1
|
Liu Q, Han W, Wang L, Shang W, Cao X. Role of miR-143-3p in the Development of Hemorrhoids and Postoperative Wound Healing. J INVEST SURG 2025; 38:2480799. [PMID: 40114371 DOI: 10.1080/08941939.2025.2480799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Hemorrhoids refer to a common anorectal disorder that is usually associated with vascular proliferation. The present study investigated the role of miR-143-3p in the development of hemorrhoids and postoperative wound healing, aiming to provide novel ideas for the study of the pathogenesis of hemorrhoids and their clinical treatment. METHODS Hemorrhoid tissues and normal perianal tissues were collected from 42 patients who underwent hemorrhoid surgery. The expressions of miR-143-3p, vascular endothelial markers (CD31, vWF, and VEGFR2), and inflammatory factors (TNF-α, IL-1β, and IL-6) in these tissues were determined using RT-qPCR. The correlation of miR-143-3p with CD31, vWF, and VEGFR2 was analyzed using Pearson's method. The proliferation of HUVEC and HaCaT cells was detected using the CCK-8 assay. The migration of HUVEC and HaCaT cells was detected using Transwell assay. The apoptosis of HUVEC cells was detected using flow cytometry. RESULTS Reduced expression of miR-143-3p in hemorrhoid tissues was negatively correlated to the mRNA levels of CD31, vWF, and VEGFR2. The mRNA levels of CD31, vWF, and VEGFR2 in the HUVEC cells were reduced after miR-143-3p overexpression. Overexpression of miR-143-3p inhibited the proliferation and migration of HUVEC cells while promoting apoptosis in these cells. Upregulation of miR-143-3p decreased the mRNA levels of TNF-α, IL-1β, and IL-6 in HaCaT cells while promoting cell proliferation and migration in these cells. CONCLUSIONS Downregulation of miR-143-3p was noted in hemorrhoids, which could be linked to the regulation of angiogenesis. MiR-143-3p might have an anti-inflammatory role in postoperative wound healing.
Collapse
Affiliation(s)
- Qing Liu
- Department of Basic Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Wei Han
- Department of Basic Nursing, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Ling Wang
- Department of Other Disciplines of Internal Medicine, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Weifang Shang
- Department of Other Disciplines of Internal Medicine, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| | - Xinyu Cao
- Department of General Surgery, Peking University Third Hospital Qinhuangdao Hospital, Qinhuangdao, China
| |
Collapse
|
2
|
Van Roy Z, Kielian T. Immune-based strategies for the treatment of biofilm infections. Biofilm 2025; 9:100264. [PMID: 40093652 PMCID: PMC11909721 DOI: 10.1016/j.bioflm.2025.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/05/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Biofilms are bacterial communities surrounded by a polymeric matrix that can form on implanted materials and biotic surfaces, resulting in chronic infection that is recalcitrant to immune- and antibiotic-mediated clearance. Therefore, biofilm infections present a substantial clinical challenge, as treatment often involves additional surgical interventions to remove the biofilm nidus, prolonged antimicrobial therapy to clear residual bacteria, and considerable risk of treatment failure or infection recurrence. These factors, combined with progressive increases in antimicrobial resistance, highlight the need for alternative therapeutic strategies to circumvent undue morbidity, mortality, and resource strain on the healthcare system resulting from biofilm infections. One promising option is reprogramming dysfunctional immune responses elicited by biofilm. Here, we review the literature describing immune responses to biofilm infection with a focus on targets or strategies ripe for clinical translation. This represents a complex and dynamic challenge, with context-dependent host-pathogen interactions that differ across infection models, microenvironments, and individuals. Nevertheless, consistencies among these variables exist, which could facilitate the development of immune-based strategies for the future treatment of biofilm infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
3
|
Majid OW. How well do antibacterial sutures control microbial colonization after oral surgery? Evid Based Dent 2025; 26:44-45. [PMID: 39313600 DOI: 10.1038/s41432-024-01069-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
DATA SOURCES A literature search was conducted through PubMed and Scopus databases to identify articles published from January 2013 to May 2023, using appropriate search terms. There were no language restrictions. Additionally, reference lists of the included studies and key peer-reviewed journals in oral surgery were manually searched for further relevant studies. STUDY SELECTION Selection criteria targeted human clinical studies, including cohort studies, randomized clinical trials (RCTs), quasi-experimental studies, case reports, and case series that investigated the antimicrobial activity of antibacterial-coated sutures in oral surgery. Studies were excluded if they were in vitro, ex vivo, or animal studies, as well as if they were non-research or pre-print articles. Two authors independently selected studies, resolving disagreements through discussion or a third expert reviewer. DATA EXTRACTION AND SYNTHESIS Two reviewers independently extracted data, including author, year, country, study design, sample size, population, intervention, control, surgery type, suture removal time, methodology, main results, and additional information. Discrepancies were resolved through discussion or with input from a third reviewer. This study followed the PRISMA-ScR guidelines for scoping reviews. RESULTS Out of 150 identified articles, 129 abstracts were reviewed after removing duplicates, and 10 full-text articles were screened, resulting in the inclusion of 5 studies published between 2014 and 2019. Three were RCTs, with one using a split-mouth design, involving 10 to 40 patients aged 18 to 60 years, primarily healthy. The sutures were mostly braided and coated with triclosan or chlorhexidine, while control groups used various non-coated sutures. Suture removal times ranged from 3 to 8 days. Postoperative rinses were advised in two studies, with one study not administering antibiotics and unclear antibiotic use in others. Three studies reported significantly reduced bacterial counts with antimicrobial-coated sutures compared to non-coated ones, while two studies found no significant differences. Triclosan-coated sutures generally showed greater antimicrobial activity, though results varied. CONCLUSION Antibacterial-coated sutures in oral surgery showed reduced bacterial retention compared to non-coated sutures. However, methodological variability, small sample sizes, and confounding factors limit the generalizability and reliability of these findings. High-quality RCTs with larger sample sizes are needed for more definitive conclusions. While antibacterial-coated sutures show promise in reducing microbial colonization and potentially improving surgical outcomes, their cost-effectiveness relative to non-coated sutures should be evaluated in larger clinical trials.
Collapse
Affiliation(s)
- Omer Waleed Majid
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Mosul University, Mosul, Iraq.
| |
Collapse
|
4
|
Van Roy Z, Kak G, Fallet RW, Kielian T. Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection. J Neuroinflammation 2025; 22:46. [PMID: 39987156 PMCID: PMC11847343 DOI: 10.1186/s12974-025-03376-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 02/24/2025] Open
Abstract
A craniotomy is a neurosurgical procedure performed to access the intracranial space. In 3-5% of cases, infections can develop, most caused by Staphylococcus aureus biofilm formation on the skull surface. Medical management of this infection is difficult, as biofilm properties confer immune and antimicrobial recalcitrance to the infection and necessitate additional surgical procedures. Furthermore, treatment failure rates can be appreciably high. These factors, compounded with rapidly expanding rates of antimicrobial resistance, highlight the need to develop alternative treatment strategies to target and reverse the immune dysfunction that occurs during biofilm infection. Our recent work has identified CD4+ Th1 and Th17 cells as potent regulators of innate immune cell activation during craniotomy infection. Here, we report the role of IFN-γ, versus other Th1- and Th17-derived cytokines, in programing the immune response to biofilm infection using both global and cell type-specific IFN-γR1-deficient (Ifngr1-/-) mice. Bacterial burdens were significantly higher in Ifngr1-/- relative to WT animals despite few changes in immune cell abundance. Single-cell transcriptomics identified candidate explanations for this phenotype as alterations in cell death pathways, innate immune cell activation, MHC-II expression, and T cell responses were significantly reduced in Ifngr1-/- mice. While caspase-1 activation in PMNs and macrophage/microglial MHC-II expression were regulated by IFN-γ signaling, no phenotypes were observed with either granulocyte- or macrophage/microglia Ifngr1-/- conditional knockout mice, suggestive of redundancy. Instead, a decreased Th1/Th17 ratio was identified in Ifngr1-/- animals that was corroborated by elevated IL-17 levels and correlated with dysfunctional T cell-innate immune communication. Further, Th17 cells were less effective than Th1 cells in promoting S. aureus bactericidal activity in microglia and macrophages. Collectively, this work identifies a key protective role for IFN-γ during craniotomy infection by enhancing macrophage and microglial antibacterial activity. Therefore, controlled programming of IFN-γ responses may represent a novel therapeutic strategy for chronic craniotomy infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, Nebraska, 68198, USA.
| |
Collapse
|
5
|
Blondeau JM, Fitch SD. Effects of Comparative Killing by Pradofloxacin and Seven Other Antimicrobials Against Varying Bacterial Densities of Swine Isolates of Pasteurella multocida. Microorganisms 2025; 13:221. [PMID: 40005588 PMCID: PMC11857592 DOI: 10.3390/microorganisms13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Bacterial killing is important for recovering from infection. Pasteurella multocida is a key bacterial pathogen causing swine respiratory disease and is associated with substantial mortality. Antimicrobial therapy remains an important therapeutic intervention for treating infected animals. Pradofloxacin (fluoroquinolone) is the most recently approved antimicrobial agent for treating pigs with swine respiratory disease. We compared in vitro killing of swine P. multocida strains by pradofloxacin in comparison to ceftiofur, enrofloxacin, florfenicol, marbofloxacin, tildipirosin, tilmicosin, and tulathromycin over a range of bacterial densities and four clinically relevant drug concentrations. Pradofloxacin killed 92-96.9% of cells across 106-108 cfu/mL densities at the mutant prevention drug concentration following 2-24 h of drug exposure, 96.9-98.9% of cells across 106-109 cfu/mL at the maximum serum drug concentration following 30 min of drug exposure, increasing to 99.9-100% kill following 12-24 h of drug exposure. At the maximum tissue drug concentration and against bacterial densities of 106-109 cfu/mL, pradofloxacin killed 91.3-99.8% of cells following 2 h of drug exposure, which increased to 99.9-100% kill following 12-24 h of drug exposure. Pradofloxacin was rapidly bactericidal across a range of bacterial densities and at clinically relevant drug concentrations. Pradofloxacin will be an important antibiotic for treating pigs with swine respiratory disease and where clinically indicated.
Collapse
Affiliation(s)
- Joseph M. Blondeau
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
- Pathology and Laboratory Medicine and Ophthalmology, Departments of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada
| | - Shantelle D. Fitch
- Department of Clinical Microbiology, Royal University Hospital and Saskatchewan Health Authority, Saskatoon, SK S7N 0W8, Canada;
| |
Collapse
|
6
|
Sandy-Hodgetts K, Carvalhal S, Rochon M, Stuermer EK, Mir GT, Tettelbach WH, Van der Merwe Z, Wainwright TW, Aburn R, Freeman-Gray B, Adi MM, Smith G, Suski MD. International Surgical Wound Complications Advisory Panel. J Wound Care 2025; 34:S1-S19. [PMID: 39836504 DOI: 10.12968/jowc.2025.34.sup1a.s1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Affiliation(s)
- Kylie Sandy-Hodgetts
- Associate Professor, Chair of Skin Integrity Research Group, Centre for Molecular Medicine & Innovative Therapeutics, Adjunct Senior Research Fellow, University of Western Australia, Australia
| | - Sara Carvalhal
- Consultant Surgeon, Portuguese Institute of Oncology in Lisbon, Portugal
| | - Melissa Rochon
- Trust Lead for SSI Surveillance, Research & Innovation, Surveillance and Innovation Unit, Directorate of Infection, Guy's and St Thomas' NHS Foundation Trust, UK
| | - Ewa Klara Stuermer
- Surgical Head of the Comprehensive Wound Centre, Head of Translational Research, Department for Vascular Medicine, University Medical Centre Hamburg-Eppendorf, Germany
| | | | - William H Tettelbach
- Chief Medical Officer, RestorixHealth, Metairie, LA, US, and Adjunct Assistant Professor, Duke University School of Medicine, Durham, NC, US
| | | | | | - Rebecca Aburn
- Nurse Practitioner and Vascular Advanced Lymphoedema Therapist, Healthcare New Zealand, New Zealand
| | - Beth Freeman-Gray
- Quality and Compliance Clinical Co-Ordinator, Pop-Up Health, Victoria, Australia
| | - Mohamed Muath Adi
- Head of Department & Consultant Orthopedic Surgeon, Burjeel Medical City, Abu Dhabi, UAE
| | - George Smith
- Senior Lecturer and Honorary Vascular Consultant, Hull York Medical School, UK
| | - Mark D Suski
- Plastic Surgeon, Los Robles Hospital and Medical Center, Thousand Oaks, CA, US
| |
Collapse
|
7
|
Van Roy Z, Kak G, Korshoj LE, Menousek JP, Heim CE, Fallet RW, Campbell JR, Geary CR, Liu B, Gorantla S, Poluektova LY, Duan B, Campbell WS, Thorell WE, Kielian T. Single-cell profiling reveals a conserved role for hypoxia-inducible factor signaling during human craniotomy infection. Cell Rep Med 2024; 5:101790. [PMID: 39426374 PMCID: PMC11604514 DOI: 10.1016/j.xcrm.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/16/2024] [Accepted: 09/23/2024] [Indexed: 10/21/2024]
Abstract
Neurosurgeries complicated by infection are associated with prolonged treatment and significant morbidity. Craniotomy is a common neurosurgical procedure; however, the cellular and molecular signatures associated with craniotomy infection in human subjects are unknown. A retrospective study of over 2,500 craniotomies reveals diverse patient demographics, pathogen identity, and surgical landscapes associated with infection. Leukocyte profiling in patient tissues from craniotomy infection characterizes a predominance of granulocytic myeloid-derived suppressor cells that may arise from transmigrated blood neutrophils, based on single-cell RNA sequencing (scRNA-seq) trajectory analysis. Single-cell transcriptomic analysis identifies metabolic shifts in tissue leukocytes, including a conserved hypoxia-inducible factor (HIF) signature. The importance of HIF signaling was validated using a mouse model of Staphylococcus aureus craniotomy infection, where HIF inhibition increases chemokine production and leukocyte recruitment, exacerbating tissue pathology. These findings establish conserved metabolic and transcriptional signatures that may represent promising future therapeutic targets for human craniotomy infection in the face of increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Gunjan Kak
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Joseph P Menousek
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rachel W Fallet
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - James R Campbell
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carol R Geary
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bo Liu
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Bin Duan
- Mary and Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - W Scott Campbell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - William E Thorell
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
8
|
Scheer VM, Scheer JH, Kalén A, Serrander L. Occlusive wound dressings: A greenhouse for bacteria? J Infect Prev 2024; 25:242-246. [PMID: 39493589 PMCID: PMC11528567 DOI: 10.1177/17571774241261923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/06/2024] [Indexed: 11/05/2024] Open
Abstract
Background The modern wound dressing is produced to absorb fluid and protect against external contamination. The choice of which wound dressing to apply after surgery is usually based on local tradition. There are various impervious dressings on the market. Even if the wound is sterile before application, there will be subsequent recolonisation of skin microbiota. Previous studies suggest that a high bacterial load on the skin hampers wound healing and might be a risk for SSI. Aim The aim was to compare bacterial recolonisation on the shoulder under three different wound dressings, 48 h after sterile preparation of the skin as in preparation for surgery. Method In 25 healthy volunteers, a standard pre-surgical skin disinfection for a deltopectoral incision was made on the left shoulder with 0.5% chlorhexidine solution in 70% ethanol. Three different wound dressings were then placed on the shoulder, and 48 h later the skin beneath each dressing was swabbed, subsequently cultured and bacterial density analysed using viable count. Results The bacterial recolonisation under air-dry (gauze) dressing was significantly lower (p = .0001) compared to semipermeable and occlusive wound dressings. Conclusion Choosing a less permeable wound dressing may lead to an increased bacterial load on the skin during the first 48 h after surgery.
Collapse
Affiliation(s)
- Vendela M Scheer
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Johan H Scheer
- Department of Orthopedics, Department of Biomedical and Clinical Sciences, Linkoping University Faculty of Medicine, Linköping, Sweden
| | - Anders Kalén
- Department of Orthopedics, Department of Biomedical and Clinical Sciences, Linkoping University Faculty of Medicine, Linköping, Sweden
| | - Lena Serrander
- Division of Clinical Microbiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
9
|
Van Roy Z, Arumugam P, Bertrand BP, Shinde DD, Thomas VC, Kielian T. Tissue niche influences immune and metabolic profiles to Staphylococcus aureus biofilm infection. Nat Commun 2024; 15:8965. [PMID: 39420209 PMCID: PMC11487069 DOI: 10.1038/s41467-024-53353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Infection is a devastating post-surgical complication, often requiring additional procedures and prolonged antibiotic therapy. This is especially relevant for craniotomy and prosthetic joint infections (PJI), both of which are characterized by biofilm formation on the bone or implant surface, respectively, with S. aureus representing a primary cause. The local tissue microenvironment likely has profound effects on immune attributes that can influence treatment efficacy, which becomes critical to consider when developing therapeutics for biofilm infections. However, the extent to which distinct tissue niches influence immune function during biofilm development remains relatively unknown. To address this, we compare the metabolomic, transcriptomic, and functional attributes of leukocytes in mouse models of S. aureus craniotomy and PJI complemented with patient samples from both infection modalities, which reveals profound tissue niche-dependent differences in nucleic acid, amino acid, and lipid metabolism with links to immune modulation. These signatures are both spatially and temporally distinct, differing not only between infection sites but evolving over time within a single model. Collectively, this demonstrates that biofilms elicit unique immune and metabolic responses that are heavily influenced by the local tissue microenvironment, which will likely have important implications when designing therapeutic approaches targeting these infections.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Prabakar Arumugam
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhananjay D Shinde
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vinai C Thomas
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
10
|
Van Der Merwe Z, Wilton SD, Sandy-Hodgetts K. Risk factors associated with surgical site infection following orthopaedic surgery in South Africa and Sub-Saharan Africa: a scoping review protocol. J Wound Care 2024; 33:S4-S8. [PMID: 39140712 DOI: 10.12968/jowc.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
OBJECTIVE The objective of the scoping review will be to understand and describe risk factors associated with surgical site infection (SSI) in an orthopaedic surgery population in Sub-Saharan Africa and South Africa. This paper describes the protocol that will be used for the scoping review. METHOD A comprehensive literature search will be conducted using MEDLINE (PubMed), CINAHL (EBSCO), Embase and Cochrane Libraries to identify articles meeting the inclusion criteria, including both published and grey literature, in order to provide a broad overview of the reported risk factors associated with patients who have undergone an orthopaedic surgery with an outcome of SSI within 90 days of a procedure. Additional studies will be sourced by exploring the reference list of included eligible studies. By using a combination of the Population, Exposure, Outcome framework, terms and synonyms related to each category, in different variations, along with Boolean operators (AND, OR, NOT) in the search strategy, identified comprehensive and relevant literature for the scoping review. RESULTS It is anticipated the results will provide a baseline of risk factors that will inform the development of a risk assessment tool for clinical use. CONCLUSION This protocol will inform the development of a scoping review to describe factors associated with SSIs following orthopaedic surgery in Sub-Saharan Africa and South Africa.
Collapse
Affiliation(s)
| | - Steve D Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Nedlands, Western Australia
| | - Kylie Sandy-Hodgetts
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, Western Australia
- Senior Research Fellow, School of Biomedical Sciences, University of Western Australia
| |
Collapse
|
11
|
Pham E, Reynolds-Reber L, Navarro S, Hamood A, Jones-Donaldson LM, Smith AC. Determination of the Course of Cyan Fluorescence of Pseudomonas aeruginosa with a Handheld Bacterial Imaging Device. Diagnostics (Basel) 2024; 14:1474. [PMID: 39061611 PMCID: PMC11276341 DOI: 10.3390/diagnostics14141474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic wound infections are of clinical concern as they often lead to high rates of mortality and morbidity. A point-of-care handheld bacterial fluorescence imaging has been designed to detect the auto-fluorescent characteristics of most clinically relevant species of bacteria. This device causes most species of bacteria to exhibit red fluorescence due to the production of exoproduct porphyrins. One of the most significant contributors to the pathogenicity of chronic wounds is the pathogen Pseudomonas aeruginosa, and interestingly, this organism exhibits an additional unique cyan fluorescence signature. There is an over 90% positive predictive value that, when a chronic wound exhibits cyan fluorescence with the bacterial fluorescence imaging device, the wound will harbor P. aeruginosa. This project seeks to understand what genetic factor(s) contribute to the cyan phenotype observed.
Collapse
Affiliation(s)
- Emily Pham
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA;
| | | | - Stephany Navarro
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.N.); (A.H.)
| | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.N.); (A.H.)
| | | | - Allie Clinton Smith
- Department of Honors Studies, Texas Tech University, Lubbpock, TX 79409, USA
| |
Collapse
|
12
|
Johnson J, Johnson AR, Andersen CA, Kelso MR, Oropallo AR, Serena TE. Skin Pigmentation Impacts the Clinical Diagnosis of Wound Infection: Imaging of Bacterial Burden to Overcome Diagnostic Limitations. J Racial Ethn Health Disparities 2024; 11:1045-1055. [PMID: 37039975 PMCID: PMC10933203 DOI: 10.1007/s40615-023-01584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023]
Abstract
Underrepresentation of diverse skin tones in medical education and providers' implicit racial bias drives inequities in wound care, such as disproportionally poor outcomes for Black patients. Diagnostic indicators (e.g., erythema) can present differently depending on skin pigmentation. This post hoc analysis of 350 chronic wounds from a prospective 14-site clinical trial aimed to determine how the perception of clinical signs and symptoms of infection (CSS) differs by patient skin tone and if fluorescence-imaging can offer a more objective diagnostic solution. Participants were grouped by skin tone (low, medium, high) as measured by the Fitzpatrick Skin Phototype Classification (FSPC) scale. CSS and total bacterial load (TBL) were compared across FSPC groups, along with sensitivity to detect TBL >104 CFU/g using CSS alone and combined with fluorescence-imaging. Erythema was reported less often with increasing FSPC score (p = 0.05), from 13.4% (low), to 7.2% (medium), to 2.3% (high), despite comparable bacterial loads (median = 1.8 × 106 CFU/g). CSS sensitivity in the high group (2.9%) was 4.8-fold to 8.4-fold lower than the low (p = 0.003) and medium groups (p = 0.04). Fluorescence-imaging significantly improved the detection of high bacterial load in each group, peaking in the high group at 12-fold over CSS alone. These findings underscore the threat of pervasive racialized health inequities in wound care, where missed diagnosis of pathogenic bacteria and infection could delay treatment, increasing the risk of complications and poor outcomes. Fluorescence-imaging is poised to fill this gap, at least in part, serving as a more objective and equitable indicator of wound bacteria. Clinicaltrials.gov #NCT03540004 registered 16-05-2018.
Collapse
Affiliation(s)
- Jonathan Johnson
- Comprehensive Wound Care Services and Capital Aesthetic & Laser Center, Washington, DC, USA
| | - Alton R Johnson
- University of Michigan School of Medicine in the Division of Metabolism, Endocrinology and Diabetes-Podiatry, Ann Arbor, MI, USA
| | | | | | - Alisha R Oropallo
- Comprehensive Wound Healing Center and Hyperbarics, Northwell Health and Department of Vascular Surgery, Zucker School of Medicine Hofstra/Northwell, Hempstead, NY, USA
| | | |
Collapse
|
13
|
Jacob A, Jones LM, Abdo RJ, Cruz‐Schiavone SF, Skerker R, Caputo WJ, Krehbiel N, Moyer‐Harris AK, McAtee A, Baker I, Gray MD, Rennie MY. Lights, fluorescence, action-Influencing wound treatment plans including debridement of bacteria and biofilms. Int Wound J 2023; 20:3279-3288. [PMID: 37132372 PMCID: PMC10502265 DOI: 10.1111/iwj.14208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/04/2023] Open
Abstract
High bacterial loads within chronic wounds increase the risk of infection and complication. Detection and localization of bacterial loads through point-of-care fluorescence (FL) imaging can objectively inform and support bacterial treatment decisions. This single time-point, retrospective analysis describes the treatment decisions made on 1000 chronic wounds (DFUs, VLUs, PIs, surgical wounds, burns, and others) at 211 wound-care facilities across 36 US states. Clinical assessment findings and treatment plans derived from them, as well as subsequent FL-imaging (MolecuLight®) findings and any associated treatment plan changes, were recorded for analysis. FL signals indicating elevated bacterial loads were observed in 701 wounds (70.8%), while only 293 (29.6%) showed signs/symptoms of infection. After FL-imaging, treatment plans changed in 528 wounds as follows: more extensive debridement (18.7%), more extensive hygiene (17.2%), FL-targeted debridement (17.2%), new topical therapies (10.1%), new systemic antibiotic prescriptions (9.0%), FL-guided sampling for microbiological analysis (6.2%), and changes in dressing selection (3.2%). These real-world findings of asymptomatic bacterial load/biofilm incidence, and of the frequent treatment plan changes post-imaging, are in accordance with clinical trial findings using this technology. These data, from a range of wound types, facilities, and clinician skill sets, suggest that point-of-care FL-imaging information improves bacterial infection management.
Collapse
|
14
|
Croke L. Novel Strategies to Prevent Surgical Site Infections. AORN J 2023; 118:P7-P10. [PMID: 37750790 DOI: 10.1002/aorn.14015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 09/27/2023]
|
15
|
Ramirez-GarciaLuna JL, Martinez-Jimenez MA, Fraser RDJ, Bartlett R, Lorincz A, Liu Z, Saiko G, Berry GK. Is my wound infected? A study on the use of hyperspectral imaging to assess wound infection. Front Med (Lausanne) 2023; 10:1165281. [PMID: 37692790 PMCID: PMC10483069 DOI: 10.3389/fmed.2023.1165281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/13/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Clinical signs and symptoms (CSS) of infection are a standard part of wound care, yet they can have low specificity and sensitivity, which can further vary due to clinician knowledge, experience, and education. Wound photography is becoming more widely adopted to support wound care. Thermography has been studied in the medical literature to assess signs of perfusion and inflammation for decades. Bacterial fluorescence has recently emerged as a valuable tool to detect a high bacterial load within wounds. Combining these modalities offers a potential objective screening tool for wound infection. Methods A multi-center prospective study of 66 outpatient wound care patients used hyperspectral imaging to collect visible light, thermography, and bacterial fluorescence images. Wounds were assessed and screened using the International Wound Infection Institute (IWII) checklist for CSS of infection. Principal component analysis was performed on the images to identify wounds presenting as infected, inflamed, or non-infected. Results The model could accurately predict all three wound classes (infected, inflamed, and non-infected) with an accuracy of 74%. They performed best on infected wounds (100% sensitivity and 91% specificity) compared to non-inflamed (sensitivity 94%, specificity 70%) and inflamed wounds (85% sensitivity, 77% specificity). Discussion Combining multiple imaging modalities enables the application of models to improve wound assessment. Infection detection by CSS is vulnerable to subjective interpretation and variability based on clinicians' education and skills. Enabling clinicians to use point-of-care hyperspectral imaging may allow earlier infection detection and intervention, possibly preventing delays in wound healing and minimizing adverse events.
Collapse
Affiliation(s)
| | | | - Robert D. J. Fraser
- Swift Medical, Toronto, ON, Canada
- Arthur Labatt School of Nursing, Northwestern University, London, ON, Canada
| | | | | | | | - Gennadi Saiko
- Department of Physics, Toronto Metropolitan University, Toronto, ON, Canada
| | - Gregory K. Berry
- Department of Surgery, McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
16
|
Van Roy Z, Shi W, Kak G, Duan B, Kielian T. Epigenetic Regulation of Leukocyte Inflammatory Mediator Production Dictates Staphylococcus aureus Craniotomy Infection Outcome. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:414-428. [PMID: 37314520 PMCID: PMC10524781 DOI: 10.4049/jimmunol.2300050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus is a common cause of surgical-site infections, including those arising after craniotomy, which is performed to access the brain for the treatment of tumors, epilepsy, or hemorrhage. Craniotomy infection is characterized by complex spatial and temporal dynamics of leukocyte recruitment and microglial activation. We recently identified unique transcriptional profiles of these immune populations during S. aureus craniotomy infection. Epigenetic processes allow rapid and reversible control over gene transcription; however, little is known about how epigenetic pathways influence immunity to live S. aureus. An epigenetic compound library screen identified bromodomain and extraterminal domain-containing (BET) proteins and histone deacetylases (HDACs) as critical for regulating TNF, IL-6, IL-10, and CCL2 production by primary mouse microglia, macrophages, neutrophils, and granulocytic myeloid-derived suppressor cells in response to live S. aureus. Class I HDACs (c1HDACs) were increased in these cell types in vitro and in vivo during acute disease in a mouse model of S. aureus craniotomy infection. However, substantial reductions in c1HDACs were observed during chronic infection, highlighting temporal regulation and the importance of the tissue microenvironment for dictating c1HDAC expression. Microparticle delivery of HDAC and BET inhibitors in vivo caused widespread decreases in inflammatory mediator production, which significantly increased bacterial burden in the brain, galea, and bone flap. These findings identify histone acetylation as an important mechanism for regulating cytokine and chemokine production across diverse immune cell lineages that is critical for bacterial containment. Accordingly, aberrant epigenetic regulation may be important for promoting S. aureus persistence during craniotomy infection.
Collapse
Affiliation(s)
- Zachary Van Roy
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Gunjan Kak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
17
|
Awad SS, Stern JD, Milne CT, Dowling SG, Sotomayor R, Ayello EA, Feo Aguirre LJ, Khalaf BZ, Gould LJ, Desvigne MN, Chaffin AE. Surgical Reconstruction of Stage 3 and 4 Pressure Injuries: A Literature Review and Proposed Algorithm from an Interprofessional Working Group. Adv Skin Wound Care 2023; 36:249-258. [PMID: 37079788 PMCID: PMC10144322 DOI: 10.1097/01.asw.0000922708.95424.88] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/07/2022] [Indexed: 04/22/2023]
Abstract
OBJECTIVE Stage 3 and 4 pressure injuries (PIs) present an enormous societal burden with no clearly defined interventions for surgical reconstruction. The authors sought to assess, via literature review and a reflection/evaluation of their own clinical practice experience (where applicable), the current limitations to the surgical intervention of stage 3 or 4 PIs and propose an algorithm for surgical reconstruction. METHODS An interprofessional working group convened to review and assess the scientific literature and propose an algorithm for clinical practice. Data compiled from the literature and a comparison of institutional management were used to develop an algorithm for the surgical reconstruction of stage 3 and 4 PIs with adjunctive use of negative-pressure wound therapy and bioscaffolds. RESULTS Surgical reconstruction of PI has relatively high complication rates. The use of negative-pressure wound therapy as adjunctive therapy is beneficial and widespread, leading to reduced dressing change frequency. The evidence for the use of bioscaffolds both in standard wound care and as an adjunct to surgical reconstruction of PI is limited. The proposed algorithm aims to reduce complications typically seen with this patient cohort and improve patient outcomes from surgical intervention. CONCLUSIONS The working group has proposed a surgical algorithm for stage 3 and 4 PI reconstruction. The algorithm will be validated and refined through additional clinical research.
Collapse
Affiliation(s)
- Samir S Awad
- Samir S. Awad, MD, MPH, FACS, is Professor of Surgery, Baylor College of Medicine and Chief of Surgery, Michael E. DeBakey VA Medical Center, Houston, Texas, USA. James D. Stern, MD, FACS, is Plastic Surgeon, Memorial Regional Hospital, Hollywood, Florida. Cathy T. Milne, APRN, MSN, ANP/ACNS-BC, CWOCN-AP, is Co-owner, Connecticut Clinical Nursing Associates, Bristol, Connecticut. Shane G. Dowling, MSPAS, PA-C, CWS, is Medical Science Liaison, Aroa Biosurgery Limited, Auckland, New Zealand. Ron Sotomayor, BA, RN, CWOCN, is a wound, ostomy, and continence nurse, Advent Health, Orlando, Florida. Elizabeth A. Ayello, PhD, MS, RN, ETN, CWON, FAAN, is Editor-in-Chief, Advances in Skin & Wound Care and President, Ayello, Harris and Associates Incorporated, Copake, New York. Leandro J. Feo Aguirre, MD, FACS, is Colorectal Surgeon, Palm Beach Health Network, Del Ray Beach, Florida. Basil Z. Khalaf, MD, is Wound Care Physician, The MEDIKAL Group, Houston, Texas. Lisa J. Gould, MD, is Plastic Surgeon, South Shore Health, Weymouth, Massachusetts. Michael N. Desvigne, MD, FACS, CWS, is Plastic Surgeon, Desvigne Plastic Surgery and Abrazo Health, Scottsdale, Arizona. Abigail E. Chaffin, MD, FACS, CWSP, is Associate Professor of Surgery and Chief, Division of Plastic Surgery, Tulane University and Medical Director, MedCentris Wound Healing Institute, New Orleans, Louisiana
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Armstrong DG, Edmonds ME, Serena TE. Point-of-care fluorescence imaging reveals extent of bacterial load in diabetic foot ulcers. Int Wound J 2023; 20:554-566. [PMID: 36708275 PMCID: PMC9885466 DOI: 10.1111/iwj.14080] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 01/29/2023] Open
Abstract
Elevated levels of bacteria, including biofilm, increase the risk of chronic wound infection and inhibit healing. Addressing asymptomatic high bacterial loads is challenged by a lack of clinical terminology and diagnostic tools. This post-hoc multicenter clinical trial analysis of 138 diabetic foot ulcers investigates fluorescence (FL)-imaging role in detecting biofilm-encased and planktonic bacteria in wounds at high loads. The sensitivity and specificity of clinical assessment and FL-imaging were compared across bacterial loads of concern (104 -109 CFU/g). Quantitative tissue culture confirmed the total loads. Bacterial presence was confirmed in 131/138 ulcers. Of these, 93.9% had loads >104 CFU/g. In those wounds, symptoms of infection were largely absent and did not correlate with, or increase proportionately with, bacterial loads at any threshold. FL-imaging increased sensitivity for the detection of bacteria across loads 104 -109 (P < .0001), peaking at 92.6% for >108 CFU/g. Imaging further showed that 84.2% of ulcers contained high loads in the periwound region. New terminology, chronic inhibitory bacterial load (CIBL), describes frequently asymptomatic, high bacterial loads in diabetic ulcers and periwound tissues, which require clinical intervention to prevent sequelae of infection. We anticipate this will spark a paradigm shift in assessment and management, enabling earlier intervention along the bacterial-infection continuum and supporting improved wound outcomes.
Collapse
Affiliation(s)
- David G. Armstrong
- Department of SurgeryKeck School of Medicine of University of Southern CaliforniaLos AngelesCaliforniaUSA
| | | | | |
Collapse
|
19
|
Serena TE, Snyder RJ, Bowler PG. Use of fluorescence imaging to optimize location of tissue sampling in hard-to-heal wounds. Front Cell Infect Microbiol 2023; 12:1070311. [PMID: 36710976 PMCID: PMC9878329 DOI: 10.3389/fcimb.2022.1070311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/20/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Wound microflora in hard-to-heal wounds is invariably complex and diverse. Determining the interfering organisms(s) is therefore challenging. Tissue sampling, particularly in large wounds, is subjective and, when performed, might involve swabbing or biopsy of several locations. Fluorescence (FL) imaging of bacterial loads is a rapid, non-invasive method to objectively locate microbial hotspots (loads >104 CFU/gr). When sampling is deemed clinically necessary, imaging may indicate an optimal site for tissue biopsy. This study aimed to investigate the microbiology of wound tissue incisional biopsies taken from sites identified by FL imaging compared with sites selected by clinical judgment. Methods A post hoc analysis of the 350-patient FLAAG wound trial was conducted; 78 wounds were included in the present study. All 78 wounds were biopsied at two sites: one at the center of the wound per standard of care (SoC) and one site guided by FL-imaging findings, allowing for comparison of total bacterial load (TBL) and species present. Results The comparison between the two biopsy sites revealed that clinical uncertainty was higher as wound surface area increased. The sensitivity of a FL-informed biopsy was 98.7% for accurately finding any bacterial loads >104 CFU/g, compared to 87.2% for SoC (p=0.0059; McNemar test). Regarding species detected, FL-informed biopsies detected an average of 3 bacterial species per biopsy versus 2.2 species with SoC (p < 0.001; t-test). Microbial hotspots with a higher number of pathogens also included the CDC's pathogens of interest. Conclusions & perspective FL imaging provides a more accurate and relevant microbiological profile that guides optimal wound sampling compared to clinical judgment. This is particularly interesting in large, complex wounds, as evidenced in the wounds studied in this post hoc analysis. In addition, fluorescence imaging enables earlier bacterial detection and intervention, guiding early and appropriate wound hygiene and potentially reducing the need for antibiotic use. When indicated, this diagnostic partnership with antibiotic stewardship initiatives is key to ameliorating the continuing threat of antibiotic resistance.
Collapse
Affiliation(s)
| | - Robert J. Snyder
- Foot and Ankle Institute, Barry University, Miami, FL, United States
| | | |
Collapse
|
20
|
Esposito S, Sgarzani R, Bianchini S, Monaco S, Nicoletti L, Rigotti E, Di Pietro M, Opri R, Caminiti C, Ciccia M, Conti G, Donà D, Giuffré M, La Grutta S, Lancella L, Lima M, Lo Vecchio A, Pelizzo G, Piacentini G, Pietrasanta C, Puntoni M, Simonini A, Venturini E, Staiano A, Principi N. Surgical Antimicrobial Prophylaxis in Pediatric Patients Undergoing Plastic Surgery: A RAND/UCLA Appropriateness Method Consensus Study. Antibiotics (Basel) 2022; 11:506. [PMID: 35453257 PMCID: PMC9029976 DOI: 10.3390/antibiotics11040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
For many years, it was clearly shown that surgical procedures might be associated with surgical site infection (SSI). Many scientific institutions prepared guidelines to use in surgery to reduce abuse and misuse of antibiotics. However, in the general guidelines for surgical antibiotic prophylaxis, plastic surgical procedures are not addressed or are only marginally discussed, and children were almost systematically excluded. The main aim of this Consensus document is to provide clinicians with recommendations on antimicrobial prophylaxis for pediatric patients undergoing plastic surgery. The following scenarios were considered: clean plastic surgery in elective procedures with an exclusive skin and subcutis involvement; clean-contaminated/contaminated plastic surgery in elective procedures with an exclusive skin and subcutis involvement; elective plastic surgery with use of local flaps; elective plastic surgery with the use of grafts; prolonged elective plastic surgery; acute burns; clean contused lacerated wounds without bone exposure; high-risk contused lacerated wounds or with bone exposure; contused lacerated wound involving the oral mucosa; plastic surgery following human bite; plastic surgery following animal bite; plastic surgery with tissue expander insertion. Our Consensus document shows that antimicrobial perioperative prophylaxis in pediatric patients undergoing plastic surgery is recommended in selected cases. While waiting the results of further pediatric studies, the application of uniform and shared protocols in these procedures will improve surgical practice, with a reduction in SSIs and consequent rationalization of resources and costs, as well as limiting the phenomenon of antimicrobial resistance.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Rossella Sgarzani
- Servizio di Chirurgia Plastica, Centro Grandi Ustionati, Ospedale M. Bufalini, AUSL Romagna, 47521 Cesena, Italy;
| | - Sonia Bianchini
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Sara Monaco
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Laura Nicoletti
- Pediatric Clinic, University Hospital, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (S.B.); (S.M.); (L.N.)
| | - Erika Rigotti
- Pediatric Clinic, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy; (E.R.); (M.D.P.); (R.O.); (G.P.)
| | - Marilia Di Pietro
- Pediatric Clinic, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy; (E.R.); (M.D.P.); (R.O.); (G.P.)
| | - Roberta Opri
- Pediatric Clinic, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy; (E.R.); (M.D.P.); (R.O.); (G.P.)
| | - Caterina Caminiti
- Research and Innovation Unit, University Hospital of Parma, 43126 Parma, Italy; (C.C.); (M.P.)
| | - Matilde Ciccia
- Neonatology and Neonatal Intensive Care Unit, Ospedale Maggiore, 40133 Bologna, Italy;
| | - Giorgio Conti
- Pediatric ICU and Trauma Center, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy;
| | - Daniele Donà
- Division of Paediatric Infectious Diseases, Department for Woman and Child Health, University of Padua, 35100 Padua, Italy;
| | - Mario Giuffré
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D’Alessandro”, University of Palermo, 90141 Palermo, Italy;
| | - Stefania La Grutta
- Institute of Translational Pharmacology IFT, National Research Council, 90146 Palermo, Italy;
| | - Laura Lancella
- Paediatric and Infectious Disease Unit, Academic Department of Pediatrics, IRCCS Bambino Gesù Children’s Hospital, 00165 Rome, Italy;
| | - Mario Lima
- Pediatric Surgery, IRCCS Azienda Ospedaliera-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Andrea Lo Vecchio
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, 80138 Naples, Italy; (A.L.V.); (A.S.)
| | - Gloria Pelizzo
- Pediatric Surgery Department, “Vittore Buzzi” Children’s Hospital, 20154 Milano, Italy;
| | - Giorgio Piacentini
- Pediatric Clinic, Azienda Ospedaliera Universitaria Integrata, 37134 Verona, Italy; (E.R.); (M.D.P.); (R.O.); (G.P.)
| | - Carlo Pietrasanta
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Department of Mother, Child and Infant, 20122 Milan, Italy;
| | - Matteo Puntoni
- Research and Innovation Unit, University Hospital of Parma, 43126 Parma, Italy; (C.C.); (M.P.)
| | - Alessandro Simonini
- Pediatric Anesthesia and Intensive Care Unit, Salesi Children’s Hospital, 60123 Ancona, Italy;
| | - Elisabetta Venturini
- Pediatric Infectious Disease Unit, Meyer’s Children Hospital, 50139 Florence, Italy;
| | - Annamaria Staiano
- Department of Translational Medical Science, Section of Pediatrics, University of Naples “Federico II”, 80138 Naples, Italy; (A.L.V.); (A.S.)
| | | | | |
Collapse
|