1
|
de Assis Carvalho EM, Ozanic K, Machado AFB, Dias VC, Diniz CG, da Silva VL, Bellei N, Watanabe A. Respiratory virus circulation during pandemic: Why were some viruses still circulating? Braz J Microbiol 2025:10.1007/s42770-025-01681-2. [PMID: 40312598 DOI: 10.1007/s42770-025-01681-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 04/17/2025] [Indexed: 05/03/2025] Open
Abstract
A few months after the beginning of the coronavirus disease 2019 (COVID-19) pandemic in March 2020, several non-pharmacological measures were adopted worldwide, with varying degrees of strictness, to contain the transmission of the virus and mitigate its impacts. These measures, in addition to effectively reducing the circulation of SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), these measures also appeared to impact the circulation of other respiratory viruses. Therefore, this study aims to discuss the most relevant data available regarding the circulation of the major respiratory viruses during the COVID-19 pandemic, exploring the factors that allowed some viruses to continue circulating while others experienced a decline. Several authors report that the detection of influenza, respiratory syncytial virus (RSV), human coronaviruses (hCoVs), human parainfluenza viruses (HPIVs), and human metapneumovirus (hMPV) dropped significantly. However, non-enveloped viruses such as adenovirus, and especially human rhinovirus (HRV), did not seem to be as affected. Hypotheses for this scenario include adopting of non-pharmacological measures to curb the spread of COVID-19, behavioral changes in hygiene habits, intrinsic characteristics of each virus such as transmission mode, the presence or absence of a viral envelope and viral interference. Rhinovirus is particularly intriguing, as it maintained a high prevalence during the years of the pandemic. Further investigation into the possible explanations for this phenomenon may be worthwhile.
Collapse
Affiliation(s)
- Eva Maria de Assis Carvalho
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Katia Ozanic
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Alessandra Ferreira Barbosa Machado
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vanessa Cordeiro Dias
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Claudio Galuppo Diniz
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Vania Lucia da Silva
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil
| | - Nancy Bellei
- Departamento de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Aripuanã Watanabe
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brasil.
| |
Collapse
|
2
|
Nowlen TT, Harahsheh AS, Raghuveer G, Lee S, Yetman AT, Dahdah N, Portman MA, Jain SS, Khoury M, Tierney S, Manlhiot C, Farid P, McCrindle BW. Seasons of Kawasaki Disease during the COVID-19 pandemic. Cardiol Young 2024; 34:2329-2332. [PMID: 39627984 DOI: 10.1017/s1047951124036047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The incidence of Kawasaki Disease has a peak in the winter months with a trough in late summer/early fall. Environmental/exposure factors have been associated with a time-varying incidence. These factors were altered during the COVID-19 pandemic. The study was performed through the International Kawasaki Disease Registry. Data from patients diagnosed with acute Kawasaki Disease and Multiple Inflammatory Syndrome-Children were obtained. Guideline case definitions were used to confirm site diagnosis. Enrollment was from 1/2020 to 7/2023. The number of patients was plotted over time. The patients/month were tabulated for the anticipated peak Kawasaki Disease season (December-April) and non-peak season (May-November). Data were available for 1975 patients from 11 large North American sites with verified complete data and uninterrupted site reporting. The diagnosis criteria were met for 531 Kawasaki Disease and 907 Multiple Inflammatory Syndrome-Children patients. For Multiple Inflammatory Syndrome-Children there were peaks in January of 2021 and 2022. For Kawasaki Disease, 2020 began (January-March) with a seasonal peak (peak 26, mean 21) with a subsequent fall in the number of cases/month (mean 11). After the onset of the pandemic (April 2020), there was no clear seasonal Kawasaki Disease variation (December-April mean 12 cases/month and May-November mean 10 cases/month). During the pandemic, the prevalence of Kawasaki Disease decreased and the usual seasonality was abolished. This may represent the impact of pandemic public health measures in altering environmental/exposure aetiologic factors contributing to the incidence of Kawasaki Disease.
Collapse
Affiliation(s)
- Todd T Nowlen
- Phoenix Children's, University of Arizona, Phoenix, AZ, USA
| | - Ashraf S Harahsheh
- Children's National Hospital, The George Washington University School of Medicine & Health Sciences, Washington, DC, USA
| | | | - Simon Lee
- The Heart Center at Nationwide Children's Hospital, Columbus, OH, USA
| | - Anji T Yetman
- Children's Hospital and Medical Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nagib Dahdah
- CHU Ste-Justine, University of Montreal, Montreal, QC, Canada
| | | | - Supriya S Jain
- New York Medical College-Maria Fareri Children's Hospital at Westchester Medical Center, Valhalla, NY, USA
| | - Michael Khoury
- Division of Pediatric Cardiology, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Cedric Manlhiot
- Blalock-Taussig-Thomas Congenital Heart Center at Johns Hopkins University, Baltimore, MD, USA
| | - Pedrom Farid
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Brian W McCrindle
- Labatt Family Heart Centre, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Sechan F, Edridge AWD, van Rijswijk J, Jebbink MF, Deijs M, Bakker M, Matser A, Prins M, van der Hoek L. Influenza-like illness symptoms due to endemic human coronavirus reinfections are not influenced by the length of the interval separating reinfections. Microbiol Spectr 2024; 12:e0391223. [PMID: 38329364 PMCID: PMC10913438 DOI: 10.1128/spectrum.03912-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
After 3 years of its introduction to humans, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been declared as endemic. Little is known about the severity of the disease manifestation that future infections may cause, especially when reinfections occur after humoral immunity from a previous infection or vaccination has waned. Such knowledge could inform policymakers regarding the frequency of vaccination. Reinfections by endemic human coronaviruses (HCoVs) can serve as a model system for SARS-CoV-2 endemicity. We monitored 44 immunocompetent male adults with blood sampling every 6 months (for 17 years), for the frequency of HCoV (re-)infections, using rises in N-antibodies of HCoV-NL63, HCoV-29E, HCoV-OC43, and HCoV-HKU1 as markers of infection. Disease associations during (re-)infections were examined by comparison of self-reporting records of influenza-like illness (ILI) symptoms, every 6 months, by all participants. During 8,549 follow-up months, we found 364 infections by any HCoV with a median of eight infections per person. Symptoms more frequently reported during HCoV infection were cough, sore throat, and myalgia. Two hundred fifty-one of the 364 infections were species-specific HCoV-reinfections, with a median interval of 3.58 (interquartile range 1.92-5.67) years. The length of the interval between reinfections-being either short or long-had no influence on the frequency of reporting ILI symptoms. All HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1 (re-)infections are associated with the reporting of ILIs. Importantly, in immunocompetent males, these symptoms are not influenced by the length of the interval between reinfections. IMPORTANCE Little is known about the disease following human coronavirus (HCoV) reinfection occurring years after the previous infection, once humoral immunity has waned. We monitored endemic HCoV reinfection in immunocompetent male adults for up to 17 years. We found no influence of reinfection interval length in the disease manifestation, suggesting that immunocompetent male adults are adequately protected against future HCoV infections.
Collapse
Affiliation(s)
- Ferdyansyah Sechan
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Arthur W. D. Edridge
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Maarten F. Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Amy Matser
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Amsterdam Public Health, Amsterdam, the Netherlands
- Netherlands Institute for Health Services Research (NIVEL), Utrecht, the Netherlands
| | - Maria Prins
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
- Department of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Infectious Diseases, Public Health Service of Amsterdam, Amsterdam, the Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Gay LC, Seibert B, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. Impact of sex on humoral immunity with live influenza B virus vaccines in mice. NPJ Vaccines 2024; 9:45. [PMID: 38409236 PMCID: PMC10897209 DOI: 10.1038/s41541-024-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP). Importantly, both recombinant viruses with and without IGIP remained genetically stable during egg passage. We found that introducing IGIP strengthened vaccine attenuation, particularly for FluB-RAM/IGIP. Prime-boost vaccination completely protected mice against lethal challenge with a homologous FLUBV strain. Notably, recombinant viruses induced robust neutralizing antibody responses (hemagglutination inhibition titers ≥40) alongside antibodies against NA and NP. Interestingly, female mice displayed a consistent trend of enhanced humoral and cross-reactive IgG and IgA responses against HA, NA, and NP compared to male counterparts, regardless of the vaccine used. However, the presence of IGIP generally led to lower anti-HA responses but higher anti-NA and anti-NP responses, particularly of the IgA isotype. These trends were further reflected in mucosal and serological responses two weeks after challenge, with clear distinctions based on sex, vaccine backbone, and IGIP inclusion. These findings hold significant promise for advancing the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - D Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
5
|
Lee MK, Alfego D, Dale SE. Prevalence and trends in mono- and co-infection of COVID-19, influenza A/B, and respiratory syncytial virus, January 2018-June 2023. Front Public Health 2023; 11:1297981. [PMID: 38162614 PMCID: PMC10754957 DOI: 10.3389/fpubh.2023.1297981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Objectives This study aimed to determine the impact of the COVID-19 pandemic on the overall prevalence and co-infection rates for COVID-19, influenza A/B, and respiratory syncytial virus in a large national population. Methods We conducted a retrospective review of 1,318,118 multi-component nucleic acid amplification tests for COVID-19, influenza A/B, and RSV performed at Labcorp® sites from January 2018 to June 2023, comparing positivity rates and co-infection rates by age, sex, and seasonality. Results In 2021-2023, 1,232 (0.10%) tested positive for COVID-19 and influenza A/B, 366 (0.03%) tested positive for COVID-19 and RSV, 874 (0.07%) tested for influenza A/B and RSV, and 13 (0.001%) tested positive for COVID-19, influenza A/B, and RSV. RSV positivity rates were particularly higher in Q2 and Q3 of 2021 and in Q3 of 2022. Higher influenza A positivity proportions were found in Q4 of 2021 and again in Q2 and Q4 of 2022. Influenza B positivity had been minimal since the start of the pandemic, with a slight increase observed in Q2 of 2023. Conclusion Our findings highlight the need for adaptability in preparation for upper respiratory infection occurrences throughout the year as we adjust to the COVID-19 pandemic due to the observed changes in the seasonality of influenza and RSV. Our results highlight low co-infection rates and suggest heightened concerns for co-infections during peaks of COVID-19, influenza, and RSV, which may perhaps be reduced.
Collapse
|
6
|
Kandeel A, Fahim M, Deghedy O, H Roshdy W, K Khalifa M, El Shesheny R, Kandeil A, Wagdy S, Naguib A, Afifi S, Abdelghaffar K. Multicenter study to describe viral etiologies, clinical profiles, and outcomes of hospitalized children with severe acute respiratory infections, Egypt 2022. Sci Rep 2023; 13:21860. [PMID: 38071208 PMCID: PMC10710477 DOI: 10.1038/s41598-023-48814-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
In late 2022, severe acute respiratory infections (SARI) surveillance reported an abrupt increase in non-COVID-19 infections among children after three years of drastic reductions. Signals of increased absenteeism due to respiratory symptoms among primary and preparatory school children were detected by Event-Based Surveillance. We conducted a hospital-based survey of children who were admitted with SARI to identify the causative pathogen(s) and estimate the burden of infection. A survey was conducted among children < 16 years in 21 referral hospitals in the three governorates with the highest SARI rates. Patients' demographics, clinical symptoms, and severity were collected from medical records using a line list. Patients were swabbed and tested for a panel of 33 respiratory pathogens by RT-PCR at the Central Laboratory in Cairo. Descriptive data analysis was performed for demographic data. Patients' characteristics were compared by causative agents' clinical picture and severity using Chi2 with a p < 0.05 significance. Overall, 317 patients were enrolled, 58.3% were ≤ 1 year of age, 61.5% were males. Of 229 (72.7%) of positively tested patients, viruses caused 92.1% including RSV 63.8%, Rhinovirus 10.0%, Influenza 9.2%, Adenovirus 5.2%, and 1.3% co-infected with two viruses. Bacteria caused 3.5% of cases and 4.4% had mixed viral-bacterial infections. Rhinovirus was the most common cause of death among children with SARI, followed by RSV (8.7% and 1.4%), whereas influenza and Adenovirus did not result in any deaths. Patients with viral-bacterial infections are more likely to be admitted to ICU and die at the hospital than bacterial or viral infections (60% and 20% vs. 31.8% and 1.9% vs. 12.5% and 12.5%, p < 0.001). Viruses particularly RSV are the leading cause of SARI causing significant health problem among children < 16 years in Egypt. Bacterial on top of viral infection can worsen disease courses and outcomes. Studies are required to estimate the SARI burden accurately among Egyptian children and a comprehensive approach tailored to Egypt is necessary to reduce its burden.
Collapse
Affiliation(s)
- Amr Kandeel
- Preventive Sector, Ministry of Health and Population, Cairo, Egypt
| | - Manal Fahim
- Preventive Sector, Ministry of Health and Population, Cairo, Egypt
| | - Ola Deghedy
- Preventive Sector, Ministry of Health and Population, Cairo, Egypt.
| | - Wael H Roshdy
- Central Public Health Laboratories, Ministry of Health and Population, Cairo, Egypt
| | - Mohamed K Khalifa
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Rabeh El Shesheny
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Kandeil
- Centre of Scientific Excellence for Influenza Viruses, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Saly Wagdy
- Central Public Health Laboratories, Ministry of Health and Population, Cairo, Egypt
| | - Amel Naguib
- Central Public Health Laboratories, Ministry of Health and Population, Cairo, Egypt
| | - Salma Afifi
- Consultant Ministry of Health and Population, Cairo, Egypt
| | | |
Collapse
|
7
|
Baumann I, Hage R, Gasche-Soccal P, Aubert JD, Schuurmans MM. Impact of SARS-CoV-2-Related Hygiene Measures on Community-Acquired Respiratory Virus Infections in Lung Transplant Recipients in Switzerland. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1473. [PMID: 37629763 PMCID: PMC10456728 DOI: 10.3390/medicina59081473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Background and Objectives: Community-acquired respiratory virus (CARV) infections pose a serious risk for lung transplant recipients (LTR) as they are prone to severe complications. When the COVID-19 pandemic hit Switzerland in 2020, the government implemented hygiene measures for the general population. We investigated the impact of these measures on the transmission of CARV in lung transplant recipients in Switzerland. Materials and Methods: In this multicenter, retrospective study of lung transplant recipients, we investigated two time periods: the year before the COVID-19 pandemic (1 March 2019-29 February 2020) and the first year of the pandemic (1 March 2020-28 February 2021). Data were mainly collected from the Swiss Transplant Cohort Study (STCS) database. Descriptive statistics were used to analyze the results. Results: Data from 221 Swiss lung transplant cohort patients were evaluated. In the year before the COVID-19 pandemic, 157 infections were diagnosed compared to 71 infections in the first year of the pandemic (decline of 54%, p < 0.001). Influenza virus infections alone showed a remarkable decrease from 17 infections before COVID-19 to 2 infections after the beginning of the pandemic. No significant difference was found in testing behavior; 803 vs. 925 tests were obtained by two of the three centers during the respective periods. Conclusions: We observed a significant decline in CARV infections in the Swiss lung transplant cohort during the first year of the COVID-19 pandemic. These results suggest a relevant impact of hygiene measures when implemented in the population due to the COVID-19 pandemic on the incidence of CARV infections.
Collapse
Affiliation(s)
- Isabelle Baumann
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; (I.B.)
- Division of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - René Hage
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; (I.B.)
- Division of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Paola Gasche-Soccal
- Division of Pulmonology, University Hospitals Geneva, 1205 Geneva, Switzerland
| | - John-David Aubert
- Division of Pulmonology, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Macé M. Schuurmans
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland; (I.B.)
- Division of Pulmonology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | |
Collapse
|
8
|
Wyllie AL, Mbodj S, Thammavongsa DA, Hislop MS, Yolda-Carr D, Waghela P, Nakahata M, Stahlfeld AE, Vega NJ, York A, Allicock OM, Wilkins G, Ouyang A, Siqueiros L, Strong Y, Anastasio K, Alexander-Parrish R, Arguedas A, Gessner BD, Weinberger DM. Persistence of Pneumococcal Carriage among Older Adults in the Community despite COVID-19 Mitigation Measures. Microbiol Spectr 2023; 11:e0487922. [PMID: 37036377 PMCID: PMC10269788 DOI: 10.1128/spectrum.04879-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
Reported rates of invasive pneumococcal disease were markedly lower than normal during the 2020/2021 winter in the Northern Hemisphere, the first year after the start of the COVID-19 pandemic. However, little is known about rates of carriage of pneumococcus among adults during this period. Between October 2020-August 2021, couples in the Greater New Haven Area, USA, were enrolled if both individuals were aged 60 years and above and did not have any individuals under the age of 60 years living in the household. Saliva samples and questionnaires regarding social activities and contacts and medical history were obtained every 2 weeks for a period of 10 weeks. Following culture-enrichment, extracted DNA was tested using qPCR for pneumococcus-specific sequences piaB and lytA. Individuals were considered positive for pneumococcal carriage when Ct values for piaB were ≤40. Results. We collected 567 saliva samples from 95 individuals (47 household pairs and 1 singleton). Of those, 7.1% of samples tested positive for pneumococcus, representing 22/95 (23.2%) individuals and 16/48 (33.3%) households. Study participants attended few social events during this period. However, many participants continued to have regular contact with children. Individuals who had regular contact with preschool and school-aged children (i.e., 2 to 9 year olds) had a higher prevalence of carriage (15.9% versus 5.4%). Despite COVID-19-related disruptions, a large proportion of older adults continued to carry pneumococcus. Prevalence was particularly high among those who had contact with school-aged children, but carriage was not limited to this group. IMPORTANCE Carriage of Streptococcus pneumoniae (pneumococcus) in the upper respiratory tract is considered a prerequisite to invasive pneumococcal disease. During the first year of the COVID-19 pandemic, markedly lower rates of invasive pneumococcal disease were reported worldwide. Despite this, by testing saliva samples with PCR, we found that older adults continued to carry pneumococcus at pre-pandemic levels. Importantly, this study was conducted during a period when transmission mitigation measures related to the COVID-19 pandemic were in place. However, our observations are in line with reports from Israel and Belgium where carriage was also found to persist in children. In line with this, we observed that carriage prevalence was particularly high among the older adults in our study who maintained contact with school-aged children.
Collapse
Affiliation(s)
- Anne L. Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Sidiya Mbodj
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Darani A. Thammavongsa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maikel S. Hislop
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Devyn Yolda-Carr
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pari Waghela
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Maura Nakahata
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anne E. Stahlfeld
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Noel J. Vega
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Anna York
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Orchid M. Allicock
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Geisa Wilkins
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Andrea Ouyang
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Laura Siqueiros
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Yvette Strong
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | - Kelly Anastasio
- Yale Center for Clinical Investigation, New Haven, Connecticut, USA
| | | | - Adriano Arguedas
- Medical and Scientific Affairs, Pfizer Inc, Collegeville, Pennsylvania, USA
| | | | - Daniel M. Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| |
Collapse
|
9
|
Detection of Non–SARS-CoV-2 Respiratory Viruses in US Veterans During the Second Year of the COVID-19 Pandemic. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2023. [DOI: 10.1097/ipc.0000000000001225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Abstract
BACKGROUND To study pediatric acute otitis media (AOM) burden fluctuations before and during the first two COVID years, which were characterized by measures to reduce the spread of airborne diseases. We used urinary tract infection (UTI) as a comparison infection. METHODS This was a cross-sectional study encompassing three pre-COVID years (March 1, 2017-February 29, 2020) and the first two COVID years (March 1, 2020-February 28, 2021, and March 1, 2021-February 28, 2022). Records were retrieved from the Clalit Health Services database, Israel's largest healthcare maintenance organization. Children 0-15 years with AOM and UTI episodes were categorized according to age (1>, 1-4, 5-15 years). We collected demographics, seasonality, AOM complications, antibiotic prescriptions, and recent COVID-19 infections. The average AOM/UTI rates of the three pre-COVID years vs. two COVID years were used to calculate the incidence rate ratios (IRRs). RESULTS We identified 1,102,826 AOM and 121,263 UTI episodes. The median age at AOM diagnosis was 2.0 years (IQR, 1.1-4.1). Male predominance, age at presentation, and the dominant age group of 1-4 years did not change during the COVID years. While UTI episode rates decreased during the COVID years (IRR 0.76, 95% CI, 0.68-0.84, P < 0.001), the reduction in AOM episode rates was >2-fold (IRR 0.46, 95% CI, 0.34-0.63, P < 0.001). The largest decrease was observed among children 1-4 years old during the first COVID year (β=-1,938 AOM episodes/100,00 children, 95% CI, -2,038 to -1,912, P < 0.001). Recent COVID-19 infection was associated with low AOM morbidity (IRR 0.05, 95% CI 0.05-0.05, P < 0.001). CONCLUSIONS AOM burden substantially decreased during the first COVID year but almost reached pre-pandemic levels during the second year.
Collapse
|
11
|
Chuang YC, Lin KP, Wang LA, Yeh TK, Liu PY. The Impact of the COVID-19 Pandemic on Respiratory Syncytial Virus Infection: A Narrative Review. Infect Drug Resist 2023; 16:661-675. [PMID: 36743336 PMCID: PMC9897071 DOI: 10.2147/idr.s396434] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is one of the most common respiratory viruses. It not only affects young children but also the elderly and immunocompromised patients. After the emergence of SARS-CoV-2 and the corona virus disease 2019 (COVID-19) era, a dramatic reduction in RSV activity was found, which coincided with the implementation of public health and social measures (PHSMs). However, the correlation is more complicated than we initially thought. After PHSMs were gradually lifted, a seasonality shift and a delayed RSV outbreak with greater number of infected patients were found in numerous countries, such as Israel, Australia, South Africa, New Zealand, France, United States, and Japan. Several hypotheses and possible reasons explaining the interaction between SARS-CoV-2 and RSV were mentioned. Since RSV vaccinations are still under investigation, administration of palivizumab should be considered in high-risk patients. In the post-COVID-19 era, greater attention should be paid to a further resurgence of RSV. In this narrative review, we conducted a thorough review of the current knowledge on the epidemiology of RSV during the COVID-19 era, the out-of-season outbreak of RSV, and the data on co-infection with RSV and SARS-CoV-2.
Collapse
Affiliation(s)
- Yu-Chuan Chuang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuan-Pei Lin
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-An Wang
- Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ting-Kuang Yeh
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infectious Disease, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Genomic Center for Infectious Diseases, Taichung Veterans General Hospital, Taichung, Taiwan
- Ph.D. in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
12
|
Kabantiyok D, Ninyio N, Shittu I, Meseko C, Emeto TI, Adegboye OA. Human Respiratory Infections in Nigeria: Influenza and the Emergence of SARS-CoV-2 Pandemic. Vaccines (Basel) 2022; 10:1551. [PMID: 36146628 PMCID: PMC9506385 DOI: 10.3390/vaccines10091551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The increasing outbreak of zoonotic diseases presents challenging times for nations and calls for a renewed effort to disrupt the chain of events that precede it. Nigeria's response to the 2006 bird flu provided a platform for outbreak response, yet it was not its first experience with Influenza. This study describes the impact of SARS-CoV-2 on Influenza surveillance and, conversely, while the 1918 Influenza pandemic remains the most devastating (500,000 deaths in 18 million population) in Nigeria, the emergence of SARS CoV-2 presented renewed opportunities for the development of vaccines with novel technology, co-infection studies outcome, and challenges globally. Although the public health Intervention and strategies left some positive outcomes for other viruses, Nigeria and Africa's preparation against the next pandemic may involve prioritizing a combination of technology, socioeconomic growth, and active surveillance in the spirit of One Health.
Collapse
Affiliation(s)
- Dennis Kabantiyok
- Laboratory Diagnostic Services Division, National Veterinary Research Institute, PMB 01, Vom 930001, Nigeria
| | - Nathaniel Ninyio
- School of Medical Sciences, Örebro University, 70182 Örebro, Sweden
| | - Ismaila Shittu
- Department of Avian Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, PMB 01, Vom 930010, Nigeria
| | - Clement Meseko
- Department of Avian Influenza and Transboundary Animal Diseases, National Veterinary Research Institute, PMB 01, Vom 930010, Nigeria
| | - Theophilus I. Emeto
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, Department, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne, Neglected Tropical Diseases Department, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Oyelola A. Adegboye
- Public Health & Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, Department, James Cook University, Townsville, QLD 4811, Australia
- World Health Organization Collaborating Center for Vector-Borne, Neglected Tropical Diseases Department, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|