1
|
Wang Z, Li Z, Wang H, Wu Q, Geng Y. Effects of Pine Pollen Polysaccharides and Sulfated Polysaccharides on Ulcerative Colitis in Mice by Regulating Th17/Treg. Foods 2024; 13:3183. [PMID: 39410218 PMCID: PMC11475350 DOI: 10.3390/foods13193183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
This study was to investigate the effects of the polysaccharides (PPM60-III) and sulfated polysaccharides (SPPM60-III) of pine pollen on the Th17/Treg balance, inflammatory cytokines, intestinal microbiota, and metabolite distribution in 3% DSS drinking water-induced UC mice. First of all, the physiological results showed that PPM60-III and SPPM60-III could alleviate UC, which was shown by the reduction in liver Treg cells, the rebalance of Th17/Treg, and the modulation of inflammatory cytokines. In addition, the 16S rRNA results showed that PPM60-III and SPPM60-III could decrease Beijerinck and Bifidobacterium, and increase Akkermansia, Escherichia coli, and Fidobacteria. Finally, the metabonomics results showed that PPM60-III and SPPM60-III also restored purine and glycerolipid metabolism, up-regulated nicotinate and nicotinamide metabolism and caffeine metabolism to inhibit inflammation. In conclusion, PPM60-III and SPPM60-III could inhibit UC by regulating gut bacteria composition and metabolite distribution; SPPM60-III showed better anti-colitis activity.
Collapse
Affiliation(s)
| | | | | | | | - Yue Geng
- Key Laboratory of Food Nutrition and Safety of SDNU, College of Life Science, Shandong Normal University, Jinan 250358, China; (Z.W.); (Z.L.); (H.W.); (Q.W.)
| |
Collapse
|
2
|
Zang Y, Liu S, Rao Z, Wang Y, Zhang B, Li H, Cao Y, Zhou J, Shen Z, Duan S, He D, Xu H. Retinoid X receptor gamma dictates the activation threshold of group 2 innate lymphoid cells and limits type 2 inflammation in the small intestine. Immunity 2023; 56:2542-2554.e7. [PMID: 37714152 DOI: 10.1016/j.immuni.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 06/18/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are crucial in promoting type 2 inflammation that contributes to both anti-parasite immunity and allergic diseases. However, the molecular checkpoints in ILC2s that determine whether to immediately launch a proinflammatory response are unknown. Here, we found that retinoid X receptor gamma (Rxrg) was highly expressed in small intestinal ILC2s and rapidly suppressed by alarmin cytokines. Genetic deletion of Rxrg did not impact ILC2 development but facilitated ILC2 responses and the tissue inflammation induced by alarmins. Mechanistically, RXRγ maintained the expression of its target genes that support intracellular cholesterol efflux, which in turn reduce ILC2 proliferation. Furthermore, RXRγ expression prevented ILC2 response to mild stimulations, including low doses of alarmin cytokine and mechanical skin injury. Together, we propose that RXRγ expression and its mediated lipid metabolic states function as a cell-intrinsic checkpoint that confers the threshold of ILC2 activation in the small intestine.
Collapse
Affiliation(s)
- Yang Zang
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Shaorui Liu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Zebing Rao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yinsheng Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Boya Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Hui Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Yingjiao Cao
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jie Zhou
- Tianjin Institute of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Ministry of Education, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhuxia Shen
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shengzhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Danyang He
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Neuroimmunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China
| | - Heping Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China; Laboratory of Systems Immunology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang, China.
| |
Collapse
|
3
|
Guberina N, Wirsdörfer F, Stuschke M, Jendrossek V. Combined radiation- and immune checkpoint-inhibitor-induced pneumonitis – The challenge to predict and detect overlapping immune-related adverse effects from evolving laboratory biomarkers and clinical imaging. Neoplasia 2023; 39:100892. [PMID: 37011458 PMCID: PMC10124136 DOI: 10.1016/j.neo.2023.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 04/04/2023]
Abstract
The risk of overlapping pulmonary toxicity induced by thoracic radio(chemo)therapy and immune checkpoint inhibitor therapy in the treatment of patients suffering from non-small cell lung cancer (NSCLC) is one important challenge in successful radioimmunotherapy. In the present opinion we highlight factors that we find important to be considered before treatment initiation, during the treatment sequence, and after treatment completion combined or sequential application of radio(chemo)therapy and immune checkpoint inhibitor therapy. A major aim is to optimize the therapeutic index and to avoid immune related adverse effects. The goals in the future will be focused not only on identifying patients already in the pretreatment phase who could benefit from this complex treatment, but also in identifying patients, who are most likely to have higher grade toxicity. In this respect, proper assessment of clinical performance status, monitoring for the presence of certain comorbidities, evaluation of laboratory parameters such as TGF-α and IL-6 levels, human leukocyte antigens (HLA), and consideration of other potential biomarkers which will evolve in near future are essential. Likewise, the critical parameters must be monitored during the treatment phase and follow-up care to detect potential side effects in time. With the help of high-end imaging which is already used on a daily basis in image guided radiotherapy (IGRT) for intensity modulated radiotherapy (IMRT), its advanced form volumetric modulated arc therapy (VMAT), and adaptive radiation therapy (ART), clinically relevant changes in lung tissue can be detected at an early stage of disease. Concurrent radiotherapy and immunotherapy requires a special focus on adverse events, particularly of the lung, but, when properly approached and applied, it may offer new perspectives for patients with locally advanced NSCLC to be seriously considered as a curative option.
Collapse
|
4
|
Osuna-Espinoza KY, Rosas-Taraco AG. Metabolism of NK cells during viral infections. Front Immunol 2023; 14:1064101. [PMID: 36742317 PMCID: PMC9889541 DOI: 10.3389/fimmu.2023.1064101] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
Collapse
Affiliation(s)
- Kenia Y Osuna-Espinoza
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Adrián G Rosas-Taraco
- Faculty of Medicine, Department of Immunology, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| |
Collapse
|
5
|
Hanaford A, Johnson SC. The immune system as a driver of mitochondrial disease pathogenesis: a review of evidence. Orphanet J Rare Dis 2022; 17:335. [PMID: 36056365 PMCID: PMC9438277 DOI: 10.1186/s13023-022-02495-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/15/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Genetic mitochondrial diseases represent a significant challenge to human health. These diseases are extraordinarily heterogeneous in clinical presentation and genetic origin, and often involve multi-system disease with severe progressive symptoms. Mitochondrial diseases represent the most common cause of inherited metabolic disorders and one of the most common causes of inherited neurologic diseases, yet no proven therapeutic strategies yet exist. The basic cell and molecular mechanisms underlying the pathogenesis of mitochondrial diseases have not been resolved, hampering efforts to develop therapeutic agents. MAIN BODY In recent pre-clinical work, we have shown that pharmacologic agents targeting the immune system can prevent disease in the Ndufs4(KO) model of Leigh syndrome, indicating that the immune system plays a causal role in the pathogenesis of at least this form of mitochondrial disease. Intriguingly, a number of case reports have indicated that immune-targeting therapeutics may be beneficial in the setting of genetic mitochondrial disease. Here, we summarize clinical and pre-clinical evidence suggesting a key role for the immune system in mediating the pathogenesis of at least some forms of genetic mitochondrial disease. CONCLUSIONS Significant clinical and pre-clinical evidence indicates a key role for the immune system as a significant in the pathogenesis of at least some forms of genetic mitochondrial disease.
Collapse
Affiliation(s)
- Allison Hanaford
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA
| | - Simon C Johnson
- Center for Integrative Brain Research, Seattle Children's Research Institute, 1900 9th Ave., JMB-925, Seattle, WA, 98101, USA.
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
- Department of Neurology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Ferrara AL, Liotti A, Pezone A, De Rosa V. Therapeutic opportunities to modulate immune tolerance through the metabolism-chromatin axis. Trends Endocrinol Metab 2022; 33:507-521. [PMID: 35508518 DOI: 10.1016/j.tem.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
Abstract
The ability of the immune system to discriminate external stimuli from self-components - namely immune tolerance - occurs through a coordinated cascade of events involving a dense network of immune cells. Among them, CD4+CD25+ T regulatory cells are crucial to balance immune homeostasis and function. Growing evidence supports the notion that energy metabolites can dictate T cell fate and function via epigenetic modifications, which affect gene expression without altering the DNA sequence. Moreover, changes in cellular metabolism couple with activation of immune pathways and epigenetic remodeling to finely tune the balance between T cell activation and tolerance. This Review summarizes these aspects and critically evaluates novel possibilities for developing therapeutic strategies to modulate immune tolerance through metabolism via epigenetic drugs.
Collapse
Affiliation(s)
- Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli "Federico II", 80131 Napoli, Italy; Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonietta Liotti
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Università di Napoli "Federico II", 80131 Napoli, Italy.
| | - Veronica De Rosa
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy.
| |
Collapse
|
7
|
Corral D, Charton A, Krauss MZ, Blanquart E, Levillain F, Lefrançais E, Sneperger T, Vahlas Z, Girard JP, Eberl G, Poquet Y, Guéry JC, Argüello RJ, Belkaid Y, Mayer-Barber KD, Hepworth MR, Neyrolles O, Hudrisier D. ILC precursors differentiate into metabolically distinct ILC1-like cells during Mycobacterium tuberculosis infection. Cell Rep 2022; 39:110715. [PMID: 35443177 PMCID: PMC9043616 DOI: 10.1016/j.celrep.2022.110715] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/02/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Tissue-resident innate lymphoid cells (ILCs) regulate tissue homeostasis, protect against pathogens at mucosal surfaces, and are key players at the interface of innate and adaptive immunity. How ILCs adapt their phenotype and function to environmental cues within tissues remains to be fully understood. Here, we show that Mycobacterium tuberculosis (Mtb) infection alters the phenotype and function of lung IL-18Rα+ ILC toward a protective interferon-γ-producing ILC1-like population. This differentiation is controlled by type 1 cytokines and is associated with a glycolytic program. Moreover, a BCG-driven type I milieu enhances the early generation of ILC1-like cells during secondary challenge with Mtb. Collectively, our data reveal how tissue-resident ILCs adapt to type 1 inflammation toward a pathogen-tailored immune response.
Collapse
Affiliation(s)
- Dan Corral
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France; Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Alison Charton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maria Z Krauss
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Eve Blanquart
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Florence Levillain
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Emma Lefrançais
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Tamara Sneperger
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Zoï Vahlas
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Philippe Girard
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Gérard Eberl
- Institut Pasteur, Microenvironment & Immunity Unit, 75724 Paris, France; INSERM U1224, 75724 Paris, France
| | - Yannick Poquet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Rafael J Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Katrin D Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity, and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Denis Hudrisier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
8
|
Coordination of Mucosal Immunity by Innate Lymphoid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1365:113-134. [DOI: 10.1007/978-981-16-8387-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Fu Z, Dean JW, Xiong L, Dougherty MW, Oliff KN, Chen ZME, Jobin C, Garrett TJ, Zhou L. Mitochondrial transcription factor A in RORγt + lymphocytes regulate small intestine homeostasis and metabolism. Nat Commun 2021; 12:4462. [PMID: 34294718 PMCID: PMC8298438 DOI: 10.1038/s41467-021-24755-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
RORγt+ lymphocytes, including interleukin 17 (IL-17)-producing gamma delta T (γδT17) cells, T helper 17 (Th17) cells, and group 3 innate lymphoid cells (ILC3s), are important immune regulators. Compared to Th17 cells and ILC3s, γδT17 cell metabolism and its role in tissue homeostasis remains poorly understood. Here, we report that the tissue milieu shapes splenic and intestinal γδT17 cell gene signatures. Conditional deletion of mitochondrial transcription factor A (Tfam) in RORγt+ lymphocytes significantly affects systemic γδT17 cell maintenance and reduces ILC3s without affecting Th17 cells in the gut. In vivo deletion of Tfam in RORγt+ lymphocytes, especially in γδT17 cells, results in small intestine tissue remodeling and increases small intestine length by enhancing the type 2 immune responses in mice. Moreover, these mice show dysregulation of the small intestine transcriptome and metabolism with less body weight but enhanced anti-helminth immunity. IL-22, a cytokine produced by RORγt+ lymphocytes inhibits IL-13-induced tuft cell differentiation in vitro, and suppresses the tuft cell-type 2 immune circuit and small intestine lengthening in vivo, highlighting its key role in gut tissue remodeling.
Collapse
Affiliation(s)
- Zheng Fu
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Kristen N Oliff
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Zong-Ming E Chen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Christian Jobin
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Tan J, Ni D, Ribeiro RV, Pinget GV, Macia L. How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients 2021; 13:823. [PMID: 33801480 PMCID: PMC7999246 DOI: 10.3390/nu13030823] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
Cell survival, proliferation and function are energy-demanding processes, fuelled by different metabolic pathways. Immune cells like any other cells will adapt their energy production to their function with specific metabolic pathways characteristic of resting, inflammatory or anti-inflammatory cells. This concept of immunometabolism is revolutionising the field of immunology, opening the gates for novel therapeutic approaches aimed at altering immune responses through immune metabolic manipulations. The first part of this review will give an extensive overview on the metabolic pathways used by immune cells. Diet is a major source of energy, providing substrates to fuel these different metabolic pathways. Protein, lipid and carbohydrate composition as well as food additives can thus shape the immune response particularly in the gut, the first immune point of contact with food antigens and gastrointestinal tract pathogens. How diet composition might affect gut immunometabolism and its impact on diseases will also be discussed. Finally, the food ingested by the host is also a source of energy for the micro-organisms inhabiting the gut lumen particularly in the colon. The by-products released through the processing of specific nutrients by gut bacteria also influence immune cell activity and differentiation. How bacterial metabolites influence gut immunometabolism will be covered in the third part of this review. This notion of immunometabolism and immune function is recent and a deeper understanding of how lifestyle might influence gut immunometabolism is key to prevent or treat diseases.
Collapse
Affiliation(s)
- Jian Tan
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rosilene V. Ribeiro
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Gabriela V. Pinget
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Laurence Macia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia; (J.T.); (D.N.); (R.V.R.); (G.V.P.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
11
|
Insulin-Like Growth Factors Are Key Regulators of T Helper 17 Regulatory T Cell Balance in Autoimmunity. Immunity 2020; 52:650-667.e10. [PMID: 32294406 DOI: 10.1016/j.immuni.2020.03.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 12/17/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022]
Abstract
Appropriate balance of T helper 17 (Th17) and regulatory T (Treg) cells maintains immune tolerance and host defense. Disruption of Th17-Treg cell balance is implicated in a number of immune-mediated diseases, many of which display dysregulation of the insulin-like growth factor (IGF) system. Here, we show that, among effector T cell subsets, Th17 and Treg cells selectively expressed multiple components of the IGF system. Signaling through IGF receptor (IGF1R) activated the protein kinase B-mammalian target of rapamycin (AKT-mTOR) pathway, increased aerobic glycolysis, favored Th17 cell differentiation over that of Treg cells, and promoted a heightened pro-inflammatory gene expression signature. Group 3 innate lymphoid cells (ILC3s), but not ILC1s or ILC2s, were similarly responsive to IGF signaling. Mice with deficiency of IGF1R targeted to T cells failed to fully develop disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Thus, the IGF system represents a previously unappreciated pathway by which type 3 immunity is modulated and immune-mediated pathogenesis controlled.
Collapse
|
12
|
de Brito AA, da Silveira EC, Rigonato-Oliveira NC, Soares SS, Brandao-Rangel MAR, Soares CR, Santos TG, Alves CE, Herculano KZ, Vieira RP, Lino-Dos-Santos-Franco A, Albertini R, Aimbire F, de Oliveira AP. Low-level laser therapy attenuates lung inflammation and airway remodeling in a murine model of idiopathic pulmonary fibrosis: Relevance to cytokines secretion from lung structural cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2020; 203:111731. [PMID: 31935633 DOI: 10.1016/j.jphotobiol.2019.111731] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 09/25/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and chronic inflammatory disease with a poor prognosis and very few available treatment options. Low-level laser therapy (LLLT) has been gaining prominence as a new and effective anti-inflammatory and immunomodulatory agent. Can lung inflammation and the airway remodeling be regulated by LLLT in an experimental model of IPF in C57Bl/6 mice? The present study investigated if laser attenuates cellular migration to the lungs, the airway remodeling as well as pro-fibrotic cytokines secretion from type II pneumocytes and fibroblasts. Mice were irradiated (780 nm and 30 mW) and then euthanized fifteen days after bleomycin-induced lung fibrosis. Lung inflammation and airway remodeling were evaluated through leukocyte counting in bronchoalveolar lavage fluid (BALF) and analysis of collagen in lung, respectively. Inflammatory cells in blood were also measured. For in vitro assays, bleomycin-activated fibroblasts and type II pneumocytes were irradiated with laser. The pro- and anti-inflammatory cytokines level in BALF as well as cells supernatant were measured by ELISA, and the TGFβ in lung was evaluated by flow cytometry. Lung histology was used to analyze collagen fibers around the airways. LLLT reduced both migration of inflammatory cells and deposition of collagen fibers in the lungs. In addition, LLLT downregulated pro-inflammatory cytokines and upregulated the IL-10 secretion from fibroblasts and pneumocytes. Laser therapy greatly reduced total lung TGFβ. Systemically, LLLT also reduced the inflammatory cells counted in blood. There is no statistical difference in inflammatory parameters studied between mice of the basal group and the laser-treated mice. Data obtained indicate that laser effectively attenuates the lung inflammation, and the airway remodeling in experimental pulmonary fibrosis is driven to restore the balance between the pro- and anti-inflammatory cytokines in lung and inhibit the pro-fibrotic cytokines secretion from fibroblasts.
Collapse
Affiliation(s)
- Auriléia Aparecida de Brito
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Elaine Cristina da Silveira
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | | | - Stephanie Souza Soares
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Maysa Alves Rodrigues Brandao-Rangel
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Post Graduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Clariana Rodrigues Soares
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Tawany Gonçalves Santos
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Cintia Estefano Alves
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Karine Zanella Herculano
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Rodolfo Paula Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Post Graduate Program in Rehabilitation Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil; Post-Graduation Program in Sciences of Human Moviment and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Adriana Lino-Dos-Santos-Franco
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| | - Regiane Albertini
- Post-Graduation Program in Sciences of Human Moviment and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil; Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil
| | - Flavio Aimbire
- Institute of Science and Technology, Federal University of Sao Paulo (UNIFESP), Sao Jose dos Campos, SP, Brazil.
| | - Ana Paula de Oliveira
- Post Graduate Program in Biphotonic Applied to Health Sciences, Nove de Julho University (UNINOVE), São Paulo, SP, Brazil
| |
Collapse
|
13
|
Saul VV, Seibert M, Krüger M, Jeratsch S, Kracht M, Schmitz ML. ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. iScience 2019; 19:527-544. [PMID: 31442668 PMCID: PMC6710720 DOI: 10.1016/j.isci.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/08/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022] Open
Abstract
Membraneless organelles (MLOs) are liquid-like subcellular compartments providing spatiotemporal control to biological processes. This study reveals that cellular stress leads to the incorporation of the adaptor protein SINTBAD (TBKBP1) into membraneless, cytosolic speckles. Determination of the interactome identified >100 proteins forming constitutive and stress-inducible members of an MLO that we termed SINT-speckles. SINT-speckles partially colocalize with activated TBK1, and deletion of SINTBAD and the SINT-speckle component AZI2 leads to impaired TBK1 phosphorylation. Dynamic formation of SINT-speckles is positively controlled by the acetyltransferase KAT2A (GCN5) and antagonized by heat shock protein-mediated chaperone activity. SINT-speckle formation is also inhibited by the autophagy-initiating kinases ULK1/2, and knockdown of these kinases prevented focal TBK1 phosphorylation in a pathway-specific manner. The phlebovirus-encoded non-structural protein S enhances ULK1-mediated TBK1 phosphorylation and shows a stress-induced translocation to SINT-speckles, raising the possibility that viruses can also target this signaling hub to manipulate host cell functions.
Collapse
Affiliation(s)
- Vera Vivian Saul
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Markus Seibert
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Sylvia Jeratsch
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research
| | - Michael Lienhard Schmitz
- Institute of Biochemistry, Medical Faculty, Friedrichstrasse 24, Justus-Liebig-University, D-35392 Giessen, Germany, Member of the German Center for Lung Research.
| |
Collapse
|
14
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
15
|
The vermiform appendix: an immunological organ sustaining a microbiome inoculum. Clin Sci (Lond) 2019; 133:1-8. [PMID: 30606811 DOI: 10.1042/cs20180956] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 12/04/2018] [Indexed: 12/12/2022]
Abstract
The hominoid vermiform appendix has been characterized as a diverticulum of the caecum and describes an entity at the juxtaposition of the colon in the confluence of tanias. The independent development of the lymphoid follicle centres of the appendix is progressed at birth in the presence of the intestinal commensal microbiome, an obligatory prompt for the diversification of intestinal and extra-intestinal mucosal immunological tissue. In the vermiform appendix, this activity is centred on further developing the inventory of primary antibodies and the maturation of T- and B-lymphocyte cells in the follicles within the lymphoid tissue. Furthermore, the columnar epithelia, enterocytes and goblet cells comprise the complement of cells that occupy the lamina propria and muscularis mucosae of the vermiform appendix's mucosa, while macrophages and an abundance of immunoglobulin A and immunoglobulin G generating plasma cells seed the lamina propria Intraepithelial immune cells consisting predominantly of specific CD8+ T regulatory lymphocytes occupy sites in the appendix analogous to those present in the intestinal epithelia of the caecal colon. The complement of bacterial genera concealed in the vermiform appendix is posited extant as a biofilm inoculum of the intestinal commensal microbiome. This facilitates re-inoculation of the proximal colon and to a lesser degree the terminal ilium post an intestinal perturbation such as occurs with daily lifestyle stressors, dietary choices and the short-term administration of antibiotics rather than an infectious fulminant colitis. A plausible appreciation results of the importance of multiple immunological aspects of a healthy vermiform appendix and the provision of a commensal biofilm to the gut that repairs a dysbiotic microbiome contributing to balancing intestinal pro- and anti-inflammatory activity for maintaining homeostasis in the gut. Since the composition of the gut microbiome can vary over the short-term and long-term, it is plausible that the appendix inoculum may be instrumental in maintaining the intestinal microbiome.
Collapse
|
16
|
Colonna M. Introduction: Basic and emerging concepts in ILC biology. Immunol Rev 2018; 286:4-5. [PMID: 30294967 DOI: 10.1111/imr.12711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 10/28/2022]
Affiliation(s)
- Marco Colonna
- Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|