1
|
Broomfield BJ, Tan CW, Qin RZ, Abberger H, Duckworth BC, Alvarado C, Dalit L, Lee CL, Shandre Mugan R, Mazrad ZA, Muramatsu H, Mackiewicz L, Williams BE, Chen J, Takanashi A, Fabb S, Pellegrini M, Rogers KL, Moon WJ, Pouton CW, Davis MJ, Nutt SL, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8+ T cell stemness and vaccine protection. J Exp Med 2025; 222:e20241148. [PMID: 40062995 PMCID: PMC11893171 DOI: 10.1084/jem.20241148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/25/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Developing vaccines that promote CD8+ T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1+ stem cell-like memory CD8+ T (TSCM) cells are important determinants of long-lived memory. Yet, the developmental requirements for TSCM cell formation are unclear. Here, we identify the temporal window for type I interferon receptor (IFNAR) blockade to drive TSCM cell generation following viral infection and mRNA-lipid nanoparticle vaccination. We reveal a reversible developmental trajectory where transcriptionally distinct TSCM cells emerged from a transitional precursor of exhausted T cellular state concomitant with viral clearance. TSCM cell differentiation correlated with T cell retention within the lymph node paracortex due to disrupted CXCR3 chemokine gradient formation. These effects were linked to increased antigen load and a counterintuitive increase in IFNγ, which controlled cell location. Vaccination with the IFNAR blockade promoted TSCM cell differentiation and enhanced protection against chronic infection. These findings propose an approach to vaccine design whereby modulation of inflammation promotes memory formation and function.
Collapse
Affiliation(s)
- Benjamin J. Broomfield
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chin Wee Tan
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Raymond Z. Qin
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Hanna Abberger
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brigette C. Duckworth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Carolina Alvarado
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Lennard Dalit
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Chee Leng Lee
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Rekha Shandre Mugan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Zihnil A.I. Mazrad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Liana Mackiewicz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Bailey E. Williams
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Jinjin Chen
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Asuka Takanashi
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Stewart Fabb
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Marc Pellegrini
- Centenary Institute of Cancer Medicine and Cell Biology, Camperdown, Australia
| | - Kelly L. Rogers
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | | | - Colin W. Pouton
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Melissa J. Davis
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Stephen L. Nutt
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, Philadelphia, PA, USA
| | - Verena C. Wimmer
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Joanna R. Groom
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
2
|
Bhandarkar V, Dinter T, Spranger S. Architects of immunity: How dendritic cells shape CD8 + T cell fate in cancer. Sci Immunol 2025; 10:eadf4726. [PMID: 39823318 PMCID: PMC11970844 DOI: 10.1126/sciimmunol.adf4726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
Immune responses against cancer are dominated by T cell exhaustion and dysfunction. Recent advances have underscored the critical role of early priming interactions in establishing T cell fates. In this review, we explore the importance of dendritic cell (DC) signals in specifying CD8+ T cell fates in cancer, drawing on insights from acute and chronic viral infection models. We highlight the role of DCs in lymph nodes and tumors in maintaining stem-like CD8+ T cells, which are critical for durable antitumor immune responses. Understanding how CD8+ T cell fates are determined will enable the rational design of immunotherapies, particularly therapeutic cancer vaccines, that can modulate DC-T cell interactions to generate beneficial CD8+ T cell fates.
Collapse
Affiliation(s)
- Vidit Bhandarkar
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Teresa Dinter
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Stefani Spranger
- Koch Institute at MIT, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
3
|
Broomfield BJ, Groom JR. Defining the niche for stem-like CD8 + T cell formation and function. Curr Opin Immunol 2024; 89:102454. [PMID: 39154521 DOI: 10.1016/j.coi.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
TCF-1+ CD8+ T cell populations have emerged as critical determinants for long-lived immunological memory. This cell population has stem-like properties and is implicated in improved disease outcomes by driving sustained killing of infected cells and maintaining the immune-cancer equilibrium. During an immune response, several factors, including antigen deposition and affinity, the inflammatory milieu, and T cell priming dynamics, aggregate to skew CD8+ T cell differentiation. Although these mechanisms are altered between acute and chronic disease settings, phenotypically similar stem-like TCF-1+ CD8+ T cell states are formed in each of these settings. Here, we characterize the specialized microenvironments within lymph nodes and the tumor microenvironment, which foster the generation or re-activation of stem-like TCF-1+ CD8+ T cell populations. We highlight the potential for targeting the stem-like CD8+ T cell niche to enhance vaccination and cancer immunotherapy and to track the trajectory of stem-like CD8+ T cells as biomarkers of therapeutic efficacy.
Collapse
Affiliation(s)
- Benjamin J Broomfield
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Joanna R Groom
- Division of Immunology, Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
4
|
Broomfield BJ, Tan CW, Qin RZ, Duckworth BC, Alvarado C, Dalit L, Chen J, Mackiewicz L, Muramatsu H, Pellegrini M, Rogers KL, Moon WJ, Nutt SL, Davis MJ, Pardi N, Wimmer VC, Groom JR. Transient inhibition of type I interferon enhances CD8 + T cell stemness and vaccine protection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600763. [PMID: 38979239 PMCID: PMC11230403 DOI: 10.1101/2024.06.26.600763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Developing vaccines that promote CD8 + T cell memory is a challenge for infectious disease and cancer immunotherapy. TCF-1 + stem cell-like memory T (T SCM ) cells are important determinants of long-lived memory. Yet, the developmental requirements for T SCM formation are unclear. Here, we identify the temporal window for type I interferon (IFN-I) receptor (IFNAR) blockade to drive T SCM cell generation. T SCM cells were transcriptionally distinct and emerged from a transitional precursor of exhausted (T PEX ) cellular state concomitant with viral clearance. T SCM differentiation correlated with T cell retention within the lymph node paracortex, due to increased CXCR3 chemokine abundance which disrupted gradient formation. These affects were due a counterintuitive increase in IFNψ, which controlled cell location. Combining IFNAR inhibition with mRNA-LNP vaccination promoted specific T SCM differentiation and enhanced protection against chronic infection. These finding propose a new approach to vaccine design whereby modulation of inflammation promotes memory formation and function. HIGHLIGHTS Early, transient inhibition of the type I interferon (IFN) receptor (IFNAR) during acute viral infection promotes stem cell-like memory T (T SCM ) cell differentiation without establishing chronic infection. T SCM and precursor of exhausted (T PEX ) cellular states are distinguished transcriptionally and by cell surface markers. Developmentally, T SCM cell differentiation occurs via a transition from a T PEX state coinciding with viral clearance. Transient IFNAR blockade increases IFNψ production to modulate the ligands of CXCR3 and couple T SCM differentiation to cell retention within the T cell paracortex of the lymph node. Specific promotion of T SCM cell differentiation with nucleoside-modified mRNA-LNP vaccination elicits enhanced protection against chronic viral challenge.
Collapse
|
5
|
Wu A, Niu J, Hong Z, Gu L, Huang Y, Qiu L. The effects of 5-aminolevulinic acid photodynamic therapy on the local immune response of women with cervical intraepithelial neoplasia grade 2. Front Immunol 2023; 14:1211114. [PMID: 37928525 PMCID: PMC10623119 DOI: 10.3389/fimmu.2023.1211114] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 11/07/2023] Open
Abstract
Objective To evaluate and elucidate the effects and mechanism of 5-aminolevulinic acid photodynamic therapy (ALA-PDT) on the local immune response of women with cervical intraepithelial neoplasia grade 2 (CIN2). Materials and methods Immunofluorescence staining was used to compare immune cells infiltration before and after ALA-PDT in 23 patients with CIN2. The infiltration of immune cells into the cervical tissues of patients with different outcomes was also compared at the 6-month follow-up period. Immune cell counts in samples collected before and after treatment were compared. Results We found an increased number of CD8+ T cell infiltration, an increased proportion of CD8+ T cells expressing Granzyme B (GrB), Chemokine receptor 3 (CXCR3), and CD8+ tissue-resident memory T (TRM) cells, and a decreased proportion of CD8+ T cells expressing PD-1 in patients with CIN2 compared to that before ALA-PDT. Moreover, at the 6-month follow-up, there was higher infiltration of CD8+ T and CD8+ TRM cells, higher expression of GrB and CXCR3, and lower expression of PD-1 on CD8+ T cells in the HPV clearance and CIN2 disappearance groups than in the HPV-positive and CIN2 regression groups. However, no significant difference was observed in the number of CD8+ TSCM following ALA-PDT. Conclusion ALA-PDT could activate CD8+ T cell responses by modulating the expression of CXCR3 and PD-1 in CD8+ T cells and increasing the infiltration of CD8+ TRM cells. And the infiltration of CD8+ T cells is correlated with the prognosis of CIN2.
Collapse
Affiliation(s)
- Anyue Wu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jing Niu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zubei Hong
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Liying Gu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuli Huang
- Department of Obstetrics and Gynecology, Chongming Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Lihua Qiu
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
6
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
7
|
Wang J, Qiu Q, Zheng Q, Zhao Y, Xu Y, Zhang T, Wang S, Wang Q, Jin Q, Ye Y, Li P, Xie J, Lin J, Lu J, Chen Q, Cao L, Yang Y, Zheng C, Huang C. Tumor Immunophenotyping-Derived Signature Identifies Prognosis and Neoadjuvant Immunotherapeutic Responsiveness in Gastric Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207417. [PMID: 36998102 PMCID: PMC10214263 DOI: 10.1002/advs.202207417] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/28/2023] [Indexed: 05/27/2023]
Abstract
The effectiveness of neoadjuvant immune checkpoint inhibitor (ICI) therapy is confirmed in clinical trials; however, the patients suitable for receiving this therapy remain unspecified. Previous studies have demonstrated that the tumor microenvironment (TME) dominates immunotherapy; therefore, an effective TME classification strategy is required. In this study, five crucial immunophenotype-related molecules (WARS, UBE2L6, GZMB, BATF2, and LAG-3) in the TME are determined in five public gastric cancer (GC) datasets (n = 1426) and an in-house sequencing dataset (n = 79). Based on this, a GC immunophenotypic score (IPS) is constructed using the least absolute shrinkage and selection operator (LASSO) Cox, and randomSurvivalForest. IPSLow is characterized as immune-activated, and IPSHigh is immune-silenced. Data from seven centers (n = 1144) indicate that the IPS is a robust and independent biomarker for GC and superior to the AJCC stage. Furthermore, patients with an IPSLow and a combined positive score of ≥5 are likely to benefit from neoadjuvant anti-PD-1 therapy. In summary, the IPS can be a useful quantitative tool for immunophenotyping to improve clinical outcomes and provide a practical reference for implementing neoadjuvant ICI therapy for patients with GC.
Collapse
|
8
|
Zhang Y, Lu H, Yu Y. ZAP70 interaction with 13 mRNAs as a potential immunotherapeutic target for endometrial cancer. Oncol Lett 2023; 25:213. [PMID: 37123018 PMCID: PMC10131270 DOI: 10.3892/ol.2023.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/17/2023] [Indexed: 05/02/2023] Open
Abstract
For advanced, refractory endometrial cancer (EC), it is advisable to find effective immunotherapeutic targets. In the present study, genes affecting the immune status of uterine corpus endometrial carcinoma (UCEC) samples within The Cancer Genome Atlas were explored by weighted correlation network analysis and differential gene expression analysis. The protein function and immune correlation of 14 key genes, including ζ-chain-associated protein kinase 70 (ZAP70), were analyzed. Based on the expression levels of key genes, the patients with UCEC were divided into two groups using consensus clustering, low expression (group 1) and high expression (group 2). Next, the functions of differentially expressed genes (DEGs) between the two groups were identified using Gene Ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes analysis and Gene Set Enrichment Analysis. The immune status of the patients in the two groups was evaluated using immune infiltration score and the expression levels of targets of immune checkpoint inhibitors. The role of ZAP70 in the prognosis of patients with UCEC and the differences in ZAP70 expression between EC tissues and healthy intimal tissues were determined by reverse transcription-quantitative PCR and immunohistochemistry. The present study found strong correlations between key genes, including ZAP70, LCK, FOXP3, TIGIT, CTLA4, ICOS, CD5, IL2RG, PDCD1, TNFRSF4, CD27, CCR7, GZMB, CXCL9. From the enrichment analyses, it was found that the functions of these DEGs were related to T cells. Patients in group 2 had stronger immune infiltration and higher immune checkpoints expression compared with those in group 1. ZAP70 was expressed at higher levels in EC tissues compared with in normal tissues, and may act as a protective factor in EC. In conclusion, ZAP70 interaction with 13 mRNAs may affect the immune status of patients with EC and may be a potential target for immunotherapy.
Collapse
Affiliation(s)
- Yuming Zhang
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Hai'ou Lu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuexin Yu
- Department of Reproductive Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
- Correspondence to: Professor Yuexin Yu, Department of Reproductive Medicine, General Hospital of Northern Theater Command, 83 Wenhua Road, Shenyang, Liaoning 110016, P.R. China, E-mail:
| |
Collapse
|