1
|
Zhang R, Zhang Y, Li H, Zhang J, Feng Q, Lei Y, Liu S, Zhao Q, He J, Luo C, Qiu H, Zhang J, Gong S, Wang L. Single-cell transcriptomic analysis reveals distinct plasma cell populations in chronic thromboembolic pulmonary hypertension. J Thromb Haemost 2025; 23:1608-1621. [PMID: 39965671 DOI: 10.1016/j.jtha.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension (CTEPH) presents challenges due to its complex pathobiology. Although numerous studies have reported heterogeneous cell types by single-cell RNA sequencing, the atlas and characteristics of plasma cells remain poorly understood. OBJECTIVES To identify the altered phenotype and differentiation patterns of plasma cells in CTEPH. METHODS We performed single-cell RNA sequencing on pulmonary endarterectomy tissue from 5 patients and 6 normal pulmonary arteries. Serum immunoglobulins (Igs) were measured using protein electrophoresis among 273 CTEPH patients, 259 idiopathic pulmonary arterial hypertension (IPAH) patients, and 251 healthy controls. RESULTS The percentage of plasma cells was significantly increased from less than 1% in healthy controls to 15% in CTEPH patients. We identified 1 B cell cluster and 5 distinct mature plasma cell clusters, including IGHG1, HSPA1A, AHNAK, IGLC3, and IGKV4. Notably, the AHNAK and IGLC3 subclusters are newly identified. GeneSwitches analysis indicated early activation of IGHG1 and early deactivation of HLA-DPA1. The trajectory of AHNAK cluster was earlier than that of IGLC3 cluster, with an enrichment for pathways responsive to lipopolysaccharide. The IGLC3 cluster revealed lower differentiation potential and was predominantly associated with Ig production. Furthermore, Igα2 levels in CTEPH patients were lower than in controls but higher than in IPAH patients. Significantly, Igγ levels were markedly elevated in CTEPH patients compared with IPAH patients and controls, better distinguishing CTEPH patients from controls and IPAH patients. CONCLUSION Plasma cells of CTEPH had a distinctive landscape and heterogeneity. The newly identified clusters represented excessive Ig production but lacked immune response function. These findings highlight that targeted plasma cells can be used to develop novel CTEPH treatments.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China; Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yunlong Zhang
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Huiting Li
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiao Feng
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Yitong Lei
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Sihan Liu
- Department of Biological Sciences and Technology, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Qinhua Zhao
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing He
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Cijun Luo
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongling Qiu
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianfeng Zhang
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sugang Gong
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Lan Wang
- Department of Cardio-Pulmonary Circulation, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Gao J, Li C, Lin X, Zhuang Y, Wang M, Lin H, Zhu X. Role of IRF4 in mediating plasmablast differentiation in diffuse large B-cell lymphomas via mTORC1 pathway. Ann Hematol 2025:10.1007/s00277-025-06273-6. [PMID: 40204935 DOI: 10.1007/s00277-025-06273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/17/2025] [Indexed: 04/11/2025]
Abstract
Autoimmune haemolytic anaemia (AIHA) is common secondary to diffuse large B-cell lymphoma (DLBCL). However, there are no reports on tumour B-cells differentiating into plasmablasts in DLBCL secondary AIHA. To state impact of the interferon regulatory factor 4 (IRF4) on DLBCL and explore the mechanism of IRF4 on plasmablast differentiation.We analysed the expression of immunity-related genes from the Gene Expression Omnibus and correlated predictors from clinical and laboratory data using R package and various statistical tools. Western blotting (WB) was used to detect protein levels in DLBCL cell lines of different subtypes to investigate the plasmablast and activation of mTORC1. To furtherly validate mTOR regulation of plasmablast differentiation, mTOR-activated and -inhibited cell models were constructed by CCK8 and flow cytometry (FCM) was used to assess the proportion of CD38 positive cells. We found that IRF4 was highly expressed in activated B-cell-like (ABC) DLBCL vs. germinal centre B-cell-like (GCB) DLBCL. Positive MUM-1and low haemoglobin values were corrected to non-CGB patients. Plasmablast indictors (BLIMP-1, ARF4, IRE1α, and IRF4) and mTORC1 pathway indictors (mTOR, p70S6K and phosphorylated-p70S6K) were different level in ABC cell lines. After successfully constructing cell models, the proportion of CD38+ cells changed in mTOR-activated and -inhibited ABC-DLBCL cell models. We first pointed out that the role of the IRF4 invovling in DLBCL cell plasmablast differentiation via mTORC1 pathway. These findings could be extended to provide experimental evidence for novel treatments of secondary AIHA in ABC-DLBCL.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Chuntuan Li
- Department of Hematology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Xingzhi Lin
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Yanling Zhuang
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Mingquan Wang
- Department of Blood transfusion, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China
| | - Hongjun Lin
- Medical College of Huaqiao University, Quanzhou, Fujian, 362000, China
| | - Xiongpeng Zhu
- Department of Hematology, Quanzhou First Hospital affiliated to Fujian Medical University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
3
|
Chen D, Xu S, Li S, Wang Q, Li H, He D, Chen Y, Xu H. The multi-organ landscape of B cells highlights dysregulated memory B cell responses in Crohn's disease. Natl Sci Rev 2025; 12:nwaf009. [PMID: 40160682 PMCID: PMC11951101 DOI: 10.1093/nsr/nwaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/07/2025] [Indexed: 04/02/2025] Open
Abstract
Crohn's disease (CD) is a prevalent type of inflammatory bowel disease (IBD) with dysregulated antibody responses. However, there is a lack of comprehensive analysis of B cell responses in CD. Here, we collected B cells from the small intestine, colon and blood of CD patients and control subjects. Through the coupled analysis of transcriptome and immunoglobulin (Ig) gene in individual cells, we characterized the cellular composition, transcriptome and Ig clonotype in different B cell subtypes. We observed shared disruptions in plasma cell (PC) responses between different IBD subtypes. We revealed heterogeneity in memory B cells (MBCs) and showed a positive correlation between gut resident-like MBCs and disease severity. Furthermore, our clonotype analysis demonstrated an increased direct differentiation of MBCs into PCs in CD patients. Overall, this study demonstrates significantly altered B cell responses associated with chronic inflammation during CD and highlights the potential role of mucosal MBCs in CD pathogenesis.
Collapse
Affiliation(s)
- Dianyu Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Song Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Shuyan Li
- Department of Nursing, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Qiuying Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Hui Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Danyang He
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Chen
- Center for Inflammatory Bowel Diseases, Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Heping Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Laboratory of Systems Immunology, School of Medicine, Westlake University, Hangzhou 310024, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| |
Collapse
|
4
|
Tsai CY, Lee CY, Chen JH, Chiang CK. Chronic Antibody-Mediated Rejection and Plasma Cell ER Stress: Opportunities and Challenges with Calcineurin Inhibitors. Int J Mol Sci 2025; 26:2711. [PMID: 40141353 PMCID: PMC11943340 DOI: 10.3390/ijms26062711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Chronic alloantibody-mediated rejection (cAMR) remains a major challenge in transplant immunology, with no FDA-approved targeted therapies currently available. Despite advancements in cellular immunosuppression, effective strategies to mitigate alloantibody-mediated rejection are still lacking. This review provides a comprehensive overview of transplant rejection with a particular focus on the pathophysiology and therapeutic landscape of cAMR. We highlight the role of plasma cell-driven alloantibody production and its susceptibility to endoplasmic reticulum (ER) stress, a pathway with potential for therapeutic intervention. Special attention is given to calcineurin inhibitors (CNIs), which, beyond their well-established T-cell inhibitory effects, exhibit differential impacts on ER stress and plasma cell viability. By delineating the mechanistic differences between cyclosporine and tacrolimus in regulating ER stress responses, we propose potential therapeutic implications for optimizing cAMR management. This review underscores the need for innovative strategies targeting plasma cell biology to improve long-term transplant outcomes.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
- Department of Medical Research, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Chih-Yuan Lee
- Department of Surgery, National Taiwan University Hospital, Taipei 100225, Taiwan;
- Organ Transplant Center, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Jia-Huang Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan; (C.-Y.T.); (J.-H.C.)
- Department of Integrated Diagnostics & Therapeutics, National Taiwan University Hospital, Taipei 100225, Taiwan
| |
Collapse
|
5
|
Sievert EP, Franke MC, Thomas KB, Yoon Y, Shi Y, Sciammas R. Distinct plasmablast developmental intermediates produce graded expression of IgM secretory transcripts. Cell Rep 2025; 44:115283. [PMID: 39923238 PMCID: PMC12023845 DOI: 10.1016/j.celrep.2025.115283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 02/11/2025] Open
Abstract
Differentiation into plasma cells (PCs) enables secretion of ∼10,000 immunoglobulin molecules per second. This extraordinary capacity requires the upregulation of PC transcriptional determinants that specify PC fate, increase immunoglobulin mRNA synthesis, coordinate alternative 3' end processing of the heavy chain transcript from the distal to proximal polyadenylation site (PAS), and remodel the secretory pathway. We developed a dual-fluorescent protein reporter mouse to prospectively study the post-transcriptional-level transition from membrane anchored to secretory immunoglobulin M; μM-PAS and μS-PAS, respectively. We observed (1) graded μS-PAS usage during PC differentiation, (2) IRF4 and Blimp-1 functioned hierarchically to increase μ abundance as well as μS-PAS usage, and (3) graded μS populations did or did not express Blimp-1. Interestingly, the low and high μS and Blimp-1-expressing populations arose from distinct developmental intermediates that exhibited dissimilar endoplasmic reticulum features. The distinct cell and μS-PAS fate trajectories may have implications for derivatization of the secretory pathway.
Collapse
Affiliation(s)
- Evelyn P Sievert
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Marissa C Franke
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Kayla B Thomas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA
| | - Yoseop Yoon
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, CA, USA.
| | - Roger Sciammas
- Department of Anatomy, Physiology, and Cell Biology, University of California at Davis, Davis, CA, USA.
| |
Collapse
|
6
|
Yin J, Lv J, Yang S, Wang Y, Huang Z, Wang X, Hou G, Zhou W, Liu Y, Wang W, Lin X, Huang Y, Zheng Y, Wei C, Yuan Y, Huang Y, Liu C, Tao H, Liu H, Liu R, Zhang Y, Zeng G, Quan F, Zhu X, Gao P, Xie J, Liu L, Cao J, Liu C, Jin X, Wang J. Multi-omics reveals immune response and metabolic profiles during high-altitude mountaineering. Cell Rep 2025; 44:115134. [PMID: 39932189 DOI: 10.1016/j.celrep.2024.115134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/23/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025] Open
Abstract
The physiological perturbations induced by high-altitude exposure in mountain climbers, manifesting as immunological and metabolic deviations, have been previously reported but are not fully understood. In this study, we obtain multi-omic profiles of climbers' blood samples, including single-cell transcriptomic analysis of 375,722 immune cells, and plasma metabolomics and lipidomics. Longitudinal analysis reveals dynamic immune response profiles, during the acclimatization period, characterized by the downregulation of inflammatory responses in myeloid cell subsets and by the enhancement of immune effector processes in cytotoxic CD8+ T, γδT, and CD16+ natural killer cells. In contrast, during extreme-altitude mountaineering, the activation of inflammatory responses and impairment of immune effector function are observed, concomitant with an increased cellular response to hypoxia and oxidative stress pathways. Furthermore, glycolysis and antioxidant gene expression are upregulated during extreme-altitude mountaineering. Plasma metabolic analysis reveals significant alterations, involving enhanced glutamine and fatty acid metabolism.
Collapse
Affiliation(s)
- Jianhua Yin
- BGI Research, Shenzhen 518083, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China
| | - Jingzhi Lv
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shichen Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China
| | - Yang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China
| | - Zhuoli Huang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Wang
- BGI Research, Hangzhou 310030, China
| | | | | | - Ying Liu
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China
| | - Weikai Wang
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiumei Lin
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China
| | - Yunting Huang
- China National GeneBank, BGI Research, Shenzhen 518120, China
| | - Yuhui Zheng
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wei
- BGI Research, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Yuan
- BGI Research, Shenzhen 518083, China; BGI Research, Hangzhou 310030, China
| | - Yaling Huang
- BGI Research, Shenzhen 518083, China; BGI Research, Hangzhou 310030, China
| | - Chang Liu
- BGI Research, Shenzhen 518083, China; BGI Research, Hangzhou 310030, China
| | | | - Huanhuan Liu
- BGI Research, Shenzhen 518083, China; BGI Research, Chongqing 401329, China
| | | | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | | | | | | | - Peng Gao
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; BGI, Shenzhen 518083, China
| | - Jun Xie
- Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
| | - Longqi Liu
- BGI Research, Shenzhen 518083, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI Research, Hangzhou 310030, China
| | - Jun Cao
- BGI, Shenzhen 518083, China.
| | - Chuanyu Liu
- BGI Research, Shenzhen 518083, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; BGI Research, Hangzhou 310030, China.
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; Shanxi Medical University - BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan 030001, China; School of Medicine, South China University of Technology, Guangzhou 510006, China.
| | - Jian Wang
- BGI Research, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou 310058, China.
| |
Collapse
|
7
|
Ma W, Yin L, Hu Y, Liu X, Guo Z, Zhong B, Qiu H, Li J. Multi-omics analysis reveals interactions between host and microbes in Bama miniature pigs during weaning. Front Microbiol 2024; 15:1482925. [PMID: 39723142 PMCID: PMC11668797 DOI: 10.3389/fmicb.2024.1482925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction There are complex interactions between host and gut microbes during weaning, many of the mechanisms are not yet fully understood. Previous research mainly focuses on commercial pigs, whereas limited information has been known about the host and gut microbe interactions in miniature pigs. Methods To address the issue in Bama miniature piglets that were weaned 30 days after birth, we collected samples on days 25 and 36 for metabolomics, transcriptomics, and microgenomics analysis. Results and discussion The average daily weight gain of piglets during weaning was only 58.1% and 40.6% of that during 0-25 days and 36-60 days. Metabolomic results identified 61 significantly different metabolites (SDMs), of which, the most significantly increased and decreased SDMs after weaning were ectoine and taurocholate, respectively, indicating the occurrence of inflammation. Metagenomic analysis identified 30 significantly different microbes before and after weaning. Bacteria related to decreasing intestinal inflammation, such as Megasphaera, Alistipes and Bifidobacterium, were enriched before weaning. While bacteria related to infection such as Chlamydia, Clostridium, Clostridioides, and Blautia were enriched after weaning. The carbohydrate enzymes CBM91, CBM13, GH51_1, and GH94 increase after weaning, which may contribute to the digestion of complex plant fibers. Furthermore, we found the composition of antibiotic resistance genes (ARGs) changed during weaning. Transcriptomic analysis identified 147 significantly differentially expressed genes (DEGs). The upregulated genes after weaning were enriched in immune response categories, whereas downregulated genes were enriched in protein degradation. Combining multi-omics data, we identified significant positive correlations between gene MZB1, genera Alistipes and metabolite stachydrine, which involve anti-inflammatory functions. The reduced abundance of bacteria Dialister after weaning had strong correlations with the decreased 2-AGPE metabolite and the downregulated expression of RHBDF1 gene. Altogether, the multi-omics study reflects dietary changes and gut inflammation during weaning, highlighting complex interactions between gut microbes, host genes and metabolites."
Collapse
Affiliation(s)
- Wen Ma
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Li Yin
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Ying Hu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenghong Guo
- Dossy Biological Engineering (Chongqing) Co., Ltd., Chongqing, China
| | - Bingyang Zhong
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Haofeng Qiu
- Chengdu Dossy Experimental Animal Co., Ltd., Chengdu, China
| | - Jing Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Kunes RZ, Walle T, Land M, Nawy T, Pe'er D. Supervised discovery of interpretable gene programs from single-cell data. Nat Biotechnol 2024; 42:1084-1095. [PMID: 37735262 PMCID: PMC10958532 DOI: 10.1038/s41587-023-01940-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/09/2023] [Indexed: 09/23/2023]
Abstract
Factor analysis decomposes single-cell gene expression data into a minimal set of gene programs that correspond to processes executed by cells in a sample. However, matrix factorization methods are prone to technical artifacts and poor factor interpretability. We address these concerns with Spectra, an algorithm that combines user-provided gene programs with the detection of novel programs that together best explain expression covariation. Spectra incorporates existing gene sets and cell-type labels as prior biological information, explicitly models cell type and represents input gene sets as a gene-gene knowledge graph using a penalty function to guide factorization toward the input graph. We show that Spectra outperforms existing approaches in challenging tumor immune contexts, as it finds factors that change under immune checkpoint therapy, disentangles the highly correlated features of CD8+ T cell tumor reactivity and exhaustion, finds a program that explains continuous macrophage state changes under therapy and identifies cell-type-specific immune metabolic programs.
Collapse
Affiliation(s)
- Russell Z Kunes
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Statistics, Columbia University, New York, NY, USA
| | - Thomas Walle
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medical Oncology, National Center for Tumor Diseases, Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Max Land
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tal Nawy
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
9
|
Ertl HCJ. Circumventing B Cell Responses to Allow for Redosing of Adeno-Associated Virus Vectors. Hum Gene Ther 2024; 35:416-424. [PMID: 37861281 DOI: 10.1089/hum.2023.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Adeno-associated virus (AAV)-mediated gene therapy has made significant progress in the last few decades. Nevertheless, challenges imposed by the immune system remain. The very high doses of AAV vectors used for some disorders have resulted in serious adverse events (SAEs) or even deaths, demonstrating that AAV vector doses that can safely be injected into patients are limited and for some indications below the therapeutic dose. Currently used immunosuppressive drugs have not prevented the SAEs, indicating that it may be prudent to treat patients with repeated transfer of moderate doses rather than a single injection of high doses of AAV vectors. The former approach has been avoided as AAV vectors elicit neutralizing antibodies that prevent successful reapplication of serologically crossreactive vectors. Immunosuppressive regimens that block B cell responses to AAV vectors or treatments that remove AAV neutralizing antibodies thus need to be developed to allow for a shift from toxic single-dose injections of AAV vectors to repeated treatments with more moderate and safe doses. Preventing or blocking antibody responses would also allow for redosing of patients with declining transgene product expression, or for effective AAV-mediated gene transfer into patients with the pre-existing neutralizing antibodies.
Collapse
Affiliation(s)
- Hildegund C J Ertl
- Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Bracchi-Ricard V, Nguyen K, Ricci D, Gaudette B, Henao-Meija J, Brambilla R, Martynyuk T, Gidalevitz T, Allman D, Bethea JR, Argon Y. Increased activity of IRE1 improves the clinical presentation of EAE. FASEB J 2023; 37:e23283. [PMID: 37983957 PMCID: PMC10662669 DOI: 10.1096/fj.202300769rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Activation of the endoplasmic reticulum (ER) stress sensor inositol-requiring enzyme-1α (IRE1α) contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the contrary, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells but exhibited a beneficial effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Although mechanical allodynia was unaffected, significant improvement in motor function was found in IRE1C148S mice with EAE relative to wild type (WT) mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of proinflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) levels, suggesting improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the microglial activation marker ionized calcium-binding adapter molecule (IBA1), along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be beneficial in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.
Collapse
Affiliation(s)
| | - Kayla Nguyen
- Department of Biology, Drexel University, Philadelphia, PA
| | - Daniela Ricci
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Gaudette
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Meija
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | - David Allman
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - John R. Bethea
- Department of Biology, Drexel University, Philadelphia, PA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children’s Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Steinmetz TD, Verstappen GM, Suurmond J, Kroese FGM. Targeting plasma cells in systemic autoimmune rheumatic diseases - Promises and pitfalls. Immunol Lett 2023; 260:44-57. [PMID: 37315847 DOI: 10.1016/j.imlet.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Plasma cells are the antibody secretors of the immune system. Continuous antibody secretion over years can provide long-term immune protection but could also be held responsible for long-lasting autoimmunity in case of self-reactive plasma cells. Systemic autoimmune rheumatic diseases (ARD) affect multiple organ systems and are associated with a plethora of different autoantibodies. Two prototypic systemic ARDs are systemic lupus erythematosus (SLE) and Sjögren's disease (SjD). Both diseases are characterized by B-cell hyperactivity and the production of autoantibodies against nuclear antigens. Analogues to other immune cells, different subsets of plasma cells have been described. Plasma cell subsets are often defined dependent on their current state of maturation, that also depend on the precursor B-cell subset from which they derived. But, a universal definition of plasma cell subsets is not available so far. Furthermore, the ability for long-term survival and effector functions may differ, potentially in a disease-specific manner. Characterization of plasma cell subsets and their specificity in individual patients can help to choose a suitable targeting approach for either a broad or more selective plasma cell depletion. Targeting plasma cells in systemic ARDs is currently challenging because of side effects or varying depletion efficacies in the tissue. Recent developments, however, like antigen-specific targeting and CAR-T-cell therapy might open up major benefits for patients beyond current treatment options.
Collapse
Affiliation(s)
- Tobit D Steinmetz
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Gwenny M Verstappen
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Suurmond
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans G M Kroese
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Haas M, Fest T. Final step of B-cell differentiation into plasmablasts; the right time to activate plasma cell PIM2 kinase. Immunol Lett 2023; 258:45-50. [PMID: 37207916 DOI: 10.1016/j.imlet.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
The differentiation of B cells into antibody-secreting plasma cells is a complex process that involves extensive changes in morphology, lifespan, and cellular metabolism to support the high rates of antibody production. During the final stage of differentiation, B cells undergo significant expansion of their endoplasmic reticulum and mitochondria, which induces cellular stress and may lead to cell death in absence of effective inhibition of the apoptotic pathway. These changes are tightly regulated at transcriptional and epigenetic levels, as well as at post-translational level, with protein modifications playing a critical role in the process of cellular modification and adaptation. Our recent research has highlighted the pivotal role of the serine/threonine kinase PIM2 in B cell differentiation, from commitment stage to plasmablast and maintenance of expression in mature plasma cells. PIM2 has been shown to promote cell cycle progression during the final stage of differentiation and to inhibit Caspase 3 activation, raising the threshold for apoptosis. In this review, we examine the key molecular mechanisms controlled by PIM2 that contribute to plasma cell development and maintenance.
Collapse
Affiliation(s)
- Marion Haas
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, Team B_DEVIL, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Centre Hospitalier Universitaire, Rennes, France
| | - Thierry Fest
- Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, Team B_DEVIL, UMR_S1236, Rennes, France; Laboratoire d'Hématologie, Centre Hospitalier Universitaire, Rennes, France.
| |
Collapse
|
13
|
Bracchi-Ricard V, Nguyen K, Ricci D, Gaudette B, Henao-Meija J, Brambilla R, Martynyuk T, Gidalevitz T, Allman D, Bethea JR, Argon Y. Increased activity of IRE1 improves the clinical presentation of EAE. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537391. [PMID: 37131811 PMCID: PMC10153167 DOI: 10.1101/2023.04.19.537391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling in vitro and in vivo. On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation. Surprisingly, the mutation did not affect the differentiation of highly secretory antibody-producing cells, but exhibited a strong protective effect in a mouse model of experimental autoimmune encephalomyelitis (EAE). Significant improvement in motor function was found in IRE1C148S mice with EAE relative to WT mice. Coincident with this improvement, there was reduced microgliosis in the spinal cord of IRE1C148S mice, with reduced expression of pro-inflammatory cytokine genes. This was accompanied by reduced axonal degeneration and enhanced CNPase levels, suggestiing improved myelin integrity. Interestingly, while the IRE1C148S mutation is expressed in all cells, the reduction in proinflammatory cytokines and in the activation of microglial activation marker IBA1, along with preservation of phagocytic gene expression, all point to microglia as the cell type contributing to the clinical improvement in IRE1C148S animals. Our data suggest that sustained increase in IRE1α activity can be protective in vivo, and that this protection is cell type and context dependent. Considering the overwhelming but conflicting evidence for the role of the ER stress in neurological diseases, a better understanding of the function of ER stress sensors in physiological contexts is clearly needed.
Collapse
Affiliation(s)
| | - Kayla Nguyen
- Department of Biology, Drexel University, Philadelphia, PA
| | - Daniela Ricci
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Gaudette
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge Henao-Meija
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Roberta Brambilla
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
- BRIDGE - Brain Research - Inter-Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | | | | | - David Allman
- Department of Pathology and Lab Medicine, the University of Pennsylvania, Philadelphia, PA, USA
| | - John R Bethea
- Department of Biology, Drexel University, Philadelphia, PA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Children's Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
The cellular biology of plasma cells: Unmet challenges and opportunities. Immunol Lett 2023; 254:6-12. [PMID: 36646289 DOI: 10.1016/j.imlet.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Plasma cells and the antibodies they secrete are paramount for protection against infection but can also be implicated in diseases including autoantibody-mediated disease and multiple myeloma. Plasma cell terminal differentiation relies on a transcriptional switch and on important morphological changes. The cellular and molecular mechanisms underlying these processes are partly understood and how plasma cells manage to survive for long periods of time while secreting large quantities of antibodies remains unclear. In this review we aim to put in perspective what is known about plasma cell cellular biology to highlight the challenges faced by this field of research but also to illustrate how new opportunities may arise from the study of the fundamental mechanisms sustaining plasma cell survival and function.
Collapse
|
15
|
Xiong E, Popp O, Salomon C, Mertins P, Kocks C, Rajewsky K, Chu VT. A CRISPR/Cas9-mediated screen identifies determinants of early plasma cell differentiation. Front Immunol 2023; 13:1083119. [PMID: 36685499 PMCID: PMC9849354 DOI: 10.3389/fimmu.2022.1083119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction The differentiation of B cells into antibody-secreting plasma cells depends on cell division-coupled, epigenetic and other cellular processes that are incompletely understood. Methods We have developed a CRISPR/Cas9-based screen that models an early stage of T cell-dependent plasma cell differentiation and measures B cell survival or proliferation versus the formation of CD138+ plasmablasts. Here, we refined and extended this screen to more than 500 candidate genes that are highly expressed in plasma cells. Results Among known genes whose deletion preferentially or mostly affected plasmablast formation were the transcription factors Prdm1 (BLIMP1), Irf4 and Pou2af1 (OBF-1), and the Ern1 gene encoding IRE1a, while deletion of XBP1, the transcriptional master regulator that specifies the expansion of the secretory program in plasma cells, had no effect. Defective plasmablast formation caused by Ern1 deletion could not be rescued by the active, spliced form of XBP1 whose processing is dependent on and downstream of IRE1a, suggesting that in early plasma cell differentiation IRE1a acts independently of XBP1. Moreover, we newly identified several genes involved in NF-kB signaling (Nfkbia), vesicle trafficking (Arf4, Preb) and epigenetic regulators that form part of the NuRD complex (Hdac1, Mta2, Mbd2) to be required for plasmablast formation. Deletion of ARF4, a small GTPase required for COPI vesicle formation, impaired plasmablast formation and blocked antibody secretion. After Hdac1 deletion plasmablast differentiation was consistently reduced by about 50%, while deletion of the closely related Hdac2 gene had no effect. Hdac1 knock-out led to strongly perturbed protein expression of antagonistic transcription factors that govern plasma cell versus B cell identity (by decreasing IRF4 and BLIMP1 and increasing BACH2 and PAX5). Discussion Taken together, our results highlight specific and non-redundant roles for Ern1, Arf4 and Hdac1 in the early steps of plasma cell differentiation.
Collapse
Affiliation(s)
- Ermeng Xiong
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Oliver Popp
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Claudia Salomon
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Philipp Mertins
- Proteomics platform, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC) and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Kocks
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Klaus Rajewsky
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Klaus Rajewsky, ; Van Trung Chu,
| | - Van Trung Chu
- Immune Regulation and Cancer, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Genome Engineering & Disease Models, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,*Correspondence: Klaus Rajewsky, ; Van Trung Chu,
| |
Collapse
|
16
|
Ulbricht C, Cao Y, Niesner RA, Hauser AE. In good times and in bad: How plasma cells resolve stress for a life-long union with the bone marrow. Front Immunol 2023; 14:1112922. [PMID: 37033993 PMCID: PMC10080396 DOI: 10.3389/fimmu.2023.1112922] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/14/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Carolin Ulbricht
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Yu Cao
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Raluca A. Niesner
- Biophysical Analysis, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- Dynamic and Functional in vivo Imaging, Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Anja E. Hauser
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Immune Dynamics, Deutsches Rheuma-Forschungszentrum (DRFZ), A Leibniz Institute, Berlin, Germany
- *Correspondence: Anja E. Hauser,
| |
Collapse
|
17
|
Vitale A, Pedrazzini E. StresSeed: The Unfolded Protein Response During Seed Development. FRONTIERS IN PLANT SCIENCE 2022; 13:869008. [PMID: 35432435 PMCID: PMC9008589 DOI: 10.3389/fpls.2022.869008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.
Collapse
|
18
|
Herbert A, Fedorov A, Poptsova M. Mono a Mano: ZBP1's Love-Hate Relationship with the Kissing Virus. Int J Mol Sci 2022; 23:3079. [PMID: 35328502 PMCID: PMC8955656 DOI: 10.3390/ijms23063079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/09/2022] [Indexed: 12/27/2022] Open
Abstract
Z-DNA binding protein (ZBP1) very much represents the nuclear option. By initiating inflammatory cell death (ICD), ZBP1 activates host defenses to destroy infectious threats. ZBP1 is also able to induce noninflammatory regulated cell death via apoptosis (RCD). ZBP1 senses the presence of left-handed Z-DNA and Z-RNA (ZNA), including that formed by expression of endogenous retroelements. Viruses such as the Epstein-Barr "kissing virus" inhibit ICD, RCD and other cell death signaling pathways to produce persistent infection. EBV undergoes lytic replication in plasma cells, which maintain detectable levels of basal ZBP1 expression, leading us to suggest a new role for ZBP1 in maintaining EBV latency, one of benefit for both host and virus. We provide an overview of the pathways that are involved in establishing latent infection, including those regulated by MYC and NF-κB. We describe and provide a synthesis of the evidence supporting a role for ZNA in these pathways, highlighting the positive and negative selection of ZNA forming sequences in the EBV genome that underscores the coadaptation of host and virus. Instead of a fight to the death, a state of détente now exists where persistent infection by the virus is tolerated by the host, while disease outcomes such as death, autoimmunity and cancer are minimized. Based on these new insights, we propose actionable therapeutic approaches to unhost EBV.
Collapse
Affiliation(s)
- Alan Herbert
- InsideOutBio, 42 8th Street, Charlestown, MA 02129, USA
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Aleksandr Fedorov
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| | - Maria Poptsova
- Laboratory of Bioinformatics, Faculty of Computer Science, National Research University Higher School of Economics, 11 Pokrovsky Bulvar, 101000 Moscow, Russia; (A.F.); (M.P.)
| |
Collapse
|
19
|
Affiliation(s)
- David Allman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|