and ILC lineage commitment.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Jonas Nørskov Søndergaard
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Lucía Peña-Pérez
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Shabnam Kharazi
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Aleksandra Krstic
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Nicolai Frengen
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yaser Heshmati
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thibault Bouderlique
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Charlotte Gustafsson
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Claudia Kutter
- Department of Microbiology, Tumor and Cell Biology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Huddinge, Karolinska Institute, Stockholm, Sweden.,Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Robert Månsson
- Center for Hematology and Regenerative Medicine, Huddinge, Karolinska Institute, Stockholm, Sweden.,Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Brauning A, Rae M, Zhu G, Fulton E, Admasu TD, Stolzing A, Sharma A. Aging of the Immune System: Focus on Natural Killer Cells Phenotype and Functions. Cells 2022; 11:cells11061017. [PMID: 35326467 PMCID: PMC8947539 DOI: 10.3390/cells11061017] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the greatest risk factor for nearly all major chronic diseases, including cardiovascular diseases, cancer, Alzheimer’s and other neurodegenerative diseases of aging. Age-related impairment of immune function (immunosenescence) is one important cause of age-related morbidity and mortality, which may extend beyond its role in infectious disease. One aspect of immunosenescence that has received less attention is age-related natural killer (NK) cell dysfunction, characterized by reduced cytokine secretion and decreased target cell cytotoxicity, accompanied by and despite an increase in NK cell numbers with age. Moreover, recent studies have revealed that NK cells are the central actors in the immunosurveillance of senescent cells, whose age-related accumulation is itself a probable contributor to the chronic sterile low-grade inflammation developed with aging (“inflammaging”). NK cell dysfunction is therefore implicated in the increasing burden of infection, malignancy, inflammatory disorders, and senescent cells with age. This review will focus on recent advances and open questions in understanding the interplay between systemic inflammation, senescence burden, and NK cell dysfunction in the context of aging. Understanding the factors driving and enforcing NK cell aging may potentially lead to therapies countering age-related diseases and underlying drivers of the biological aging process itself.
Collapse
Affiliation(s)
- Ashley Brauning
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Michael Rae
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Gina Zhu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Elena Fulton
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Tesfahun Dessale Admasu
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
| | - Alexandra Stolzing
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Centre for Biological Engineering, Wolfson School of Electrical, Material and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
- Correspondence: (A.S.); (A.S.)
| | - Amit Sharma
- SENS Research Foundation, Mountain View, CA 94041, USA; (A.B.); (M.R.); (G.Z.); (E.F.); (T.D.A.)
- Correspondence: (A.S.); (A.S.)
| |
Collapse
|
4
|
Chu A, Kok SY, Tsui J, Lin MC, Aguirre B, Wadehra M. Epithelial membrane protein 2 (Emp2) modulates innate immune cell population recruitment at the maternal-fetal interface. J Reprod Immunol 2021; 145:103309. [PMID: 33774530 DOI: 10.1016/j.jri.2021.103309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Epithelial membrane protein 2 (EMP2) is a tetraspan membrane protein that has been revealed in cancer and placental models to mediate a number of vascular responses. Recently, Emp2 modulation has been shown to have an immunologic effect on uterine NK cell recruitment in the mouse placenta. Given the importance of immune cell populations on both placental vascularization and maternal immune tolerance of the developing fetus, we wanted to better characterize the immunologic effects of Emp2 at the placental-fetal interface. We performed flow cytometry of WT and Emp2 KO C57Bl/6 mouse uterine horns at GD12.5 to characterize immune cell populations localized to the various components of the maternal-fetal interface. We found that Emp2 KO decidua and placenta showed an elevated overall percentage of CD45+ cells compared to WT. Characterization of CD45+ cells in the decidua of Emp2 KO dams revealed an increase in NK cells, whereas in the placenta, Emp2 KO dams showed an increased percentage of M1 macrophages (with an increased ratio of M1/M2 macrophages). Given the differences detected in uNK cell populations in the decidua, we further characterized the interaction between Emp2 genetic KO and NK cell deletion via anti-asialo GM1 antibody injections. While the double knock-out of Emp2 and NK cells did not alter individual pup birthweight, it significantly reduced total litter weight and size by ∼50 %. In conclusion, Emp2 appears to regulate uNK and macrophage cell populations in pregnancy.
Collapse
Affiliation(s)
- Alison Chu
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Su-Yin Kok
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Jessica Tsui
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Meng-Chin Lin
- Division of Neonatology and Developmental Biology, Department of Pediatrics, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, MDCC B2-411, Los Angeles, CA, 90095, USA.
| | - Brian Aguirre
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California-Los Angeles, 4525 MacDonald Research Laboratories, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Gianchecchi E, Delfino DV, Fierabracci A. Natural Killer Cells: Potential Biomarkers and Therapeutic Target in Autoimmune Diseases? Front Immunol 2021; 12:616853. [PMID: 33679757 PMCID: PMC7933577 DOI: 10.3389/fimmu.2021.616853] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Autoimmune diseases recognize a multifactorial pathogenesis, although the exact mechanism responsible for their onset remains to be fully elucidated. Over the past few years, the role of natural killer (NK) cells in shaping immune responses has been highlighted even though their involvement is profoundly linked to the subpopulation involved and to the site where such interaction takes place. The aberrant number and functionality of NK cells have been reported in several different autoimmune disorders. In the present review, we report the most recent findings regarding the involvement of NK cells in both systemic and organ-specific autoimmune diseases, including type 1 diabetes (T1D), primary biliary cholangitis (PBC), systemic sclerosis, systemic lupus erythematosus (SLE), primary Sjögren syndrome, rheumatoid arthritis, and multiple sclerosis. In T1D, innate inflammation induces NK cell activation, disrupting the Treg function. In addition, certain genetic variants identified as risk factors for T1D influenced the activation of NK cells promoting their cytotoxic activity. The role of NK cells has also been demonstrated in the pathogenesis of PBC mediating direct or indirect biliary epithelial cell destruction. NK cell frequency and number were enhanced in both the peripheral blood and the liver of patients and associated with increased NK cell cytotoxic activity and perforin expression levels. NK cells were also involved in the perpetuation of disease through autoreactive CD4 T cell activation in the presence of antigen-presenting cells. In systemic sclerosis (SSc), in addition to phenotypic abnormalities, patients presented a reduction in CD56hi NK-cells. Moreover, NK cells presented a deficient killing activity. The influence of the activating and inhibitory killer cell immunoglobulin-like receptors (KIRs) has been investigated in SSc and SLE susceptibility. Furthermore, autoantibodies to KIRs have been identified in different systemic autoimmune conditions. Because of its role in modulating the immune-mediated pathology, NK subpopulation could represent a potential marker for disease activity and target for therapeutic intervention.
Collapse
Affiliation(s)
- Elena Gianchecchi
- VisMederi srl, Siena, Italy
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Domenico V. Delfino
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Alessandra Fierabracci
- Infectivology and Clinical Trials Research Area, Primary Immunodeficiencies Research Unit, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
6
|
Luu TT, Schmied L, Nguyen NA, Wiel C, Meinke S, Mohammad DK, Bergö M, Alici E, Kadri N, Ganesan S, Höglund P. Short-term IL-15 priming leaves a long-lasting signalling imprint in mouse NK cells independently of a metabolic switch. Life Sci Alliance 2021; 4:4/4/e202000723. [PMID: 33593878 PMCID: PMC7918643 DOI: 10.26508/lsa.202000723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 11/25/2022] Open
Abstract
NK cell reactivity is dynamically regulated by IL-15, and NK cells do not need more than a few minutes of exposure to remember the cytokine for several hours. IL-15 priming of NK cells is a broadly accepted concept, but the dynamics and underlying molecular mechanisms remain poorly understood. We show that as little as 5 min of IL-15 treatment in vitro, followed by removal of excess cytokines, results in a long-lasting, but reversible, augmentation of NK cell responsiveness upon activating receptor cross-linking. In contrast to long-term stimulation, improved NK cell function after short-term IL-15 priming was not associated with enhanced metabolism but was based on the increased steady-state phosphorylation level of signalling molecules downstream of activating receptors. Inhibition of JAK3 eliminated this priming effect, suggesting a cross talk between the IL-15 receptor and ITAM-dependent activating receptors. Increased signalling molecule phosphorylation levels, calcium flux, and IFN-γ secretion lasted for up to 3 h after IL-15 stimulation before returning to baseline. We conclude that IL-15 rapidly and reversibly primes NK cell function by modulating activating receptor signalling. Our findings suggest a mechanism by which NK cell reactivity can potentially be maintained in vivo based on only brief encounters with IL-15 trans-presenting cells.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Laurent Schmied
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Ngoc-Anh Nguyen
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Clotilde Wiel
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Stephan Meinke
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Dara K Mohammad
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden.,Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, KRG-Kurdistan Region, Iraq
| | - Martin Bergö
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Evren Alici
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden.,Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Nadir Kadri
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Sridharan Ganesan
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| | - Petter Höglund
- Department of Medicine Huddinge, Centre for Haematology and Regenerative Medicine (HERM), Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
7
|
Meissl K, Simonović N, Amenitsch L, Witalisz-Siepracka A, Klein K, Lassnig C, Puga A, Vogl C, Poelzl A, Bosmann M, Dohnal A, Sexl V, Müller M, Strobl B. STAT1 Isoforms Differentially Regulate NK Cell Maturation and Anti-tumor Activity. Front Immunol 2020; 11:2189. [PMID: 33042133 PMCID: PMC7519029 DOI: 10.3389/fimmu.2020.02189] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are important components of the innate immune defense against infections and cancers. Signal transducer and activator of transcription 1 (STAT1) is a transcription factor that is essential for NK cell maturation and NK cell-dependent tumor surveillance. Two alternatively spliced isoforms of STAT1 exist: a full-length STAT1α and a C-terminally truncated STAT1β isoform. Aberrant splicing is frequently observed in cancer cells and several anti-cancer drugs interfere with the cellular splicing machinery. To investigate whether NK cell-mediated tumor surveillance is affected by a switch in STAT1 splicing, we made use of knock-in mice expressing either only the STAT1α (Stat1α/α) or the STAT1β (Stat1β/β ) isoform. NK cells from Stat1α/α mice matured normally and controlled transplanted tumor cells as efficiently as NK cells from wild-type mice. In contrast, NK cells from Stat1β/β mice showed impaired maturation and effector functions, albeit less severe than NK cells from mice that completely lack STAT1 (Stat1-/- ). Mechanistically, we show that NK cell maturation requires the presence of STAT1α in the niche rather than in NK cells themselves and that NK cell maturation depends on IFNγ signaling under homeostatic conditions. The impaired NK cell maturation in Stat1β/β mice was paralleled by decreased IL-15 receptor alpha (IL-15Rα) surface levels on dendritic cells, macrophages and monocytes. Treatment of Stat1β/β mice with exogenous IL-15/IL-15Rα complexes rescued NK cell maturation but not their effector functions. Collectively, our findings provide evidence that STAT1 isoforms are not functionally redundant in regulating NK cell activity and that the absence of STAT1α severely impairs, but does not abolish, NK cell-dependent tumor surveillance.
Collapse
Affiliation(s)
- Katrin Meissl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Natalija Simonović
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lena Amenitsch
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Agnieszka Witalisz-Siepracka
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Klara Klein
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ana Puga
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Dohnal
- Tumor Immunology, St. Anna Kinderkrebsforschung, Children’s Cancer Research Institute, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
8
|
Absence of MHC class Ⅱ molecules promotes natural killer cells activation in mice. Int Immunopharmacol 2020; 88:106888. [PMID: 32829088 DOI: 10.1016/j.intimp.2020.106888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 11/21/2022]
Abstract
The development and immune recognition of natural killer (NK) cell are regulated critically by major histocompatibility complex (MHC) class I molecules. However, it remains unclear whether the function of NK cells is regulated by MHC class II molecules. To test this, we monitored the development, phenotype and function of NK cells by using MHC class II deficient (H2-/-) mice. The numbers and development of NK cells keep unaltered in H2-/- mice, compared with those in wide type (H2+/+) mice. A part of Ly49 family receptors on NK cells are down-regulated both in mRNA and protein expression in absence of MHC class II molecules. Furthermore, NK cells obtained from H2-/- mice exhibit more expression of CD69 and IFN-γ after cross-linking with NK1.1. Also, the cytotoxicity against tumor cell lines of NK cells from H2-/- mice was increased significantly. Taken together, our study indicates that the absence of MHC class II molecules promotes the activation and function of NK cells in mice.
Collapse
|
9
|
Futas J, Oppelt J, Janova E, Musilova P, Horin P. Complex variation in the KLRA (LY49) immunity-related genomic region in horses. HLA 2020; 96:257-267. [PMID: 32421927 DOI: 10.1111/tan.13939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 05/14/2020] [Indexed: 12/30/2022]
Abstract
Natural killer (NK) cells play important roles in innate and adaptive immunity, as well as in the reproduction of placental mammals. Ly49 (KLRA) molecules represent a lectin-like type of NK cell receptor encoded within a complex genomic region, the NK cell complex. In rodents and horses, an expansion of the genes encoding Ly49 receptors leading to the formation of a gene family was observed. High sequence similarities and frequent high polymorphism of multiple family members represent an obstacle both for their individual identification and for annotation in the reference genomes of their respective species. Here, we focused on resolving complex variation of the KLRA gene family observed in domestic and Przewalski's horses. The KLRA (LY49) genomic region contains six genes (KLRA2-KLRA7) and one putative pseudogene, KLRA1. Two types of polymorphism were observed in the horses analyzed. Copy number variation between haplotypes was documented for the gene KLRA7 by polymerase chain reaction. As expected, the major source of variation of all KLRA genes, including KLRA7, is because of single nucleotide polymorphisms, many of them being nonsynonymous substitutions. Extensive allelic variability of the expanded KLRA (LY49) genes was observed. For four out of the six functional KLRA, high numbers of novel allelic amino acid sequence variants were identified in the genes studied, suggesting that this variation might be of functional importance, especially in the context of high polymorphism of their presumed ligands encoded by major histocompatibility complex class I genes. In fact, polymorphic amino acid sites were mostly found in the ligand-binding C-type lectin-like domain of the putative receptor molecule.
Collapse
Affiliation(s)
- Jan Futas
- RG Animal Immunogenomics, Central European Institute of Technology (CEITEC)-VFU Brno, Brno, Czech Republic.,Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences (VFU) Brno, Brno, Czech Republic
| | - Jan Oppelt
- RG Animal Immunogenomics, Central European Institute of Technology (CEITEC)-VFU Brno, Brno, Czech Republic
| | - Eva Janova
- RG Animal Immunogenomics, Central European Institute of Technology (CEITEC)-VFU Brno, Brno, Czech Republic.,Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences (VFU) Brno, Brno, Czech Republic
| | - Petra Musilova
- RG Cytogenomics, Central European Institute of Technology (CEITEC)-Veterinary Research Institute, Brno, Czech Republic
| | - Petr Horin
- RG Animal Immunogenomics, Central European Institute of Technology (CEITEC)-VFU Brno, Brno, Czech Republic.,Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences (VFU) Brno, Brno, Czech Republic
| |
Collapse
|
10
|
Luu TT, Wagner AK, Schmied L, Meinke S, Freund JE, Kambayashi T, Ravens I, Achour A, Bernhardt G, Chambers BJ, Höglund P, Kadri N. IL-15 and CD155 expression regulate LAT expression in murine DNAM1 + NK cells, enhancing their effectors functions. Eur J Immunol 2020; 50:494-504. [PMID: 31834938 DOI: 10.1002/eji.201948233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/14/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023]
Abstract
NK cells are innate immune cells characterized by their ability to spontaneously lyse tumor and virally infected cells. We have recently demonstrated that IL-15-sufficient DC regulate NK cell effector functions in mice. Here, we established that among ITAM-proximal signaling molecules, the expression levels of the scaffold molecule Linker for Activation of T cells (LAT) and its transcription factor ELF-1 were reduced 4 days after in vivo depletion of DC. Addition of IL-15, a cytokine presented by DC to NK cells, regulates LAT expression in NK cells with a significant effect on the DNAM1+ subset compared to DNAM1- cells. We also found that LAT expression is regulated via interaction of the DNAM1 receptor with its ligand CD155 in both immature and mature NK cells, independently of NK cell education. Finally, we found that LAT expression within DNAM1+ NK cells might be responsible for enhanced calcium mobilization following the triggering of activating receptors on NK cells. Altogether, we found that LAT expression is tightly regulated in DNAM1+ NK cells, via interaction(s) with DC, which express CD155 and IL-15, resulting in rapid activation of the DNAM1+ subset during activating receptor triggering.
Collapse
Affiliation(s)
- Thuy T Luu
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Laurent Schmied
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Jacquelyn E Freund
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inga Ravens
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Gunter Bernhardt
- Institute of Immunology, Building 11, Hannover Medical School, Hannover, Germany
| | - Benedict J Chambers
- Center for Infectious Medicine, Department of Medicine, Huddinge, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Petter Höglund
- Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden.,Clinic for Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Nadir Kadri
- Science for Life Laboratory, Department of Medicine Solna, Karolinska Institute, and Division of Infectious Diseases, Karolinska University Hospital, Solna, Stockholm, Sweden
| |
Collapse
|
11
|
Synergized regulation of NK cell education by NKG2A and specific Ly49 family members. Nat Commun 2019; 10:5010. [PMID: 31676749 PMCID: PMC6825122 DOI: 10.1038/s41467-019-13032-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 10/17/2019] [Indexed: 12/15/2022] Open
Abstract
Mice lacking MHC class-I (MHC-I) display severe defects in natural killer (NK) cell functional maturation, a process designated as “education”. Whether self-MHC-I specific Ly49 family receptors and NKG2A, which are closely linked within the NK gene complex (NKC) locus, are essential for NK cell education is still unclear. Here we show, using CRISPR/Cas9-mediated gene deletion, that mice lacking all members of the Ly49 family exhibit a moderate defect in NK cell activity, while mice lacking only two inhibitory Ly49 members, Ly49C and Ly49I, have comparable phenotypes. Furthermore, the deficiency of NKG2A, which recognizes non-classical MHC-Ib molecules, mildly impairs NK cell function. Notably, the combined deletion of NKG2A and the Ly49 family severely compromises the ability of NK cells to mediate “missing-self” and “induced-self” recognition. Therefore, our data provide genetic evidence supporting that NKG2A and the inhibitory members of Ly49 family receptors synergize to regulate NK cell education. MHC-I-induced signalling of various natural killer (NK) inhibitory receptors is critical for regulation NK cell education, but clear genetic evidence is still lacking. Here the authors generate multiple lines of mice differentially deficient in Ly49 family and/or NKG2A NK receptors, and find that self-MHCI specific Ly49 members and NKG2A synergize to regulate NK education.
Collapse
|
12
|
Frutoso M, Mortier E. NK Cell Hyporesponsiveness: More Is Not Always Better. Int J Mol Sci 2019; 20:ijms20184514. [PMID: 31547251 PMCID: PMC6770168 DOI: 10.3390/ijms20184514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 08/30/2019] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
Natural Killer (NK) cells are a type of cytotoxic lymphocytes that play an important role in the innate immune system. They are of particular interest for their role in elimination of intracellular pathogens, viral infection and tumor cells. As such, numerous strategies are being investigated in order to potentiate their functions. One of these techniques aims at promoting the function of their activating receptors. However, different observations have revealed that providing activation signals could actually be counterproductive and lead to NK cells’ hyporesponsiveness. This phenomenon can occur during the NK cell education process, under pathological conditions, but also after treatment with different agents, including cytokines, that are promising tools to boost NK cell function. In this review, we aim to highlight the different circumstances where NK cells become hyporesponsive and the methods that could be used to restore their functionality.
Collapse
Affiliation(s)
- Marie Frutoso
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| | - Erwan Mortier
- CRCINA, CNRS, Inserm, University of Nantes, F-44200 Nantes, France.
- LabEX IGO, Immuno-Onco-Greffe, Nantes, France.
| |
Collapse
|
13
|
Key PN, Germino J, Yang L, Piersma SJ, Tripathy SK. Chronic Ly49H Receptor Engagement in vivo Decreases NK Cell Response to Stimulation Through ITAM-Dependent and Independent Pathways Both in vitro and in vivo. Front Immunol 2019; 10:1692. [PMID: 31396217 PMCID: PMC6664057 DOI: 10.3389/fimmu.2019.01692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/08/2019] [Indexed: 01/15/2023] Open
Abstract
Natural killer (NK) cells play an important role in the innate immune response. The summation of activation and inhibitory signals delivered through cell surface membrane receptors determines NK cell function. However, the continuous engagement of an activating receptor on NK cells appears to render the cells hyporesponsive to stimulation through other unrelated activating receptors. The mechanism by which this takes place remains unclear. Herein we demonstrate that continuous in vivo engagement of the Ly49H receptor with its ligand, m157, results in Ly49H+ NK cells that are hyporesponsive to further stimulation by other ITAM-dependent and independent receptors, while Ly49H− NK cells remain unaffected. The hyporesponsiveness of the NK cell correlates with the degree of Ly49H receptor downmodulation on its cell surface. We observe defects in calcium flux in the hyporesponsive NK cells following stimulation through the NK1.1 receptor. In addition, we observe differences in signaling molecules that play a role in calcium flux, including spleen tyrosine kinase (Syk) at baseline and phosphorylated phospholipase C gamma 2 (p-PLCγ2) at both baseline and following stimulation through NK1.1. We also demonstrate that various ITAM associated activation receptors, including Ly49H, remain associated with their respective adaptor molecules. With regard to in vivo NK cell function, we did not find differences in the formation of metastatic lung lesions following IV injection of B16 melanoma cells. However, we did observe defects in rejection of missing-self targets in vivo. The data suggest that continuous engagement of the Ly49H activating receptor on NK cells results in hyporesponsiveness of the NK cells to all of the ITAM-dependent and independent receptors we analyzed due to altered signaling pathways downstream of the receptor and adaptor molecule.
Collapse
Affiliation(s)
- Phillip N Key
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Joe Germino
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Liping Yang
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sytse J Piersma
- Rheumatology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
14
|
Barrow AD, Colonna M. Exploiting NK Cell Surveillance Pathways for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11010055. [PMID: 30626155 PMCID: PMC6356551 DOI: 10.3390/cancers11010055] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/28/2018] [Accepted: 01/03/2019] [Indexed: 12/27/2022] Open
Abstract
Natural killer (NK) cells can evoke potent anti-tumour activity. This function is largely mediated through a battery of specialised cell-surface receptors which probe the tissue microenvironment for changes in surface and secretory phenotypes that may alert to the presence of infection or malignancy. These receptors have the potential to arouse the robust cytotoxic and cytokine-secreting functions of NK cells and so must be tightly regulated to prevent autoimmunity. However, such functions also hold great promise for clinical intervention. In this review, we highlight some of the latest breakthroughs in fundamental NK cell receptor biology that have illuminated our understanding of the molecular strategies NK cells employ to perceive malignant cells from normal healthy cells. Moreover, we highlight how these sophisticated tumour recognition strategies are being harnessed for cancer immunotherapies in the clinic.
Collapse
Affiliation(s)
- Alexander David Barrow
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia.
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
15
|
|
16
|
Goodall KJ, Nguyen A, Sullivan LC, Andrews DM. The expanding role of murine class Ib MHC in the development and activation of Natural Killer cells. Mol Immunol 2018; 115:31-38. [PMID: 29789149 DOI: 10.1016/j.molimm.2018.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/21/2018] [Accepted: 05/02/2018] [Indexed: 12/12/2022]
Abstract
Major Histocompatibility Complex-I (MHC-I) molecules can be divided into class Ia and class Ib, with three distinct class Ib families found in the mouse. These families are designated as Q, T and M and are largely unexplored in terms of their immunological function. Among the class Ib MHC, H2-T23 (Qa-1b) has been a significant target for Natural Killer (NK) cell research, owing to its homology with the human class Ib human leukocyte antigen (HLA)-E. However, recent data has indicated that members of the Q and M family of class Ib MHC also play a critical role in the development and regulation NK cells. Here we discuss the recent advances in the control of NK cells by murine class Ib MHC as a means to stimulate further exploration of these molecules.
Collapse
Affiliation(s)
- Katharine J Goodall
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Angela Nguyen
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Lucy C Sullivan
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Daniel M Andrews
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
17
|
Li H, Ivarsson MA, Walker-Sperling VE, Subleski J, Johnson JK, Wright PW, Carrington M, Björkström NK, McVicar DW, Anderson SK. Identification of an elaborate NK-specific system regulating HLA-C expression. PLoS Genet 2018; 14:e1007163. [PMID: 29329284 PMCID: PMC5785035 DOI: 10.1371/journal.pgen.1007163] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 12/25/2017] [Indexed: 12/13/2022] Open
Abstract
The HLA-C gene appears to have evolved in higher primates to serve as a dominant source of ligands for the KIR2D family of inhibitory MHC class I receptors. The expression of NK cell-intrinsic MHC class I has been shown to regulate the murine Ly49 family of MHC class I receptors due to the interaction of these receptors with NK cell MHC in cis. However, cis interactions have not been demonstrated for the human KIR and HLA proteins. We report the discovery of an elaborate NK cell-specific system regulating HLA-C expression, indicating an important role for HLA-C in the development and function of NK cells. A large array of alternative transcripts with differences in intron/exon content are generated from an upstream NK-specific HLA-C promoter, and exon content varies between HLA-C alleles due to SNPs in splice donor/acceptor sites. Skipping of the first coding exon of HLA-C generates a subset of untranslatable mRNAs, and the proportion of untranslatable HLA-C mRNA decreases as NK cells mature, correlating with increased protein expression by mature NK cells. Polymorphism in a key Ets-binding site of the NK promoter has generated HLA-C alleles that lack significant promoter activity, resulting in reduced HLA-C expression and increased functional activity. The NK-intrinsic regulation of HLA-C thus represents a novel mechanism controlling the lytic activity of NK cells during development.
Collapse
Affiliation(s)
- Hongchuan Li
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Martin A. Ivarsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Victoria E. Walker-Sperling
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jeff Subleski
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Jenna K. Johnson
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul W. Wright
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| | - Mary Carrington
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, United States of America
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel W. McVicar
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Stephen K. Anderson
- Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States of America
| |
Collapse
|
18
|
Johannsen H, Muppala V, Gröschel C, Monecke S, Elsner L, Didié M, Zimmermann WH, Dressel R. Immunological Properties of Murine Parthenogenetic Stem Cells and Their Differentiation Products. Front Immunol 2017; 8:924. [PMID: 28824647 PMCID: PMC5543037 DOI: 10.3389/fimmu.2017.00924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/20/2017] [Indexed: 12/27/2022] Open
Abstract
The perspective to transplant grafts derived from pluripotent stem cells has gained much attention in recent years. Parthenogenetic stem cells (PSCs) are an alternative pluripotent stem cell type that is attractive as source of grafts for allogeneic transplantations because most PSCs are haploidentical for the major histocompatibility complex (MHC). This reduced immunogenetic complexity of PSCs could tremendously simplify the search for MHC-matched allogeneic stem cells. In this study, we have characterized immunological properties of the MHC haploidentical PSC line A3 (H2d/d) and the heterologous PSC line A6 (H2b/d). Both PSC lines largely lack MHC class I molecules, which present peptides to cytotoxic T lymphocytes (CTLs) and serve as ligands for inhibitory natural killer (NK) receptors. They express ligands for activating NK receptors, including the NKG2D ligand RAE-1, and the DNAM-1 ligands CD112 and CD155. Consequently, both PSC lines are highly susceptible to killing by IL-2-activated NK cells. In vitro-differentiated cells acquire resistance and downregulate ligands for activating NK receptors but fail to upregulate MHC class I molecules. The PSC line A6 and differentiated A6 cells are largely resistant to CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the appropriate peptide. The high susceptibility to killing by activated NK cells may constitute a general feature of pluripotent stem cells as it has been also found with other pluripotent stem cell types. This activity potentially increases the safety of transplantations, if grafts contain traces of undifferentiated cells that could be tumorigenic in the recipient.
Collapse
Affiliation(s)
- Hannah Johannsen
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Vijayakumar Muppala
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
| | - Carina Gröschel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Sebastian Monecke
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Leslie Elsner
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Didié
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Ralf Dressel
- Institute of Cellular and Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Meyer CE, Key PN, Zhu T, Shabsovich M, Ni A, Tripathy SK. Expression of the inhibitory receptor NKG2A correlates with increased liver and splenic NK cell response to activating receptor engagement. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:177-189. [PMID: 28474506 PMCID: PMC5418142 DOI: 10.1002/iid3.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 12/16/2022]
Abstract
Introduction Natural killer (NK) cells play a critical role in the innate immune response to viruses and tumors, and comprise a large proportion of the hepatic lymphocyte population. They must remain tolerant to non‐pathogenic antigens while protecting the host from harmful agents. Herein, we investigate how the NK cell response to activation receptor engagement is altered in the liver. Methods In this study, we assess IFN‐γ production and degranulation of splenic NK cells and selected subsets of liver NK cells. Flow cytometry (FCM) was used to asses IFN‐γ production and degranulation following stimulation of the NK cells with plate bound antibodies to activating receptors. Results We show that smaller percentages of hepatic NK cells produce interferon (IFN)–γ and/or degranulate than do splenic NK cells upon stimulation through activating receptors. We also found that smaller percentages of the circulating NK (cNK) cells in the liver produce IFN‐γ and/or degranulate, compared to the liver tissue resident NK (trNK) cells. In addition, IFN‐γ production by liver cNK cells is not increased in IL‐10 deficient mice, suggesting that their hyporesponsiveness is not mediated by the presence of this anti‐inflammatory cytokine in the hepatic microenvironment. On the other hand, liver trNK cells express higher levels of the inhibitory receptor NKG2A than do cNK cells, correlating with their increased IFN‐γ production and degranulation. Conclusions Liver cNK cells’ hyporesponsiveness to stimulation through activating receptors is independent of IL‐10, but correlates with decreased NKG2A expression compared to trNK cells. In addition, we demonstrate that liver NK cells become further hyporesponsive upon continuous engagement of an activating receptor on their cell surface.
Collapse
Affiliation(s)
- Claire E Meyer
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Phillip N Key
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Toby Zhu
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mark Shabsovich
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ann Ni
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sandeep K Tripathy
- Gastroenterology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Luu TT, Ganesan S, Wagner AK, Sarhan D, Meinke S, Garbi N, Hämmerling G, Alici E, Kärre K, Chambers BJ, Höglund P, Kadri N. Independent control of natural killer cell responsiveness and homeostasis at steady-state by CD11c+ dendritic cells. Sci Rep 2016; 6:37996. [PMID: 27905484 PMCID: PMC5131354 DOI: 10.1038/srep37996] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022] Open
Abstract
During infection and inflammation, dendritic cells (DC) provide priming signals for natural killer (NK) cells via mechanisms distinct from their antigen processing and presentation functions. The influence of DC on resting NK cells, i.e. at steady-state, is less well studied. We here demonstrate that as early as 1 day after DC depletion, NK cells in naïve mice downregulated the NKG2D receptor and showed decreased constitutive phosphorylation of AKT and mTOR. Subsequently, apoptotic NK cells appeared in the spleen concomitant with reduced NK cell numbers. At 4 days after the onset of DC depletion, increased NK cell proliferation was seen in the spleen resulting in an accumulation of Ly49 receptor-negative NK cells. In parallel, NK cell responsiveness to ITAM-mediated triggering and cytokine stimulation dropped across maturation stages, suggestive of a functional deficiency independent from the homeostatic effect. A role for IL-15 in maintaining NK cell function was supported by a gene signature analysis of NK cell from DC-depleted mice as well as by in vivo DC transfer experiments. We propose that DC, by means of IL-15 transpresentation, are required to maintain not only homeostasis, but also function, at steady-state. These processes appear to be regulated independently from each other.
Collapse
Affiliation(s)
- Thuy Thanh Luu
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Sridharan Ganesan
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Arnika Kathleen Wagner
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Günter Hämmerling
- German Cancer Research Center DKFZ, Division of Molecular Immunology, Heidelberg, Germany
| | - Evren Alici
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Klas Kärre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Benedict J Chambers
- Department of Medicine, Center for Infectious Medicine, F59, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Ivanova DL, Fatima R, Gigley JP. Comparative Analysis of Conventional Natural Killer Cell Responses to Acute Infection with Toxoplasma gondii Strains of Different Virulence. Front Immunol 2016; 7:347. [PMID: 27721814 PMCID: PMC5033988 DOI: 10.3389/fimmu.2016.00347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/30/2016] [Indexed: 12/14/2022] Open
Abstract
Conventional natural killer (cNK) cells, members of group 1 innate lymphoid cells, are a diverse cell subpopulation based on surface receptor expression, maturation, and functional potential. cNK cells are critical for early immunity to Toxoplasma gondii via IFNγ production. Acute cNK cell responses to infection with different strains of T. gondii have not yet been characterized in detail. Here, we comprehensively performed this analysis with Type I virulent RH, Type II avirulent ME49, and fully attenuated Type I cps1-1 strains. In response to these three parasite strains, murine cNK cells produce IFNγ and become cytotoxic and polyfunctional (IFNγ+CD107a+) at the site of infection. In contrast to virulent RH and avirulent ME49 T. gondii strains, attenuated cps1-1 induced only local cNK cell responses. Infections with RH and ME49 parasites significantly decreased cNK cell frequency and numbers in spleen 5 days post infection compared with cps1-1 parasites. cNK cell subsets expressing activating receptors Ly49H, Ly49D, and NKG2D and inhibitory receptors Ly49I and CD94/NKG2A were similar when compared between the strains and at 5 days post infection. cNK cells were not proliferating (Ki67−) 5 days post infection with any of the strains. cNK cell maturation as measured by CD27, CD11b, and KLRG1 was affected after infection with different parasite strains. RH and ME49 infection significantly reduced mature cNK cell frequency and increased immature cNK cell populations compared with cps1-1 infection. Interestingly, KLRG1 was highly expressed on immature cNK cells after RH infection. After RH and ME49 infections, CD69+ cNK cells in spleen were present at higher frequency than after cps1-1 infection, which may correlate with loss of the mature cNK cell population. Cytokine multiplex analysis indicated cNK cell responses correlated with peritoneal exudate cell, spleen, and serum proinflammatory cytokine levels, including IL-12. qPCR analysis of parasite-specific B1 gene revealed that parasite burdens may affect cNK cell responses. This study demonstrates infection with RH and ME49 parasites impacts cNK cell maturation during acute T. gondii infection. Different cNK cell responses could impact early immunity and susceptibility to these strains.
Collapse
Affiliation(s)
- Daria L Ivanova
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Rida Fatima
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| | - Jason P Gigley
- Department of Molecular Biology, University of Wyoming , Laramie, WY , USA
| |
Collapse
|
22
|
Paul S, Kulkarni N, Shilpi, Lal G. Intratumoral natural killer cells show reduced effector and cytolytic properties and control the differentiation of effector Th1 cells. Oncoimmunology 2016; 5:e1235106. [PMID: 28151533 DOI: 10.1080/2162402x.2016.1235106] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/03/2016] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are known to have effector and cytolytic properties to kill virus infected or tumor cells spontaneously. Due to these properties, NK cells have been used as an adoptive cellular therapy to control tumor growth in various clinical trials but have shown limited clinical benefits. This indicates that our knowledge about phenotypic and functional differences in NK cells within the tumor microenvironment and secondary lymphoid tissues is incomplete. In this work, we report that B16F10 cell-induced melanoma recruits the CD11b+CD27+ subset of NK cells at a very early stage during tumor progression. These intratumoral NK cells showed increased expression of CD69, reduced inhibitory receptor KLRG1, and decreased proliferative ability. As compared to splenic NK cells, intratumoral NK cells showed decreased expression of activating receptors NKG2D, Ly49D and Ly49H; increased inhibitory receptors, NKG2A and Ly49A; decreased cytokines IFNγ and GM-CSF; decreased cytokine receptors IL-21R, IL-6Rα, and CD122 expression. Depletion of NK cells led to decrease peripheral as well as intratumoral effector CD4+T-bet+ cells (Th1), and increased tumor growth. Furthermore, purified NK cells showed increased differentiation of Th1 cells in an IFNγ-dependent manner. Anti-NKG2D in the culture promoted differentiation of effector Th1 cells. Collectively, these observations suggest that intratumoral NK cells possess several inhibitory functions that can be partly reversed by signaling through the NKG2D receptor or by cytokine stimulation, which then leads to increased differentiation of effector Th1 cells.
Collapse
Affiliation(s)
- Sourav Paul
- National Centre for Cell Science , Pune, India
| | | | - Shilpi
- National Centre for Cell Science , Pune, India
| | | |
Collapse
|
23
|
NK cell education via nonclassical MHC and non-MHC ligands. Cell Mol Immunol 2016; 14:321-330. [PMID: 27264685 PMCID: PMC5380944 DOI: 10.1038/cmi.2016.26] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cell education, a process for achieving functional maturation and self-tolerance, has been previously defined by the interaction between self-major histocompatibility complex class I (MHC-I) molecules and their specific inhibitory receptors. Over the past several years, growing evidence has highlighted the important roles of nonclassical MHC-I and non-MHC-I molecules in NK cell education. Herein, we review the current knowledge of NK cell education, with a particular focus on nonclassical MHC-I- and non-MHC-I-dependent education, and compare them with the classical MHC-I-dependent education theory. In addition, we update and extend this theory by presenting the 'Confining Model', discussing cis and trans characteristics, reassessing quantity and quality control, and elucidating the redundancy of NK cell education in tumor and virus infection.
Collapse
|
24
|
|
25
|
Ma Y, Li X, Kuang E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016; 8:95. [PMID: 27077876 PMCID: PMC4848590 DOI: 10.3390/v8040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
26
|
Bagawath-Singh S, Staaf E, Stoppelenburg AJ, Spielmann T, Kambayashi T, Widengren J, Johansson S. Cytokines Induce Faster Membrane Diffusion of MHC Class I and the Ly49A Receptor in a Subpopulation of Natural Killer Cells. Front Immunol 2016; 7:16. [PMID: 26870035 PMCID: PMC4740373 DOI: 10.3389/fimmu.2016.00016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 01/14/2016] [Indexed: 12/20/2022] Open
Abstract
Cytokines have the potential to drastically augment immune cell activity. Apart from altering the expression of a multitude of proteins, cytokines also affect immune cell dynamics. However, how cytokines affect the molecular dynamics within the cell membrane of immune cells has not been addressed previously. Molecular movement is a vital component of all biological processes, and the rate of motion is, thus, an inherent determining factor for the pace of such processes. Natural killer (NK) cells are cytotoxic lymphocytes, which belong to the innate immune system. By fluorescence correlation spectroscopy, we investigated the influence of cytokine stimulation on the membrane density and molecular dynamics of the inhibitory receptor Ly49A and its ligand, the major histocompatibility complex class I allele H-2Dd, in freshly isolated murine NK cells. H-2Dd was densely expressed and diffused slowly in resting NK cells. Ly49A was expressed at a lower density and diffused faster. The diffusion rate in resting cells was not altered by disrupting the actin cytoskeleton. A short-term stimulation with interleukin-2 or interferon-α + β did not change the surface density of moving H-2Dd or Ly49A, despite a slight upregulation at the cellular level of H-2Dd by interferon-α + β, and of Ly49A by IL-2. However, the molecular diffusion rates of both H-2Dd and Ly49A increased significantly. A multivariate analysis revealed that the increased diffusion was especially marked in a subpopulation of NK cells, where the diffusion rate was increased around fourfold compared to resting NK cells. After IL-2 stimulation, this subpopulation of NK cells also displayed lower density of Ly49A and higher brightness per entity, indicating that Ly49A may homo-cluster to a larger extent in these cells. A faster diffusion of inhibitory receptors could enable a faster accumulation of these molecules at the immune synapse with a target cell, eventually leading to a more efficient NK cell response. It has previously been assumed that cytokines regulate immune cells primarily via alterations of protein expression levels or posttranslational modifications. These findings suggest that cytokines may also modulate immune cell efficiency by increasing the molecular dynamics early on in the response.
Collapse
Affiliation(s)
- Sunitha Bagawath-Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Elina Staaf
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Arie Jan Stoppelenburg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Thiemo Spielmann
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology , Stockholm , Sweden
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Division of Rheumatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerker Widengren
- Experimental Biomolecular Physics, Department of Applied Physics, Royal Institute of Technology , Stockholm , Sweden
| | - Sofia Johansson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| |
Collapse
|
27
|
Gadani SP, Kipnis J. Natural killers in the brain's nursery. Nat Neurosci 2016; 19:176-7. [PMID: 26814583 DOI: 10.1038/nn.4227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, Graduate Program in Neuroscience and Medical Scientist Training Program, School of Medicine, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
28
|
Liu LL, Pfefferle A, Yi Sheng VO, Björklund AT, Béziat V, Goodridge JP, Malmberg KJ. Harnessing adaptive natural killer cells in cancer immunotherapy. Mol Oncol 2015; 9:1904-17. [PMID: 26604011 PMCID: PMC5528731 DOI: 10.1016/j.molonc.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 09/28/2015] [Accepted: 10/04/2015] [Indexed: 12/17/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes with a refined ability to recognize transformed cells through a broad array of activating receptors in combination with stochastically expressed inhibitory receptors that recognize MHC-class I. Recent advances in NK cell biology have revealed a high degree of functional plasticity that can be attributed to dynamic cell-to-cell interactions in concert with transcriptional and epigenetic reprogramming. Here, we discuss how new insights into the adaptive behavior of NK cells pave the way for next generation cell therapy based on guided differentiation and selective expansion of particularly cytotoxic NK cell subsets.
Collapse
Affiliation(s)
- Lisa L Liu
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Aline Pfefferle
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vincent Oei Yi Sheng
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Norway; Institute for Cancer Research, Oslo University Hospital, Norway
| | - Andreas T Björklund
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; University Paris Descartes, Imagine Institute, Paris, France
| | - Jodie P Goodridge
- The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Norway; Institute for Cancer Research, Oslo University Hospital, Norway
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; The KG Jebsen Center for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Norway; Institute for Cancer Research, Oslo University Hospital, Norway.
| |
Collapse
|