1
|
Dejonckheere CS, Layer JP, Sarria GR, Wiegreffe S, Glasmacher AR, Nour Y, Scafa D, Müdder T, Anzböck T, Giordano FA, Stope MB, Schmeel LC, Gkika E. Non-invasive physical plasma for preventing radiation dermatitis in breast cancer: study protocol for a phase 3 randomised double-blind placebo-controlled trial (NIPP-RD III). Trials 2025; 26:97. [PMID: 40108640 PMCID: PMC11921611 DOI: 10.1186/s13063-025-08806-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Radiation dermatitis (RD) is the most common side effect of breast irradiation, yet only few potent preventative and therapeutic options are available. Following encouraging results from a phase 1 and 2 trial on the topical use of non-invasive physical plasma (NIPP), a very well-tolerated physical treatment option to promote tissue regeneration generated from ambient air, we now present the study protocol for a planned phase 3 trial. METHODS In this randomised double-blind placebo-controlled trial, patients with breast cancer will be randomised (1:1) to receive either 120 s of NIPP or sham treatment with an identical device daily during hypofractionated breast irradiation following breast-conserving surgery. Standard skin care with urea lotion will be applied twice daily to the whole breast by all patients. Acute skin toxicity will be assessed weekly and includes clinician- (CTCAE v5.0) and patient-reported (modified RISRAS), and objective (spectrophotometry) assessments. The trial has started enrolment in the first quarter of 2024 and is projected to recruit 140 patients over 36 months. DISCUSSION This randomised controlled trial will recruit a homogeneous patient collective in terms of RD risk and aims to unequivocally establish the impact of NIPP on RD by employing a robust trial design, incorporating both the patient's perspective and validated objective outcome measures. If the addition of NIPP proves useful, it might reduce both physical and psychological distress caused by RD in numerous breast cancer patients and beyond. TRIAL REGISTRATION German Clinical Trial Registry DRKS00032560 (January 9th 2024).
Collapse
Affiliation(s)
- Cas Stefaan Dejonckheere
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.
| | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
- Institute of Experimental Oncology, University Hospital Bonn, Bonn, 53127, Germany
| | - Gustavo Renato Sarria
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Andrea Renate Glasmacher
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Younèss Nour
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| | - Teresa Anzböck
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, Bonn, 53127, Germany
| | - Frank Anton Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, Mannheim, 68167, Germany
- DKFZ-Hector Cancer Institute, University Medical Center Mannheim, Mannheim, 68167, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology and Gynaecological Oncology, Physical Plasma Laboratories, University Hospital Bonn, Bonn, 53127, Germany
| | | | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany
| |
Collapse
|
2
|
Dissemond J, Rembe JD, Assenheimer B, Barysch-Bonderer M, Gerber V, Kottner J, Kurz P, Motzkus M, Panfil EM, Probst S, Strohal R, Traber J, Schwarzkopf A. Systematics, diagnosis and treatment of wound infections in chronic wounds: A position paper from WundDACH. J Dtsch Dermatol Ges 2025. [PMID: 40091463 DOI: 10.1111/ddg.15649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/27/2024] [Indexed: 03/19/2025]
Abstract
Wound infections are still an interdisciplinary and interprofessional challenge, because of numerous complications, particularly in people with chronic wounds. There are many different concepts and approaches in this field today. Therefore, WundDACH, the umbrella organization of the German-speaking wound healing societies, wrote a position paper on this important topic. An interdisciplinary and interprofessional group of experts from German-speaking countries developed definitions and procedures for nomenclature, diagnosis and treatment of wound infections in people with chronic wounds in a modified Delphi process. The importance of correctly diagnosing wound infections is emphasized so that adequate treatment can be carried out as early and specifically as possible. For a differentiated assessment, a simplified continuum of wound infection with contamination, colonization, local and systemic infection and the corresponding therapeutic consequences was described. Most bacteria in wounds can be removed by repeated wound-irrigation and debridement. Local wound infections are diagnosed based on clinical signs of infection and TILI score. Treatment is then usually exclusively local, for example with modern antiseptics such as polyhexanide. Systemic antibiotics should mostly be considered when signs of systemic infections appear. The indication for antimicrobial wound therapy should be critically reviewed after 10-14 days at the latest.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, Essen, Germany
| | - Julian-Dario Rembe
- Department for Vascular and Endovascular Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | | | - Veronika Gerber
- Initiative Chronische Wunden e.V. (ICW), Quedlinburg, Germany
| | - Jan Kottner
- Institute of Clinical Nursing Science, Charite - Universitatsmedizin Berlin, Berlin, Germany
| | - Peter Kurz
- WPM Wound Care Management, Bad Pirawarth, Austria
| | - Martin Motzkus
- Central Wound Management, Evangelic Hospital, Mülheim an der Ruhr, Germany
| | - Eva-Maria Panfil
- Practice Development and Research Department, Nursing / MTT, University Hospital Basel, Basel, Switzerland
| | - Sebastian Probst
- HES-SO Technical College West Switzerland, Geneva, Switzerland, University Hospital Geneva, Switzerland, Monash University, Melbourne, Australia, University of Galway, Galway, Ireland
| | - Robert Strohal
- Department of Dermatology and Venereology, State Hospital Feldkirch, Feldkirch, Austria
| | - Jürg Traber
- Vein Hospital Bellevue, Kreuzlingen, Switzerland
| | | |
Collapse
|
3
|
Breschi L, Maravic T, Mazzitelli C, Josic U, Mancuso E, Cadenaro M, Pfeifer CS, Mazzoni A. The evolution of adhesive dentistry: From etch-and-rinse to universal bonding systems. Dent Mater 2025; 41:141-158. [PMID: 39632207 DOI: 10.1016/j.dental.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
OBJECTIVES This review aimed at presenting the mechanisms and pitfalls of adhesion to enamel and dentin, advances in the materials science and in the development of strategies to improve hybrid layer (HL) longevity. METHODS Search of the literature was performed on PubMed, Scopus and Web of Science with keywords related to the structure of the dental substrate, HL degradation mechanisms and strategies to contrast them. RESULTS Albeit the advances in the dental materials' properties, HL degradation is still a relevant and current issue in adhesive dentistry. However, adhesive materials have become more resistant and less operator sensitive, and good adhesion is currently in the hands of every practitioner. Numerous novel strategies are being developed, able to improve the resistance of adhesive resins to degradation, their ability to infiltrate and chemically bond to dentin, to remove the unbound/residual water within the HL, reinforce the dentin collagen matrix, and inhibit endogenous metalloproteinases. Many of the strategies have turned to nature in search for powerful biomodifying compounds, and for the inspiration as to mimic naturally occurring regenerative processes. SIGNIFICANCE Extensive knowledge on the structure of the dental substrate and the complexity of adhesion to dentin has led to the development of improved formulations of dental adhesives and numerous valid strategies to improve the strength and longevity of the HL. Nevertheless, for many of them the road from bench to chairside still seems long. We encourage practitioners to know their materials well and use the strategies readily available to them.
Collapse
Affiliation(s)
- Lorenzo Breschi
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy.
| | - Tatjana Maravic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Claudia Mazzitelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Uros Josic
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Edoardo Mancuso
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| | - Milena Cadenaro
- Department of Medical Sciences, University of Trieste, Strada di Fiume 447, Trieste 34149, Italy; Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Via dell'Istria 65/1, Trieste 34137, Italy
| | - Carmem S Pfeifer
- School of Dentistry, Division of Biomaterial and Biomedical Sciences, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA
| | - Annalisa Mazzoni
- Department of Biomedical and Neuromotor Sciences, University of Bologna - Alma Mater Studiorum, Via San Vitale 59, Bologna 40125, Italy
| |
Collapse
|
4
|
Milewski MR, Schlottmann F, März V, Dieck T, Vogt PM. The Successful Treatment of Multi-Resistant Colonized Burns with Large-Area Atmospheric Cold Plasma Therapy and Dermis Substitute Matrix-A Case Report. EUROPEAN BURN JOURNAL 2024; 5:271-282. [PMID: 39599949 PMCID: PMC11545062 DOI: 10.3390/ebj5030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 11/29/2024]
Abstract
The treatment of severe burn injuries, which occur particularly in the context of armed conflicts, is based on a multimodal treatment concept. In addition to complex intensive care therapy, the surgical reconstruction options of plastic surgery and typical antiseptic wound treatment are the main focuses. In recent years, atmospheric cold plasma therapy (ACPT) has also become established for topical, antiseptic wound treatment and for the optimization of re-epithelialization. This case report shows a successful treatment of extensive burn injuries using dermal skin substitute matrix and topical treatment with a large-area cold plasma device to control multi-resistant pathogen colonization. This case report illustrates the importance of ACPT in burn surgery. However, larger case series and randomized controlled trials in specialized centers are needed to assess its place in future clinical practice.
Collapse
|
5
|
Wang L, Ren M, Chen C, Yang X, Zhang C, Gao J, Wang J, Yang C. Cold atmospheric plasma in combination with laser therapy provides a window for the treatment of hyperproliferative skin disease. Photodiagnosis Photodyn Ther 2024; 48:104243. [PMID: 38862086 DOI: 10.1016/j.pdpdt.2024.104243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/09/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Modern medical understanding suggests that hyperproliferative skin diseases (HSDs) are complex syndromes characterized by localized hypertrophy or hyperplasia and infiltration of inflammatory cells. Various treatments, including systemic and topical pharmacotherapy, laser interventions, photodynamic therapy, and surgery, have been proposed for managing HSDs. However, challenges such as wound healing and recurrence after laser treatment have hindered the effectiveness of laser therapy. To overcome these challenges, we conducted a study combining laser therapy with cold atmospheric plasma (CAP) for the treatment of HSDs. Seven patients with different forms of HSDs, who had not responded well to conventional treatments, were enrolled in the study. These HSDs included cases of erythroplasia of Queyrat, pyoderma gangrenosum, keloids and hypertrophic scars, cellulitis, cutaneous lichen planus, and verruca vulgaris. Laser therapy was performed to remove the hyperplastic skin lesions, followed immediately by daily CAP treatment. The results were promising, with all patients successfully treated and no recurrence observed during the follow-up periods. The combined application of CAP and laser therapy proved to be an effective and complementary strategy for managing HSDs. This innovative approach provide evidence for addressing the limitation of laser therapy by utilizing CAP to promote wound healing and mitigate inflammatory responses. Chinese Clinical Trial Registry (ChiCTR2300069993).
Collapse
Affiliation(s)
- Liyun Wang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Miaomiao Ren
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Cheng Chen
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Xingyu Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Chenchen Zhang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Jing Gao
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Jingwen Wang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China
| | - Chunjun Yang
- Department of Dermatology and Venereology, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China; Joint Laboratory for Plasma Clinical Applications, the Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
6
|
Oliver MA, Hussein LK, Molina EA, Keyloun JW, McKnight SM, Jimenez LM, Moffatt LT, Shupp JW, Carney BC. Cold atmospheric plasma is bactericidal to wound-relevant pathogens and is compatible with burn wound healing. Burns 2024; 50:1192-1212. [PMID: 38262886 DOI: 10.1016/j.burns.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/25/2024]
Abstract
Burn wound healing can be significantly delayed by infection leading to increased morbidity and hypertrophic scarring. An optimal antimicrobial agent would have the ability to kill bacteria without negatively affecting the host skin cells that are required for healing. Currently available products provide antimicrobial coverage, but may also cause reductions in cell proliferation and migration. Cold atmospheric plasma is a partially ionized gas that can be produced under atmospheric pressure at room temperature. In this study a novel handheld Aceso Plasma Generator was used to produce and test Aceso Cold Plasma (ACP) in vitro and in vivo. ACP showed a potent ability to eliminate bacterial load in vitro for a number of different species. Deep partial-thickness and full-thickness wounds that were treated with ACP after burning, after excision, after autografting, and at days 5, 7, and 9 did not show any negative effects on their wound healing trajectories. On par with in vitro analysis, bioburden was decreased in treated wounds vs. control. In addition, metrics of hypertrophic scar such as dyschromia, elasticity, trans-epidermal water loss (TEWL), and epidermal and dermal thickness were the same between the two treatment groups.It is likely that ACP can be used to mitigate the risk of bacterial infection during the phase of acute burn injury while patients await surgery for definitive closure. It may also be useful in treating wounds with delayed re-epithelialization that are at risk for infection and hypertrophic scarring. A handheld cold plasma device will be useful in treating all manner of wounds and surgical sites in order to decrease bacterial burden in an efficient and highly effective manner without compromising wound healing.
Collapse
Affiliation(s)
- Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lou'ay K Hussein
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Esteban A Molina
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - John W Keyloun
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Sydney M McKnight
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lesle M Jimenez
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States; The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States; Department of Surgery, MedStar Washington Hospital Center and MedStar Georgetown University Hospital, Washington, DC, United States; Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, United States; Department of Plastic and Reconstructive Surgery, Georgetown University School of Medicine, Washington, DC, United States.
| |
Collapse
|
7
|
Abdo AI, Kopecki Z. Comparing Redox and Intracellular Signalling Responses to Cold Plasma in Wound Healing and Cancer. Curr Issues Mol Biol 2024; 46:4885-4923. [PMID: 38785562 PMCID: PMC11120013 DOI: 10.3390/cimb46050294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Cold plasma (CP) is an ionised gas containing excited molecules and ions, radicals, and free electrons, and which emits electric fields and UV radiation. CP is potently antimicrobial, and can be applied safely to biological tissue, birthing the field of plasma medicine. Reactive oxygen and nitrogen species (RONS) produced by CP affect biological processes directly or indirectly via the modification of cellular lipids, proteins, DNA, and intracellular signalling pathways. CP can be applied at lower levels for oxidative eustress to activate cell proliferation, motility, migration, and antioxidant production in normal cells, mainly potentiated by the unfolded protein response, the nuclear factor-erythroid factor 2-related factor 2 (Nrf2)-activated antioxidant response element, and the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway, which also activates nuclear factor-kappa B (NFκB). At higher CP exposures, inactivation, apoptosis, and autophagy of malignant cells can occur via the degradation of the PI3K/Akt and mitogen-activated protein kinase (MAPK)-dependent and -independent activation of the master tumour suppressor p53, leading to caspase-mediated cell death. These opposing responses validate a hormesis approach to plasma medicine. Clinical applications of CP are becoming increasingly realised in wound healing, while clinical effectiveness in tumours is currently coming to light. This review will outline advances in plasma medicine and compare the main redox and intracellular signalling responses to CP in wound healing and cancer.
Collapse
Affiliation(s)
- Adrian I. Abdo
- Richter Lab, Surgical Specialties, Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Surgery, The Basil Hetzel Institute for Translational Health Research, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
| | - Zlatko Kopecki
- Future Industries Institute, STEM Academic Unit, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
8
|
Haude S, Matthes R, Pitchika V, Holtfreter B, Schlüter R, Gerling T, Kocher T, Jablonowski L. In-vitro biofilm removal from TiUnite® implant surface with an air polishing and two different plasma devices. BMC Oral Health 2024; 24:558. [PMID: 38741081 DOI: 10.1186/s12903-024-04230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND We investigated the efficacy of two different cold atmospheric pressure jet plasma devices (CAP09 and CAPmed) and an air polishing device with glycine powder (AP) either applied as monotherapies or combined therapies (AP + CAP09; AP + CAPmed), in microbial biofilm removal from discs with anodised titanium surface. METHODS Discs covered with 7-day-old microbial biofilm were treated either with CAP09, CAPmed, AP, AP + CAP09 or AP + CAPmed and compared with negative and positive controls. Biofilm removal was assessed with flourescence and electron microscopy immediately after treatment and after 5 days of reincubation of the treated discs. RESULTS Treatment with CAP09 or CAPmed did not lead to an effective biofilm removal, whereas treatment with AP detached the complete biofilm, which however regrew to baseline magnitude after 5 days of reincubation. Both combination therapies (AP + CAP09 and AP + CAPmed) achieved a complete biofilm removal immediately after cleaning. However, biofilm regrew after 5 days on 50% of the discs treated with the combination therapy. CONCLUSION AP treatment alone can remove gross biofilm immediately from anodised titanium surfaces. However, it did not impede regrowth after 5 days, because microorganisms were probably hidden in holes and troughs, from which they could regrow, and which were inaccessible to AP. The combination of AP and plasma treatment probably removed or inactivated microorganisms also from these hard to access spots. These results were independent of the choice of plasma device.
Collapse
Affiliation(s)
- Sandra Haude
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany
| | - Rutger Matthes
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany
| | - Vinay Pitchika
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, Greifswald, Germany
| | - Torsten Gerling
- ZIK Plasmatis, Leibniz-Institute for Plasma Science and Technology e.V. (INP), a member of the Leibniz Research Alliance Leibniz Health Technology, Greifswald, Germany
| | - Thomas Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany
| | - Lukasz Jablonowski
- Department of Restorative Dentistry, Periodontology, Endodontology, Preventive Dentistry and Paediatric Dentistry, Dental School, University Medicine Greifswald, Walther-Rathenau-Str. 42a, Greifswald, D - 17475, Germany.
| |
Collapse
|
9
|
Dissemond J, Chadwick P, Weir D, Alves P, Isoherranen K, Lázaro Martínez JL, Swanson T, Gledhill A, Malone M. M.O.I.S.T. Concept for the Local Therapy of Chronic Wounds: An International Update. INT J LOW EXTR WOUND 2024:15347346241245159. [PMID: 38571403 DOI: 10.1177/15347346241245159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Chronic wounds remain a significant clinical challenge both for those affected and for healthcare systems. The treatment is often comprised and complex. All patients should receive wound care that is integrated into a holistic approach involving local management that addresses the underlying etiology and provides for gold standard therapy to support healing, avoid complications and be more cost effective. There have been significant advances in medicine over the last few decades. The development of new technologies and therapeutics for the local treatment of wounds is also constantly increasing. To help standardize clinical practice with regard to the multitude of wound products, the M.O.I.S.T. concept was developed by a multidisciplinary expert group. The M stands for moisture balance, O for oxygen balance, I for infection control, S for supporting strategies, and T for tissue management. Since the M.O.I.S.T. concept, which originated in the German-speaking countries, is now intended to provide healthcare professionals with an adapted instrument to be used in clinical practice, and a recent update to the concept has been undertaken by a group of interdisciplinary experts to align it with international standards. The M.O.I.S.T. concept can now be used internationally both as an educational tool and for the practical implementation of modern local treatment concepts for patients with chronic wounds and can also be used in routine clinical practice.
Collapse
Affiliation(s)
- Joachim Dissemond
- Department of Dermatology, Venerology and Allergology, University of Essen, Essen, Germany
| | | | - Dot Weir
- Saratoga Hospital Center for Wound Healing and Hyperbaric Medicine, Saratoga Springs, NY, USA
| | - Paulo Alves
- Universidade Católica Portuguesa, Institute of Health Sciences - Wounds Research Lab, Lisboa, Portugal
| | - Kirsi Isoherranen
- Department of Dermatology and Allergology, University of Helsinki and Inflammation center, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | | | - Terry Swanson
- Wound Education Research Consultancy, Warrnambool, Victoria, Australia
| | - Andrea Gledhill
- Department of Podiatric Surgery, Trauma and Orthopaedics, Great Western Hospital NHSFT, Swindon, UK
| | - Matthew Malone
- Research and Development, Molnlycke Healthcare AB, Gothenburg, Sweden
- Infectious Diseases Microbiology, School of Medicine, Western Sydney University, Sydney, Australia
| |
Collapse
|
10
|
Dejonckheere CS, Layer JP, Nour Y, Layer K, Glasmacher A, Wiegreffe S, Fuhrmann A, Caglayan L, Grau F, Sarria GR, Scafa D, Koch D, Heimann M, Leitzen C, Köksal MA, Röhner F, Müdder T, Dejonckheere E, Schmeel FC, Anzböck T, Lindner K, Bachmann A, Abramian A, Kaiser C, Faridi A, Mustea A, Giordano FA, Stope MB, Schmeel LC. Non-invasive physical plasma for preventing radiation dermatitis in breast cancer: Results from an intrapatient-randomised double-blind placebo-controlled trial. Clin Transl Radiat Oncol 2024; 44:100699. [PMID: 38021092 PMCID: PMC10654149 DOI: 10.1016/j.ctro.2023.100699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Background and Purpose To investigate the effect of topical non-invasive physical plasma (NIPP), a volatile mix generated out of ambient air, on prevention of acute radiation dermatitis (RD) during and after whole-breast irradiation (WBI). Materials and Methods Lateral and medial breast halves were randomised within each patient to receive either 120 s of NIPP or sham treatment daily during WBI. Standard skin care with urea lotion was applied to the whole breast. Blinded acute skin toxicity was assessed weekly for each breast half separately and included clinician- (CTCAE) and patient-reported (modified RISRAS), and objective (spectrophotometry) assessments. As an additional external control, a comparable standard of care (SoC) patient collective from a previous prospective trial was used. Results Sixty-four patients were included. There were no significant differences between breast halves. Post-hoc comparison with a similar SoC control collective revealed OR = 0.28 (95% CI 0.11-0.76; p = 0.014) for grade ≥ 2 RD upon WBI completion, along with less hyperpigmentation (p < 0.001), oedema (p = 0.020), dry (p < 0.001) and moist desquamation (p = 0.017), pain, itching, and burning (p < 0.001 for each). Tolerability of NIPP was excellent and side effects were not observed. Conclusion Even though there were no differences between intrapatient-randomised breast halves, the overall incidence and severity of acute radiation-induced skin toxicity were considerably lower when compared to a prospectively collected SoC cohort. Our data suggest the potential benefit of NIPP in RD prevention. A randomised trial with a physical control group is warranted to confirm these promising results (DRKS00026225).
Collapse
Affiliation(s)
| | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Younèss Nour
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andrea Glasmacher
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Arne Fuhrmann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Lara Caglayan
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Franziska Grau
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Martina Heimann
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Fred Röhner
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Egon Dejonckheere
- Faculty of Psychology and Educational Sciences, KU Leuven, 3000 Leuven, Belgium
- Department of Medical and Clinical Psychology, Tilburg School of Social and Behavioural Sciences, 5037 Tilburg, the Netherlands
| | | | - Teresa Anzböck
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Kira Lindner
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anne Bachmann
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frank Anton Giordano
- Department of Radiation Oncology, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology, Division of Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | |
Collapse
|
11
|
Abu Rached N, Kley S, Storck M, Meyer T, Stücker M. Cold Plasma Therapy in Chronic Wounds-A Multicenter, Randomized Controlled Clinical Trial (Plasma on Chronic Wounds for Epidermal Regeneration Study): Preliminary Results. J Clin Med 2023; 12:5121. [PMID: 37568525 PMCID: PMC10419810 DOI: 10.3390/jcm12155121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic wounds (CWs) pose a significant health challenge in clinical practice. Standard wound therapy (SWT) is currently considered the gold standard. However, recent evidence suggests that cold plasma therapy (CPT) holds promise for improving CWs. In light of this, the POWER study was conducted as a multicenter, randomized clinical trial to investigate the effect of large-area plasma application compared with SWT in patients with chronic, non-healing arterial or venous wounds on the lower leg. To analyze the interim results, we employed a comprehensive range of statistical tests, including both parametric and non-parametric methods, as well as GLS model regression and an ordinal mixed model. Our findings clearly demonstrate that CPT therapy significantly accelerates wound closure compared with SWT. In fact, complete wound closure was exclusively observed in the CPT group during the intervention period. Additionally, the CPT group required significantly less antibiotic therapy (4%) compared with the SWT group (23%). Furthermore, CPT led to a significant reduction in wound pain and improved quality of life compared with SWT. In conclusion, the study highlights that the combination of CPT and SWT surpasses monotherapy with SWT alone.
Collapse
Affiliation(s)
- Nessr Abu Rached
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Susanne Kley
- Scientific Institute for Health Economics and Health Research, Markt 9, 04109 Leipzig, Germany;
| | - Martin Storck
- Municipal Hospital Karlsruhe gGmbH, Moltkestraße 90, 76133 Karlsruhe, Germany;
| | - Thomas Meyer
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| | - Markus Stücker
- Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany;
| |
Collapse
|
12
|
Li Z, Zhou Q, Yang J, Qiu X, Fu S, Chen Q. Effect of cold atmospheric plasma therapy on wound healing in patients with diabetic foot ulcers: protocol for a systematic review and meta-analysis. BMJ Open 2023; 13:e066628. [PMID: 37105698 PMCID: PMC10151838 DOI: 10.1136/bmjopen-2022-066628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
INTRODUCTION Diabetic foot ulcer (DFU), one of the most common and serious consequences of diabetes, affects many individuals and often leads to amputation, death and other disastrous outcomes. Diabetic foot ulcers have a relatively poor response to therapy, which increases the likelihood of recurrence. Cold atmospheric plasma (CAP) therapy is an emerging treatment method for DFU that can reduce bacterial loads and speed up the healing of chronic wounds. Although some studies have reported that CAP could improve the wound healing speed compared with conventional traditional therapy, the samples in these studies are small and not sufficiently representative. The purpose of the current systematic review and meta-analysis is to evaluate the effectiveness and safety of CAP in DFU treatment and provide a scientific basis for its clinical application. METHODS AND ANALYSIS The following databases will be searched: Wanfang, China Biology and Medicine CD, Embase, PubMed and The Cochrane Library. We will retrieve publications, conference documents, current trials and internal reports written in English or Chinese related to the effect of CAP therapy on wound healing in patients with diabetic foot ulcers up to 30 June 2022. The selected articles will be read independently by two reviewers, and valid information such as first author, publication date and outcome indicators will be extracted. Researchers will also assess the quality of the literature using the Cochrane risk-of-bias tool 2. RevMan 5.3.5, EndNote X7 and STATA V.13.0 will be used for data analysis. ETHICS AND DISSEMINATION No ethical review is necessary for this systematic review because it is based on previously published data and does not include patient intervention. A peer-reviewed publication will publish the findings of this investigation.
Collapse
Affiliation(s)
- Zinan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qian Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jiao Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xianliang Qiu
- West China Second Hospital,Sichuan University/West China Women's and Children's Hospital, Chengdu, Sichuan, China
| | - Shunlian Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiu Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
13
|
Luo YX, Li L, Mai LF, Liu XZ, Yang C. Comparison of area measurement methods in the routine assessment of diabetic foot ulcers-A consistency analysis method. Int J Nurs Pract 2023; 29:e13098. [PMID: 35971276 DOI: 10.1111/ijn.13098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ulcer area is a critical parameter in diabetic foot ulcer assessment but existing methods have deficiencies for routine measurement. AIM We hypothesized that the Image J-based Computer Analysis method has a high level of agreement with the commonly used Maximum Length and Width and the Transparent Dressing-based Square Grid methods and aimed to test the consistency and verify the feasibility of the Image J-based Computer Analysis method in the routine assessment of ulcers. METHODS Outpatient attendees with diabetic foot ulcers at the Department of Endocrinology of Sun Yat-sen Memorial Hospital were enrolled between October 2020 and October 2021. The three methods sequentially assessed the area of 65 included ulcers. Results were analysed using one-way analysis of variance and Bland-Altman plots to perform consistency analysis. RESULTS The mean ± standard deviation ulcer area measured using the three methods were 14.79 ± 5.39, 14.35 ± 5.26, and 14.30 ± 5.26 cm2 , respectively. The measurement differences among the three groups or between any two were not statistically significant. Bland-Altman plots showed good consistency between the Image J-based Computer Analysis and the other two methods. CONCLUSION The Image J-based Computer Analysis method can be interchanged with the other methods to assess ulcer areas. It is freely accessible, accurate and home-operable, thus worth consideration by nurses for routine ulcer area assessment.
Collapse
Affiliation(s)
- Yi Xin Luo
- School of Nursing, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Department of Emergency, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Fang Mai
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xing Zhou Liu
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
14
|
Lertpatipanpong P, Sillapachaiyaporn C, Oh G, Kang YH, Hwang CY, Baek SJ. Effect of cold atmospheric microwave plasma (CAMP) on wound healing in canine keratinocytes. Front Cell Dev Biol 2023; 11:1105692. [PMID: 36760362 PMCID: PMC9905446 DOI: 10.3389/fcell.2023.1105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Cutaneous wound healing is a biological process that occurs upon skin injury and involves different mechanisms to repair tissue damage. Improper healing or prolonged curation period of wound lesions may induce unpleasant complications. Cold atmospheric microwave plasma (CAMP) is an upcoming medical therapeutic option for skin infection and wound treatment. However, the molecular mechanisms of CAMP-mediated canine wound healing are not well characterized. Wound-healing activity was examined to elucidate the biological effects and molecular mechanisms of CAMP. Canine keratinocytes (CPEKs) were treated using CAMP, and their wound-healing activities were evaluated. The molecular mechanisms of that effect were examined, based on RNA-Seq analysis data, and verified using immunoblotting and polymerase chain reaction. It was found that the CAMP-treated cells exhibited a significant increase in cell migration evaluated by scratch assay in human keratinocytes (HaCaT) and canine keratinocytes (CPEK). Additionally, CAMP-treated CPEK cells showed a significant positive effect on cell invasion. The RNA-Seq data revealed that CAMP alters different genes and pathways in CPEK cells. Gene expression involved in the cell cycle, cell proliferation, angiogenesis, cell adhesion, and wound healing was upregulated in CAMP-treated cells compared with gas-activated media used as a control. The Hippo pathway was also analyzed, and the protein and mRNA levels of YAP were significantly increased in CAMP-treated cells. CAMP-treated CPEK cells indicated the downregulation of E-cadherin and upregulation of vimentin, Snail, and Slug at transcription and translation levels, contributing to a favorable effect on cell migration. Our findings suggested that CAMP treatment provided beneficial effects on the curative wound process through the induction of genes involved in wound healing, promotion of EMT, and increase in the molecular targets in the Hippo signaling pathway.
Collapse
Affiliation(s)
- Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Chanin Sillapachaiyaporn
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Garam Oh
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Yeong-Hun Kang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Cheol-Yong Hwang
- Laboratory of Veterinary Dermatology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Seung Joon Baek
- Laboratory of Signal Transduction, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea,*Correspondence: Seung Joon Baek,
| |
Collapse
|
15
|
In-Vitro Biofilm Removal Efficacy Using Water Jet in Combination with Cold Plasma Technology on Dental Titanium Implants. Int J Mol Sci 2023; 24:ijms24021606. [PMID: 36675120 PMCID: PMC9867126 DOI: 10.3390/ijms24021606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023] Open
Abstract
Peri-implantitis-associated inflammation can lead to bone loss and implant failure. Current decontamination measures are ineffective due to the implants' complex geometry and rough surfaces providing niches for microbial biofilms. A modified water jet system (WaterJet) was combined with cold plasma technology (CAP) to achieve superior antimicrobial efficacy compared to cotton gauze treatment. Seven-day-old multi-species-contaminated titanium discs and implants were investigated as model systems. The efficacy of decontamination on implants was determined by rolling the implants over agar and determining colony-forming units supported by scanning electron microscopy image quantification of implant surface features. The inflammatory consequences of mono and combination treatments were investigated with peripheral blood mononuclear cell surface marker expression and chemokine and cytokine release profiles on titanium discs. In addition, titanium discs were assayed using fluorescence microscopy. Cotton gauze was inferior to WaterJet treatment according to all types of analysis. In combination with the antimicrobial effect of CAP, decontamination was improved accordingly. Mono and CAP-combined treatment on titanium surfaces alone did not unleash inflammation. Simultaneously, chemokine and cytokine release was dramatically reduced in samples that had benefited from additional antimicrobial effects through CAP. The combined treatment with WaterJet and CAP potently removed biofilm and disinfected rough titanium implant surfaces. At the same time, non-favorable rendering of the surface structure or its pro-inflammatory potential through CAP was not observed.
Collapse
|
16
|
Werra UEM, Dorweiler B. Kaltplasmatherapie in der Wundbehandlung – Was wissen wir? GEFÄSSCHIRURGIE 2022. [DOI: 10.1007/s00772-022-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Efficacy of Cold Atmospheric Plasma Therapy on Chronic Wounds: An Updated Systematic Review and Meta-Analysis of RCTs. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5798857. [PMID: 36262869 PMCID: PMC9576403 DOI: 10.1155/2022/5798857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022]
Abstract
Objective A previous meta-analysis has revealed that cold atmospheric plasma (CAP) might not be clinically beneficial to chronic wounds. However, several new randomized controlled trials (RCTs) reported that CAP was an effective treatment option for accelerating wound healing in chronic wounds. The purpose of this review is to incorporate these new results and evaluate the efficacy of CAP in chronic wounds. Methods The major databases, including PubMed, Embase, Cochrane Library, and Web of Science, were searched for articles related to CAP treatment in chronic wounds until March 21, 2022. The literature retrieval and evaluation were carried out by two independent researchers. Result A total of 13 randomized clinical trials published between 2010 and 2022 were finally included. CAP therapy showed to be more effective in reducing the area of wounds (mean difference (MD): -1.74, 95%; confidence interval (CI): [-3.14, -0.33], p = 0.02), compared with non-CAP treatments. The immediate reduction of the bacterial load was higher in the CAP group than in the control group. (MD: -0.37, 95%; CI: [-0.7, -0.05], p = 0.02). Conclusion No significant changes were found in long-term antibacterial efficacy and pain perception between the two groups. However, more RCTs of excellent methodological quality are required to confirm technical details of the source of AP and the appropriate duration of the treatment with plasma.
Collapse
|
18
|
Perrotti V, Caponio VCA, Muzio LL, Choi EH, Marcantonio MCD, Mazzone M, Kaushik NK, Mincione G. Open Questions in Cold Atmospheric Plasma Treatment in Head and Neck Cancer: A Systematic Review. Int J Mol Sci 2022; 23:ijms231810238. [PMID: 36142145 PMCID: PMC9498988 DOI: 10.3390/ijms231810238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 12/09/2022] Open
Abstract
Over the past decade, we witnessed a promising application of cold atmospheric plasma (CAP) in cancer therapy. The aim of this systematic review was to provide an exhaustive state of the art of CAP employed for the treatment of head and neck cancer (HNC), a tumor whose late diagnosis, local recurrence, distant metastases, and treatment failure are the main causes of patients’ death. Specifically, the characteristics and settings of the CAP devices and the in vitro and in vivo treatment protocols were summarized to meet the urgent need for standardization. Its molecular mechanisms of action, as well as the successes and pitfalls of current CAP applications in HNC, were discussed. Finally, the interesting emerging preclinical hypotheses that warrant further clinical investigation have risen. A total of 24 studies were included. Most studies used a plasma jet device (54.2%). Argon resulted as the mostly employed working gas (33.32%). Direct and indirect plasma application was reported in 87.5% and 20.8% of studies, respectively. In vitro investigations were 79.17%, most of them concerned with direct treatment (78.94%). Only eight (33.32%) in vivo studies were found; three were conducted in mice, and five on human beings. CAP showed pro-apoptotic effects more efficiently in tumor cells than in normal cells by altering redox balance in a way that oxidative distress leads to cell death. In preclinical studies, it exhibited efficacy and tolerability. Results from this systematic review pointed out the current limitations of translational application of CAP in the urge of standardization of the current protocols while highlighting promising effects as supporting treatment in HNC.
Collapse
Affiliation(s)
- Vittoria Perrotti
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | | | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Maria Carmela Di Marcantonio
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Mariangela Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea
| | - Gabriella Mincione
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
19
|
Chen Z, Bai F, Jonas SJ, Wirz RE. Cold atmospheric plasma for addressing the COVID-19 pandemic. PLASMA PROCESSES AND POLYMERS (PRINT) 2022; 19:2200012. [PMID: 35574246 PMCID: PMC9088580 DOI: 10.1002/ppap.202200012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 05/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has greatly stressed the global community, exposing vulnerabilities in the supply chains for disinfection materials, personal protective equipment, and medical resources worldwide. Disinfection methods based on cold atmospheric plasma (CAP) technologies offer an intriguing solution to many of these challenges because they are easily deployable and do not require resource-constrained consumables or reagents needed for conventional decontamination practices. CAP technologies have shown great promise for a wide range of medical applications from wound healing and cancer treatment to sterilization methods to mitigate airborne and fomite transfer of viruses. This review engages the broader community of scientists and engineers that wish to help the medical community with the ongoing COVID-19 pandemic by establishing methods to utilize broadly applicable CAP technologies.
Collapse
Affiliation(s)
- Zhitong Chen
- Department of Mechanical and Aerospace EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Advanced Therapy CenterNational Innovation Center for Advanced Medical DevicesShenzhenPeople's Republic of China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Fan Bai
- Advanced Therapy CenterNational Innovation Center for Advanced Medical DevicesShenzhenPeople's Republic of China
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenPeople's Republic of China
| | - Steven J. Jonas
- Department of Pediatrics, David Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- California NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCaliforniaUSA
- Eli & Edythe Broad Center of Regenerative Medicine and Stem Cell ResearchUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Richard E. Wirz
- Department of Mechanical and Aerospace EngineeringUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
20
|
Dejonckheere CS, Torres-Crigna A, Layer JP, Layer K, Wiegreffe S, Sarria GR, Scafa D, Koch D, Leitzen C, Köksal MA, Müdder T, Abramian A, Kaiser C, Faridi A, Stope MB, Mustea A, Giordano FA, Schmeel LC. Non-Invasive Physical Plasma for Preventing Radiation Dermatitis in Breast Cancer: A First-In-Human Feasibility Study. Pharmaceutics 2022; 14:1767. [PMID: 36145515 PMCID: PMC9506560 DOI: 10.3390/pharmaceutics14091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Radiation dermatitis (RD) is the most common acute side effect of breast irradiation. More than a century following the therapeutic utilisation of X-rays, potent preventative and therapeutic options are still lacking. Non-invasive physical plasma (NIPP) is an emerging approach towards treatment of various dermatological disorders. In this study, we sought to determine the safety and feasibility of a NIPP device on RD. Thirty patients undergoing hypofractionated whole-breast irradiation were included. Parallel to radiation treatment, the irradiated breast was treated with NIPP with different application regimens. RD was assessed during and after NIPP/radiation, using clinician- and patient-reported outcomes. Additionally, safety and feasibility features were recorded. None of the patients was prescribed topical corticosteroids and none considered the treatment to be unpleasant. RD was less frequent and milder in comparison with standard skin care. Neither NIPP-related adverse events nor side effects were reported. This proven safety and feasibility profile of a topical NIPP device in the prevention and treatment of RD will be used as the framework for a larger intrapatient-randomised double-blind placebo-controlled trial, using objective and patient-reported outcome measures as an endpoint.
Collapse
Affiliation(s)
| | | | - Julian Philipp Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
- Institute of Experimental Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Katharina Layer
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Shari Wiegreffe
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | - Davide Scafa
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - David Koch
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Leitzen
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Mümtaz Ali Köksal
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Thomas Müdder
- Department of Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alina Abramian
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Christina Kaiser
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Andree Faridi
- Department of Gynaecology, Division of Senology, University Hospital Bonn, 53127 Bonn, Germany
| | - Matthias Bernhard Stope
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Alexander Mustea
- Department of Gynaecology and Gynaecological Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | | | | |
Collapse
|
21
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
22
|
Chronic wounds treated with cold atmospheric plasmajet versus best practice wound dressings: a multicenter, randomized, non-inferiority trial. Sci Rep 2022; 12:3645. [PMID: 35256635 PMCID: PMC8901692 DOI: 10.1038/s41598-022-07333-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/10/2022] [Indexed: 01/03/2023] Open
Abstract
The use of phase-adapted wound dressings represents best practice (BP) in chronic wound treatment. However, efficacy is often limited and associated care requirements are high. Cold atmospheric plasmajet (CAP-jet) is a promising new therapeutic tool for these wounds. In the present multicenter, randomized, open-label, prospective, clinical trial, non-inferiority of the CAP-jet versus BP was assessed in 78 patients with infected or non-infected chronic wounds of different etiology. Primary outcome measure was the sum of granulation tissue, furthermore wound area reduction, healing rate, time to complete healing, changes in wound pH value, infection score, exudate level and local tolerability were assessed. In CAP-jet treated wounds compared to control, the sum of granulation tissue was significantly higher (p < 0.0001) and wound area reduced significantly faster (p < 0.001). Furthermore, wound pH value decreased significantly faster (p = 0.0123) and local infection was overcome more rapidly by CAP-jet therapy. In 58.97% CAP-jet- vs. 5.13% BP-treated patients, complete healing of chronic ulcers was documented after 6 weeks. Treatment with CAP-jet appeared not only non-inferior, but even superior to BP in all wound entities analyzed with a favorable tolerability profile. Thus, treatment with the CAP-jet provides beneficial effects in chronic wound treatment regarding promotion of the wound healing process.
Collapse
|
23
|
Bonzanini AD, Shao K, Stancampiano A, Graves DB, Mesbah A. Perspectives on Machine Learning-Assisted Plasma Medicine: Toward Automated Plasma Treatment. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3055727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Cold Physical Plasma in Cancer Therapy: Mechanisms, Signaling, and Immunity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9916796. [PMID: 35284036 PMCID: PMC8906949 DOI: 10.1155/2021/9916796] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Despite recent advances in therapy, cancer still is a devastating and life-threatening disease, motivating novel research lines in oncology. Cold physical plasma, a partially ionized gas, is a new modality in cancer research. Physical plasma produces various physicochemical factors, primarily reactive oxygen and nitrogen species (ROS/RNS), causing cancer cell death when supplied at supraphysiological concentrations. This review outlines the biomedical consequences of plasma treatment in experimental cancer therapy, including cell death modalities. It also summarizes current knowledge on intracellular signaling pathways triggered by plasma treatment to induce cancer cell death. Besides the inactivation of tumor cells, an equally important aspect is the inflammatory context in which cell death occurs to suppress or promote the responses of immune cells. This is mainly governed by the release of damage-associated molecular patterns (DAMPs) to provoke immunogenic cancer cell death (ICD) that, in turn, activates cells of the innate immune system to promote adaptive antitumor immunity. The pivotal role of the immune system in cancer treatment, in general, is highlighted by many clinical trials and success stories on using checkpoint immunotherapy. Hence, the potential of plasma treatment to induce ICD in tumor cells to promote immunity targeting cancer lesions systemically is also discussed.
Collapse
|
25
|
Nasri Z, Memari S, Wenske S, Clemen R, Martens U, Delcea M, Bekeschus S, Weltmann K, von Woedtke T, Wende K. Singlet-Oxygen-Induced Phospholipase A 2 Inhibition: A Major Role for Interfacial Tryptophan Dioxidation. Chemistry 2021; 27:14702-14710. [PMID: 34375468 PMCID: PMC8596696 DOI: 10.1002/chem.202102306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Several studies have revealed that various diseases such as cancer have been associated with elevated phospholipase A2 (PLA2 ) activity. Therefore, the regulation of PLA2 catalytic activity is undoubtedly vital. In this study, effective inactivation of PLA2 due to reactive species produced from cold physical plasma as a source to model oxidative stress is reported. We found singlet oxygen to be the most relevant active agent in PLA2 inhibition. A more detailed analysis of the plasma-treated PLA2 identified tryptophan 128 as a hot spot, rich in double oxidation. The significant dioxidation of this interfacial tryptophan resulted in an N-formylkynurenine product via the oxidative opening of the tryptophan indole ring. Molecular dynamics simulation indicated that the efficient interactions between the tryptophan residue and phospholipids are eliminated following tryptophan dioxidation. As interfacial tryptophan residues are predominantly involved in the attaching of membrane enzymes to the bilayers, tryptophan dioxidation and indole ring opening leads to the loss of essential interactions for enzyme binding and, consequently, enzyme inactivation.
Collapse
Affiliation(s)
- Zahra Nasri
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Seyedali Memari
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute of Anatomy and Cell BiologyUniversity Medicine GreifswaldFriedrich-Loeffler-Straße 23cGreifswald17487Germany
| | - Sebastian Wenske
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ramona Clemen
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Ulrike Martens
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Mihaela Delcea
- Institute of BiochemistryUniversity of GreifswaldFelix-Hausdorff-Straße 4Greifswald17489Germany
- Center for Innovation Competence (ZIK) HIKE (Humoral Immune Reactions in Cardiovascular Diseases)University of GreifswaldGreifswaldFleischmannstraße 4217489Germany
| | - Sander Bekeschus
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Klaus‐Dieter Weltmann
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| | - Thomas von Woedtke
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
- Institute for Hygiene and Environmental MedicineUniversity Medicine GreifswaldGreifswaldWalther-Rathenau-Straße 49 A17489Germany
| | - Kristian Wende
- Center for Innovation Competence (ZIK) plasmatisLeibniz Institute for Plasma Science and Technology (INP)Felix-Hausdorff-Straße 217489GreifswaldGermany
| |
Collapse
|
26
|
Evert K, Kocher T, Schindler A, Müller M, Müller K, Pink C, Holtfreter B, Schmidt A, Dombrowski F, Schubert A, von Woedtke T, Rupf S, Calvisi DF, Bekeschus S, Jablonowski L. Repeated exposure of the oral mucosa over 12 months with cold plasma is not carcinogenic in mice. Sci Rep 2021; 11:20672. [PMID: 34667240 PMCID: PMC8526716 DOI: 10.1038/s41598-021-99924-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/28/2021] [Indexed: 01/20/2023] Open
Abstract
Peri-implantitis may result in the loss of dental implants. Cold atmospheric pressure plasma (CAP) was suggested to promote re-osseointegration, decrease antimicrobial burden, and support wound healing. However, the long-term risk assessment of CAP treatment in the oral cavity has not been addressed. Treatment with two different CAP devices was compared against UV radiation, carcinogen administration, and untreated conditions over 12 months. Histological analysis of 406 animals revealed that repeated CAP exposure did not foster non-invasive lesions or squamous cell carcinoma (SCCs). Carcinogen administration promoted non-invasive lesions and SCCs. Molecular analysis by a qPCR screening of 144 transcripts revealed distinct inflammatory profiles associated with each treatment regimen. Interestingly, CAP treatment of carcinogen-challenged mucosa did not promote but instead left unchanged or reduced the proportion of non-invasive lesions and SCC formation. In conclusion, repeated CAP exposure of murine oral mucosa was well tolerated, and carcinogenic effects did not occur, motivating CAP applications in patients for dental and implant treatments in the future.
Collapse
Affiliation(s)
- K Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - T Kocher
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - A Schindler
- Leibniz Institute of Surface Modification (IOM Leipzig), Leipzig, Germany.,Consultants PILOTO, Ion Beam & Plasma Surface Technologies, Grimma, Germany
| | - M Müller
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - K Müller
- Center for Clinical Studies, University Hospital Regensburg, Regensburg, Germany
| | - C Pink
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - B Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | - A Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - F Dombrowski
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - A Schubert
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - T von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany.,Department of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - S Rupf
- Clinic of Operative Dentistry, Saarland University, Homburg, Germany
| | - D F Calvisi
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - S Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - L Jablonowski
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
27
|
Bekeschus S, von Woedtke T, Emmert S, Schmidt A. Medical gas plasma-stimulated wound healing: Evidence and mechanisms. Redox Biol 2021; 46:102116. [PMID: 34474394 PMCID: PMC8408623 DOI: 10.1016/j.redox.2021.102116] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Defective wound healing poses a significant burden on patients and healthcare systems. In recent years, a novel reactive oxygen and nitrogen species (ROS/RNS) based therapy has received considerable attention among dermatologists for targeting chronic wounds. The multifaceted ROS/RNS are generated using gas plasma technology, a partially ionized gas operated at body temperature. This review integrates preclinical and clinical evidence into a set of working hypotheses mainly based on redox processes aiding in elucidating the mechanisms of action and optimizing gas plasmas for therapeutic purposes. These hypotheses include increased wound tissue oxygenation and vascularization, amplified apoptosis of senescent cells, redox signaling, and augmented microbial inactivation. Instead of a dominant role of a single effector, it is proposed that all mechanisms act in concert in gas plasma-stimulated healing, rationalizing the use of this technology in therapy-resistant wounds. Finally, addressable current challenges and future concepts are outlined, which may further promote the clinical utilization, efficacy, and safety of gas plasma technology in wound care in the future.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| | - Thomas von Woedtke
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany; Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475, Greifswald, Germany
| | - Steffen Emmert
- Clinic for Dermatology and Venereology, Rostock University Medical Center, Strempelstr. 13, 18057, Rostock, Germany
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), A Member of the Leibniz Research Alliance Leibniz Health Technology, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| |
Collapse
|
28
|
Bekeschus S, Kramer A, Schmidt A. Gas Plasma-Augmented Wound Healing in Animal Models and Veterinary Medicine. Molecules 2021; 26:molecules26185682. [PMID: 34577153 PMCID: PMC8469854 DOI: 10.3390/molecules26185682] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/26/2022] Open
Abstract
The loss of skin integrity is inevitable in life. Wound healing is a necessary sequence of events to reconstitute the body’s integrity against potentially harmful environmental agents and restore homeostasis. Attempts to improve cutaneous wound healing are therefore as old as humanity itself. Furthermore, nowadays, targeting defective wound healing is of utmost importance in an aging society with underlying diseases such as diabetes and vascular insufficiencies being on the rise. Because chronic wounds’ etiology and specific traits differ, there is widespread polypragmasia in targeting non-healing conditions. Reactive oxygen and nitrogen species (ROS/RNS) are an overarching theme accompanying wound healing and its biological stages. ROS are signaling agents generated by phagocytes to inactivate pathogens. Although ROS/RNS’s central role in the biology of wound healing has long been appreciated, it was only until the recent decade that these agents were explicitly used to target defective wound healing using gas plasma technology. Gas plasma is a physical state of matter and is a partially ionized gas operated at body temperature which generates a plethora of ROS/RNS simultaneously in a spatiotemporally controlled manner. Animal models of wound healing have been vital in driving the development of these wound healing-promoting technologies, and this review summarizes the current knowledge and identifies open ends derived from in vivo wound models under gas plasma therapy. While gas plasma-assisted wound healing in humans has become well established in Europe, veterinary medicine is an emerging field with great potential to improve the lives of suffering animals.
Collapse
Affiliation(s)
- Sander Bekeschus
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
- Correspondence:
| | - Axel Kramer
- Institute for Hygiene and Environmental Medicine, Greifswald University Medical Center, Sauerbruchstr., 17475 Greifswald, Germany;
| | - Anke Schmidt
- ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany;
| |
Collapse
|
29
|
Sun PP, Won J, Choo-Kang G, Li S, Chen W, Monroy GL, Chaney EJ, Boppart SA, Eden JG, Nguyen TH. Inactivation and sensitization of Pseudomonas aeruginosa by microplasma jet array for treating otitis media. NPJ Biofilms Microbiomes 2021; 7:48. [PMID: 34078901 PMCID: PMC8172902 DOI: 10.1038/s41522-021-00219-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Otitis media (OM), known as a middle ear infection, is the leading cause of antibiotic prescriptions for children. With wide-spread use of antibiotics in OM, resistance to antibiotics continues to decrease the efficacy of the treatment. Furthermore, as the presence of a middle ear biofilm has contributed to this reduced susceptibility to antimicrobials, effective interventions are necessary. A miniaturized 3D-printed microplasma jet array has been developed to inactivate Pseudomonas aeruginosa, a common bacterial strain associated with OM. The experiments demonstrate the disruption of planktonic and biofilm P. aeruginosa by long-lived molecular species generated by microplasma, as well as the synergy of combining microplasma treatment with antibiotic therapy. In addition, a middle ear phantom model was developed with an excised rat eardrum to investigate the antimicrobial effects of microplasma on bacteria located behind the eardrum, as in a patient-relevant setup. These results suggest the potential for microplasma as a new treatment paradigm for OM.
Collapse
Affiliation(s)
- Peter P Sun
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jungeun Won
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Gabrielle Choo-Kang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Shouyan Li
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Wenyuan Chen
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Guillermo L Monroy
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Stephen A Boppart
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL, USA.
| | - J Gary Eden
- N. Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Thanh H Nguyen
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Champaign, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
30
|
Cold Atmospheric Plasma Promotes Regeneration-Associated Cell Functions of Murine Cementoblasts In Vitro. Int J Mol Sci 2021; 22:ijms22105280. [PMID: 34067898 PMCID: PMC8156616 DOI: 10.3390/ijms22105280] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
The aim of the study was to examine the efficacy of cold atmospheric plasma (CAP) on the mineralization and cell proliferation of murine dental cementoblasts. Cells were treated with CAP and enamel matrix derivates (EMD). Gene expression of alkaline phosphatase (ALP), bone gamma-carboxyglutamate protein (BGLAP), periostin (POSTN), osteopontin (OPN), osterix (OSX), collagen type I alpha 1 chain (COL1A1), dentin matrix acidic phosphoprotein (DMP)1, RUNX family transcription factor (RUNX)2, and marker of proliferation Ki-67 (KI67) was quantified by real-time PCR. Protein expression was analyzed by immunocytochemistry and ELISA. ALP activity was determined by ALP assay. Von Kossa and alizarin red staining were used to display mineralization. Cell viability was analyzed by XTT assay, and morphological characterization was performed by DAPI/phalloidin staining. Cell migration was quantified with an established scratch assay. CAP and EMD upregulated both mRNA and protein synthesis of ALP, POSTN, and OPN. Additionally, DMP1 and COL1A1 were upregulated at both gene and protein levels. In addition to upregulated RUNX2 mRNA levels, treated cells mineralized more intensively. Moreover, CAP treatment resulted in an upregulation of KI67, higher cell viability, and improved cell migration. Our study shows that CAP appears to have stimulatory effects on regeneration-associated cell functions in cementoblasts.
Collapse
|
31
|
Boekema B, Stoop M, Vlig M, van Liempt J, Sobota A, Ulrich M, Middelkoop E. Antibacterial and safety tests of a flexible cold atmospheric plasma device for the stimulation of wound healing. Appl Microbiol Biotechnol 2021; 105:2057-2070. [PMID: 33587156 PMCID: PMC7906937 DOI: 10.1007/s00253-021-11166-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022]
Abstract
Cold atmospheric plasma (CAP) devices generate an ionized gas with highly reactive species and electric fields at ambient air pressure and temperature. A flexible dielectric barrier discharge (DBD) was developed as an alternative antimicrobial treatment for chronic wounds. Treatment of Staphylococcus aureus in collagen-elastin matrices with CAP for 2 min resulted in a 4 log reduction. CAP treatment was less effective on S. aureus on dermal samples. CAP did not affect cellular activity or DNA integrity of human dermal samples when used for up to 2 min. Repeated daily CAP treatments for 2 min lowered cellular activity of dermal samples to 80% after 2 to 4 days, but this was not significant. Repeated treatment of ex vivo human burn wound models with CAP for 2 min did not affect re-epithelialization. Intact skin of 25 healthy volunteers was treated with CAP for 3× 20" to determine safety. Although participants reported moderate pain scores (numerical rating scale 3.3), all volunteers considered the procedure to be acceptable. Severe adverse events did not occur. CAP treatment resulted in a temporarily increased local skin temperature (≈3.4°C) and increased erythema. Lowering the plasma power resulted in a significantly lower erythema increase. Good log reduction (2.9) of bacterial load was reached in 14/15 volunteers artificially contaminated with Pseudomonas aeruginosa. This study demonstrated the in vitro and in vivo safety and efficacy in bacterial reduction of a flexible cold plasma device. Trial registration number NCT03007264, January 2, 2017 KEY POINTS: • CAP strongly reduced bacterial numbers both in vitro and in vivo. • Re-epithelialization of burn wound models was not affected by repeated CAP. • CAP treatment of intact skin was well tolerated in volunteers.
Collapse
Affiliation(s)
- Bouke Boekema
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.
| | - Matthea Stoop
- Burn Center, Red Cross Hospital, Beverwijk, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands
| | - Jos van Liempt
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ana Sobota
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Magda Ulrich
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.,Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Burn Center, Red Cross Hospital, Beverwijk, The Netherlands.,Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Ravandeh M, Coliva G, Kahlert H, Azinfar A, Helm CA, Fedorova M, Wende K. Protective Role of Sphingomyelin in Eye Lens Cell Membrane Model against Oxidative Stress. Biomolecules 2021; 11:biom11020276. [PMID: 33668553 PMCID: PMC7918908 DOI: 10.3390/biom11020276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/20/2022] Open
Abstract
In the eye lens cell membrane, the lipid composition changes during the aging process: the proportion of sphingomyelins (SM) increases, that of phosphatidylcholines decreases. To investigate the protective role of the SMs in the lens cell membrane against oxidative damage, analytical techniques such as electrochemistry, high-resolution mass spectrometry (HR-MS), and atomic force microscopy (AFM) were applied. Supported lipid bilayers (SLB) were prepared to mimic the lens cell membrane with different fractions of PLPC/SM (PLPC: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine). The SLBs were treated with cold physical plasma. A protective effect of 30% and 44% in the presence of 25%, and 75% SM in the bilayer was observed, respectively. PLPC and SM oxidation products were determined via HR-MS for SLBs after plasma treatment. The yield of fragments gradually decreased as the SM ratio increased. Topographic images obtained by AFM of PLPC-bilayers showed SLB degradation and pore formation after plasma treatment, no degradation was observed in PLPC/SM bilayers. The results of all techniques confirm the protective role of SM in the membrane against oxidative damage and support the idea that the SM content in lens cell membrane is increased during aging in the absence of effective antioxidant systems to protect the eye from oxidative damage and to prolong lens transparency.
Collapse
Affiliation(s)
- Mehdi Ravandeh
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany;
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence: (M.R.); (K.W.)
| | - Giulia Coliva
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (G.C.); (M.F.)
- Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Heike Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany;
| | - Amir Azinfar
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany; (A.A.); (C.A.H.)
| | - Christiane A. Helm
- Institute of Physics, University of Greifswald, Felix-Hausdorff-Str. 6, 17489 Greifswald, Germany; (A.A.); (C.A.H.)
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany; (G.C.); (M.F.)
- Center for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany
- Correspondence: (M.R.); (K.W.)
| |
Collapse
|
33
|
Ravandeh M, Kahlert H, Jablonowski H, Lackmann JW, Striesow J, Agmo Hernández V, Wende K. A combination of electrochemistry and mass spectrometry to monitor the interaction of reactive species with supported lipid bilayers. Sci Rep 2020; 10:18683. [PMID: 33122650 PMCID: PMC7596530 DOI: 10.1038/s41598-020-75514-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023] Open
Abstract
Reactive oxygen and nitrogen species (RONS), e.g. generated by cold physical plasma (CPP) or photodynamic therapy, interfere with redox signaling pathways of mammalian cells, inducing downstream consequences spanning from migratory impairment to apoptotic cell death. However, the more austere impact of RONS on cancer cells remains yet to be clarified. In the present study, a combination of electrochemistry and high-resolution mass spectrometry was developed to investigate the resilience of solid-supported lipid bilayers towards plasma-derived reactive species in dependence of their composition. A 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid bilayer was undisturbed by 200 µM H2O2 (control) but showed full permeability after CPP treatment and space-occupying oxidation products such as PoxnoPC, PAzePC, and POPC hydroperoxide were found. Electron paramagnetic resonance spectroscopy demonstrated the presence of hydroxyl radicals and superoxide anion/hydroperoxyl radicals during the treatment. In contrast, small amounts of the intramembrane antioxidant coenzyme Q10 protected the bilayer to 50% and LysoPC was the only POPC derivative found, confirming the membrane protective effect of Q10. Such, the lipid membrane composition including the presence of antioxidants determines the impact of pro-oxidant signals. Given the differences in membrane composition of cancer and healthy cells, this supports the application of cold physical plasma for cancer treatment. In addition, the developed model using the combination of electrochemistry and mass spectrometry could be a promising method to study the effect of reactive species or mixes thereof generated by chemical or physical sources.
Collapse
Affiliation(s)
- M Ravandeh
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - H Kahlert
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - H Jablonowski
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J-W Lackmann
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - J Striesow
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
| | - V Agmo Hernández
- Department of Chemistry-BMC, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
- Department of Pharmacy, Uppsala University, Husargatan 3, 75123, Uppsala, Sweden
| | - K Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK Plasmatis, Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany.
| |
Collapse
|
34
|
Moelleken M, Jockenhöfer F, Wiegand C, Buer J, Benson S, Dissemond J. Pilotstudie zum Einfluss von kaltem atmosphärischem Plasma auf bakterielle Kontamination und Heilungstendenz chronischer Wunden. J Dtsch Dermatol Ges 2020; 18:1094-1102. [DOI: 10.1111/ddg.14294_g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 01/03/2023]
Affiliation(s)
- Maurice Moelleken
- Abteilung für Dermatologie Venerologie & Allergologie Universitätsklinikum Essen
| | - Finja Jockenhöfer
- Abteilung für Dermatologie Venerologie & Allergologie Universitätsklinikum Essen
| | | | - Jan Buer
- Abteilung für Medizinische Mikrobiologie Universitätsklinikum Essen
| | - Sven Benson
- Abteilung für Medizinische Psychologie und Verhaltensimmunbiologie Universitätsklinikum Essen
| | - Joachim Dissemond
- Abteilung für Dermatologie Venerologie & Allergologie Universitätsklinikum Essen
| |
Collapse
|
35
|
Zubor P, Wang Y, Liskova A, Samec M, Koklesova L, Dankova Z, Dørum A, Kajo K, Dvorska D, Lucansky V, Malicherova B, Kasubova I, Bujnak J, Mlyncek M, Dussan CA, Kubatka P, Büsselberg D, Golubnitschaja O. Cold Atmospheric Pressure Plasma (CAP) as a New Tool for the Management of Vulva Cancer and Vulvar Premalignant Lesions in Gynaecological Oncology. Int J Mol Sci 2020; 21:ijms21217988. [PMID: 33121141 PMCID: PMC7663780 DOI: 10.3390/ijms21217988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Vulvar cancer (VC) is a specific form of malignancy accounting for 5–6% of all gynaecologic malignancies. Although VC occurs most commonly in women after 60 years of age, disease incidence has risen progressively in premenopausal women in recent decades. VC demonstrates particular features requiring well-adapted therapeutic approaches to avoid potential treatment-related complications. Significant improvements in disease-free survival and overall survival rates for patients diagnosed with post-stage I disease have been achieved by implementing a combination therapy consisting of radical surgical resection, systemic chemotherapy and/or radiotherapy. Achieving local control remains challenging. However, mostly due to specific anatomical conditions, the need for comprehensive surgical reconstruction and frequent post-operative healing complications. Novel therapeutic tools better adapted to VC particularities are essential for improving individual outcomes. To this end, cold atmospheric plasma (CAP) treatment is a promising option for VC, and is particularly appropriate for the local treatment of dysplastic lesions, early intraepithelial cancer, and invasive tumours. In addition, CAP also helps reduce inflammatory complications and improve wound healing. The application of CAP may realise either directly or indirectly utilising nanoparticle technologies. CAP has demonstrated remarkable treatment benefits for several malignant conditions, and has created new medical fields, such as “plasma medicine” and “plasma oncology”. This article highlights the benefits of CAP for the treatment of VC, VC pre-stages, and postsurgical wound complications. There has not yet been a published report of CAP on vulvar cancer cells, and so this review summarises the progress made in gynaecological oncology and in other cancers, and promotes an important, understudied area for future research. The paradigm shift from reactive to predictive, preventive and personalised medical approaches in overall VC management is also considered.
Collapse
Affiliation(s)
- Pavol Zubor
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
- OBGY Health & Care, Ltd., 010 01 Zilina, Slovakia
- Correspondence: or
| | - Yun Wang
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Alena Liskova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Lenka Koklesova
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Zuzana Dankova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Anne Dørum
- Department of Gynaecological Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway; (Y.W.); (A.D.)
| | - Karol Kajo
- Department of Pathology, St. Elizabeth Cancer Institute Hospital, 81250 Bratislava, Slovakia;
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Vincent Lucansky
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Bibiana Malicherova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Ivana Kasubova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.D.); (D.D.); (V.L.); (B.M.); (I.K.)
| | - Jan Bujnak
- Department of Obstetrics and Gynaecology, Kukuras Michalovce Hospital, 07101 Michalovce, Slovakia;
| | - Milos Mlyncek
- Department of Obstetrics and Gynaecology, Faculty Hospital Nitra, Constantine the Philosopher University, 949 01 Nitra, Slovakia;
| | - Carlos Alberto Dussan
- Department of Surgery, Orthopaedics and Oncology, University Hospital Linköping, 581 85 Linköping, Sweden;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.); (L.K.); (P.K.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, P.O. Box 24144 Doha, Qatar;
| | - Olga Golubnitschaja
- Predictive, Preventive Personalised (3P) Medicine, Department of Radiation Oncology, Rheinische Friedrich-Wilhelms-Universität Bonn, 53105 Bonn, Germany;
| |
Collapse
|
36
|
Cold Atmospheric Pressure Plasma in Wound Healing and Cancer Treatment. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196898] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plasma medicine is gaining increasing attention and is moving from basic research into clinical practice. While areas of application are diverse, much research has been conducted assessing the use of cold atmospheric pressure plasma (CAP) in wound healing and cancer treatment—two applications with entirely different goals. In wound healing, a tissue-stimulating effect is intended, whereas cancer therapy aims at killing malignant cells. In this review, we provide an overview of the latest clinical and some preclinical research on the efficacy of CAP in wound healing and cancer therapy. Furthermore, we discuss the current understanding of molecular signaling mechanisms triggered by CAP that grant CAP its antiseptic and tissue regenerating or anti-proliferative and cell death-inducing properties. For the efficacy of CAP in wound healing, already substantial evidence from clinical studies is available, while evidence for therapeutic effects of CAP in oncology is mainly from in vitro and in vivo animal studies. Efforts to elucidate the mode of action of CAP suggest that different components, such as ultraviolet (UV) radiation, electromagnetic fields, and reactive species, may act synergistically, with reactive species being regarded as the major effector by modulating complex and concentration-dependent redox signaling pathways.
Collapse
|
37
|
Moelleken M, Jockenhöfer F, Wiegand C, Buer J, Benson S, Dissemond J. Pilot study on the influence of cold atmospheric plasma on bacterial contamination and healing tendency of chronic wounds. J Dtsch Dermatol Ges 2020; 18:1094-1101. [PMID: 32989866 DOI: 10.1111/ddg.14294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cold atmospheric plasma (CAP) has been used successfully for wound treatment, with thrice weekly treatment intervals. In this study, we wished to investigate whether comparably beneficial results can be achieved even with once weekly CAP treatment. PATIENTS AND METHODS In this randomized clinical pilot study (RCT) patients with therapy-refractory chronic wounds were examined over a maximum of twelve weeks. Groups 1 and 2 were treated with CAP once and twice a week, respectively. Patients in Group 3 received placebo therapy once a week. RESULTS Wound area decreased significantly by 63.0 % in Group 1 (n = 14, P = 0.005) and by 46.8 % in Group 2 (n = 13, P = 0.007). In Group 3 (n = 10) the wounds grew on average 17.5 % larger. A significant reduction in pain was measured in both CAP-treated groups (Group 1: P = 0.042; Group 2: P = 0.027). Only in Group 2 was there a significant improvement in wound-specific quality of life (P = 0.005). After the 12-week CAP treatment, the reduction in bacterial load compared to the day of study inclusion averaged 50.4 % for Group 1 and 35.0 % for Group 2. CONCLUSIONS Our RCT shows that treatment with CAP improves various aspects of wound healing in patients with therapy-refractory chronic wounds. The results obtained for once weekly treatment with CAP were not inferior to those obtained when CAP treatment was three times a week. Treatment once a week is also easier and more economical to implement in clinical routine.
Collapse
Affiliation(s)
- Maurice Moelleken
- Department of Dermatology, Venereology and Allergology, Essen University Medical Center
| | - Finja Jockenhöfer
- Department of Dermatology, Venereology and Allergology, Essen University Medical Center
| | | | - Jan Buer
- Department of Medical Microbiology, Essen University Medical Center
| | - Sven Benson
- Department of Medical Psychology and Behavioral Immunobiology, Essen University Medical Center
| | - Joachim Dissemond
- Department of Dermatology, Venereology and Allergology, Essen University Medical Center
| |
Collapse
|
38
|
Emmert S, van Welzen A, Masur K, Gerling T, Bekeschus S, Eschenburg C, Wahl P, Bernhardt T, Schäfer M, Semmler ML, Grabow N, Fischer T, Thiem A, Jung O, Boeckmann L. Kaltes Atmosphärendruckplasma zur Behandlung akuter und chronischer Wunden. Hautarzt 2020; 71:855-862. [DOI: 10.1007/s00105-020-04696-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Concept for Improved Handling Ensures Effective Contactless Plasma Treatment of Patients with kINPen® MED. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10176133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nursing of patients with wounds is an essential part of medical healthcare. In this context, cold atmospheric-pressure plasma sources can be applied for skin decontamination and stimulation of wound healing. One of these plasma devices is the commercially available kINPen® MED (neoplas tools GmbH), a cold atmospheric-pressure plasma jet which is approved as a medical device, class-IIa. For the plasma treatment, a sterile disposable spacer is recommended to ensure a constant and effective distance between plasma and skin. The disadvantage of this spacer is its form and size which means that the effective axis/area is not visible for the attending doctor or qualified personnel and consequently it is a more or less intuitive treatment. In addition, the suggested perpendicular treatment is not applicable for the attending specialist due to lack of space or patient/wound positioning. A concept of a sensory unit was developed to measure the treatment distance and to visualize the effective treatment area for different angles. To determine the effective area for the plasma treatment, some exemplary methods were performed. Thus, the antimicrobial (Staphylococcus aureus DSM799/ATCC6538) efficacy, reactive oxygen species (ROS) distribution and (vacuum) ultraviolet ((V)UV) irradiation were determined depending on the treatment angle. Finally, a simplified first approach to visualize the effective treatment area at an optimal distance was designed and constructed to train attending specialists for optimal wound area coverage.
Collapse
|
40
|
Dijksteel GS, Ulrich MMW, Vlig M, Sobota A, Middelkoop E, Boekema BKHL. Safety and bactericidal efficacy of cold atmospheric plasma generated by a flexible surface Dielectric Barrier Discharge device against Pseudomonas aeruginosa in vitro and in vivo. Ann Clin Microbiol Antimicrob 2020; 19:37. [PMID: 32814573 PMCID: PMC7439657 DOI: 10.1186/s12941-020-00381-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cold atmospheric plasma (CAP), which is ionized gas produced at atmospheric pressure, could be a novel and potent antimicrobial therapy for the treatment of infected wounds. Previously we have shown that CAP generated with a flexible surface Dielectric Barrier Discharge (sDBD) is highly effective against bacteria in vitro and in ex vivo burn wound models. In the current paper, we determined the in vitro and in vivo safety and efficacy of CAP generated by this sDBD device. Methods The effect of CAP on DNA mutations of V79 fibroblasts was measured using a hypoxanthine–guanine-phosphoribosyltransferase (HPRT) assay. Furthermore, effects on cell proliferation, apoptosis and DNA damage in ex vivo burn wound models (BWMs) were assessed using immunohistochemistry. Next, 105 colony forming units (CFU) P. aeruginosa strain PAO1 were exposed to CAP in a 3D collagen-elastin matrix environment to determine the number of surviving bacteria in vitro. Finally, rat excision wounds were inoculated with 107 CFU PAO1 for 24 h. The wounds received a single CAP treatment, repeated treatments on 4 consecutive days with CAP, 100 µL of 1% (wt/wt) silver sulfadiazine or no treatment. Wound swabs and punch biopsies were taken to determine the number of surviving bacteria. Results Exposure of V79 fibroblasts to CAP did not increase the numbers of mutated colonies. Additionally, the number of proliferative, apoptotic and DNA damaged cells in the BWMs was comparable to that of the unexposed control. Exposure of PAO1 to CAP for 2 min resulted in the complete elimination of bacteria in vitro. Contrarily, CAP treatment for 6 min of rat wounds colonized with PAO1 did not effectively reduce the in vivo bacterial count. Conclusions CAP treatment was safe but showed limited efficacy against PAO1 in our rat wound infection model.
Collapse
Affiliation(s)
- Gabrielle S Dijksteel
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands. .,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
| | - Magda M W Ulrich
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.,Dept. of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marcel Vlig
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands
| | - Ana Sobota
- Dept. of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Esther Middelkoop
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands.,Dept. of Plastic, Reconstructive & Hand Surgery, Amsterdam Movement Sciences, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bouke K H L Boekema
- Association of Dutch Burn Centres, Zeestraat 29, 1941 AJ, Beverwijk, The Netherlands
| |
Collapse
|
41
|
Friedman PC. Cold atmospheric pressure (physical) plasma in dermatology: where are we today? Int J Dermatol 2020; 59:1171-1184. [PMID: 32783244 DOI: 10.1111/ijd.15110] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Cold atmospheric pressure plasma is physical plasma (essentially ionized gas) created at room temperature and atmospheric pressure, and it has complex effects on cells, tissues, and living organisms. These effects are studied extensively for medical and dermatological use. This article reviews current achievements and new trends in clinical dermatological cold plasma research, discusses the basics of plasma physics and plasma engineering, and describes the most important areas of laboratory plasma research to provide a well-rounded understanding of the nature, present applications, and future promise of this exciting, emerging technology.
Collapse
|
42
|
Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Sci Rep 2020; 10:10440. [PMID: 32591594 PMCID: PMC7319950 DOI: 10.1038/s41598-020-67232-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/04/2020] [Indexed: 12/01/2022] Open
Abstract
Cold atmospheric plasma (CAP) was shown to decrease bacterial load in chronic wounds. It was also presented as a novel approach to healing wounds in both in vitro and in vivo experiments. We aimed to examine the first randomized clinical trial for the use of CAP in diabetic foot ulcers. Patients (n = 44) were randomly double-blinded, and assigned to receive standard care (SC, n = 22) without or with CAP, to be applied three times a week for three consecutive weeks (SC + CAP, n = 22), using block randomization with mixing block sizes of four. The trial was conducted at the Diabetes Research Center in Tehran, Iran. CAP was generated from ionized helium gas in ambient air, and driven by a high voltage (10 kV) and high frequency (6 kHz) power supply. Primary outcomes were wound size, number of cases reaching wound size of <0.5, and a bacterial load after over three weeks of treatment. CAP treatment effectively reduced the fraction of wound size (p = 0.02). After three weeks, the wounds to reach fraction wound size of ≤0.5 was significantly greater in the SC + CAP group (77.3%) compared to the SC group (36.4%) (p = 0.006). The mean fraction of bacterial load counted in each session ‘after CAP exposure’ was significantly less than ‘before exposure’ measures. CAP can be an efficient method to accelerate wound healing in diabetic foot ulcers, with immediate antiseptic effects that do not seem to last long.
Collapse
|
43
|
Stancampiano A, Chung TH, Dozias S, Pouvesle JM, Mir LM, Robert E. Mimicking of Human Body Electrical Characteristic for Easier Translation of Plasma Biomedical Studies to Clinical Applications. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020. [DOI: 10.1109/trpms.2019.2936667] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Boeckmann L, Bernhardt T, Schäfer M, Semmler ML, Kordt M, Waldner AC, Wendt F, Sagwal S, Bekeschus S, Berner J, Kwiatek E, Frey A, Fischer T, Emmert S. [Current indications for plasma therapy in dermatology]. Hautarzt 2020; 71:109-113. [PMID: 31965204 DOI: 10.1007/s00105-019-04530-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Plasma medicine is gaining increasing interest and provides a multitude of dermatological applications. Cold atmospheric pressure plasma (CAP) can be used in clinical applications without harming the treated tissue or in a tissue destructive manner. It consists of a complex mixture of biologically active agents, which can act synergistically on the treated material or tissue. OBJECTIVES A summary of the current research findings regarding dermatological applications of CAP is provided. METHODS Literature on CAP applications in dermatology has been screened and summarized. RESULTS CAP exerts antimicrobial, tissue-stimulating, blood-flow-stimulating but also pro-apoptotic effects. By exploiting these properties, CAP is successfully applied for disinfection and treatment of chronic ulcerations. Furthermore, positive effects of CAP have been shown for the treatment of tumors, actinic keratosis, scars, ichthyosis, atopic eczema as well as for alleviation of pain and itch. CONCLUSIONS While the use of CAP for disinfection and wound treatment has already moved into clinical practice, further applications such as cancer treatment are still exploratory.
Collapse
Affiliation(s)
- L Boeckmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland
| | - T Bernhardt
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland
| | - M Schäfer
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland
| | - M Luise Semmler
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland
| | - M Kordt
- Rudolf-Zenker-Institut für Experimentelle Chirurgie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - A-C Waldner
- Arbeitsbereich Zellbiologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - F Wendt
- Institut für Pharmakologie und Toxikologie, Universitätsmedizin Rostock, Rostock, Deutschland
| | - S Sagwal
- Leibniz-Institut für Plasmaforschung und Technologie e. V., Greifswald, Deutschland
| | - S Bekeschus
- Leibniz-Institut für Plasmaforschung und Technologie e. V., Greifswald, Deutschland
| | - J Berner
- Klinik und Poliklinik für Mund-Kiefer-Gesichtschirurgie/Plastische Operationen, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - E Kwiatek
- Klinik und Poliklinik für Mund-Kiefer-Gesichtschirurgie/Plastische Operationen, Universitätsmedizin Greifswald, Greifswald, Deutschland
| | - A Frey
- Institut für Chemie, Universität Rostock, Rostock, Deutschland
| | - T Fischer
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland
| | - S Emmert
- Klinik und Poliklinik für Dermatologie und Venerologie, Universitätsmedizin Rostock, Strempelstr. 13, 18057, Rostock, Deutschland.
| |
Collapse
|
45
|
Lafontaine J, Boisvert JS, Glory A, Coulombe S, Wong P. Synergy between Non-Thermal Plasma with Radiation Therapy and Olaparib in a Panel of Breast Cancer Cell Lines. Cancers (Basel) 2020; 12:cancers12020348. [PMID: 32033118 PMCID: PMC7072235 DOI: 10.3390/cancers12020348] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/22/2022] Open
Abstract
Cancer therapy has evolved to a more targeted approach and often involves drug combinations to achieve better response rates. Non-thermal plasma (NTP), a technology rapidly expanding its application in the medical field, is a near room temperature ionized gas capable of producing reactive species, and can induce cancer cell death both in vitro and in vivo. Here, we used proliferation assay to characterize the plasma sensitivity of fourteen breast cancer cell lines. These assays showed that all tested cell lines were sensitive to NTP. In addition, a good correlation was found comparing cell sensitivity to NTP and radiation therapy (RT), where cells that were sensitive to RT were also sensitive to plasma. Moreover, in some breast cancer cell lines, NTP and RT have a synergistic effect. Adding a dose of PARP-inhibitor olaparib to NTP treatment always increases the efficacy of the treatment. Olaparib also exhibits a synergistic effect with NTP, especially in triple negative breast cancer cells. Results presented here help elucidate the position of plasma use as a potential breast cancer treatment.
Collapse
Affiliation(s)
- Julie Lafontaine
- Institut du Cancer de Montréal, CRCHUM, 900 Rue St. Denis, Montreal, QC H2X 0A9, Canada; (J.L.); (A.G.)
| | - Jean-Sébastien Boisvert
- Institut du Cancer de Montréal, CRCHUM, 900 Rue St. Denis, Montreal, QC H2X 0A9, Canada; (J.L.); (A.G.)
- Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
| | - Audrey Glory
- Institut du Cancer de Montréal, CRCHUM, 900 Rue St. Denis, Montreal, QC H2X 0A9, Canada; (J.L.); (A.G.)
| | - Sylvain Coulombe
- Plasma Processing Laboratory, Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC H3A 0C5, Canada
- Correspondence: (S.C.); (P.W.); Tel.: +1-514-398-5213 (S.C.); +1-514-890-8000 x31292 (P.W.)
| | - Philip Wong
- Institut du Cancer de Montréal, CRCHUM, 900 Rue St. Denis, Montreal, QC H2X 0A9, Canada; (J.L.); (A.G.)
- Département de Radio-oncologie, CHUM, 1051 rue Sanguinet, Montreal, QC H2X 3E4, Canada
- Correspondence: (S.C.); (P.W.); Tel.: +1-514-398-5213 (S.C.); +1-514-890-8000 x31292 (P.W.)
| |
Collapse
|
46
|
Gelker M, Müller-Goymann CC, Viöl W. Plasma Permeabilization of Human Excised Full-Thickness Skin by µs- and ns-pulsed DBD. Skin Pharmacol Physiol 2020; 33:69-76. [PMID: 31962316 DOI: 10.1159/000505195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Cold atmospheric plasma (CAP) is gaining increasing importance as a medical or cosmetic treatment for various indications. The technology is best suited to the treatment of surfaces such as the skin and is already used in wound care and, in exemplary case studies, the reduction of superficial tumors. Several plasma sources have been reported to affect the skin barrier function and potentially enable drug delivery across or into plasma-treated skin. OBJECTIVE In this study, this effect was quantified for different plasma sources in order to elucidate the influence of voltage rise time, pulse duration, and power density in treatments of full-thickness skin. METHODS We compared three different dielectric barrier discharges (DBDs) as to their permeabilization efficiency using Franz diffusion cell permeation experiments and measurements of the transepithelial electrical resistance (TEER) with full-thickness human excised skin. RESULTS We found a significant reduction of the TEER for all three plasma sources. Permeation of the hydrophilic sodium fluorescein molecule was enhanced by a factor of 11.7 (low power) to 41.6 (high power) through µs-pulsed DBD-treated skin. A smaller effect was observed after treatment with the ns-pulsed DBD. CONCLUSIONS The direct treatment of excised human full-thickness skin with CAP, specifically a DBD, can lead to pore formation and enhances transdermal transport of sodium fluorescein.
Collapse
Affiliation(s)
- Monika Gelker
- Department of Sciences and Technology, HAWK University of Applied Sciences and Arts, Göttingen, Germany, .,PVZ - Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany,
| | - Christel C Müller-Goymann
- PVZ - Center of Pharmaceutical Engineering, Technische Universität Braunschweig, Braunschweig, Germany.,Institut Pharmazeutische Technologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Wolfgang Viöl
- Department of Sciences and Technology, HAWK University of Applied Sciences and Arts, Göttingen, Germany
| |
Collapse
|
47
|
Haralambiev L, Wien L, Gelbrich N, Lange J, Bakir S, Kramer A, Burchardt M, Ekkernkamp A, Gümbel D, Stope MB. Cold atmospheric plasma inhibits the growth of osteosarcoma cells by inducing apoptosis, independent of the device used. Oncol Lett 2019; 19:283-290. [PMID: 31897140 PMCID: PMC6924118 DOI: 10.3892/ol.2019.11115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma (OS) is the most common tumor of the musculoskeletal system. Recently, cold atmospheric plasma (CAP) has been regarded as a promising anti-oncogenic therapy. Previous experimental studies have demonstrated that CAP treatment results in significant growth inhibition of human sarcoma and is able to induce apoptosis. However, due to device-specific parameters, there is a large variability in the antitumor effects of different CAP sources. In the present study, the cellular effects of CAP treatment from two different CAP devices were investigated and their pro-apoptotic efficacy was characterized. The OS cell lines, U2-OS and MNNG/HOS, were treated with two CAP devices, kINPen MED and MiniJet-R. Control groups were treated with argon. The anti-proliferative effect of each treatment was demonstrated using cell counting and the activation of apoptotic mechanisms was determined using Comet, TUNEL and Caspase-3/Caspase-7 assays. The results revealed that treatment of both OS cell lines with the two CAP sources resulted in significant inhibition of cell growth. Subsequently, the activation of Caspases and the induction of apoptotic DNA fragmentation was demonstrated. The biological effects of each CAP source did not differ significantly. The treatment of OS cells with CAP lead to an induction of apoptosis and a reduction of cell growth. Therefore, the biological effects of CAP appear to be general as the two devices of different design produced highly comparable cell responses. Therefore, the type of device used does not seem to affect the efficacy of CAP-based antitumor therapy.
Collapse
Affiliation(s)
- Lyubomir Haralambiev
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, D-12683 Berlin, Germany
| | - Lasse Wien
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Nadine Gelbrich
- Department of Urology, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Jörn Lange
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Sinan Bakir
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, D-12683 Berlin, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Martin Burchardt
- Department of Urology, University Medicine Greifswald, D-17475 Greifswald, Germany
| | - Axel Ekkernkamp
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, D-12683 Berlin, Germany
| | - Denis Gümbel
- Department of Trauma, Reconstructive Surgery and Rehabilitation Medicine, University Medicine Greifswald, D-17475 Greifswald, Germany.,Department of Trauma and Orthopaedic Surgery, BG Klinikum Unfallkrankenhaus Berlin gGmbH, D-12683 Berlin, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, D-17475 Greifswald, Germany
| |
Collapse
|
48
|
Assadian O, Ousey KJ, Daeschlein G, Kramer A, Parker C, Tanner J, Leaper DJ. Effects and safety of atmospheric low-temperature plasma on bacterial reduction in chronic wounds and wound size reduction: A systematic review and meta-analysis. Int Wound J 2018; 16:103-111. [PMID: 30311743 PMCID: PMC7379569 DOI: 10.1111/iwj.12999] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/31/2018] [Indexed: 12/22/2022] Open
Abstract
The use of atmospheric low‐temperature plasma (AP) on chronic wounds and its effect on microbial bioburden in open wounds has not been explored with a systematic review and meta‐analysis. PRISMA guidelines were followed and PubMed, Embase, CENTRAL, and CINAHL databases searched for randomised controlled trials (RCTs), which compared AP with no AP for the management of open, chronic wounds. The primary outcomes of reduction of bioburden or wound size were included. Meta‐analyses were performed; odds ratio (OR) and 95% confidence intervals (CIs) were extracted and pooled in a random effects model. Four RCTs investigated the effect of AP on chronic wound healing. Chronic wounds treated with AP did not show a significant improvement in healing (AP vs control: OR = 1.46; 95% CI = 0.89‐2.38; P = 0.13). Five further RCTs investigated the reduction of bioburden in wounds, but AP demonstrated no significant reduction of bioburden (AP vs control: OR = 0.85; 95% CI = 0.45‐1.62; P = 0.63). All nine RCTs recorded the presence of any severe adverse events (SAEs) in the 268 patients studied, with only one unrelated SAE identified in each group (AP vs control: OR = 1.00; 95% CI = 0.05‐19.96; P = 1.00). Use of AP in wound care is safe, but the retrieved evidence and meta‐analysis show that there is no clinical benefit of AP in chronic open wounds using currently available AP device settings.
Collapse
Affiliation(s)
- Ojan Assadian
- Department for Hospital Epidemiology and Infection Control, Medical University of Vienna, Vienna General Hospital, Vienna, Austria.,Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Karen J Ousey
- Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - George Daeschlein
- Department of Dermatology, University Medicine Greifswald, Greifswald, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christina Parker
- School of Nursing, Queensland University of Technology, Brisbane, Australia
| | - Judith Tanner
- Division of Nursing, School of Health Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | - David J Leaper
- Institute for Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| |
Collapse
|