1
|
Bourdillon P, Ren L, Halgren M, Paulk AC, Salami P, Ulbert I, Fabó D, King JR, Sjoberg KM, Eskandar EN, Madsen JR, Halgren E, Cash SS. Differential cortical layer engagement during seizure initiation and spread in humans. Nat Commun 2024; 15:5153. [PMID: 38886376 PMCID: PMC11183216 DOI: 10.1038/s41467-024-48746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
Despite decades of research, we still do not understand how spontaneous human seizures start and spread - especially at the level of neuronal microcircuits. In this study, we used laminar arrays of micro-electrodes to simultaneously record the local field potentials and multi-unit neural activities across the six layers of the neocortex during focal seizures in humans. We found that, within the ictal onset zone, the discharges generated during a seizure consisted of current sinks and sources only within the infra-granular and granular layers. Outside of the seizure onset zone, ictal discharges reflected current flow in the supra-granular layers. Interestingly, these patterns of current flow evolved during the course of the seizure - especially outside the seizure onset zone where superficial sinks and sources extended into the deeper layers. Based on these observations, a framework describing cortical-cortical dynamics of seizures is proposed with implications for seizure localization, surgical targeting, and neuromodulation techniques to block the generation and propagation of seizures.
Collapse
Affiliation(s)
- Pierre Bourdillon
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Hospital Foundation Adolphe de Rothschild, Paris, France.
- Integrative Neuroscience and Cognition Center, Paris Cité University, Paris, France.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Clinical Center for Epilepsy, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Mila Halgren
- Brain and Cognitive Sciences Department and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Angelique C Paulk
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Pariya Salami
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - István Ulbert
- HUN-REN, Research Center for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, Budapest, Hungary
- Faculty of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel Fabó
- Department of Neurosurgery and Neurointervention, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Jean-Rémi King
- Laboratoire des Systèmes Perceptifs, Département d'études cognitives, École normale supérieure, PSL University, CNRS, Paris, France
| | - Kane M Sjoberg
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, 02138, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine - Montefiore Medical Center, Bronx, NY, USA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children Hospital, Harvard Medical School, Boston, MA, USA
| | - Eric Halgren
- Departments of Radiology and, Neurosciences, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, Entz L. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans. Sci Rep 2024; 14:13784. [PMID: 38877093 PMCID: PMC11178858 DOI: 10.1038/s41598-024-62433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence.
Collapse
Affiliation(s)
- Boglárka Hajnal
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
| | - Johanna Petra Szabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- János Szentágothai Neurosciences Program, Semmelweis University School of PhD Studies, Budapest, 1083, Hungary
- Lendület Laboratory of Systems Neuroscience, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Emília Tóth
- Epilepsy and Cognitive Neurophysiology Laboratory, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Corey J Keller
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
- Department of Neuroscience, Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA, 94304, USA
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Ashesh D Mehta
- Department of Neurosurgery, Hofstra North Shore LIJ School of Medicine and Feinstein Institute of Medical Research, 300 Community Drive, Manhasset, NY, 11030, USA
| | - Loránd Erőss
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| | - István Ulbert
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, HUN-REN, Budapest, 1117, Hungary
- Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, 1083, Hungary
| | - Dániel Fabó
- Epilepsy Center, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, Clinic for Neurosurgery and Neurointervention, Semmelweis University, Budapest, 1145, Hungary
| |
Collapse
|
3
|
Kitaura H, Fukushima K, Fukuda M, Ito Y, Kakita A. Pharmacological evaluation of E2730, a novel selective uncompetitive GAT1 inhibitor, on epileptiform activities in resected brain tissues from human focal cortical dysplasia ex vivo. Epilepsy Res 2024; 202:107364. [PMID: 38640591 DOI: 10.1016/j.eplepsyres.2024.107364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Focal cortical dysplasia (FCD) is an important etiology of focal epilepsy in children and adults. However, only a few preclinical models sufficiently reproduce the characteristic histopathologic features of FCD. To improve the success rate of clinical trials for antiseizure medications (ASMs) in patients with FCD, more human-relevant preclinical models are needed, and epileptic foci resected from patients are a powerful tool for this purpose. Here, we conducted ex vivo studies using epileptic foci resected from patients with FCD type II to evaluate the pharmacologic effects of the ASM candidate E2730, a selective uncompetitive inhibitor of γ-aminobutyric acid transporter 1. We used the same ex vivo assay system to assess carbamazepine (CBZ), an ASM often prescribed for focal epilepsy, as a reference. At the higher dose tested (200 µM), both E2730 and CBZ suppressed spontaneous epileptiform activities almost completely. At the lower dose (100 µM), CBZ reduced the area of brain tissue showing epileptiform activity, whereas E2730 significantly decreased the number of epileptiforms. These findings suggest that E2730-both as a single agent and in combination with CBZ-merits evaluation in clinical trials involving patients with FCD.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Clinical Engineering, Komatsu University, 14-1 Mukaimotoori, Komatsu City, Ishikawa 923-0961, Japan; Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata City, Niigata, Japan.
| | - Kazuyuki Fukushima
- Microenvironment Dynamics Domain, Deep Human Biology Learning, Eisai Co., Ltd., 5-1-3 Tokodai, Tsukuba City, Ibaraki, Japan
| | - Masafumi Fukuda
- Department of Neurosurgery, NHO Nishiniigata Chuo Hospital, 1 Masago, Nishi-ku, Niigata City, Niigata, Japan
| | - Yosuke Ito
- Department of Neurosurgery, NHO Nishiniigata Chuo Hospital, 1 Masago, Nishi-ku, Niigata City, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, 1 Asahimachi, Chuo-ku, Niigata City, Niigata, Japan
| |
Collapse
|
4
|
Lisgaras CP, Scharfman HE. Interictal spikes in Alzheimer's disease: Preclinical evidence for dominance of the dentate gyrus and cholinergic control by the medial septum. Neurobiol Dis 2023; 187:106294. [PMID: 37714307 PMCID: PMC10617404 DOI: 10.1016/j.nbd.2023.106294] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/17/2023] Open
Abstract
Interictal spikes (IIS) are a common type of abnormal electrical activity in Alzheimer's disease (AD) and preclinical models. The brain regions where IIS are largest are not known but are important because such data would suggest sites that contribute to IIS generation. Because hippocampus and cortex exhibit altered excitability in AD models, we asked which areas dominate the activity during IIS along the cortical-CA1-dentate gyrus (DG) dorso-ventral axis. Because medial septal (MS) cholinergic neurons are overactive when IIS typically occur, we also tested the novel hypothesis that silencing the MS cholinergic neurons selectively would reduce IIS. We used mice that simulate aspects of AD: Tg2576 mice, presenilin 2 (PS2) knockout mice and Ts65Dn mice. To selectively silence MS cholinergic neurons, Tg2576 mice were bred with choline-acetyltransferase (ChAT)-Cre mice and offspring were injected in the MS with AAV encoding inhibitory designer receptors exclusively activated by designer drugs (DREADDs). We recorded local field potentials along the cortical-CA1-DG axis using silicon probes during wakefulness, slow-wave sleep (SWS) and rapid eye movement (REM) sleep. We detected IIS in all transgenic or knockout mice but not age-matched controls. IIS were detectable throughout the cortical-CA1-DG axis and occurred primarily during REM sleep. In all 3 mouse lines, IIS amplitudes were significantly greater in the DG granule cell layer vs. CA1 pyramidal layer or overlying cortex. Current source density analysis showed robust and early current sources in the DG, and additional sources in CA1 and the cortex also. Selective chemogenetic silencing of MS cholinergic neurons significantly reduced IIS rate during REM sleep without affecting the overall duration, number of REM bouts, latency to REM sleep, or theta power during REM. Notably, two control interventions showed no effects. Consistent maximal amplitude and strong current sources of IIS in the DG suggest that the DG is remarkably active during IIS. In addition, selectively reducing MS cholinergic tone, at times when MS is hyperactive, could be a new strategy to reduce IIS in AD.
Collapse
Affiliation(s)
- Christos Panagiotis Lisgaras
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America.
| | - Helen E Scharfman
- Departments of Child & Adolescent Psychiatry, Neuroscience & Physiology, and Psychiatry, and the Neuroscience Institute New York University Langone Health, 550 First Ave., New York, NY 10016, United States of America; Center for Dementia Research, The Nathan S. Kline Institute for Psychiatric Research, New York State Office of Mental Health, 140 Old Orangeburg Road, Bldg. 35, Orangeburg, NY 10962, United States of America
| |
Collapse
|
5
|
Fabo D, Bokodi V, Szabó JP, Tóth E, Salami P, Keller CJ, Hajnal B, Thesen T, Devinsky O, Doyle W, Mehta A, Madsen J, Eskandar E, Erőss L, Ulbert I, Halgren E, Cash SS. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex. Sci Rep 2023; 13:9620. [PMID: 37316509 DOI: 10.1038/s41598-022-22497-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023] Open
Abstract
Describing intracortical laminar organization of interictal epileptiform discharges (IED) and high frequency oscillations (HFOs), also known as ripples. Defining the frequency limits of slow and fast ripples. We recorded potential gradients with laminar multielectrode arrays (LME) for current source density (CSD) and multi-unit activity (MUA) analysis of interictal epileptiform discharges IEDs and HFOs in the neocortex and mesial temporal lobe of focal epilepsy patients. IEDs were observed in 20/29, while ripples only in 9/29 patients. Ripples were all detected within the seizure onset zone (SOZ). Compared to hippocampal HFOs, neocortical ripples proved to be longer, lower in frequency and amplitude, and presented non-uniform cycles. A subset of ripples (≈ 50%) co-occurred with IEDs, while IEDs were shown to contain variable high-frequency activity, even below HFO detection threshold. The limit between slow and fast ripples was defined at 150 Hz, while IEDs' high frequency components form clusters separated at 185 Hz. CSD analysis of IEDs and ripples revealed an alternating sink-source pair in the supragranular cortical layers, although fast ripple CSD appeared lower and engaged a wider cortical domain than slow ripples MUA analysis suggested a possible role of infragranularly located neural populations in ripple and IED generation. Laminar distribution of peak frequencies derived from HFOs and IEDs, respectively, showed that supragranular layers were dominated by slower (< 150 Hz) components. Our findings suggest that cortical slow ripples are generated primarily in upper layers while fast ripples and associated MUA in deeper layers. The dissociation of macro- and microdomains suggests that microelectrode recordings may be more selective for SOZ-linked ripples. We found a complex interplay between neural activity in the neocortical laminae during ripple and IED formation. We observed a potential leading role of cortical neurons in deeper layers, suggesting a refined utilization of LMEs in SOZ localization.
Collapse
Affiliation(s)
- Daniel Fabo
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary.
| | - Virag Bokodi
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technologies, Budapest, Hungary
| | - Johanna-Petra Szabó
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Emilia Tóth
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Department of Neurology, University of Texas, McGovern Medical School, Houston, TX, USA
| | - Pariya Salami
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Boglárka Hajnal
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Budapest, Hungary
| | - Thomas Thesen
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
- Department of Biomedical Sciences, College of Medicine, University of Houston, Houston, TX, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, USA
| | - Ashesh Mehta
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell and Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | - Emad Eskandar
- Massachusetts General Hospital Neurosurgery Research, Boston, MA, USA
| | - Lorand Erőss
- Department of Functional Neurosurgery, National Institute of Mental Health, Neurology and Neurosurgery, Budapest, Hungary
| | - István Ulbert
- Epilepsy Unit, Department of Neurology, National Institute of Mental Health, Neurology and Neurosurgery, Amerikai Út 57. 1145, Budapest, Hungary
- Institute of Psychology, Eötvös Loránd Research Network, Budapest, Hungary
| | - Eric Halgren
- Department of Radiology, Neurosciences and Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - Sydney S Cash
- Epilepsy Division, Department of Neurology, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Vatsyayan R, Lee J, Bourhis AM, Tchoe Y, Cleary DR, Tonsfeldt KJ, Lee K, Montgomery-Walsh R, Paulk AC, U HS, Cash SS, Dayeh SA. Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS BULLETIN 2023; 48:531-546. [PMID: 37476355 PMCID: PMC10357958 DOI: 10.1557/s43577-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 07/22/2023]
Abstract
Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Daniel R. Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Neurological Surgery, School of Medicine, Oregon Health & Science University, Portland, USA
| | - Karen J. Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Rhea Montgomery-Walsh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| | - Angelique C. Paulk
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Sydney S. Cash
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Shadi A. Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| |
Collapse
|
7
|
Frazzini V, Whitmarsh S, Lehongre K, Yger P, Lemarechal JD, Mathon B, Adam C, Hasboun D, Lambrecq V, Navarro V. Human periventricular nodular heterotopia shows several interictal epileptic patterns and hyperexcitability of neuronal firing. Front Neurol 2022; 13:1022768. [PMID: 36438938 PMCID: PMC9695411 DOI: 10.3389/fneur.2022.1022768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Periventricular nodular heterotopia (PNH) is a malformation of cortical development that frequently causes drug-resistant epilepsy. The epileptogenicity of ectopic neurons in PNH as well as their role in generating interictal and ictal activity is still a matter of debate. We report the first in vivo microelectrode recording of heterotopic neurons in humans. Highly consistent interictal patterns (IPs) were identified within the nodules: (1) Periodic Discharges PLUS Fast activity (PD+F), (2) Sporadic discharges PLUS Fast activity (SD+F), and (3) epileptic spikes (ES). Neuronal firing rates were significantly modulated during all IPs, suggesting that multiple IPs were generated by the same local neuronal populations. Furthermore, firing rates closely followed IP morphologies. Among the different IPs, the SD+F pattern was found only in the three nodules that were actively involved in seizure generation but was never observed in the nodule that did not take part in ictal discharges. On the contrary, PD+F and ES were identified in all nodules. Units that were modulated during the IPs were also found to participate in seizures, increasing their firing rate at seizure onset and maintaining an elevated rate during the seizures. Together, nodules in PNH are highly epileptogenic and show several IPs that provide promising pathognomonic signatures of PNH. Furthermore, our results show that PNH nodules may well initiate seizures.
Collapse
Affiliation(s)
- Valerio Frazzini
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Stephen Whitmarsh
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, Paris, France
| | - Jean-Didier Lemarechal
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | - Bertrand Mathon
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department of Neurosurgery, Paris, France
| | - Claude Adam
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
| | - Dominique Hasboun
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- AP-HP, Pitié Salpêtrière Hospital, Department de Neuroradiology, Paris, France
| | - Virginie Lambrecq
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Vincent Navarro
- AP-HP, Pitié Salpêtrière Hospital, Epilepsy Unit and Reference Center for Rare Epilepsies, Paris, France
- Sorbonne Université, Institut du Cerveau–Paris Brain Institute–ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
- *Correspondence: Vincent Navarro
| |
Collapse
|
8
|
Köksal Ersöz E, Lazazzera R, Yochum M, Merlet I, Makhalova J, Mercadal B, Sanchez-Todo R, Ruffini G, Bartolomei F, Benquet P, Wendling F. Signal processing and computational modeling for interpretation of SEEG-recorded interictal epileptiform discharges in epileptogenic and non-epileptogenic zones. J Neural Eng 2022; 19. [PMID: 36067727 DOI: 10.1088/1741-2552/ac8fb4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE In partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic and non-epileptogenic zones. IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and GABAergic processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity. Signal analysis and neurophysiological mathematical models are used to interpret puzzling IED generation. APPROACH Interictal activity was recorded by intracranial stereo-electroencephalography (SEEG) electrodes in five different patients. SEEG experts identified the epileptic and non-epileptic zones in which IEDs were detected. After quantifying spatial and temporal features of the detected IEDs, the most significant features for classifying epileptic and non-epileptic zones were determined. A neurophysiologically-plausible mathematical model was then introduced to simulate the IEDs and understand the underlying differences observed in epileptic and non-epileptic zone IEDs. MAIN RESULTS Two classes of SWs were identified according to subtle differences in morphology and timing of the spike and wave component. Results showed that type-1 SWs were generated in epileptogenic regions also involved at seizure onset, while type-2 SWs were produced in the propagation or non-involved areas. The modeling study indicated that synaptic kinetics, cortical organization, and network interactions determined the morphology of the simulated SEEG signals. Modeling results suggested that the IED morphologies were linked to the degree of preserved inhibition. SIGNIFICANCE This work contributes to the understanding of different mechanisms generating IEDs in epileptic networks. The combination of signal analysis and computational models provides an efficient framework for exploring IEDs in partial epilepsies and classifying epileptogenic and non-epileptogenic zones.
Collapse
Affiliation(s)
- Elif Köksal Ersöz
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Remo Lazazzera
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Maxime Yochum
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Isabelle Merlet
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Julia Makhalova
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Borja Mercadal
- Neuroelectrics Barcelona SL, Av. Tibidabo, 47b, Barcelona, 08035, SPAIN
| | - Roser Sanchez-Todo
- Neuroelectrics Barcelona SL, Avda Tibidabo, 47 bis, Barcelona, Catalunya, 08035, SPAIN
| | - Giulio Ruffini
- Neuroelectrics Barcelona SL, Av. Tibidabo, 47b, Barcelona, Catalunya, 08035, SPAIN
| | - Fabrice Bartolomei
- Neurophysiologie clinique, Service d'Epileptologie et de Rythmologie Cerebrale, Assistance Publique Hopitaux de Marseille, Hôpital de la Timone, Marseille, Provence-Alpes-Côte d'Azu, 13354, FRANCE
| | - Pascal Benquet
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus de Beaulieu, Rennes, Bretagne, 35042 , FRANCE
| | - Fabrice Wendling
- INSERM, LTSI - UMR 1099, Universite de Rennes 1, Campus Beaulieu, Rennes, Bretagne, 35042, FRANCE
| |
Collapse
|
9
|
Subramanian M, Chiang CC, Couturier NH, Durand DM. Theta waves, neural spikes and seizures can propagate by ephaptic coupling in vivo. Exp Neurol 2022; 354:114109. [PMID: 35551899 PMCID: PMC10214533 DOI: 10.1016/j.expneurol.2022.114109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 04/30/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
Electric field coupling has been shown to be responsible for non-synaptic neural activity propagation in hippocampal slices and cortical slices. Epileptiform and slow-wave sleep activity can propagate by electric field coupling without using synaptic connections at speeds of ~0.1 m/s in vitro. However, the characteristics of the events that can propagate using electric field coupling through a volume conductor in vivo have not been studied. Thus, we tested the hypothesis that various types of neural signals such as interictal spikes, theta waves and seizures could propagate in vivo across a transection in the hippocampus. We induced epileptiform activity in 4 rats under anesthesia by injecting 4-aminopyridine in the temporal region of the hippocampus, four recording electrodes were inserted along the longitudinal axis of the hippocampus. A transection was made between the electrodes to study the propagation of the neural activity. Although 54% of the interictal spikes could propagate through the cut, only those spikes with a high amplitude and short duration had a high probability to do so. 70% of seizure events could propagate through the cut but parameters distinguishing between propagating and non-propagating seizure events could not be identified. Theta activity was also observed to propagate at a mean speed of 0.16 ± 0.12 m/s in the characteristic range of propagation using electric field coupling through the transection. The electric field volume conduction mechanism was confirmed by showing that propagation was blocked by placing a dielectric layer within the cut. The speed of propagation was not affected by the transection thereby providing further evidence that various types of neural signals including activity in the theta range can propagate by electric field coupling in-vivo.
Collapse
Affiliation(s)
- Muthumeenakshi Subramanian
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Chia-Chu Chiang
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas H Couturier
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Dominique M Durand
- Neural Engineering Center, Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
10
|
Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, Ulbert I, Wittner L. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans. Sci Rep 2022; 12:6280. [PMID: 35428851 PMCID: PMC9012754 DOI: 10.1038/s41598-022-10319-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes—the hypersynchronous events between seizures—is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.
Collapse
Affiliation(s)
- Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,Department of Neurobiology, School of Medicine and Institute for Medical Research Israel-Canada, The Hebrew University, 91120, Jerusalem, Israel
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary
| | - Boglárka Hajnal
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Virág Bokodi
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Estilla Zsófia Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Semmelweis University Doctoral School, 1026, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - László Entz
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok körútja 2., 1117, Budapest, Hungary. .,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, 1083, Budapest, Hungary. .,National Institute of Mental Health, Neurology and Neurosurgery, 1143, Budapest, Hungary.
| |
Collapse
|
11
|
Lehongre K, Lambrecq V, Whitmarsh S, Frazzini V, Cousyn L, Soleil D, Fernandez-Vidal S, Mathon B, Houot M, Lemarechal JD, Clemenceau S, Hasboun D, Adam C, Navarro V. Long-term deep intracerebral microelectrode recordings in patients with drug-resistant epilepsy: proposed guidelines based on 10-year experience. Neuroimage 2022; 254:119116. [PMID: 35318150 DOI: 10.1016/j.neuroimage.2022.119116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Human neuronal activity, recorded in vivo from microelectrodes, may offer valuable insights into physiological mechanisms underlying human cognition and pathophysiological mechanisms of brain diseases, in particular epilepsy. Continuous and long-term recordings are necessary to monitor non predictable pathological and physiological activities like seizures or sleep. Because of their high impedance, microelectrodes are more sensitive to noise than macroelectrodes. Low noise levels are crucial to detect action potentials from background noise, and to further isolate single neuron activities. Therefore, long-term recordings of multi-unit activity remains a challenge. We shared here our experience with microelectrode recordings and our efforts to reduce noise levels in order to improve signal quality. We also provided detailed technical guidelines for the connection, recording, imaging and signal analysis of microelectrode recordings. RESULTS During the last 10 years, we implanted 122 bundles of Behnke-Fried hybrid macro-microelectrodes, in 56 patients with pharmacoresistant focal epilepsy. Microbundles were implanted in the temporal lobe (74%), as well as frontal (15%), parietal (6%) and occipital (5%) lobes. Low noise levels depended on our technical setup. The noise reduction was mainly obtained after electrical insulation of the patient's recording room and the use of a reinforced microelectrode model, reaching median root mean square values of 5.8 µV. Seventy percent of the bundles could record multi-units activities (MUA), on around 3 out of 8 wires per bundle and for an average of 12 days. Seizures were recorded by microelectrodes in 91% of patients, when recorded continuously, and MUA were recorded during seizures for 75 % of the patients after the insulation of the room. Technical guidelines are proposed for (i) electrode tails manipulation and protection during surgical bandage and connection to both clinical and research amplifiers, (ii) electrical insulation of the patient's recording room and shielding, (iii) data acquisition and storage, and (iv) single-units activities analysis. CONCLUSIONS We progressively improved our recording setup and are now able to record (i) microelectrode signals with low noise level up to 3 weeks duration, and (ii) MUA from an increased number of wires . We built a step by step procedure from electrode trajectory planning to recordings. All these delicate steps are essential for continuous long-term recording of units in order to advance in our understanding of both the pathophysiology of ictogenesis and the neuronal coding of cognitive and physiological functions.
Collapse
Affiliation(s)
- Katia Lehongre
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France
| | - Virginie Lambrecq
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Département de Neurophysiologie, Hôpital Pitié-Salpêtrière, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Stephen Whitmarsh
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France
| | - Valerio Frazzini
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Département de Neurophysiologie, Hôpital Pitié-Salpêtrière, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Louis Cousyn
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Daniel Soleil
- Bureau d'Etudes CEMS, 801 Route d'Eyguieres, 13 560 Senas, France
| | - Sara Fernandez-Vidal
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France
| | - Bertrand Mathon
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Service de Neurochirurgie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marion Houot
- Centre of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France; Institute of Memory and Alzheimer's Disease (IM2A), Department of Neurology, AP-HP, Pitié-Salpêtrière Hospital, Paris, France.; Clinical Investigation Centre, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital Paris, France
| | - Jean-Didier Lemarechal
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille, France
| | | | - Dominique Hasboun
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Service de Neuroradiologie, Pitié-Salpêtrière Hospital, Paris, France
| | - Claude Adam
- AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, APHP, Pitié-Salpêtrière Hospital, Paris France; AP-HP, Département de Neurophysiologie, Hôpital Pitié-Salpêtrière, DMU Neurosciences, Paris, France; AP-HP, Epilepsy Unit, Pitié-Salpêtrière Hospital, DMU Neurosciences, Paris, France; AP-HP, Center of Reference for Rare Epilepsies, Pitié-Salpêtrière Hospital, Paris, France.
| |
Collapse
|
12
|
Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays. Cells 2021; 11:cells11010106. [PMID: 35011667 PMCID: PMC8750870 DOI: 10.3390/cells11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/26/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-derived neuron cultures have emerged as models of electrical activity in the human brain. Microelectrode arrays (MEAs) measure changes in the extracellular electric potential of cell cultures or tissues and enable the recording of neuronal network activity. MEAs have been applied to both human subjects and hPSC-derived brain models. Here, we review the literature on the functional characterization of hPSC-derived two- and three-dimensional brain models with MEAs and examine their network function in physiological and pathological contexts. We also summarize MEA results from the human brain and compare them to the literature on MEA recordings of hPSC-derived brain models. MEA recordings have shown network activity in two-dimensional hPSC-derived brain models that is comparable to the human brain and revealed pathology-associated changes in disease models. Three-dimensional hPSC-derived models such as brain organoids possess a more relevant microenvironment, tissue architecture and potential for modeling the network activity with more complexity than two-dimensional models. hPSC-derived brain models recapitulate many aspects of network function in the human brain and provide valid disease models, but certain advancements in differentiation methods, bioengineering and available MEA technology are needed for these approaches to reach their full potential.
Collapse
|
13
|
Guth TA, Kunz L, Brandt A, Dümpelmann M, Klotz KA, Reinacher PC, Schulze-Bonhage A, Jacobs J, Schönberger J. Interictal spikes with and without high-frequency oscillation have different single-neuron correlates. Brain 2021; 144:3078-3088. [PMID: 34343264 PMCID: PMC8634126 DOI: 10.1093/brain/awab288] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/07/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Interictal epileptiform discharges (IEDs) are a widely used biomarker in patients with epilepsy but lack specificity. It has been proposed that there are truly epileptogenic and less pathological or even protective IEDs. Recent studies suggest that highly pathological IEDs are characterized by high-frequency oscillations (HFOs). Here, we aimed to dissect these 'HFO-IEDs' at the single-neuron level, hypothesizing that the underlying mechanisms are distinct from 'non-HFO-IEDs'. Analysing hybrid depth electrode recordings from patients with temporal lobe epilepsy, we found that single-unit firing rates were higher in HFO- than in non-HFO-IEDs. HFO-IEDs were characterized by a pronounced pre-peak increase in firing, which coincided with the preferential occurrence of HFOs, whereas in non-HFO-IEDs, there was only a mild pre-peak increase followed by a post-peak suppression. Comparing each unit's firing during HFO-IEDs to its baseline activity, we found many neurons with a significant increase during the HFO component or ascending part, but almost none with a decrease. No such imbalance was observed during non-HFO-IEDs. Finally, comparing each unit's firing directly between HFO- and non-HFO-IEDs, we found that most cells had higher rates during HFO-IEDs and, moreover, identified a distinct subset of neurons with a significant preference for this IED subtype. In summary, our study reveals that HFO- and non-HFO-IEDs have different single-unit correlates. In HFO-IEDs, many neurons are moderately activated, and some participate selectively, suggesting that both types of increased firing contribute to highly pathological IEDs.
Collapse
Affiliation(s)
- Tim A Guth
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Kunz
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Dümpelmann
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin A Klotz
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter C Reinacher
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Jacobs
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Paediatrics and Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jan Schönberger
- Epilepsy Center, Medical Center, University of Freiburg, Freiburg, Germany
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Berta-Ottenstein-Programme, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Paulk AC, Yang JC, Cleary DR, Soper DJ, Halgren M, O’Donnell AR, Lee SH, Ganji M, Ro YG, Oh H, Hossain L, Lee J, Tchoe Y, Rogers N, Kiliç K, Ryu SB, Lee SW, Hermiz J, Gilja V, Ulbert I, Fabó D, Thesen T, Doyle WK, Devinsky O, Madsen JR, Schomer DL, Eskandar EN, Lee JW, Maus D, Devor A, Fried SI, Jones PS, Nahed BV, Ben-Haim S, Bick SK, Richardson RM, Raslan AM, Siler DA, Cahill DP, Williams ZM, Cosgrove GR, Dayeh SA, Cash SS. Microscale Physiological Events on the Human Cortical Surface. Cereb Cortex 2021; 31:3678-3700. [PMID: 33749727 PMCID: PMC8258438 DOI: 10.1093/cercor/bhab040] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 01/14/2023] Open
Abstract
Despite ongoing advances in our understanding of local single-cellular and network-level activity of neuronal populations in the human brain, extraordinarily little is known about their "intermediate" microscale local circuit dynamics. Here, we utilized ultra-high-density microelectrode arrays and a rare opportunity to perform intracranial recordings across multiple cortical areas in human participants to discover three distinct classes of cortical activity that are not locked to ongoing natural brain rhythmic activity. The first included fast waveforms similar to extracellular single-unit activity. The other two types were discrete events with slower waveform dynamics and were found preferentially in upper cortical layers. These second and third types were also observed in rodents, nonhuman primates, and semi-chronic recordings from humans via laminar and Utah array microelectrodes. The rates of all three events were selectively modulated by auditory and electrical stimuli, pharmacological manipulation, and cold saline application and had small causal co-occurrences. These results suggest that the proper combination of high-resolution microelectrodes and analytic techniques can capture neuronal dynamics that lay between somatic action potentials and aggregate population activity. Understanding intermediate microscale dynamics in relation to single-cell and network dynamics may reveal important details about activity in the full cortical circuit.
Collapse
Affiliation(s)
- Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jimmy C Yang
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Daniel R Cleary
- Departments of Neurosciences and Radiology, University of California San Diego, La Jolla, CA 92093, USA
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Department of Neurosurgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel J Soper
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mila Halgren
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Sang Heon Lee
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mehran Ganji
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Yun Goo Ro
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Hongseok Oh
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Lorraine Hossain
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Jihwan Lee
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Youngbin Tchoe
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Rogers
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Kivilcim Kiliç
- Departments of Neurosciences and Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sang Baek Ryu
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Seung Woo Lee
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John Hermiz
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Vikash Gilja
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - István Ulbert
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, 1519 Budapest, Hungary
- Pázmány Péter Catholic University, Faculty of Information Technology and Bionics, H-1444 Budapest, Hungary
| | - Daniel Fabó
- Epilepsy Centrum, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Thomas Thesen
- Department of Biomedical Sciences, University of Houston College of Medicine, Houston, TX 77204, USA
- Comprehensive Epilepsy Center, New York University School of Medicine, New York City, NY 10016, USA
| | - Werner K Doyle
- Comprehensive Epilepsy Center, New York University School of Medicine, New York City, NY 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, New York University School of Medicine, New York City, NY 10016, USA
| | - Joseph R Madsen
- Departments of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Donald L Schomer
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Albert Einstein College of Medicine, Montefiore Medical Center, Department of Neurosurgery, Bronx, NY 10467, USA
| | - Jong Woo Lee
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Maus
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Anna Devor
- Departments of Neurosciences and Radiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
- Boston VA Healthcare System, 150 South Huntington Avenue, Boston, MA 02130, USA
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sharona Ben-Haim
- Department of Neurosurgery, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah K Bick
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Ahmed M Raslan
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Dominic A Siler
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ziv M Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Shadi A Dayeh
- Department of Neurosurgery, University of California San Diego, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Nanoengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
15
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
16
|
Chari A, Thornton RC, Tisdall MM, Scott RC. Microelectrode recordings in human epilepsy: a case for clinical translation. Brain Commun 2020; 2:fcaa082. [PMID: 32954332 PMCID: PMC7472902 DOI: 10.1093/braincomms/fcaa082] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022] Open
Abstract
With their 'all-or-none' action potential responses, single neurons (or units) are accepted as the basic computational unit of the brain. There is extensive animal literature to support the mechanistic importance of studying neuronal firing as a way to understand neuronal microcircuits and brain function. Although most studies have emphasized physiology, there is increasing recognition that studying single units provides novel insight into system-level mechanisms of disease. Microelectrode recordings are becoming more common in humans, paralleling the increasing use of intracranial electroencephalography recordings in the context of presurgical evaluation in focal epilepsy. In addition to single-unit data, microelectrode recordings also record local field potentials and high-frequency oscillations, some of which may be different to that recorded by clinical macroelectrodes. However, microelectrodes are being used almost exclusively in research contexts and there are currently no indications for incorporating microelectrode recordings into routine clinical care. In this review, we summarize the lessons learnt from 65 years of microelectrode recordings in human epilepsy patients. We cover the electrode constructs that can be utilized, principles of how to record and process microelectrode data and insights into ictal dynamics, interictal dynamics and cognition. We end with a critique on the possibilities of incorporating single-unit recordings into clinical care, with a focus on potential clinical indications, each with their specific evidence base and challenges.
Collapse
Affiliation(s)
- Aswin Chari
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Rachel C Thornton
- Department of Clinical Neurophysiology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Martin M Tisdall
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurosurgery, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Rodney C Scott
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Neurological Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
17
|
Aeed F, Shnitzer T, Talmon R, Schiller Y. Layer- and Cell-Specific Recruitment Dynamics during Epileptic Seizures In Vivo. Ann Neurol 2019; 87:97-115. [PMID: 31657482 DOI: 10.1002/ana.25628] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To investigate the network dynamics mechanisms underlying differential initiation of epileptic interictal spikes and seizures. METHODS We performed combined in vivo 2-photon calcium imaging from different targeted neuronal subpopulations and extracellular electrophysiological recordings during 4-aminopyridine-induced neocortical spikes and seizures. RESULTS Both spikes and seizures were associated with intense synchronized activation of excitatory layer 2/3 pyramidal neurons (PNs) and to a lesser degree layer 4 neurons, as well as inhibitory parvalbumin-expressing interneurons (INs). In sharp contrast, layer 5 PNs and somatostatin-expressing INs were gradually and asynchronously recruited into the ictal activity during the course of seizures. Within layer 2/3, the main difference between onset of spikes and seizures lay in the relative recruitment dynamics of excitatory PNs compared to parvalbumin- and somatostatin-expressing inhibitory INs. Whereas spikes exhibited balanced recruitment of PNs and parvalbumin-expressing INs, during seizures IN responses were reduced and less synchronized than in layer 2/3 PNs. Similar imbalance was not observed in layers 4 or 5 of the neocortex. Machine learning-based algorithms we developed were able to distinguish spikes from seizures based solely on activation dynamics of layer 2/3 PNs at discharge onset. INTERPRETATION During onset of seizures, the recruitment dynamics markedly differed between neuronal subpopulations, with rapid synchronous recruitment of layer 2/3 PNs, layer 4 neurons, and parvalbumin-expressing INs and gradual asynchronous recruitment of layer 5 PNs and somatostatin-expressing INs. Seizures initiated in layer 2/3 due to a dynamic mismatch between local PNs and inhibitory INs, and only later spread to layer 5 by gradually and asynchronously recruiting PNs in this layer. ANN NEUROL 2020;87:97-115.
Collapse
Affiliation(s)
- Fadi Aeed
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Shnitzer
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Talmon
- Viterbi Faculty of Electrical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yitzhak Schiller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,Department of Neurology, Rambam Medical Center, Haifa, Israel
| |
Collapse
|
18
|
Extent of Single-Neuron Activity Modulation by Hippocampal Interictal Discharges Predicts Declarative Memory Disruption in Humans. J Neurosci 2019; 40:682-693. [PMID: 31754015 PMCID: PMC6961998 DOI: 10.1523/jneurosci.1380-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/17/2019] [Accepted: 11/17/2019] [Indexed: 11/21/2022] Open
Abstract
Memory deficits are common in epilepsy patients. In these patients, the interictal EEG commonly shows interictal epileptiform discharges (IEDs). While IEDs are associated with transient cognitive impairments, it remains poorly understood why this is. We investigated the effects of human (male and female) hippocampal IEDs on single-neuron activity during a memory task in patients with medically refractory epilepsy undergoing depth electrode monitoring. We quantified the effects of hippocampal IEDs on single-neuron activity and the impact of this modulation on subjectively declared memory strength. Across all recorded neurons, the activity of 50 of 728 neurons were significantly modulated by IEDs, with the strongest modulation in the medial temporal lobe (33 of 416) and in particular the right hippocampus (12 of 58). Putative inhibitory neurons, as identified by their extracellular signature, were more likely to be modulated by IEDs than putative excitatory neurons (19 of 157 vs 31 of 571). Behaviorally, the occurrence of hippocampal IEDs was accompanied by a disruption of recognition of familiar images only if they occurred up to 2 s before stimulus onset. In contrast, IEDs did not impair encoding or recognition of novel images, indicating high temporal and task specificity of the effects of IEDs. The degree of modulation of individual neurons by an IED correlated with the declared confidence of a retrieval trial, with higher firing rates indicative of reduced confidence. Together, these data link the transient modulation of individual neurons by IEDs to specific declarative memory deficits in specific cell types, thereby revealing a mechanism by which IEDs disrupt medial temporal lobe-dependent declarative memory retrieval processes. SIGNIFICANCE STATEMENT Interictal epileptiform discharges (IEDs) are thought to be a cause of memory deficits in chronic epilepsy patients, but the underlying mechanisms are not understood. Utilizing single-neuron recordings in epilepsy patients, we found that hippocampal IEDs transiently change firing of hippocampal neurons and disrupted selectively the retrieval, but not encoding, of declarative memories. The extent of the modulation of the individual firing of hippocampal neurons by an IED predicted the extent of reduction of subjective retrieval confidence. Together, these data reveal a specific kind of transient cognitive impairment caused by IEDs and link this impairment to the modulation of the activity of individual neurons. Understanding the mechanisms by which IEDs impact memory is critical for understanding memory impairments in epilepsy patients.
Collapse
|
19
|
Kandrács Á, Hofer KT, Tóth K, Tóth EZ, Entz L, Bagó AG, Erőss L, Jordán Z, Nagy G, Fabó D, Ulbert I, Wittner L. Presence of synchrony-generating hubs in the human epileptic neocortex. J Physiol 2019; 597:5639-5670. [PMID: 31523807 DOI: 10.1113/jp278499] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/06/2019] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. ABSTRACT Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.
Collapse
Affiliation(s)
- Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Estilla Z Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Entz
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Attila G Bagó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Gábor Nagy
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,National Institute of Clinical Neuroscience, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.,National Institute of Clinical Neuroscience, Budapest, Hungary
| |
Collapse
|
20
|
The role of sleep-related cognitive functions in the spectrum of benign epilepsy with centro-temporal spikes. Eur J Pediatr 2019; 178:1129-1137. [PMID: 31227889 DOI: 10.1007/s00431-019-03413-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 01/02/2023]
Abstract
Heterogeneous cognitive deficits have been described in the spectrum of benign epilepsy with centro-temporal spikes, which strongly correlate with the intensity of interictal epileptiform discharges and its spreading, in particular during sleep, mostly within the perisylvian cognitive network. The aim of this review is to discuss current findings regarding the connection between sleep alterations and cognitive function in the spectrum of benign epilepsy with centro-temporal spikes. A longer sleep onset latency is the only evident sleep macrostructure alteration reported in the spectrum of benign epilepsy with centro-temporal spikes. On a microstructural level, a higher spike count of descending compared to ascending slopes of sleep cycles, an impairment of slow wave downscaling, and amplitude and slope of slow waves were found in the spectrum of benign epilepsy with centro-temporal spikes. Moreover, children with benign epilepsy with centro-temporal spikes had a reduced non-rapid eye movement sleep instability, in terms of cyclic alternating pattern, similar to that found in children with attention-deficit hyperactivity disorders and in children with obstructive sleep apnea and centro-temporal spike during sleep. Children with benign epilepsy with centro-temporal spikes have a known comorbidity with attention-deficit hyperactivity disorders and obstructive sleep apnea.Conclusion: Considering the common sleep microstructure alterations, the presence of attention deficit and hyperactivity and/or sleep apnea may be a considered warning sign in the case of benign epilepsy with centro-temporal spikes. What is Known: • Sleep related-cognitive deficits have been described in the spectrum of benign epilepsy with centro-temporal spikes. The degree of sleep alterations may predict the neurocognitive outcome, and help clinicians to choose the right treatment. What is New: • Considering the common sleep microstructure alterations, attention deficit and sleep apnea, may be a considered warning signs.
Collapse
|
21
|
Nagappan S, Liu L, Fetcho R, Nguyen J, Nishimura N, Radwanski RE, Lieberman S, Baird-Daniel E, Ma H, Zhao M, Schaffer CB, Schwartz TH. In Vivo Femtosecond Laser Subsurface Cortical Microtransections Attenuate Acute Rat Focal Seizures. Cereb Cortex 2019; 29:3415-3426. [PMID: 30192931 PMCID: PMC6644864 DOI: 10.1093/cercor/bhy210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/03/2018] [Indexed: 12/27/2022] Open
Abstract
Recent evidence shows that seizures propagate primarily through supragranular cortical layers. To selectively modify these circuits, we developed a new technique using tightly focused, femtosecond infrared laser pulses to make as small as ~100 µm-wide subsurface cortical incisions surrounding an epileptic focus. We use this "laser scalpel" to produce subsurface cortical incisions selectively to supragranular layers surrounding an epileptic focus in an acute rodent seizure model. Compared with sham animals, these microtransections completely blocked seizure initiation and propagation in 1/3 of all animals. In the remaining animals, seizure frequency was reduced by 2/3 and seizure propagation reduced by 1/3. In those seizures that still propagated, it was delayed and reduced in amplitude. When the recording electrode was inside the partially isolated cube and the seizure focus was on the outside, the results were even more striking. In spite of these microtransections, somatosensory responses to tail stimulation were maintained but with reduced amplitude. Our data show that just a single enclosing wall of laser cuts limited to supragranular layers led to a significant reduction in seizure initiation and propagation with preserved cortical function. Modification of this concept may be a useful treatment for human epilepsy.
Collapse
Affiliation(s)
| | - Lena Liu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Robert Fetcho
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - John Nguyen
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nozomi Nishimura
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Ryan E Radwanski
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Neurological Surgery, Weill Cornell Medicine of Cornell University, 525 East 68th Street, Box 99, New York, NY, USA
| | - Seth Lieberman
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliza Baird-Daniel
- Department of Neurological Surgery, Weill Cornell Medicine of Cornell University, 525 East 68th Street, Box 99, New York, NY, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Weill Cornell Medicine of Cornell University, 525 East 68th Street, Box 99, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY, USA
| | - Mingrui Zhao
- Department of Neurological Surgery, Weill Cornell Medicine of Cornell University, 525 East 68th Street, Box 99, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY, USA
| | - Chris B Schaffer
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medicine of Cornell University, 525 East 68th Street, Box 99, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY, USA
- Department of Neurological Surgery, Sackler Brain and Spine Institute, Weill Cornell Medicine of Cornell University, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
22
|
Intracortical Dynamics Underlying Repetitive Stimulation Predicts Changes in Network Connectivity. J Neurosci 2019; 39:6122-6135. [PMID: 31182638 DOI: 10.1523/jneurosci.0535-19.2019] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/12/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022] Open
Abstract
Targeted stimulation can be used to modulate the activity of brain networks. Previously we demonstrated that direct electrical stimulation produces predictable poststimulation changes in brain excitability. However, understanding the neural dynamics during stimulation and its relationship to poststimulation effects is limited but critical for treatment optimization. Here, we applied 10 Hz direct electrical stimulation across several cortical regions in 14 human subjects (6 males) implanted with intracranial electrodes for seizure monitoring. The stimulation train was characterized by a consistent increase in high gamma (70-170 Hz) power. Immediately post-train, low-frequency (1-8 Hz) power increased, resulting in an evoked response that was highly correlated with the neural response during stimulation. Using two measures of network connectivity, corticocortical evoked potentials (indexing effective connectivity), and theta coherence (indexing functional connectivity), we found a stronger response to stimulation in regions that were highly connected to the stimulation site. In these regions, repeated cycles of stimulation trains and rest progressively altered the stimulation response. Finally, after just 2 min (∼10%) of repetitive stimulation, we were able to predict poststimulation connectivity changes with high discriminability. Together, this work reveals a relationship between stimulation dynamics and poststimulation connectivity changes in humans. Thus, measuring neural activity during stimulation can inform future plasticity-inducing protocols.SIGNIFICANCE STATEMENT Brain stimulation tools have the potential to revolutionize the treatment of neuropsychiatric disorders. Despite the widespread use of brain stimulation techniques such as transcranial magnetic stimulation, the therapeutic efficacy of these technologies remains suboptimal. This is in part because of a lack of understanding of the dynamic neural changes that occur during stimulation. In this study, we provide the first detailed characterization of neural activity during plasticity induction through intracranial electrode stimulation and recording in 14 medication-resistant epilepsy patients. These results fill a missing gap in our understanding of stimulation-induced plasticity in humans. In the longer-term, these data will also guide our translational efforts toward non-invasive, personalized, closed-loop neuromodulation therapy for neurological and psychiatric disorders in humans.
Collapse
|
23
|
Inhibition and oscillations in the human brain tissue in vitro. Neurobiol Dis 2019; 125:198-210. [DOI: 10.1016/j.nbd.2019.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/22/2018] [Accepted: 02/07/2019] [Indexed: 01/22/2023] Open
|
24
|
Hall SP, Traub RD, Adams NE, Cunningham MO, Schofield I, Jenkins AJ, Whittington MA. Enhanced interlaminar excitation or reduced superficial layer inhibition in neocortex generates different spike-and-wave-like electrographic events in vitro. J Neurophysiol 2018; 119:49-61. [PMID: 28954894 PMCID: PMC5866469 DOI: 10.1152/jn.00516.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/19/2022] Open
Abstract
Acute in vitro models have revealed a great deal of information about mechanisms underlying many types of epileptiform activity. However, few examples exist that shed light on spike-and-wave (SpW) patterns of pathological activity. SpW are seen in many epilepsy syndromes, both generalized and focal, and manifest across the entire age spectrum. They are heterogeneous in terms of their severity, symptom burden, and apparent anatomical origin (thalamic, neocortical, or both), but any relationship between this heterogeneity and underlying pathology remains elusive. In this study we demonstrate that physiological delta-frequency rhythms act as an effective substrate to permit modeling of SpW of cortical origin and may help to address this issue. For a starting point of delta activity, multiple subtypes of SpW could be modeled computationally and experimentally by either enhancing the magnitude of excitatory synaptic events ascending from neocortical layer 5 to layers 2/3 or selectively modifying superficial layer GABAergic inhibition. The former generated SpW containing multiple field spikes with long interspike intervals, whereas the latter generated SpW with short-interval multiple field spikes. Both types had different laminar origins and each disrupted interlaminar cortical dynamics in a different manner. A small number of examples of human recordings from patients with different diagnoses revealed SpW subtypes with the same temporal signatures, suggesting that detailed quantification of the pattern of spikes in SpW discharges may be a useful indicator of disparate underlying epileptogenic pathologies. NEW & NOTEWORTHY Spike-and-wave-type discharges (SpW) are a common feature in many epilepsies. Their electrographic manifestation is highly varied, as are available genetic clues to associated underlying pathology. Using computational and in vitro models, we demonstrate that distinct subtypes of SpW are generated by lamina-selective disinhibition or enhanced interlaminar excitation. These subtypes could be detected in at least some noninvasive patient recordings, suggesting more detailed analysis of SpW may be useful in determining clinical pathology.
Collapse
Affiliation(s)
- Stephen P Hall
- Hull York Medical School, University of York , Heslington , United Kingdom
| | - Roger D Traub
- Department of Physical Sciences, IBM Thomas J. Watson Research Center , Yorktown Heights, New York
| | - Natalie E Adams
- Hull York Medical School, University of York , Heslington , United Kingdom
| | - Mark O Cunningham
- Institute of Neuroscience, Newcastle University , Newcastle upon Tyne , United Kingdom
| | - Ian Schofield
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne , United Kingdom
| | - Alistair J Jenkins
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne , United Kingdom
| | | |
Collapse
|
25
|
Tóth K, Hofer KT, Kandrács Á, Entz L, Bagó A, Erőss L, Jordán Z, Nagy G, Sólyom A, Fabó D, Ulbert I, Wittner L. Hyperexcitability of the network contributes to synchronization processes in the human epileptic neocortex. J Physiol 2017; 596:317-342. [PMID: 29178354 DOI: 10.1113/jp275413] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.
Collapse
Affiliation(s)
- Kinga Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary
| | - Katharina T Hofer
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - Ágnes Kandrács
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary
| | - László Entz
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Attila Bagó
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Loránd Erőss
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Zsófia Jordán
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Gábor Nagy
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - András Sólyom
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Dániel Fabó
- National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Department of Information Technology, Pázmány Péter Catholic University, 1083, Budapest, Hungary.,National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| | - Lucia Wittner
- Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, 1117, Budapest, Hungary.,Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083, Budapest, Hungary.,National Institute of Clinical Neuroscience, 1145, Budapest, Hungary
| |
Collapse
|
26
|
Scheeringa R, Fries P. Cortical layers, rhythms and BOLD signals. Neuroimage 2017; 197:689-698. [PMID: 29108940 PMCID: PMC6666418 DOI: 10.1016/j.neuroimage.2017.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/16/2017] [Accepted: 11/01/2017] [Indexed: 12/22/2022] Open
Abstract
This review investigates how laminar fMRI can complement insights into brain function derived from the study of rhythmic neuronal synchronization. Neuronal synchronization in various frequency bands plays an important role in neuronal communication between brain areas, and it does so on the backbone of layer-specific interareal anatomical projections. Feedforward projections originate predominantly in supragranular cortical layers and terminate in layer 4, and this pattern is reflected in inter-laminar and interareal directed gamma-band influences. Thus, gamma-band synchronization likely subserves feedforward signaling. By contrast, anatomical feedback projections originate predominantly in infragranular layers and terminate outside layer 4, and this pattern is reflected in inter-laminar and interareal directed alpha- and/or beta-band influences. Thus, alpha-beta band synchronization likely subserves feedback signaling. Furthermore, these rhythms explain part of the BOLD signal, with independent contributions of alpha-beta and gamma. These findings suggest that laminar fMRI can provide us with a potentially useful method to test some of the predictions derived from the study of neuronal synchronization. We review central findings regarding the role of layer-specific neuronal synchronization for brain function, and regarding the link between neuronal synchronization and the BOLD signal. We discuss the role that laminar fMRI could play by comparing it to invasive and non-invasive electrophysiological recordings. Compared to direct electrophysiological recordings, this method provides a metric of neuronal activity that is slow and indirect, but that is uniquely non-invasive and layer-specific with potentially whole brain coverage.
Collapse
Affiliation(s)
- René Scheeringa
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Institut National De La Santé Et De La Recherche Médicale U1028, Centre National De La Recherche Scientifique UMR S5292, Centre De Recherche En Neurosciences De Lyon, Bron, France
| | - Pascal Fries
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Kapittelweg 29, 6525 EN Nijmegen, The Netherlands; Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Deutschordenstraße 46, 60528 Frankfurt, Germany.
| |
Collapse
|
27
|
The brain during free movement - What can we learn from the animal model. Brain Res 2017; 1716:3-15. [PMID: 28893579 DOI: 10.1016/j.brainres.2017.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/11/2017] [Accepted: 09/04/2017] [Indexed: 11/21/2022]
Abstract
Animals, just like humans, can freely move. They do so for various important reasons, such as finding food and escaping predators. Observing these behaviors can inform us about the underlying cognitive processes. In addition, while humans can convey complicated information easily through speaking, animals need to move their bodies to communicate. This has prompted many creative solutions by animal neuroscientists to enable studying the brain during movement. In this review, we first summarize how animal researchers record from the brain while an animal is moving, by describing the most common neural recording techniques in animals and how they were adapted to record during movement. We further discuss the challenge of controlling or monitoring sensory input during free movement. However, not only is free movement a necessity to reflect the outcome of certain internal cognitive processes in animals, it is also a fascinating field of research since certain crucial behavioral patterns can only be observed and studied during free movement. Therefore, in a second part of the review, we focus on some key findings in animal research that specifically address the interaction between free movement and brain activity. First, focusing on walking as a fundamental form of free movement, we discuss how important such intentional movements are for understanding processes as diverse as spatial navigation, active sensing, and complex motor planning. Second, we propose the idea of regarding free movement as the expression of a behavioral state. This view can help to understand the general influence of movement on brain function. Together, the technological advancements towards recording from the brain during movement, and the scientific questions asked about the brain engaged in movement, make animal research highly valuable to research into the human "moving brain".
Collapse
|
28
|
|
29
|
Exploring human epileptic activity at the single-neuron level. Epilepsy Behav 2016; 58:11-7. [PMID: 26994366 DOI: 10.1016/j.yebeh.2016.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/21/2022]
Abstract
Today, localization of the seizure focus heavily relies on EEG monitoring (scalp or intracranial). However, current technology enables much finer resolutions. The activity of hundreds of single neurons in the human brain can now be simultaneously explored before, during, and after a seizure or in association with an interictal discharge. This technology opens up new horizons to understanding epilepsy at a completely new level. This review therefore begins with a brief description of the basis of the technology, the microelectrodes, and the setup for their implantation in patients with epilepsy. Using these electrodes, recent studies provide novel insights into both the time domain and firing patterns of epileptic activity of single neurons. In the time domain, seizure-related activity may occur even minutes before seizure onset (in its current, EEG-based definition). Seizure-related neuronal interactions exhibit complex heterogeneous dynamics. In the seizure-onset zone, changes in firing patterns correlate with cell loss; in the penumbra, neurons maintain their spike stereotypy during a seizure. Hence, investigation of the extracellular electrical activity is expected to provide a better understanding of the mechanisms underlying the disease; it may, in the future, serve for a more accurate localization of the seizure focus; and it may also be employed to predict the occurrence of seizures prior to their behavioral manifestation in order to administer automatic therapeutic interventions.
Collapse
|
30
|
Márton G, Orbán G, Kiss M, Fiáth R, Pongrácz A, Ulbert I. A Multimodal, SU-8 - Platinum - Polyimide Microelectrode Array for Chronic In Vivo Neurophysiology. PLoS One 2015; 10:e0145307. [PMID: 26683306 PMCID: PMC4684315 DOI: 10.1371/journal.pone.0145307] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/02/2015] [Indexed: 11/18/2022] Open
Abstract
Utilization of polymers as insulator and bulk materials of microelectrode arrays (MEAs) makes the realization of flexible, biocompatible sensors possible, which are suitable for various neurophysiological experiments such as in vivo detection of local field potential changes on the surface of the neocortex or unit activities within the brain tissue. In this paper the microfabrication of a novel, all-flexible, polymer-based MEA is presented. The device consists of a three dimensional sensor configuration with an implantable depth electrode array and brain surface electrodes, allowing the recording of electrocorticographic (ECoG) signals with laminar ones, simultaneously. In vivo recordings were performed in anesthetized rat brain to test the functionality of the device under both acute and chronic conditions. The ECoG electrodes recorded slow-wave thalamocortical oscillations, while the implanted component provided high quality depth recordings. The implants remained viable for detecting action potentials of individual neurons for at least 15 weeks.
Collapse
Affiliation(s)
- Gergely Márton
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, building Q2, H-1117, Budapest, Hungary
- Department of Microtechnology, Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege M. út. 29–33, H-1121, Budapest, Hungary
- School of Ph.D. Studies, Semmelweis University, Ü llői út 26, H – 1085, Budapest, Hungary
- * E-mail:
| | - Gábor Orbán
- Department of Electron Devices, Budapest University of Technology and Economics, Magyar tudósok körútja 2, building Q, H-1117, Budapest, Hungary
| | - Marcell Kiss
- Department of Microtechnology, Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege M. út. 29–33, H-1121, Budapest, Hungary
- Department of Electron Devices, Budapest University of Technology and Economics, Magyar tudósok körútja 2, building Q, H-1117, Budapest, Hungary
| | - Richárd Fiáth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, building Q2, H-1117, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, H-1083, Budapest, Hungary
| | - Anita Pongrácz
- Department of Microtechnology, Institute for Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences, Konkoly Thege M. út. 29–33, H-1121, Budapest, Hungary
| | - István Ulbert
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, building Q2, H-1117, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter utca 50/a, H-1083, Budapest, Hungary
| |
Collapse
|
31
|
Tóth E, Fabó D, Entz L, Ulbert I, Erőss L. Intracranial neuronal ensemble recordings and analysis in epilepsy. J Neurosci Methods 2015; 260:261-9. [PMID: 26453987 DOI: 10.1016/j.jneumeth.2015.09.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022]
Abstract
Pathological neuronal firing was demonstrated 50 years ago as the hallmark of epileptically transformed cortex with the use of implanted microelectrodes. Since then, microelectrodes remained only experimental tools in humans to detect unitary neuronal activity to reveal physiological and pathological brain functions. This recording technique has evolved substantially in the past few decades; however, based on recent human data implying their usefulness as diagnostic tools, we expect a substantial increase in the development of microelectrodes in the near future. Here, we review the technological background and history of microelectrode array development for human examinations in epilepsy, including discussions on of wire-based and microelectrode arrays fabricated using micro-electro-mechanical system (MEMS) techniques and novel future techniques to record neuronal ensemble. We give an overview of clinical and surgical considerations, and try to provide a list of probes on the market with their availability for human recording. Then finally, we briefly review the literature on modulation of single neuron for the treatment of epilepsy, and highlight the current topics under examination that can be background for the future development.
Collapse
Affiliation(s)
- Emília Tóth
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Dániel Fabó
- Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary.
| | - László Entz
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - István Ulbert
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
| |
Collapse
|
32
|
Human brain slices for epilepsy research: Pitfalls, solutions and future challenges. J Neurosci Methods 2015; 260:221-32. [PMID: 26434706 DOI: 10.1016/j.jneumeth.2015.09.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/17/2022]
Abstract
Increasingly, neuroscientists are taking the opportunity to use live human tissue obtained from elective neurosurgical procedures for electrophysiological studies in vitro. Access to this valuable resource permits unique studies into the network dynamics that contribute to the generation of pathological electrical activity in the human epileptic brain. Whilst this approach has provided insights into the mechanistic features of electrophysiological patterns associated with human epilepsy, it is not without technical and methodological challenges. This review outlines the main difficulties associated with working with epileptic human brain slices from the point of collection, through the stages of preparation, storage and recording. Moreover, it outlines the limitations, in terms of the nature of epileptic activity that can be observed in such tissue, in particular, the rarity of spontaneous ictal discharges, we discuss manipulations that can be utilised to induce such activity. In addition to discussing conventional electrophysiological techniques that are routinely employed in epileptic human brain slices, we review how imaging and multielectrode array recordings could provide novel insights into the network dynamics of human epileptogenesis. Acute studies in human brain slices are ultimately limited by the lifetime of the tissue so overcoming this issue provides increased opportunity for information gain. We review the literature with respect to organotypic culture techniques that may hold the key to prolonging the viability of this material. A combination of long-term culture techniques, viral transduction approaches and electrophysiology in human brain slices promotes the possibility of large scale monitoring and manipulation of neuronal activity in epileptic microcircuits.
Collapse
|
33
|
Behr C, Lévesque M, Ragsdale D, Avoli M. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy. Epilepsy Res 2015; 115:8-16. [PMID: 26220372 PMCID: PMC4878889 DOI: 10.1016/j.eplepsyres.2015.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/28/2015] [Accepted: 05/12/2015] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Nearly one third of patients presenting with mesial temporal lobe epilepsy (MTLE), the most prevalent lesion-related epileptic disorder in adulthood, do not respond to currently available antiepileptic medications. Thus, there is a need to identify and characterize new antiepileptic drugs. In this study, we used the pilocarpine model of MTLE to establish the effects of a third generation drug, lacosamide (LCM), on seizures, interictal spikes and high-frequency oscillations (HFOs, ripples: 80-200 Hz, fast ripples: 250-500 Hz). METHODS Sprague-Dawley rats (250-300 g) were injected with pilocarpine to induce a status epilepticus (SE) that was pharmacologically terminated after 1h. Eight pilocarpine-treated rats were then injected with LCM (30 mg/kg, i.p.) 4h after SE and daily for 14 days. Eight pilocarpine-treated rats were used as controls and treated with saline. Three days after SE, all rats were implanted with bipolar electrodes in the hippocampal CA3 region, entorhinal cortex (EC), dentate gyrus (DG) and subiculum and EEG-video monitored from day 4 to day 14 after SE. RESULTS LCM-treated animals showed lower rates of seizures (0.21 (± 0.11) seizures/day) than controls (2.6 (±0.57), p<0.05), and a longer latent period (LCM: 11 (± 1) days, controls: 6.25 (± 1), p<0.05). Rates of interictal spikes in LCM-treated rats were significantly lower than in controls in CA3 and subiculum (p<0.05). Rates of ripples and fast ripples associated with interictal spikes in CA3 and subiculum as well as rates of fast ripples occurring outside of interictal spikes in CA3 were also significantly lower in LCM-treated animals. In controls, interictal spikes and associated HFOs correlated to seizure clustering, while this was not the case for isolated HFOs. SIGNIFICANCE Our findings show that early treatment with LCM has powerful anti-ictogenic properties in the pilocarpine model of MTLE. These effects are accompanied by decreased rates of interictal spikes and associated HFOs. Isolated HFOs were also modulated by LCM, in a manner that appeared to be unrelated to its antiictogenic effects. These results thus suggest that distinct mechanisms may underlie interictal-associated and isolated HFOs in the pilocarpine model of MTLE.
Collapse
Affiliation(s)
- Charles Behr
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - Maxime Lévesque
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - David Ragsdale
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4
| | - Massimo Avoli
- Montreal Neurological Institute and Department of Neurology & Neurosurgery, McGill University, 3801 University Street, Montréal, QC, Canada H3A 2B4.
| |
Collapse
|
34
|
Abstract
Single neuron actions and interactions are the sine qua non of brain function, and nearly all diseases and injuries of the CNS trace their clinical sequelae to neuronal dysfunction or failure. Remarkably, discussion of neuronal activity is largely absent in clinical neuroscience. Advances in neurotechnology and computational capabilities, accompanied by shifts in theoretical frameworks, have led to renewed interest in the information represented by single neurons. Using direct interfaces with the nervous system, millisecond-scale information will soon be extracted from single neurons in clinical environments, supporting personalized treatment of neurologic and psychiatric disease. In this Perspective, we focus on single-neuronal activity in restoring communication and motor control in patients suffering from devastating neurological injuries. We also explore the single neuron's role in epilepsy and movement disorders, surgical anesthesia, and in cognitive processes disrupted in neurodegenerative and neuropsychiatric disease. Finally, we speculate on how technological advances will revolutionize neurotherapeutics.
Collapse
Affiliation(s)
- Sydney S Cash
- Neurotechnology Trials Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Leigh R Hochberg
- Neurotechnology Trials Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; School of Engineering and Institute for Brain Science, Brown University, Providence, RI 02912, USA; Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, RI 02908, USA.
| |
Collapse
|
35
|
Serafini R, Andrade R, Loeb JA. Coalescence of deep and superficial epileptic foci into larger discharge units in adult rat neocortex. Neuroscience 2015; 292:148-58. [PMID: 25701714 DOI: 10.1016/j.neuroscience.2015.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
Epilepsy is a disease of neuronal hyper-synchrony that can involve both neocortical and hippocampal brain regions. While much is known about the network properties of the hippocampus little is known of how epileptic neocortical hyper-synchrony develops. We aimed at characterizing the properties of epileptic discharges of a neocortical epileptic focus. We established a multi-electrode-array method to record the spatial patterns of epileptiform potentials in acute adult rat brain slices evoked by 4-Aminopyridine in the absence of magnesium. Locations of discharges mapped to two anatomical regions over the somatosensory cortex and over the lateral convexity separated by a gap at a location matching the dysgranular zone. Focal epileptiform discharges were recorded in superficial and deep neocortical layers but over superficial layers, they exhibited larger surface areas. They were often independent even when closely spaced to one another but they became progressively coupled resulting in larger zones of coherent discharge. The gradual coupling of multiple, independent, closely spaced, spatially restricted, focal discharges between deep and superficial neocortical layers represents a possible mechanism of the development of an epileptogenic zone.
Collapse
Affiliation(s)
- Ruggero Serafini
- Department of Neurology, University of Utah, Clinical Neuroscience Center, Salt Lake City, UT, United States; George E. Wahlen VA Medical Center, Salt Lake City, UT, United States.
| | - Rodrigo Andrade
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Jeffrey A Loeb
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States; Department of Neurology and Rehabilitation, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Zhao M, McGarry LM, Ma H, Harris S, Berwick J, Yuste R, Schwartz TH. Optical triggered seizures using a caged 4-Aminopyridine. Front Neurosci 2015; 9:25. [PMID: 25698919 PMCID: PMC4316705 DOI: 10.3389/fnins.2015.00025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/14/2015] [Indexed: 11/16/2022] Open
Abstract
Animal models of epilepsy are critical not only for understanding the fundamental mechanism of epilepsy but also for testing the efficacy of new antiepileptic drugs and novel therapeutic interventions. Photorelease of caged molecules is widely used in biological research to control pharmacologic events with high spatio-temporal resolution. We developed a technique for in vivo optical triggering of neocortical seizures using a novel caged compound based on ruthenium photochemistry (RuBi-4AP). Epileptiform events in mouse cortex were induced with blue light in both whole brain and focal illumination. Multi-electrode array recording and optical techniques were used to characterize the propagation of these epileptic events, including interictal spikes, polyspikes, and ictal discharges. These results demonstrate a novel optically-triggered seizure model, with high spatio-temporal control, that could have widespread application in the investigation of ictal onset, propagation and to develop novel light-based therapeutic interventions.
Collapse
Affiliation(s)
- Mingrui Zhao
- Department of Neurological Surgery, Brain and Mind Center, New York Presbyterian Hospital, Weill Medical College of Cornell UniversityNew York, NY, USA
| | - Laura M. McGarry
- Department of Biological Sciences, Columbia UniversityNew York, NY, USA
| | - Hongtao Ma
- Department of Neurological Surgery, Brain and Mind Center, New York Presbyterian Hospital, Weill Medical College of Cornell UniversityNew York, NY, USA
| | - Samuel Harris
- Department of Neurological Surgery, Brain and Mind Center, New York Presbyterian Hospital, Weill Medical College of Cornell UniversityNew York, NY, USA
- Department of Psychology, University of SheffieldSheffield, UK
| | - Jason Berwick
- Department of Psychology, University of SheffieldSheffield, UK
| | - Rafael Yuste
- Department of Biological Sciences, Columbia UniversityNew York, NY, USA
| | - Theodore H. Schwartz
- Department of Neurological Surgery, Brain and Mind Center, New York Presbyterian Hospital, Weill Medical College of Cornell UniversityNew York, NY, USA
| |
Collapse
|
37
|
Kamarajan C, Pandey AK, Chorlian DB, Porjesz B. The use of current source density as electrophysiological correlates in neuropsychiatric disorders: A review of human studies. Int J Psychophysiol 2014; 97:310-22. [PMID: 25448264 DOI: 10.1016/j.ijpsycho.2014.10.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
The use of current source density (CSD), the Laplacian of the scalp surface voltage, to map the electrical activity of the brain is a powerful method in studies of cognitive and affective phenomena. During the last few decades, mapping of CSD has been successfully applied to characterize several neuropsychiatric conditions such as alcoholism, schizophrenia, depression, anxiety disorders, childhood/developmental disorders, and neurological conditions (i.e., epilepsy and brain lesions) using electrophysiological data from resting state and during cognitive performance. The use of CSD and Laplacian measures has proven effective in elucidating topographic and activation differences between groups: i) patients with a specific diagnosis vs. healthy controls, ii) subjects at high risk for a specific diagnosis vs. low risk or normal controls, and iii) patients with specific symptom(s) vs. patients without these symptom(s). The present review outlines and summarizes the studies that have employed CSD measures in investigating several neuropsychiatric conditions. The advantages and potential of CSD-based methods in clinical and research applications along with some of the limitations inherent in the CSD-based methods are discussed in the review, as well as future directions to expand the implementation of CSD to other potential clinical applications. As CSD methods have proved to be more advantageous than using scalp potential data to understand topographic and source activations, its clinical applications offer promising potential, not only for a better understanding of a range of psychiatric conditions, but also for a variety of focal neurological disorders, including epilepsy and other conditions involving brain lesions and surgical interventions.
Collapse
Affiliation(s)
- Chella Kamarajan
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA.
| | - Ashwini K Pandey
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - David B Chorlian
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| | - Bernice Porjesz
- Henri Begleiter Neurodynamics Laboratory, SUNY Downstate Medical Center, Brooklyn, NY 11203, USA
| |
Collapse
|
38
|
Hofer KT, Kandrács Á, Ulbert I, Pál I, Szabó C, Héja L, Wittner L. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro. Hippocampus 2014; 25:169-86. [PMID: 25209976 DOI: 10.1002/hipo.22361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Hippocampal sharp wave-ripples (SPW-Rs) occur during slow wave sleep and behavioral immobility and are thought to play an important role in memory formation. We investigated the cellular and network properties of SPW-Rs with simultaneous laminar multielectrode and intracellular recordings in a rat hippocampal slice model, using physiological bathing medium. Spontaneous SPW-Rs were generated in the dentate gyrus (DG), CA3, and CA1 regions. These events were characterized by a local field potential gradient (LFPg) transient, increased fast oscillatory activity and increased multiple unit activity (MUA). Two types of SPW-Rs were distinguished in the CA3 region based on their different LFPg and current source density (CSD) pattern. Type 1 (T1) displayed negative LFPg transient in the pyramidal cell layer, and the associated CSD sink was confined to the proximal dendrites. Type 2 (T2) SPW-Rs were characterized by positive LFPg transient in the cell layer, and showed CSD sinks involving both the apical and basal dendrites. In both types, consistent with the somatic CSD source, only a small subset of CA3 pyramidal cells fired, most pyramidal cells were hyperpolarized, while most interneurons increased firing rate before the LFPg peak. Different neuronal populations, with different proportions of pyramidal cells and distinct subsets of interneurons were activated during T1 and T2 SPW-Rs. Activation of specific inhibitory cell subsets-with the possible leading role of perisomatic interneurons-seems to be crucial to synchronize distinct ensembles of CA3 pyramidal cells finally resulting in the expression of different SPW-R activities. This suggests that the hippocampus can generate dynamic changes in its activity stemming from the same excitatory and inhibitory circuits, and so, might provide the cellular and network basis for an input-specific and activity-dependent information transmission.
Collapse
Affiliation(s)
- Katharina T Hofer
- Department of Comparative Psychophysiology, Institute of Cognitive Neuroscience and Psychology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary; Department of Information Technology and Bionics, Péter Pázmány Catholic University, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
39
|
Karlócai MR, Kohus Z, Káli S, Ulbert I, Szabó G, Máté Z, Freund TF, Gulyás AI. Physiological sharp wave-ripples and interictal events in vitro: what's the difference? ACTA ACUST UNITED AC 2014; 137:463-85. [PMID: 24390441 DOI: 10.1093/brain/awt348] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.
Collapse
Affiliation(s)
- Mária R Karlócai
- 1 Laboratory of Cerebral Cortex, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Alvarado-Rojas C, Lehongre K, Bagdasaryan J, Bragin A, Staba R, Engel J, Navarro V, Le Van Quyen M. Single-unit activities during epileptic discharges in the human hippocampal formation. Front Comput Neurosci 2013; 7:140. [PMID: 24151464 PMCID: PMC3799238 DOI: 10.3389/fncom.2013.00140] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/27/2013] [Indexed: 11/13/2022] Open
Abstract
Between seizures the brain of patients with epilepsy generates pathological patterns of synchronous activity, designated as interictal epileptiform discharges (ID). Using microelectrodes in the hippocampal formations of 8 patients with drug-resistant temporal lobe epilepsy, we studied ID by simultaneously analyzing action potentials from individual neurons and the local field potentials (LFPs) generated by the surrounding neuronal network. We found that ~30% of the units increased their firing rate during ID and 40% showed a decrease during the post-ID period. Surprisingly, 30% of units showed either an increase or decrease in firing rates several hundred of milliseconds before the ID. In 4 patients, this pre-ID neuronal firing was correlated with field high-frequency oscillations at 40-120 Hz. Finally, we observed that only a very small subset of cells showed significant coincident firing before or during ID. Taken together, we suggested that, in contrast to traditional views, ID are generated by a sparse neuronal network and followed a heterogeneous synchronization process initiated over several hundreds of milliseconds before the paroxysmal discharges.
Collapse
Affiliation(s)
- Catalina Alvarado-Rojas
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-SalpêtrièreParis, France
- Université Pierre et Marie CurieParis, France
| | - Katia Lehongre
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-SalpêtrièreParis, France
- Université Pierre et Marie CurieParis, France
| | - Juliana Bagdasaryan
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-SalpêtrièreParis, France
- Université Pierre et Marie CurieParis, France
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Richard Staba
- Department of Neurology, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLALos Angeles, CA, USA
| | - Vincent Navarro
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-SalpêtrièreParis, France
- Université Pierre et Marie CurieParis, France
- Epilepsy Unit, Groupe Hospitalier Pitié-SalpêtrièreParis, France
| | - Michel Le Van Quyen
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, INSERM UMRS 975 - CNRS UMR 7225, Hôpital de la Pitié-SalpêtrièreParis, France
- Université Pierre et Marie CurieParis, France
| |
Collapse
|
41
|
Shoaran M, Pollo C, Leblebici Y, Schmid A. Design techniques and analysis of high-resolution neural recording systems targeting epilepsy focus localization. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:5150-3. [PMID: 23367088 DOI: 10.1109/embc.2012.6347153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The design of a high-density neural recording system targeting epilepsy monitoring is presented. Circuit challenges and techniques are discussed to optimize the amplifier topology and the included OTA. A new platform supporting active recording devices targeting wireless and high-resolution focus localization in epilepsy diagnosis is also proposed. The post-layout simulation results of an amplifier dedicated to this application are presented. The amplifier is designed in a UMC 0.18µm CMOS technology, has an NEF of 2.19 and occupies a silicon area of 0.038 mm(2), while consuming 5.8 µW from a 1.8-V supply.
Collapse
Affiliation(s)
- Mahsa Shoaran
- Microelectronic Systems Laboratory, Swiss Federal Institute of Technology EPFL, 1015 Lausanne, Switzerland.
| | | | | | | |
Collapse
|
42
|
Barbas H, García-Cabezas MÁ, Zikopoulos B. Frontal-thalamic circuits associated with language. BRAIN AND LANGUAGE 2013; 126:49-61. [PMID: 23211411 PMCID: PMC3615046 DOI: 10.1016/j.bandl.2012.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 09/20/2012] [Accepted: 10/18/2012] [Indexed: 05/20/2023]
Abstract
Thalamic nuclei associated with language including the ventral lateral, ventral anterior, intralaminar and mediodorsal form a hub that uniquely receives the output of the basal ganglia and cerebellum, and is connected with frontal (premotor and prefrontal) cortices through two parallel circuits: a thalamic pathway targets the middle frontal cortical layers focally, and the other innervates widely cortical layer 1, poised to recruit other cortices and thalamic nuclei for complex cognitive operations. Return frontal pathways to the thalamus originate from cortical layers 6 and 5. Information through this integrated thalamo-cortical system is gated by the inhibitory thalamic reticular nucleus and modulated by dopamine, representing a specialization in primates. The intricate dialogue of distinct thalamic nuclei with the basal ganglia, cerebellum, and specific dorsolateral prefrontal and premotor cortices associated with language, suggests synergistic roles in the complex but seemingly effortless sequential transformation of cognitive operations for speech production in humans.
Collapse
Affiliation(s)
- Helen Barbas
- Neural Systems Laboratory, Boston University, Boston, MA 02215, USA.
| | | | | |
Collapse
|
43
|
Tenke CE, Kayser J. Generator localization by current source density (CSD): implications of volume conduction and field closure at intracranial and scalp resolutions. Clin Neurophysiol 2012; 123:2328-45. [PMID: 22796039 PMCID: PMC3498576 DOI: 10.1016/j.clinph.2012.06.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/21/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
The topographic ambiguity and reference-dependency that has plagued EEG/ERP research throughout its history are largely attributable to volume conduction, which may be concisely described by a vector form of Ohm's Law. This biophysical relationship is common to popular algorithms that infer neuronal generators via inverse solutions. It may be further simplified as Poisson's source equation, which identifies underlying current generators from estimates of the second spatial derivative of the field potential (Laplacian transformation). Intracranial current source density (CSD) studies have dissected the "cortical dipole" into intracortical sources and sinks, corresponding to physiologically-meaningful patterns of neuronal activity at a sublaminar resolution, much of which is locally cancelled (i.e., closed field). By virtue of the macroscopic scale of the scalp-recorded EEG, a surface Laplacian reflects the radial projections of these underlying currents, representing a unique, unambiguous measure of neuronal activity at scalp. Although the surface Laplacian requires minimal assumptions compared to complex, model-sensitive inverses, the resulting waveform topographies faithfully summarize and simplify essential constraints that must be placed on putative generators of a scalp potential topography, even if they arise from deep or partially-closed fields. CSD methods thereby provide a global empirical and biophysical context for generator localization, spanning scales from intracortical to scalp recordings.
Collapse
Affiliation(s)
- Craig E Tenke
- Division of Cognitive Neuroscience, New York State Psychiatric Institute, New York, NY, USA.
| | | |
Collapse
|
44
|
|
45
|
Abstract
Synchronous activation of neural networks is an important physiological mechanism, and dysregulation of synchrony forms the basis of epilepsy. We analyzed the propagation of synchronous activity through chronically epileptic neural networks. Electrocorticographic recordings from epileptic patients demonstrate remarkable variance in the pathways of propagation between sequential interictal spikes (IISs). Calcium imaging in chronically epileptic slice cultures demonstrates that pathway variance depends on the presence of GABAergic inhibition and that spike propagation becomes stereotyped following GABA receptor blockade. Computer modeling suggests that GABAergic quenching of local network activations leaves behind regions of refractory neurons, whose late recruitment forms the anatomical basis of variability during subsequent network activation. Targeted path scanning of slice cultures confirmed local activations, while ex vivo recordings of human epileptic tissue confirmed the dependence of interspike variance on GABA-mediated inhibition. These data support the hypothesis that the paths by which synchronous activity spreads through an epileptic network change with each activation, based on the recent history of localized activity that has been successfully inhibited.
Collapse
|
46
|
Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 2012; 98:265-78. [PMID: 22420981 DOI: 10.1016/j.pneurobio.2012.02.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/26/2012] [Accepted: 02/27/2012] [Indexed: 10/28/2022]
Abstract
In recent years, new recording technologies have advanced such that, at high temporal and spatial resolutions, high-frequency oscillations (HFO) can be recorded in human partial epilepsy. However, because of the deluge of multichannel data generated by these experiments, achieving the full potential of parallel neuronal recordings depends on the development of new data mining techniques to extract meaningful information relating to time, frequency and space. Here, we aim to bridge this gap by focusing on up-to-date recording techniques for measurement of HFO and new analysis tools for their quantitative assessment. In particular, we emphasize how these methods can be applied, what property might be inferred from neuronal signals, and potentially productive future directions.
Collapse
|
47
|
Abstract
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA < CSD < LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.
Collapse
Affiliation(s)
- Yoshinao Kajikawa
- Cognitive Neuroscience and Schizophrenia Program, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | |
Collapse
|
48
|
Abstract
How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories. Here, using the spatiotemporal resolution provided by intracranial macroelectrode and microelectrode arrays, we report category-selective responses to words representing animals and objects in human anteroventral temporal areas including inferotemporal, perirhinal, and entorhinal cortices. This selectivity generalizes across tasks and sensory modalities, suggesting that it represents abstract lexicosemantic categories. Significant category-specific responses are found in measures sensitive to synaptic activity (local field potentials, high gamma power, current sources and sinks) and unit-firing (multiunit and single-unit activity). Category-selective responses can occur at short latency (as early as 130 ms) in middle cortical layers and thus are extracted in the first pass of activity through the anteroventral temporal lobe. This activation may provide input to posterior areas for iconic representations when required by the task, as well as to the hippocampal formation for categorical encoding and retrieval of memories, and to the amygdala for emotional associations. More generally, these results support models in which the anteroventral temporal lobe plays a primary role in the semantic representation of words.
Collapse
|
49
|
Gratiy SL, Devor A, Einevoll GT, Dale AM. On the estimation of population-specific synaptic currents from laminar multielectrode recordings. Front Neuroinform 2011; 5:32. [PMID: 22203801 PMCID: PMC3243925 DOI: 10.3389/fninf.2011.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 11/21/2011] [Indexed: 11/21/2022] Open
Abstract
Multielectrode array recordings of extracellular electrical field potentials along the depth axis of the cerebral cortex are gaining popularity as an approach for investigating the activity of cortical neuronal circuits. The low-frequency band of extracellular potential, i.e., the local field potential (LFP), is assumed to reflect synaptic activity and can be used to extract the laminar current source density (CSD) profile. However, physiological interpretation of the CSD profile is uncertain because it does not disambiguate synaptic inputs from passive return currents and does not identify population-specific contributions to the signal. These limitations prevent interpretation of the CSD in terms of synaptic functional connectivity in the columnar microcircuit. Here we present a novel anatomically informed model for decomposing the LFP signal into population-specific contributions and for estimating the corresponding activated synaptic projections. This involves a linear forward model, which predicts the population-specific laminar LFP in response to synaptic inputs applied at different positions along each population and a linear inverse model, which reconstructs laminar profiles of synaptic inputs from laminar LFP data based on the forward model. Assuming spatially smooth synaptic inputs within individual populations, the model decomposes the columnar LFP into population-specific contributions and estimates the corresponding laminar profiles of synaptic input as a function of time. It should be noted that constant synaptic currents at all positions along a neuronal population cannot be reconstructed, as this does not result in a change in extracellular potential. However, constraining the solution using a priori knowledge of the spatial distribution of synaptic connectivity provides the further advantage of estimating the strength of active synaptic projections from the columnar LFP profile thus fully specifying synaptic inputs.
Collapse
Affiliation(s)
- Sergey L Gratiy
- Department of Radiology, University of California San Diego La Jolla, CA, USA
| | | | | | | |
Collapse
|
50
|
Kitaura H, Hiraishi T, Murakami H, Masuda H, Fukuda M, Oishi M, Ryufuku M, Fu YJ, Takahashi H, Kameyama S, Fujii Y, Shibuki K, Kakita A. Spatiotemporal dynamics of epileptiform propagations: imaging of human brain slices. Neuroimage 2011; 58:50-9. [PMID: 21640833 DOI: 10.1016/j.neuroimage.2011.05.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 04/29/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022] Open
Abstract
Seizure activities often originate from a localized region of the cerebral cortex and spread across large areas of the brain. The properties of these spreading abnormal discharges may account for clinical phenotypes in epilepsy patients, although the manner of their propagation and the underlying mechanisms are not well understood. In the present study we performed flavoprotein fluorescence imaging of cortical brain slices surgically resected from patients with partial epilepsy caused by various symptomatic lesions. Elicited neural activities in the epileptogenic tissue spread horizontally over the cortex momentarily, but those in control tissue taken from patients with brain tumors who had no history of epilepsy demonstrated only localized responses. Characteristically, the epileptiform propagation comprised early and late phases. When the stimulus intensity was changed gradually, the early phase showed an all-or-none behavior, whereas the late phase showed a gradual increase in the response. Moreover, the two phases were propagated through different cortical layers, suggesting that they are derived from distinct neural circuits. Morphological investigation revealed the presence of hypertrophic neurons and loss of dendritic spines, which might participate in the aberrant activities observed by flavoprotein fluorescence imaging. These findings indicate that synchronized activities of the early phase may play a key role in spreading abnormal discharges in human cortical epilepsies.
Collapse
Affiliation(s)
- Hiroki Kitaura
- Department of Pathology, Brain Research Institute, University of Niigata, Chuo-ku, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|