1
|
Matzner SL, Konz ER, Marts SA, Eversman HM, Kasuske KM, Atkins TL, Acharya S, Matuck LC, Derynck LM, Kreutzmann S, Selberg AG, Glisar KM, Capers SA, Lind VL, Olimb S, Olson-Manning CF. Differences in drought avoidance rather than differences in the fast versus slow growth spectrum explain distributions of two Asclepias species. PHYSIOLOGIA PLANTARUM 2025; 177:e70034. [PMID: 39723722 PMCID: PMC11800957 DOI: 10.1111/ppl.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/26/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024]
Abstract
Understanding factors that determine a species' geographical range is crucial for predicting climate-induced range shifts. Two milkweed species, Asclepias syriaca and Asclepias speciosa, have overlapping ranges along a moisture gradient in North America and are primary food sources for endangered monarch caterpillars. With decreasing moisture, long-lived species often exhibit slower growth and greater drought tolerance, while many annual species exhibit faster growth strategies. Using this fast-slow framework, we assessed whether traits of these two sister species differ along a fast-slow growth continuum and could explain their distributions. We measured leaf and root functional traits in common gardens and greenhouse experiments. In key measures indicative of drought tolerance (e.g., growth, transpiration, and water potentials), the species were nearly identical. Contrary to expectations, A. speciosa did not exhibit greater drought tolerance, raising the question of how it survives in the more arid west. A reciprocal transplant study showed selection against A. syriaca in the western garden and that A. speciosa was better able to avoid seedling mortality. Focusing on seedling establishment, we found that A. speciosa exhibited faster deep-root development and a narrow leaf phenotype associated with slower wilting and delayed drought-induced mortality. Rather than differences on the fast-slow growth spectrum, our results indicate that A. speciosa avoids drought through faster deep-root growth and a slower wilting phenotype. Our study suggests that A. syriaca's range is limited by its drought tolerance, while A. speciosa employs a number of drought avoidance strategies to survive in more arid environments.
Collapse
Affiliation(s)
- Steven L. Matzner
- Department of Biology, Augustana University, Sioux Falls, SD 57197, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Albecker MA, McCoy MW. Responses to saltwater exposure vary across species, populations and life stages in anuran amphibians. CONSERVATION PHYSIOLOGY 2023; 11:coad062. [PMID: 37588621 PMCID: PMC10425968 DOI: 10.1093/conphys/coad062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 06/14/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023]
Abstract
To predict the impacts of environmental change on species, we must first understand the factors that limit the present-day ranges of species. Most anuran amphibians cannot survive at elevated salinities, which may drive their distribution in coastal locations. Previous research showed that coastal Hyla cinerea are locally adapted to brackish habitats in North Carolina, USA. Although Hyla squirella and Hyla chrysoscelis both inhabit coastal wetlands nearby, they have not been observed in saline habitats. We take advantage of naturally occurring microgeographic variation in coastal wetland occupancy exhibited by these congeneric tree frog species to explore how salt exposure affects oviposition site choice, hatching success, early tadpole survival, plasma osmolality and tadpole body condition across coastal and inland locations. We observed higher survival among coastal H. cinerea tadpoles than inland H. cinerea, which corroborates previous findings. But contrary to expectations, coastal H. cinerea had lower survival than H. squirella and H. chrysoscelis, indicating that all three species may be able to persist in saline wetlands. We also observed differences in tadpole plasma osmolality across species, locations and salinities, but these differences were not associated with survival rates in salt water. Instead, coastal occupancy may be affected by stage-specific processes like higher probability of total clutch loss as shown by inland H. chrysoscelis or maladaptive egg deposition patterns as shown by inland H. squirella. Although we expected salt water to be the primary filter driving species distributions along a coastal salinity gradient, it is likely that the factors dictating anuran ranges along the coast involve stage-, species- and location-specific processes that are mediated by ecological processes and life history traits.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd., Houston TX 77204
| | - Michael W McCoy
- Florida Atlantic University, Harbor Branch Oceanographic Institute, 3545 Ocean Drive #201, Vero Beach, FL, 32963, USA
| |
Collapse
|
3
|
Clubley CH, Firth LB, Wood LE, Bilton DT, Silva TAM, Knights AM. Science paper or big data? Assessing invasion dynamics using observational data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162754. [PMID: 36921858 DOI: 10.1016/j.scitotenv.2023.162754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 05/06/2023]
Abstract
Non-native species are spreading at an unprecedented rate over large spatial scales, with global environmental change and growth in commerce providing novel opportunities for range expansion. Assessing the pattern and rate of spread is key to the development of strategies for safeguarding against future invasions and efficiently managing existing ones. Such assessments often depend on spatial distribution data from online repositories, which can be spatially biased, imprecise, and lacking in quantity. Here, the influence of disparities between occurrence records from online data repositories and what is known of the invasion history from peer-reviewed published literature on non-native species range expansion was evaluated using 6693 records of the Pacific oyster, Magallana gigas (Thunberg, 1793), spanning 56 years of its invasion in Europe. Two measures of spread were calculated: maximum rate of spread (distance from introduction site over time) and accumulated area (spatial expansion). Results suggest that despite discrepancies between online and peer-reviewed data sources, including a paucity of records from the early invasion history in online repositories, the use of either source does not result in significantly different estimates of spread. Our study significantly improves our understanding of the European distribution of M. gigas and suggests that a combination of short- and long-range dispersal drives range expansions. More widely, our approach provides a framework for comparison of online occurrence records and invasion histories as documented in the peer-reviewed literature, allowing critical evaluation of both data sources and improving our understanding of invasion dynamics significantly.
Collapse
Affiliation(s)
- Charlotte H Clubley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom.
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Louisa E Wood
- Centre for Blue Governance, Department of Economics and Finance, University of Portsmouth, Portsmouth, Hampshire PO1 3DE, United Kingdom
| | - David T Bilton
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom; Department of Zoology, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
| | - Tiago A M Silva
- Lowestoft Laboratory, Centre for Environment, Fisheries and Aquaculture Science, NR33 0HT Lowestoft, United Kingdom
| | - Antony M Knights
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| |
Collapse
|
4
|
Escobar-Luján J, Castaño-Quintero SM, Villalobos F, Lira-Noriega A, Chiappa-Carrara X, Yañez-Arenas C. Current and future geographic patterns of bird diversity dimensions of the Yucatan Peninsula and their representativeness in natural protected areas. NEOTROPICAL BIODIVERSITY 2022. [DOI: 10.1080/23766808.2022.2087282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Jazmín Escobar-Luján
- Laboratorio de Ecología Geográfica - Unidad de Biología de la Conservación, Unidad Académica Sisal - Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico Chuburná, México
| | - Sandra M. Castaño-Quintero
- Laboratorio de Ecología Geográfica - Unidad de Biología de la Conservación, Unidad Académica Sisal - Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico Chuburná, México
| | | | - Andrés Lira-Noriega
- CONACYT Research Fellow, Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C, Xalapa, México
| | - Xavier Chiappa-Carrara
- Laboratorio de Ecología Geográfica - Unidad de Biología de la Conservación, Unidad Académica Sisal - Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico Chuburná, México
| | - Carlos Yañez-Arenas
- Laboratorio de Ecología Geográfica - Unidad de Biología de la Conservación, Unidad Académica Sisal - Facultad de Ciencias, Universidad Nacional Autónoma de México, Parque Científico Chuburná, México
| |
Collapse
|
5
|
Bridle J, Hoffmann A. Understanding the biology of species' ranges: when and how does evolution change the rules of ecological engagement? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210027. [PMID: 35184590 PMCID: PMC8859517 DOI: 10.1098/rstb.2021.0027] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
Understanding processes that limit species' ranges has been a core issue in ecology and evolutionary biology for many decades, and has become increasingly important given the need to predict the responses of biological communities to rapid environmental change. However, we still have a poor understanding of evolution at range limits and its capacity to change the ecological 'rules of engagement' that define these communities, as well as the time frame over which this occurs. Here we link papers in the current volume to some key concepts involved in the interactions between evolutionary and ecological processes at species' margins. In particular, we separate hypotheses about species' margins that focus on hard evolutionary limits, which determine how genotypes interact with their environment, from those concerned with soft evolutionary limits, which determine where and when local adaptation can persist in space and time. We show how theoretical models and empirical studies highlight conditions under which gene flow can expand local limits as well as contain them. In doing so, we emphasize the complex interplay between selection, demography and population structure throughout a species' geographical and ecological range that determines its persistence in biological communities. However, despite some impressively detailed studies on range limits, particularly in invertebrates and plants, few generalizations have emerged that can predict evolutionary responses at ecological margins. We outline some directions for future work such as considering the impact of structural genetic variants and metapopulation structure on limits, and the interaction between range limits and the evolution of mating systems and non-random dispersal. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Jon Bridle
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
6
|
Parmesan C, Singer MC. Mosaics of climatic stress across species' ranges: tradeoffs cause adaptive evolution to limits of climatic tolerance. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210003. [PMID: 35184595 PMCID: PMC8859515 DOI: 10.1098/rstb.2021.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
Studies in birds and trees show climatic stresses distributed across species' ranges, not only at range limits. Here, new analyses from the butterfly Euphydryas editha reveal mechanisms generating these stresses: geographic mosaics of natural selection, acting on tradeoffs between climate adaptation and fitness traits, cause some range-central populations to evolve to limits of climatic tolerance, while others remain resilient. In one ecotype, selection for predator avoidance drives evolution to limits of thermal tolerance. In a second ecotype, the endangered Bay Checkerspot, selection on fecundity drives evolution to the climate-sensitive limit of ability to complete development within the lifespans of ephemeral hosts, causing routinely high mortality from insect-host phenological asynchrony. The tradeoff between maternal fecundity and offspring mortality generated similar values of fitness on different dates, partly explaining why fecundity varied by more than an order of magnitude. Evolutionary response to the tradeoff rendered climatic variability the main driver of Bay Checkerspot dynamics, and increases in this variability, associated with climate change, were a key factor behind permanent extinction of a protected metapopulation. Finally, we discuss implications for conservation planning of our finding that adaptive evolution can reduce population-level resilience to climate change and generate geographic mosaics of climatic stress. This article is part of the theme issue 'Species' ranges in the face of changing environments (Part II)'.
Collapse
Affiliation(s)
- Camille Parmesan
- Station d’Écologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200 Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
- Department of Geological Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Michael C. Singer
- Station d’Écologie Théorique et Expérimentale, CNRS, 2 route du CNRS, 09200 Moulis, France
- Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
7
|
Robinson SVJ, Hoover SE, Pernal SF, Cartar RV. Optimal distributions of central-place foragers: honey bee foraging in a mass flowering crop. Behav Ecol 2022. [DOI: 10.1093/beheco/arab143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
The ideal-free distribution and central-place foraging are important ecological models that can explain the distribution of foraging organisms in their environment. However, this model ignores distance-based foraging costs from a central place (hive, nest), whereas central-place foraging ignores competition. Different foraging currencies and cooperation between foragers also create different optimal distributions of foragers, but are limited to a simple two-patch model. We present a hybrid model of the ideal-free distribution that uses realistic competitive effects although accounting for distance-based foraging, and test it using honey bees (Apis mellifera L.) foraging in canola fields (Brassica napus L.). Our simulations show that foragers maximizing efficiency (energy profits ÷losses) prioritize distance to their aggregation more than those maximizing net-rate (energy profits ÷time), and that social foragers move to more distant patches to maximize group benefits, meaning that social foragers do not approach an ideal-free distribution. Simulated efficiency-maximizers had a hump-shaped relationship of trip times with distance, spending shorter amounts of time in both nearby and far-away patches. Canola fields were far more attractive to simulated foragers than semi-natural areas, suggesting limited foraging on semi-natural lands during the bloom period of canola. Finally, we found that the observed distribution of honey bees in canola fields most closely resembled the optimal distribution of solitary efficiency-maximizers. Our model has both theoretical and practical uses, as it allows us to model central-place forager distributions in complex landscapes as well as providing information on appropriate hive stocking rates for agricultural pollination.
Collapse
Affiliation(s)
- Samuel V J Robinson
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Shelley E Hoover
- Apiculture Unit, Alberta Ministry of Agriculture and Forestry, Lethbridge, AB, Canada
| | - Stephen F Pernal
- Agriculture and Agri-Food Canada, Beaverlodge Research Farm, Beaverlodge, AB, Canada
| | - Ralph V Cartar
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Alfonso B, Sansón M, Sangil C, Expósito FJ, Díaz JP, Hernández JC. Herbarium macroalgae specimens reveal a rapid reduction of thallus size and reproductive effort related with climate change. MARINE ENVIRONMENTAL RESEARCH 2022; 174:105546. [PMID: 34968841 DOI: 10.1016/j.marenvres.2021.105546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/12/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Understanding and forecasting the effects of climate changes on vulnerable species are leading concerns for ecologists and conservation biologists. Herbaria are invaluable for use in long-term data series, and one of the few available methods for quantifying biodiversity changes over large periods of time. Gelidium canariense is an endemic and habitat-forming macroalga of the Canary Islands that coexists with two other habitat-forming Gelidiales: G. arbuscula and Pterocladiella capillacea. This study assesses long-term changes in thallus size and reproductive effort of all specimens deposited in the Herbarium of Universidad de La Laguna of these three Gelidiales species. Also assessed were the effects of seawater temperature and increased incident light on net primary production (NPP), and the effects of extreme desiccation conditions on the relative water content and NPP of the three Gelidiales species. The length of the thallus of the endemic species G. canariense was halved during the past 40 years. The shortening of the thallus coincided with a significant decrease in the number of reproductive structures in both Gelidium species. These morphological changes coincide with a significant increase of the sea surface temperature, air temperature above sea surface and ultraviolet radiation in the studied area. The experiments have revealed the deleterious effects of extreme desiccation and extreme irradiance on all three species. Hence, these results suggest that air temperature and irradiance are related with these morphological changes over time in the habitat-forming Gelidium species and that are most likely compromising the survival of their populations which are already declining.
Collapse
Affiliation(s)
- B Alfonso
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain.
| | - M Sansón
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - C Sangil
- Departamento de Botánica, Ecología y Fisiología Vegetal, Universidad de La Laguna, Canary Islands, Spain
| | - F J Expósito
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J P Díaz
- Departamento de Física, Universidad de La Laguna, Canary Islands, Spain
| | - J C Hernández
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Canary Islands, Spain
| |
Collapse
|
9
|
Casabona i Amat C, Blanchette P, Desrochers A. Habitat occupancy by Spruce Grouse (Canachites canadensis) in the south of its range in Quebec, Canada. CAN J ZOOL 2022. [DOI: 10.1139/cjz-2021-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studying habitat occupancy at the margins of the distributions of species can be helpful in clarifying the requirements of species and planning management measures. Spruce Grouse (Canachites canadensis (Linnaeus, 1758)), a bird species associated with northern short-needle coniferous forests in North America, has its southeastern range limit where coniferous forests are mixed with temperate deciduous forests and agricultural lands. Some isolated populations are found in these habitats. Using a single-season occupancy modelling approach, we investigated habitat use by Spruce Grouse, accounting for imperfect detection, in the lowlands of the St. Lawrence River in southern Quebec, Canada. We conducted call-response surveys of Spruce Grouse over three years at 279 sites (59 sites in 2007, 100 sites in 2008, and 120 sites in 2009). At the site level, the probability of occupancy was 21% (95% confidence interval (CI) = 10.7%–37.9%) and probability of detection was 54% (95% CI = 34.7%–73.0%). Based on the covariates in the models, occurrence increased with higher cover of coniferous trees and low deciduous shrubs, and decreased with higher cover of deciduous trees. Finally, detection probability was highest at the beginning of the survey (50% in late April) and was influenced by year.
Collapse
Affiliation(s)
- Clara Casabona i Amat
- Département de biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre Blanchette
- Direction de l’expertise sur la faune terrestre, l’herpétofaune et l’avifaune, Ministère des Forêts, de la Faune et des Parcs, Québec, QC G1S 4X4, Canada
| | - André Desrochers
- Département des sciences du bois et de la forêt, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
10
|
Bonelli S, Cerrato C, Barbero F, Boiani MV, Buffa G, Casacci LP, Fracastoro L, Provenzale A, Rivella E, Zaccagno M, Balletto E. Changes in Alpine Butterfly Communities during the Last 40 Years. INSECTS 2021; 13:43. [PMID: 35055886 PMCID: PMC8778691 DOI: 10.3390/insects13010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 01/08/2023]
Abstract
Our work aims to assess how butterfly communities in the Italian Maritime Alps changed over the past 40 years, in parallel with altitudinal shifts occurring in plant communities. In 2019, we sampled butterflies at 7 grassland sites, between 1300-1900 m, previously investigated in 2009 and 1978, by semi-quantitative linear transects. Fine-scale temperature and precipitation data elaborated by optimal interpolation techniques were used to quantify climate changes. The changes in the vegetation cover and main habitat alterations were assessed by inspection of aerial photographs (1978-2018/1978-2006-2015). The vegetation structure showed a marked decrease of grassland habitats and an increase of woods (1978-2009). Plant physiognomy has remained stable in recent years (2009-2019) with some local exceptions due to geomorphic disturbance. We observed butterfly 'species substitution' indicating a general loss in the more specialised and a general gain in more tolerant elements. We did not observe any decrease in species richness, but rather a change in guild compositions, with (i) an overall increased abundance in some widespread and common lowland species and (ii) the disappearance (or strong decrease) of some alpine (high elevation) species, so that 'resilience' could be just delusive. Changes in butterfly community composition were consistent with predicted impacts of local warming.
Collapse
Affiliation(s)
- Simona Bonelli
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Cristiana Cerrato
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
- Gran Paradiso National Park, 10135 Turin, Italy
| | - Francesca Barbero
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Maria Virginia Boiani
- Institute of Geosciences and Earth Resources, Italian National Research Council, 56124 Pisa, Italy; (M.V.B.); (A.P.)
| | - Giorgio Buffa
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Luca Pietro Casacci
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Lorenzo Fracastoro
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Antonello Provenzale
- Institute of Geosciences and Earth Resources, Italian National Research Council, 56124 Pisa, Italy; (M.V.B.); (A.P.)
| | - Enrico Rivella
- Regional Agency for Environmental Protection, ARPA, 10135 Turin, Italy;
| | - Michele Zaccagno
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| | - Emilio Balletto
- Department of Life Science and Systems Biology Turin University, 10123 Turin, Italy; (S.B.); (C.C.); (G.B.); (L.P.C.); (L.F.); (M.Z.); (E.B.)
| |
Collapse
|
11
|
First Year Survival of Hatchling Eastern Box Turtles (Terrapene carolina carolina) at Their Northern Range Limit in Michigan's Lower Peninsula. J HERPETOL 2021. [DOI: 10.1670/19-129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Grüebler MU, von Hirschheydt J, Korner-Nievergelt F. High turn-over rates at the upper range limit and elevational source-sink dynamics in a widespread songbird. Sci Rep 2021; 11:18470. [PMID: 34531505 PMCID: PMC8445929 DOI: 10.1038/s41598-021-98100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 08/25/2021] [Indexed: 11/17/2022] Open
Abstract
The formation of an upper distributional range limit for species breeding along mountain slopes is often based on environmental gradients resulting in changing demographic rates towards high elevations. However, we still lack an empirical understanding of how the interplay of demographic parameters forms the upper range limit in highly mobile species. Here, we study apparent survival and within-study area dispersal over a 700 m elevational gradient in barn swallows (Hirundo rustica) by using 15 years of capture-mark-recapture data. Annual apparent survival of adult breeding birds decreased while breeding dispersal probability of adult females, but not males increased towards the upper range limit. Individuals at high elevations dispersed to farms situated at elevations lower than would be expected by random dispersal. These results suggest higher turn-over rates of breeding individuals at high elevations, an elevational increase in immigration and thus, within-population source-sink dynamics between low and high elevations. The formation of the upper range limit therefore is based on preference for low-elevation breeding sites and immigration to high elevations. Thus, shifts of the upper range limit are not only affected by changes in the quality of high-elevation habitats but also by factors affecting the number of immigrants produced at low elevations.
Collapse
Affiliation(s)
- Martin U Grüebler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland.
| | | | | |
Collapse
|
13
|
Llorente E, Terroba O, Encinar D, Hernández-Hernández J, Martín-García S, Virgós E. Variations in the abundance of the Iberian mole (Talpa occidentalis) in a habitat and climatic gradient in central Spain. Mamm Biol 2021. [DOI: 10.1007/s42991-021-00166-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Krug PJ, Shimer E, Rodriguez VA. Differential Tolerance and Seasonal Adaptation to Temperature and Salinity Stress at a Dynamic Range Boundary Between Estuarine Gastropods. THE BIOLOGICAL BULLETIN 2021; 241:105-122. [PMID: 34436970 DOI: 10.1086/715845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractInsight into how coastal organisms will respond to changing temperature and salinity regimes may be derived from studies of adaptation to fluctuating estuarine environments, especially under stressful range-edge conditions. We characterized a dynamic range boundary between two estuarine sea slugs, Alderia modesta (distributed across the North Pacific and North Atlantic) and Alderia willowi, known from southern and central California. The species overlap from Bodega Bay to San Francisco Bay, where populations are dominated by A. modesta after winter rains but by A. willowi after peak summer temperatures. Laboratory assays confirmed superior tolerance to low salinity for the northern species, A. modesta: encapsulated embryos developed at 8 ppt, larvae survived at 4-6 ppt, and adults survived repeated exposure to 2 ppt, salinities that reduced development or survival for the same stages of A. willowi. Adults did not appreciably differ in their high-temperature threshold, however. Each species showed increased tolerance to either temperature or salinity stress at its range margin, indicating plasticity or local adaptation, but at the cost of reduced tolerance to the other stressor. At its northern limit, A. willowi became more tolerant of low salinity during the winter rainy season, but also less heat tolerant. Conversely, A. modesta became more heat resistant from spring to summer at its southern limit, but less tolerant of low salinity. Trade-offs in stress tolerance may generally constrain adaptation and limit biotic response to a rapidly changing environment, as well as differentiating species niches.
Collapse
|
15
|
Fredston A, Pinsky M, Selden RL, Szuwalski C, Thorson JT, Gaines SD, Halpern BS. Range edges of North American marine species are tracking temperature over decades. GLOBAL CHANGE BIOLOGY 2021; 27:3145-3156. [PMID: 33759274 DOI: 10.1111/gcb.15614] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
Understanding the dynamics of species range edges in the modern era is key to addressing fundamental biogeographic questions about abiotic and biotic drivers of species distributions. Range edges are where colonization and extirpation processes unfold, and so these dynamics are also important to understand for effective natural resource management and conservation. However, few studies to date have analyzed time series of range edge positions in the context of climate change, in part because range edges are difficult to detect. We first quantified positions for 165 range edges of marine fishes and invertebrates from three U.S. continental shelf regions using up to five decades of survey data and a spatiotemporal model to account for sampling and measurement variability. We then analyzed whether those range edges maintained their edge thermal niche-the temperatures found at the range edge position-over time. A large majority of range edges (88%) maintained either summer or winter temperature extremes at the range edge over the study period, and most maintained both (76%), although not all of those range edges shifted in space. However, we also found numerous range edges-particularly poleward edges and edges in the region that experienced the most warming-that did not shift at all, shifted further than predicted by temperature alone, or shifted opposite the direction expected, underscoring the multiplicity of factors that drive changes in range edge positions. This study suggests that range edges of temperate marine species have largely maintained the same edge thermal niche during periods of rapid change and provides a blueprint for testing whether and to what degree species range edges track temperature in general.
Collapse
Affiliation(s)
- Alexa Fredston
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Malin Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Rebecca L Selden
- Department of Biological Sciences, Wellesley College, Science Center, Wellesley, MA, USA
| | - Cody Szuwalski
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - James T Thorson
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Steven D Gaines
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Benjamin S Halpern
- Bren School of Environmental Science & Management, University of California, Santa Barbara, Santa Barbara, CA, USA
- National Center for Ecological Analysis and Synthesis, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
16
|
Haywood CJ, Nielsen CK, Jiménez FA. Live-Capture Techniques for Colonizing Nine-Banded Armadillos. Northeast Nat (Steuben) 2021. [DOI: 10.1656/045.028.0206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Carly J. Haywood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Clayton K. Nielsen
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901
| | - F. Agustín Jiménez
- School of Biological Sciences, Southern Illinois University, Carbondale, IL 62901
| |
Collapse
|
17
|
Pack KE, Rius M, Mieszkowska N. Long-term environmental tolerance of the non-indigenous Pacific oyster to expected contemporary climate change conditions. MARINE ENVIRONMENTAL RESEARCH 2021; 164:105226. [PMID: 33316607 DOI: 10.1016/j.marenvres.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/11/2020] [Accepted: 11/28/2020] [Indexed: 06/12/2023]
Abstract
The current global redistribution of biota is often attributed to two main drivers: contemporary climate change (CCC) and non-indigenous species (NIS). Despite evidence of synergetic effects, however, studies assessing long-term effects of CCC conditions on NIS fitness remain rare. We examined the interactive effects of warming, ocean acidification and reduced salinity on the globally distributed marine NIS Magallana gigas (Pacific oyster) over a ten-month period. Growth, clearance and oxygen consumption rates were measured monthly to assess individual fitness. Lower salinity had a significant, permanent effect on M. gigas, reducing and increasing clearance and oxygen consumption rates, respectively. Neither predicted increases in seawater temperature nor reduced pH had a long-term physiological effect, indicating conditions predicted for 2100 will not affect adult physiology and survival. These results suggest that M. gigas will remain a globally successful NIS and predicted CCC will continue to facilitate their competitive dominance in the near future.
Collapse
Affiliation(s)
- Kathryn E Pack
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom; Marine Biological Association, Plymouth, United Kingdom.
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, United Kingdom; Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Nova Mieszkowska
- Marine Biological Association, Plymouth, United Kingdom; School of Environmental Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
18
|
Acker P, Daunt F, Wanless S, Burthe SJ, Newell MA, Harris MP, Grist H, Sturgeon J, Swann RL, Gunn C, Payo‐Payo A, Reid JM. Strong survival selection on seasonal migration versus residence induced by extreme climatic events. J Anim Ecol 2021; 90:796-808. [DOI: 10.1111/1365-2656.13410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/22/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Paul Acker
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Centre for Biodiversity Dynamics, Institutt for Biologi NTNU Trondheim Norway
| | | | | | | | | | | | - Hannah Grist
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Scottish Association for Marine Science Scottish Marine Institute Oban UK
| | - Jenny Sturgeon
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | | | - Carrie Gunn
- UK Centre for Ecology & Hydrology Midlothian UK
| | - Ana Payo‐Payo
- School of Biological Sciences University of Aberdeen Aberdeen UK
| | - Jane M. Reid
- School of Biological Sciences University of Aberdeen Aberdeen UK
- Centre for Biodiversity Dynamics, Institutt for Biologi NTNU Trondheim Norway
| |
Collapse
|
19
|
Oliveira AGD, Peláez O, Agostinho AA. The effectiveness of protected areas in the Paraná-Paraguay basin in preserving multiple facets of freshwater fish diversity under climate change. NEOTROPICAL ICHTHYOLOGY 2021. [DOI: 10.1590/1982-0224-2021-0034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Our objective was to evaluate the effectiveness of protected areas (PAs) in the Paraná-Paraguay basin on multiple facets of ichthyofauna, both currently and in future climate change scenarios, based on reaching the 17% of conserved terrestrial and inland water defined by Aichi Target 11. Analyses were carried out vis-à-vis a distribution of 496 native species, modeling for the present and for the future, and in moderate and pessimistic scenarios of greenhouse gases. We calculated species richness, functional richness, and phylogenetic diversity, overlapping the combination of these facets with the PAs. The results indicate that the current PAs of the Paraná-Paraguay basin are not efficient in protecting the richest areas of ichthyofauna in their multiple facets. While there is a larger overlap between PAs and the richest areas in phylogenetic diversity, the values are too low (2.37%). Currently, the overlap between PAs and areas with larger species richness, functional richness, and phylogenetic diversity is only 1.48%. Although this value can increase for future projections, the values of the indices decrease substantially. The relevant aquatic environments, biological communities, and climate change should be considered as part of the systematic planning of PAs that take into consideration the terrestrial environments and their threats.
Collapse
|
20
|
Improving climate suitability for Bemisia tabaci in East Africa is correlated with increased prevalence of whiteflies and cassava diseases. Sci Rep 2020; 10:22049. [PMID: 33328547 PMCID: PMC7744558 DOI: 10.1038/s41598-020-79149-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/26/2020] [Indexed: 11/18/2022] Open
Abstract
Projected climate changes are thought to promote emerging infectious diseases, though to date, evidence linking climate changes and such diseases in plants has not been available. Cassava is perhaps the most important crop in Africa for smallholder farmers. Since the late 1990’s there have been reports from East and Central Africa of pandemics of begomoviruses in cassava linked to high abundances of whitefly species within the Bemisia tabaci complex. We used CLIMEX, a process-oriented climatic niche model, to explore if this pandemic was linked to recent historical climatic changes. The climatic niche model was corroborated with independent observed field abundance of B. tabaci in Uganda over a 13-year time-series, and with the probability of occurrence of B. tabaci over 2 years across the African study area. Throughout a 39-year climate time-series spanning the period during which the pandemics emerged, the modelled climatic conditions for B. tabaci improved significantly in the areas where the pandemics had been reported and were constant or decreased elsewhere. This is the first reported case where observed historical climate changes have been attributed to the increase in abundance of an insect pest, contributing to a crop disease pandemic.
Collapse
|
21
|
Merker SA, Chandler RB. An experimental test of the Allee effect range limitation hypothesis. J Anim Ecol 2020; 90:585-593. [PMID: 33201545 PMCID: PMC7984094 DOI: 10.1111/1365-2656.13389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/27/2020] [Indexed: 11/30/2022]
Abstract
Understanding how climate change impacts trailing‐edge populations requires information about how abiotic and biotic factors limit their distributions. Theory indicates that socially mediated Allee effects can limit species distributions by suppressing growth rates of peripheral populations when social information is scarce. The goal of our research was to determine if socially mediated Allee effects limit the distribution of Canada warbler Cardellina canadensis at the trailing‐edge of the geographic range. Using 4 years of observational data from 71 sites and experimental data at 10 sites, we tested two predictions of the socially mediated range limitation hypothesis: (a) local growth rates should be positively correlated with local density and (b) the addition of social cues immediately outside the trailing‐edge range boundary would result in colonization of formerly unoccupied habitat and increased growth rates. During the third breeding season, social cues were experimentally added at 10 formerly unoccupied sites within and beyond the species’ local range margin to determine if the addition of social information could increase density and effectively expand the species’ range. No experimental sites were colonized after adding social cues and no evidence of Allee effects was found. Rather, temperature, precipitation and negative density dependence strongly influenced population growth rates. Although theoretical models indicate that the presence of socially mediated Allee effects at species range boundaries could increase the rate of climate‐induced range shifts and local extinctions, empirical results from the first test of this hypothesis suggest that Allee effects play a minimal role in limiting species’ distributions.
Collapse
Affiliation(s)
- Samuel A Merker
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| |
Collapse
|
22
|
Merges D, Albrecht J, Böhning-Gaese K, Schleuning M, Neuschulz EL. Environmental context determines the limiting demographic processes for plant recruitment across a species' elevational range. Sci Rep 2020; 10:10855. [PMID: 32616719 PMCID: PMC7331732 DOI: 10.1038/s41598-020-67602-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/28/2020] [Indexed: 11/09/2022] Open
Abstract
Plant recruitment is a multi-stage process determining population dynamics and species distributions. Still, we have limited understanding of how the successive demographic processes depend on the environmental context across species’ distributional ranges. We conducted a large-scale transplant experiment to study recruitment of Pinus cembra over six years. We quantified the effects of environmental conditions on four demographic processes and identified the most limiting across and beyond the pines’ elevational range over several years. Realized transition probabilities of the demographic processes varied substantially across the species' distributional range. Seed deposition decreased from the lower to the upper elevational range margin by 90%, but this reduction was offset by increased seed germination and seedling survival. Dispersal limitation at the upper range margin potentially stems from unsuitable seed caching conditions for the animal seed disperser, whereas increased seed germination might result from enemy escape from fungal pathogens and favourable abiotic conditions at the upper range margin. Our multi-year experiment demonstrates that environmental context is decisive for the local relevance of particular demographic processes. We conclude that experimental studies identifying the limiting demographic processes controlling species distributions are key for projecting future range dynamics of plants.
Collapse
Affiliation(s)
- Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany. .,Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, DE, Germany.
| | - Jörg Albrecht
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Katrin Böhning-Gaese
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.,Department of Biological Sciences, Goethe Universität Frankfurt, Frankfurt am Main, DE, Germany
| | - Matthias Schleuning
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Eike Lena Neuschulz
- Senckenberg Biodiversity and Climate Research Centre Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| |
Collapse
|
23
|
Barbitta D, Clavijo C, Carranza A. Ecoregional-Level Assessment of the Potential Distribution of the Invasive Apple Snail Pomacea maculata Perry, 1810 (Gastropoda: Ampullariidae): Setting Geographically Explicit Priorities for the Management of the Invasion. RUSSIAN JOURNAL OF BIOLOGICAL INVASIONS 2020. [DOI: 10.1134/s2075111720020022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Bosshard L, Peischl S, Ackermann M, Excoffier L. Dissection of the mutation accumulation process during bacterial range expansions. BMC Genomics 2020; 21:253. [PMID: 32293258 PMCID: PMC7092555 DOI: 10.1186/s12864-020-6676-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/13/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Recent experimental work has shown that the evolutionary dynamics of bacteria expanding across space can differ dramatically from what we expect under well-mixed conditions. During spatial expansion, deleterious mutations can accumulate due to inefficient selection on the expansion front, potentially interfering with and modifying adaptive evolutionary processes. RESULTS We used whole genome sequencing to follow the genomic evolution of 10 mutator Escherichia coli lines during 39 days ( ~ 1650 generations) of a spatial expansion, which allowed us to gain a temporal perspective on the interaction of adaptive and non-adaptive evolutionary processes during range expansions. We used elastic net regression to infer the positive or negative effects of mutations on colony growth. The colony size, measured after three day of growth, decreased at the end of the experiment in all 10 lines, and mutations accumulated at a nearly constant rate over the whole experiment. We find evidence that beneficial mutations accumulate primarily at an early stage of the experiment, leading to a non-linear change of colony size over time. Indeed, the rate of colony size expansion remains almost constant at the beginning of the experiment and then decreases after ~ 12 days of evolution. We also find that beneficial mutations are enriched in genes encoding transport proteins, and genes coding for the membrane structure, whereas deleterious mutations show no enrichment for any biological process. CONCLUSIONS Our experiment shows that beneficial mutations target specific biological functions mostly involved in inter or extra membrane processes, whereas deleterious mutations are randomly distributed over the whole genome. It thus appears that the interaction between genetic drift and the availability or depletion of beneficial mutations determines the change in fitness of bacterial populations during range expansion.
Collapse
Affiliation(s)
- Lars Bosshard
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Berne, 3012, Berne, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich (ETH Zürich), 8092, Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600, Dübendorf, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology an Evolution, University of Berne, Baltzerstrasse 6, 3012, Berne, Switzerland. .,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.
| |
Collapse
|
25
|
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev Camb Philos Soc 2020; 95:802-821. [PMID: 32035015 DOI: 10.1111/brv.12588] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, CDMX, 03940, Mexico.,Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria, CDMX, 04510, Mexico
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Andrés Lira-Noriega
- CONACYT, CDMX, 03940, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | | | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| |
Collapse
|
26
|
Kennedy JP, Preziosi RF, Rowntree JK, Feller IC. Is the central-marginal hypothesis a general rule? Evidence from three distributions of an expanding mangrove species, Avicennia germinans (L.) L. Mol Ecol 2020; 29:704-719. [PMID: 31990426 PMCID: PMC7065085 DOI: 10.1111/mec.15365] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 12/17/2019] [Accepted: 01/16/2020] [Indexed: 12/24/2022]
Abstract
The central-marginal hypothesis (CMH) posits that range margins exhibit less genetic diversity and greater inter-population genetic differentiation compared to range cores. CMH predictions are based on long-held "abundant-centre" assumptions of a decline in ecological conditions and abundances towards range margins. Although much empirical research has confirmed CMH, exceptions remain almost as common. We contend that mangroves provide a model system to test CMH that alleviates common confounding factors and may help clarify this lack of consensus. Here, we document changes in black mangrove (Avicennia germinans) population genetics with 12 nuclear microsatellite loci along three replicate coastlines in the United States (only two of three conform to underlying "abundant-centre" assumptions). We then test an implicit prediction of CMH (reduced genetic diversity may constrain adaptation at range margins) by measuring functional traits of leaves associated with cold tolerance, the climatic factor that controls these mangrove distributional limits. CMH predictions were confirmed only along the coastlines that conform to "abundant-centre" assumptions and, in contrast to theory, range margin A. germinans exhibited functional traits consistent with greater cold tolerance compared to range cores. These findings support previous accounts that CMH may not be a general rule across species and that reduced neutral genetic diversity at range margins may not be a constraint to shifts in functional trait variation along climatic gradients.
Collapse
Affiliation(s)
- John Paul Kennedy
- Smithsonian Marine StationSmithsonian InstitutionFort PierceFLUSA
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Richard F. Preziosi
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Jennifer K. Rowntree
- Department of Natural SciencesFaculty of Science and Engineering, Ecology and Environment Research CentreManchester Metropolitan UniversityManchesterUK
| | - Ilka C. Feller
- Smithsonian Environmental Research CenterSmithsonian InstitutionEdgewaterMDUSA
| |
Collapse
|
27
|
Nguyen AD, Brown M, Zitnay J, Cahan SH, Gotelli NJ, Arnett A, Ellison AM. Trade-Offs in Cold Resistance at the Northern Range Edge of the Common Woodland Ant Aphaenogaster picea (Formicidae). Am Nat 2019; 194:E151-E163. [PMID: 31738107 DOI: 10.1086/705939] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Geographic variation in low temperatures at poleward range margins of terrestrial species often mirrors population variation in cold resistance, suggesting that range boundaries may be set by evolutionary constraints on cold physiology. The northeastern woodland ant Aphaenogaster picea occurs up to approximately 45°N in central Maine. We combined presence/absence surveys with classification tree analysis to characterize its northern range limit and assayed two measures of cold resistance operating on different timescales to determine whether and how marginal populations adapt to environmental extremes. The range boundary of A. picea was predicted primarily by temperature, but low winter temperatures did not emerge as the primary correlate of species occurrence. Low summer temperatures and high seasonal variability predicted absence above the boundary, whereas high mean annual temperature (MAT) predicted presence in southern Maine. In contrast, assays of cold resistance across multiple sites were consistent with the hypothesis of local cold adaptation at the range edge: among populations, there was a 4-min reduction in chill coma recovery time across a 2° reduction in MAT. Baseline resistance and capacity for additional plastic cold hardening shifted in opposite directions, with hardening capacity approaching zero at the coldest sites. This trade-off between baseline resistance and cold-hardening capacity suggests that populations at range edges may adapt to colder temperatures through genetic assimilation of plastic responses, potentially constraining further adaptation and range expansion.
Collapse
|
28
|
Flesch AD. Patterns and drivers of long‐term changes in breeding bird communities in a global biodiversity hotspot in Mexico. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Aaron D. Flesch
- School of Natural Resources and the Environment, The Desert Laboratory ‐ Tumamoc HillUniversity of Arizona Tucson Arizona
- Division of Biological Sciences University of Montana Missoula Montana
| |
Collapse
|
29
|
Guzman LM, Germain RM, Forbes C, Straus S, O'Connor MI, Gravel D, Srivastava DS, Thompson PL. Towards a multi-trophic extension of metacommunity ecology. Ecol Lett 2018; 22:19-33. [PMID: 30370702 DOI: 10.1111/ele.13162] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/10/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022]
Abstract
Metacommunity theory provides an understanding of how spatial processes determine the structure and function of communities at local and regional scales. Although metacommunity theory has considered trophic dynamics in the past, it has been performed idiosyncratically with a wide selection of possible dynamics. Trophic metacommunity theory needs a synthesis of a few influential axis to simplify future predictions and tests. We propose an extension of metacommunity ecology that addresses these shortcomings by incorporating variability among trophic levels in 'spatial use properties'. We define 'spatial use properties' as a set of traits (dispersal, migration, foraging and spatial information processing) that set the spatial and temporal scales of organismal movement, and thus scales of interspecific interactions. Progress towards a synthetic predictive framework can be made by (1) documenting patterns of spatial use properties in natural food webs and (2) using theory and experiments to test how trophic structure in spatial use properties affects metacommunity dynamics.
Collapse
Affiliation(s)
- Laura Melissa Guzman
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rachel M Germain
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Coreen Forbes
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Samantha Straus
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mary I O'Connor
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Diane S Srivastava
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick L Thompson
- Department of Zoology & Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
30
|
Regional differences in thermal adaptation of a cold-water fish Rhynchocypris oxycephalus revealed by thermal tolerance and transcriptomic responses. Sci Rep 2018; 8:11703. [PMID: 30076386 PMCID: PMC6076256 DOI: 10.1038/s41598-018-30074-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/27/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding how populations adapt to different thermal environments is an important issue for biodiversity conservation in the context of recent global warming. To test the hypothesis that populations from southern region are more sensitive to climate change than northern region in cold-water species, we determined the thermal tolerance of two geographical populations of a cold-water fish, Rhynchocypris oxycephalus: the Hangzhou population from southern region and the Gaizhou population from northern region, then compared their transcriptomic responses between a control and a high temperature treatment. The results showed that the thermal tolerance range and thermal tolerance polygon area of Hangzhou population were narrower than the Gaizhou population, indicating populations from southern region were possibly more vulnerable. Further transcriptomic analysis revealed that the Gaizhou population expressed more temperature responding genes than the Hangzhou population (583 VS. 484), corresponding with their higher thermal tolerance, while some of these genes (e.g. heat shock protein) showed higher expression in the Hangzhou population under control condition, suggesting individuals from southern region possibly have already responded to the present higher environmental temperature pressure. Therefore, these results confirm the prediction that populations from southern region are more sensitive to global warming, and will be important for their future conservation.
Collapse
|
31
|
Grant EHC, Brand AB, De Wekker SFJ, Lee TR, Wofford JEB. Evidence that climate sets the lower elevation range limit in a high-elevation endemic salamander. Ecol Evol 2018; 8:7553-7562. [PMID: 30151170 PMCID: PMC6106161 DOI: 10.1002/ece3.4198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 12/25/2022] Open
Abstract
A frequent assumption in ecology is that biotic interactions are more important than abiotic factors in determining lower elevational range limits (i.e., the "warm edge" of a species distribution). However, for species with narrow environmental tolerances, theory suggests the presence of a strong environmental gradient can lead to persistence, even in the presence of competition. The relative importance of biotic and abiotic factors is rarely considered together, although understanding when one exerts a dominant influence on controlling range limits may be crucial to predicting extinction risk under future climate conditions. We sampled multiple transects spanning the elevational range limit of Plethodon shenandoah and site and climate covariates were recorded. A two-species conditional occupancy model, accommodating heterogeneity in detection probability, was used to relate variation in occupancy with environmental and habitat conditions. Regional climate data were combined with datalogger observations to estimate the cloud base heights and to project future climate change impacts on cloud elevations across the survey area. By simultaneously accounting for species' interactions and habitat variables, we find that elevation, not competition, is strongly correlated with the lower elevation range boundary, which had been presumed to be restricted mainly as a result of competitive interactions with a congener. Because the lower elevational range limit is sensitive to climate variables, projected climate change across its high-elevation habitats will directly affect the species' distribution. Testing assumptions of factors that set species range limits should use models which accommodate detection biases.
Collapse
Affiliation(s)
- Evan H. Campbell Grant
- SO Conte Anadromous Fish LaboratoryUSGS Patuxent Wildlife Research CenterTurners FallsMassachusetts
| | - Adrianne B. Brand
- SO Conte Anadromous Fish LaboratoryUSGS Patuxent Wildlife Research CenterTurners FallsMassachusetts
| | | | - Temple R. Lee
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginia
| | | |
Collapse
|
32
|
Markle TM, Kozak KH. Low acclimation capacity of narrow-ranging thermal specialists exposes susceptibility to global climate change. Ecol Evol 2018; 8:4644-4656. [PMID: 29760904 PMCID: PMC5938462 DOI: 10.1002/ece3.4006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/23/2018] [Accepted: 02/11/2018] [Indexed: 01/20/2023] Open
Abstract
Thermal acclimation is hypothesized to offer a selective advantage in seasonal habitats and may underlie disparities in geographic range size among closely-related species with similar ecologies. Understanding this relationship is also critical for identifying species that are more sensitive to warming climates. Here, we study North American plethodontid salamanders to investigate whether acclimation ability is associated with species' latitudinal extents and the thermal range of the environments they inhabit. We quantified variation in thermal physiology by measuring standard metabolic rate (SMR) at different test and acclimation temperatures for 16 species of salamanders with varying latitudinal extents. A phylogenetically-controlled Markov chain Monte Carlo generalized linear mixed model (MCMCglmm) was then employed to determine whether there are differences in SMR between wide- and narrow-ranging species at different acclimation temperatures. In addition, we tested for a relationship between the acclimation ability of species and the environmental temperature ranges they inhabit. Further, we investigated if there is a trade-off between critical thermal maximum (CTMax) and thermal acclimation ability. MCMCglmm results show a significant difference in acclimation ability between wide and narrow-ranging temperate salamanders. Salamanders with wide latitudinal distributions maintain or slightly increase SMR when subjected to higher test and acclimation temperatures, whereas several narrow-ranging species show significant metabolic depression. We also found significant, positive relationships between acclimation ability and environmental thermal range, and between acclimation ability and CTMax. Wide-ranging salamander species exhibit a greater capacity for thermal acclimation than narrow-ranging species, suggesting that selection for acclimation ability may have been a key factor enabling geographic expansion into areas with greater thermal variability. Further, given that narrow-ranging salamanders are found to have both poor acclimation ability and lower tolerance to warm temperatures, they are likely to be more susceptible to environmental warming associated with anthropogenic climate change.
Collapse
Affiliation(s)
- Tricia M. Markle
- Department of Fisheries, Wildlife, & Conservation BiologyBell Museum of Natural HistoryUniversity of MinnesotaSt PaulMNUSA
| | - Kenneth H. Kozak
- Department of Fisheries, Wildlife, & Conservation BiologyBell Museum of Natural HistoryUniversity of MinnesotaSt PaulMNUSA
| |
Collapse
|
33
|
Korkeamäki E, Elo M, Sahlén G, Salmela J, Suhonen J. Regional variations in occupancy frequency distribution patterns between odonate assemblages in Fennoscandia. Ecosphere 2018. [DOI: 10.1002/ecs2.2192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Esa Korkeamäki
- Water and Environment Association of the River Kymi Tapiontie 2 C FI‐45160 Kouvola Finland
| | - Merja Elo
- Department of Biological and Environmental Sciences University of Jyväskylä P.O. Box 35 FI‐40014 Jyväskylä Finland
| | - Göran Sahlén
- Ecology and Environmental Science RLAS Halmstad University P.O. Box 823 30118 Halmstad Sweden
| | - Jukka Salmela
- Regional Museum of Lapland Pohjoisranta 4 FI‐96200 Rovaniemi Finland
| | - Jukka Suhonen
- Section of Ecology Department of Biology University of Turku FI‐20014 Turku Finland
| |
Collapse
|
34
|
Qu H, Wang CJ, Zhang ZX. Planning priority conservation areas under climate change for six plant species with extremely small populations in China. NATURE CONSERVATION 2018. [DOI: 10.3897/natureconservation.25.20063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The concept of Plant Species with Extremely Small Populations (PSESP) has been employed to guide conservation of threatened plant species in China. Climate change has a high potential to threaten PSESP. As a result, it is necessary to integrate climate change effects on PSESP into conservation planning in China. Here, ecological niche modelling is used to project current and future habitat distributions of six PSESP in China under climate change scenarios and conservation planning software is applied to identify priority conservation areas (PCAs) for these PSESP based on habitat distributions. These results were used to provide proposals for in-situ and ex-situ conservation measures directed at PSESP. It was found that annual precipitation was important for habitat distributions for all six PSESP (with the percentage contribution to habitat distributions ranging from 18.1 % to 74.9 %) and non-climatic variables including soil and altitude have a large effect on habitat suitability of PSESP. Large quantities of PCAs occurred within some provincial regions for these six PSESP (e.g. Sichuan and Jilin for the PSESP Cathaya argyrophylla, Taxus cuspidata, Annamocarya sinensis and Madhuca pasquieri), indicating that these are likely to be appropriate areas for in-situ and ex-situ conservation measures directed at these PSESP. Those nature reserves with large quantities of PCAs were identified as promising sites for in-situ conservation measures of PSESP; such reserves include Yangzie and Dongdongtinghu for C. argyrophylla, Songhuajiangsanhu and Changbaishan for T. cuspidata and Shiwandashanshuiyuanlian for Tsoongiodendron odorum. These results suggest that existing seed banks and botanical gardens occurring within identified PCAs should allocate more resources and space to ex-situ conservation of PSESP. In addition, there should be additional botanical gardens established for ex-situ conservation of PSESP in PCAs outside existing nature reserves. To address the risk of negative effects of climate change on PSESP, it is necessary to integrate in-situ and ex-situ conservation as well as climate change monitoring in PSESP conservation planning.
Collapse
|
35
|
Hu J, Jiang J. Inferring ecological explanations for biogeographic boundaries of parapatric Asian mountain frogs. BMC Ecol 2018; 18:3. [PMID: 29391060 PMCID: PMC5796512 DOI: 10.1186/s12898-018-0160-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Background Identifying and understanding the mechanisms that shape barriers to dispersal and resulting biogeographic boundaries has been a longstanding, yet challenging, goal in ecology, evolution and biogeography. Characterized by stable, adjacent ranges, without any intervening physical barriers, and limited, if any, range overlap in a narrow contact zone, parapatric species are an interesting system for studying biogeographic boundaries. The geographic ranges of two parapatric frog species, Feirana quadranus and F. taihangnica, meet in a contact zone within the Qinling Mountains, an important watershed for East Asia. To identify possible ecological determinants of the parapatric range boundaries for two closely related frog species, we quantified the extent of their niche differentiation in both geographical and environmental space combining ecological niche models with an ordination technique. We tested two alternative null hypotheses (sharp environmental gradients versus a ribbon of unsuitable habitat dividing two highly suitable regions) for biogeographic boundaries, against the null expectation that environmental variation across a given boundary is no greater than expected by chance. Results We found that the niches of these two parapatric species are more similar than expected by chance, but not equivalent. No sharp environmental gradient was found, while a ribbon of unsuitable habitat did act as a barrier for F. quadranus, but not for F. taihangnica. Conclusions Integrating our findings with historical biogeographic information, our results suggest that at a contact zone, environmental tolerance restricted F. quadranus from dispersing further north, while interspecific competition most likely prevented the southward expansion of F. taihangnica. This study highlights the importance of both climate and competition in exploring ecological explanations for parapatric range boundaries between ecologically similar frog species, in particular under the effects of changing climate. Electronic supplementary material The online version of this article (10.1186/s12898-018-0160-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junhua Hu
- Key Laboratory of Southwest China Wildlife Resource Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, China. .,Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Jianping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
36
|
Walsh L, Tucker P. Contemporary range expansion of the Virginia opossum (Didelphis virginiana) impacted by humans and snow cover. CAN J ZOOL 2018. [DOI: 10.1139/cjz-2017-0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Range expansions are key demographic events driven by factors such as climate change and human intervention that ultimately influence the genetic composition of peripheral populations. The expansion of the Virginia opossum (Didelphis virginiana Kerr, 1792) into Michigan has been documented over the past 200 years, indicating relatively new colonizations in northern Michigan. Although most contemporary expansions are a result of shifts in climate regimes, the opossum has spread beyond its hypothesized climate niche, offering an opportunity to examine the compounding influence that climate change and humans have on a species’ distribution. The genetic consequences of two range expansions were investigated using genotypic data for nine microsatellite markers from opossums collected in Michigan, Ohio, and Wisconsin, USA. Two genetic clusters were identified: one on either side of Lake Michigan. Using general linear models, we found that measurements of genetic diversity across 15 counties are best explained by days of snow on the ground. Next best models incorporate anthropogenic covariates including farm density. These models suggest that opossum expansion may be facilitated by agricultural land development and at the same time be limited by their inability to forage in snow.
Collapse
Affiliation(s)
- L.L. Walsh
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
| | - P.K. Tucker
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, 1109 Geddes Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Pereira RJ, Sasaki MC, Burton RS. Adaptation to a latitudinal thermal gradient within a widespread copepod species: the contributions of genetic divergence and phenotypic plasticity. Proc Biol Sci 2018; 284:rspb.2017.0236. [PMID: 28446698 DOI: 10.1098/rspb.2017.0236] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/23/2017] [Indexed: 01/26/2023] Open
Abstract
Understanding how populations adapt to heterogeneous thermal regimes is essential for comprehending how latitudinal gradients in species diversification are formed, and how taxa will respond to ongoing climate change. Adaptation can occur by innate genetic factors, by phenotypic plasticity, or by a combination of both mechanisms. Yet, the relative contribution of such mechanisms to large-scale latitudinal gradients of thermal tolerance across conspecific populations remains unclear. We examine thermal performance in 11 populations of the intertidal copepod Tigriopus californicus, ranging from Baja California Sur (Mexico) to British Columbia (Canada). Common garden experiments show that survivorship to acute heat-stress differs between populations (by up to 3.8°C in LD50 values), reflecting a strong genetic thermal adaptation. Using a split-brood experiment with two rearing temperatures, we also show that developmental phenotypic plasticity is beneficial to thermal tolerance (by up to 1.3°C), and that this effect differs across populations. Although genetic divergence in heat tolerance strongly correlates with latitude and temperature, differences in the plastic response do not. In the context of climate warming, our results confirm the general prediction that low-latitude populations are most susceptible to local extinction because genetic adaptation has placed physiological limits closer to current environmental maxima, but our results also contradict the prediction that phenotypic plasticity is constrained at lower latitudes.
Collapse
Affiliation(s)
- Ricardo J Pereira
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA .,Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Matthew C Sasaki
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA.,Marine Science Department, University of Connecticut, Groton, CT, USA
| | - Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA
| |
Collapse
|
38
|
Posledovich D, Toftegaard T, Wiklund C, Ehrlén J, Gotthard K. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. J Anim Ecol 2017; 87:150-161. [PMID: 29048758 DOI: 10.1111/1365-2656.12770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Climate-driven changes in the relative phenologies of interacting species may potentially alter the outcome of species interactions. Phenotypic plasticity is expected to be important for short-term response to new climate conditions, and differences between species in plasticity are likely to influence their temporal overlap and interaction patterns. As reaction norms of interacting species may be locally adapted, any such climate-induced change in interaction patterns may vary among localities. However, consequences of spatial variation in plastic responses for species interactions are understudied. We experimentally explored how temperature affected synchrony between spring emergence of a butterfly, Anthocharis cardamines, and onset of flowering of five of its host plant species across a latitudinal gradient. We also studied potential effects on synchrony if climate-driven northward expansions would be faster in the butterflies than in host plants. Lastly, to assess how changes in synchrony influence host use we carried out an experiment to examine the importance of the developmental stage of plant reproductive structures for butterfly oviposition preference. In southern locations, the butterflies were well-synchronized with the majority of their local host plant species across temperatures, suggesting that thermal plasticity in butterfly development matches oviposition to host plant development and that thermal reaction norms of insects and plants result in similar advancement of spring phenology in response to warming. In the most northern region, however, relative phenology between the butterfly and two of its host plant species changed with increased temperature. We also show that the developmental stage of plants was important for egg-laying, and conclude that temperature-induced changes in synchrony in the northernmost region are likely to lead to shifts in host use in A. cardamines if spring temperatures become warmer. Northern expansion of butterfly populations might possibly have a positive effect on keeping up with host plant phenology with more northern host plant populations. Considering that the majority of insect herbivores exploit multiple plant species differing in their phenological response to spring temperatures, temperature-induced changes in synchrony might lead to shifts in host use and changes in species interactions in many temperate communities.
Collapse
Affiliation(s)
| | - Tenna Toftegaard
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
39
|
Ruskin KJ, Etterson MA, Hodgman TP, Borowske AC, Cohen JB, Elphick CS, Field CR, Longenecker RA, King E, Kocek AR, Kovach AI, O’Brien KM, Pau N, Shriver WG, Walsh J, Olsen BJ. Demographic analysis demonstrates systematic but independent spatial variation in abiotic and biotic stressors across 59 percent of a global species range. THE AUK 2017; 134:903-916. [PMID: 37534301 PMCID: PMC10395324 DOI: 10.1642/auk-16-230.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The balance of abiotic and biotic stressors experienced by a species likely varies across its range, resulting in spatially heterogeneous limitations on the species' demographic rates. Support for spatial variation in stressors (often latitudinal gradients) has been found in many species, usually with physiological or correlative occupancy data, but it has rarely been estimated directly with demographic data. We collected demographic data from 23 sites spanning the majority of the Saltmarsh Sparrow (Ammodramus caudacutus) breeding range. Using data from 837 nests, we quantified the abiotic and biotic variables most important to nest survival, which is the dominant driver of both fecundity and population growth rate in this species. We separately estimated daily nest failure probability due to nest depredation (biotic stressor) and nest flooding (abiotic stressor), which collectively account for almost all nest failure in the species. Nest depredation decreased with latitude, whereas nest flooding was not related to latitude. Instead, nest flooding was best predicted by a combination of maximum high tide, extremity of rare flooding events, and date. For a single vital rate, we observed predictable variation in competing biotic and abiotic stressors across this species range. We observed that biotic and abiotic stressors were geographically independent, both on a large spatial scale and locally. Our results suggest that stressors on the fecundity of Saltmarsh Sparrow vary systematically across its range, but independently. The observed patterns of biotic and abiotic stress provide information for efforts to conserve the Saltmarsh Sparrow, which is considered threatened. Further, understanding the effects that different stressors, and their interactions, have on demographic rates is necessary to unravel the processes that govern species distributions and to effectively conserve biodiversity in the face of global change.
Collapse
Affiliation(s)
- Katharine J. Ruskin
- Ecology and Environmental Sciences Program and Climate Change Institute, University of Maine, Orono, Maine, USA
| | - Matthew A. Etterson
- U.S. Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, Minnesota, USA
| | - Thomas P. Hodgman
- Bird Group, Maine Department of Inland Fisheries and Wildlife, Bangor, Maine, USA
| | - Alyssa C. Borowske
- Department of Ecology and Evolutionary Biology and Center for Conservation and Biodiversity, University of Connecticut, Storrs, Connecticut, USA
| | - Jonathan B. Cohen
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Chris S. Elphick
- Department of Ecology and Evolutionary Biology and Center for Conservation and Biodiversity, University of Connecticut, Storrs, Connecticut, USA
| | - Christopher R. Field
- Department of Ecology and Evolutionary Biology and Center for Conservation and Biodiversity, University of Connecticut, Storrs, Connecticut, USA
| | - Rebecca A. Longenecker
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Erin King
- U.S. Fish and Wildlife Service, Region 5 Division of Natural Resources, Stewart B. McKinney National Wildlife Refuge, Westbrook, Connecticut, USA
| | - Alison R. Kocek
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Adrienne I. Kovach
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Kathleen M. O’Brien
- U.S. Fish and Wildlife Service, Rachel Carson National Wildlife Refuge, Wells, Maine, USA
| | - Nancy Pau
- U.S. Fish and Wildlife Service, Parker River National Wildlife Refuge, Newburyport, Massachusetts, USA
| | - W. Gregory Shriver
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware, USA
| | - Jennifer Walsh
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA
| | - Brian J. Olsen
- Ecology and Environmental Sciences Program and Climate Change Institute, University of Maine, Orono, Maine, USA
| |
Collapse
|
40
|
Lewis JS, Farnsworth ML, Burdett CL, Theobald DM, Gray M, Miller RS. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci Rep 2017; 7:44152. [PMID: 28276519 PMCID: PMC5343451 DOI: 10.1038/srep44152] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/03/2017] [Indexed: 12/02/2022] Open
Abstract
Biotic and abiotic factors are increasingly acknowledged to synergistically shape broad-scale species distributions. However, the relative importance of biotic and abiotic factors in predicting species distributions is unclear. In particular, biotic factors, such as predation and vegetation, including those resulting from anthropogenic land-use change, are underrepresented in species distribution modeling, but could improve model predictions. Using generalized linear models and model selection techniques, we used 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents to evaluate the relative importance, magnitude, and direction of biotic and abiotic factors in predicting population density of an invasive large mammal with a global distribution. Incorporating diverse biotic factors, including agriculture, vegetation cover, and large carnivore richness, into species distribution modeling substantially improved model fit and predictions. Abiotic factors, including precipitation and potential evapotranspiration, were also important predictors. The predictive map of population density revealed wide-ranging potential for an invasive large mammal to expand its distribution globally. This information can be used to proactively create conservation/management plans to control future invasions. Our study demonstrates that the ongoing paradigm shift, which recognizes that both biotic and abiotic factors shape species distributions across broad scales, can be advanced by incorporating diverse biotic factors.
Collapse
Affiliation(s)
- Jesse S. Lewis
- Conservation Science Partners, 5 Old Town Sq, Suite 205, Fort Collins, Colorado, 80524, USA
| | - Matthew L. Farnsworth
- Conservation Science Partners, 5 Old Town Sq, Suite 205, Fort Collins, Colorado, 80524, USA
| | - Chris L. Burdett
- Colorado State University, Department of Biology, Fort Collins, Colorado, 80524, USA
| | - David M. Theobald
- Conservation Science Partners, 5 Old Town Sq, Suite 205, Fort Collins, Colorado, 80524, USA
| | - Miranda Gray
- Conservation Science Partners, 11050 Pioneer Trail, Suite 202, Truckee, California, 96161, USA
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Center for Epidemiology and Animal Health, Fort Collins, Colorado, 80524, USA
| |
Collapse
|
41
|
Canham CD, Murphy L. The demography of tree species response to climate: sapling and canopy tree survival. Ecosphere 2017. [DOI: 10.1002/ecs2.1701] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Charles D. Canham
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| | - Lora Murphy
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| |
Collapse
|
42
|
Putnam RC, Reich PB. Climate and competition affect growth and survival of transplanted sugar maple seedlings along a 1700-km gradient. ECOL MONOGR 2017. [DOI: 10.1002/ecm.1237] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rachel C. Putnam
- Department of Ecology, Evolution, and Behavior; University of Minnesota; 1987 Upper Buford Circle St. Paul Minnesota 55108 USA
| | - Peter B. Reich
- Department of Forest Resources; University of Minnesota; 1530 Cleveland Avenue North St. Paul Minnesota 55108 USA
- Hawkesbury Institute for the Environment; Western Sydney University; Penrith New South Wales 2753 Australia
| |
Collapse
|
43
|
Micheletti SJ, Storfer A. An approach for identifying cryptic barriers to gene flow that limit species' geographic ranges. Mol Ecol 2016; 26:490-504. [DOI: 10.1111/mec.13939] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/27/2016] [Accepted: 11/14/2016] [Indexed: 01/04/2023]
Affiliation(s)
| | - Andrew Storfer
- School of Biological Sciences Washington State University Pullman WA 99164 USA
| |
Collapse
|
44
|
Hart LA, Downs CT, Brown M. Keeping it regular: Development of thermoregulation in four tropical seabird species. J Therm Biol 2016; 64:19-25. [PMID: 28166941 DOI: 10.1016/j.jtherbio.2016.12.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/06/2016] [Accepted: 12/06/2016] [Indexed: 10/20/2022]
Abstract
The thermoregulatory capacity of a species can determine which climatic niche it occupies. Its development in avian chicks is influenced by numerous factors. Furthermore, it is suggested that altricial chicks develop their thermoregulatory capacity post-hatching, while precocial chicks develop aspects of this in the egg. We investigated the development of thermoregulation of four co-occurring seabird species in the Seychelles; namely white, ground-nesting white-tailed tropicbirds (Phaethon lepturus) and tree-nesting fairy terns (Gygis alba); and dark plumaged, tree-nesting lesser noddies (Anous tenuirostris) and ground- and tree-nesting brown noddies (A. stolidus). White-tailed tropicbirds have semi-altricial chicks, while the remaining species have semi-precocial chicks. Cloacal temperatures (Tb) were measured at five day intervals from newly hatched chicks and compared over time, and with adult Tbs. Initial Tbs of all chicks, except fairy terns, were lower than those taken when chicks were older. Brooding cessation generally coincided with feather development, as did an increase in Tb. Mean chick Tb was significantly lower than mean adult Tb for all species, but only white-tailed tropicbird and brown noddy chicks in tree nests differed significantly from mean adult Tb when chick Tb at five day intervals were considered. There was a significant interactive effect of nest site and age on brown noddy chick Tb, but chick colour did not have a significant effect on Tb. However, brown noddy chicks on dune crests maintained a constant Tb sooner than chicks in tree nests. Our results demonstrate that tropical seabird species have a more delayed onset of thermoregulatory capabilities when compared with those in temperate environments, perhaps as nest sites are less thermally challenging. Nest microhabitats and behavioural thermoregulation, are likely more important during early chick development for these species.
Collapse
Affiliation(s)
- Lorinda A Hart
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| | - Colleen T Downs
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg 3209, South Africa.
| | - Mark Brown
- School of Life Sciences, University of KwaZulu-Natal, P/Bag X01, Scottsville, Pietermaritzburg 3209, South Africa
| |
Collapse
|
45
|
de León-Girón G, Rodríguez-Estrella R, Ruiz-Campos G. Current distribution status of Golden Eagle (Aquila chrysaetos) in Northwestern Baja California, Mexico. REV MEX BIODIVERS 2016. [DOI: 10.1016/j.rmb.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
46
|
Canham CD, Murphy L. The demography of tree species response to climate: sapling and canopy tree growth. Ecosphere 2016. [DOI: 10.1002/ecs2.1474] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Charles D. Canham
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| | - Lora Murphy
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| |
Collapse
|
47
|
Yang R, Li S, Cai X, Li X, Christie P, Zhang J, Gai J. Responses of arbuscular mycorrhizal symbionts to contrasting environments: field evidence along a Tibetan elevation gradient. MYCORRHIZA 2016; 26:623-632. [PMID: 27095656 DOI: 10.1007/s00572-016-0701-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Plant adaptation to alpine ecosystems is not fully explained by plant physiological and morphological traits. Arbuscular mycorrhizal (AM) associations may be involved in mediating plant performance in response to environmental differences. Little is known, however, as to whether or not a close relationship exists between plant performance and arbuscular mycorrhizal fungus status across environmental gradients. We conducted a field investigation of the performance of six plant species and their associated AM fungi along higher and lower elevation gradients on Mount Segrila in Tibet. In most of our species, we observed higher shoot and inflorescence biomass production and a lower root-to-shoot ratio in the populations at those sites where the species was dominant (intermediate elevation sites) than in populations sampled at the limits of the distribution. The elevation pattern of root colonization differed with plant species on both gradients, and the extraradical hypha development of most species showed a unimodal pattern as did plant growth. The relationship between plant and fungus traits shows that AM fungus development generally matched host plant performance on the lower elevation gradient but not on the higher elevation gradient. This study provides evidence that plant distribution and productivity were significantly related to root and soil colonization by AM fungi, especially under less physically stressful conditions.
Collapse
Affiliation(s)
- Rong Yang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuming Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaobu Cai
- Tibet Agricultural and Animal Husbandry College, Tibet University, Linzhi, 860000, China
| | - Xiaolin Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Peter Christie
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Junling Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingping Gai
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
48
|
Trumbo DR, Epstein B, Hohenlohe PA, Alford RA, Schwarzkopf L, Storfer A. Mixed population genomics support for the central marginal hypothesis across the invasive range of the cane toad (Rhinella marina) in Australia. Mol Ecol 2016; 25:4161-76. [PMID: 27393238 PMCID: PMC5021610 DOI: 10.1111/mec.13754] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 12/26/2022]
Abstract
Understanding factors that cause species' geographic range limits is a major focus in ecology and evolution. The central marginal hypothesis (CMH) predicts that species cannot adapt to conditions beyond current geographic range edges because genetic diversity decreases from core to edge due to smaller, more isolated edge populations. We employed a population genomics framework using 24 235-33 112 SNP loci to test major predictions of the CMH in the ongoing invasion of the cane toad (Rhinella marina) in Australia. Cane toad tissue samples were collected along broad-scale, core-to-edge transects across their invasive range. Geographic and ecological core areas were identified using GIS and habitat suitability indices from ecological niche modelling. Bayesian clustering analyses revealed three genetic clusters, in the northwest invasion-front region, northeast precipitation-limited region and southeast cold temperature-limited region. Core-to-edge patterns of genetic diversity and differentiation were consistent with the CMH in the southeast, but were not supported in the northeast and showed mixed support in the northwest. Results suggest cold temperatures are a likely contributor to southeastern range limits, consistent with CMH predictions. In the northeast and northwest, ecological processes consisting of a steep physiological barrier and ongoing invasion dynamics, respectively, are more likely explanations for population genomic patterns than the CMH.
Collapse
Affiliation(s)
- Daryl R. Trumbo
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Brendan Epstein
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| | - Paul A. Hohenlohe
- University of Idaho; Department of Biological Sciences; Life Sciences South 252; Moscow, ID 83844, USA
| | - Ross A. Alford
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Lin Schwarzkopf
- James Cook University; College of Marine and Environmental Sciences; Building 28; Townsville, QLD 4811, Australia
| | - Andrew Storfer
- Washington State University; School of Biological Sciences; Abelson Hall, Room 305; Pullman, WA 990164, USA
| |
Collapse
|
49
|
Cherry SG, Derocher AE, Lunn NJ. Habitat-mediated timing of migration in polar bears: an individual perspective. Ecol Evol 2016; 6:5032-42. [PMID: 27547331 PMCID: PMC4979725 DOI: 10.1002/ece3.2233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/27/2022] Open
Abstract
Migration phenology is largely determined by how animals respond to seasonal changes in environmental conditions. Our perception of the relationship between migratory behavior and environmental cues can vary depending on the spatial scale at which these interactions are measured. Understanding the behavioral mechanisms behind population‐scale movements requires knowledge of how individuals respond to local cues. We show how time‐to‐event models can be used to predict what factors are associated with the timing of an individual's migratory behavior using data from GPS collared polar bears (Ursus maritimus) that move seasonally between sea ice and terrestrial habitats. We found the concentration of sea ice that bears experience at a local level, along with the duration of exposure to these conditions, was most associated with individual migration timing. Our results corroborate studies that assume thresholds of >50% sea ice concentration are necessary for suitable polar bear habitat; however, continued periods (e.g., days to weeks) of exposure to suboptimal ice concentrations during seasonal melting were required before the proportion of bears migrating to land increased substantially. Time‐to‐event models are advantageous for examining individual movement patterns because they account for the idea that animals make decisions based on an accumulation of knowledge from the landscapes they move through and not simply the environment they are exposed to at the time of a decision. Understanding the migration behavior of polar bears moving between terrestrial and marine habitat, at multiple spatiotemporal scales, will be a major aspect of quantifying observed and potential demographic responses to climate‐induced environmental changes.
Collapse
Affiliation(s)
- Seth G Cherry
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| | - Andrew E Derocher
- Department of Biological Sciences University of Alberta Edmonton AB T6G 2E9 Canada
| | - Nicholas J Lunn
- Environment and Climate Change Canada University of Alberta CW405 Biological Sciences Building Edmonton AB T6G 2E9 Canada
| |
Collapse
|
50
|
Canham CD, Murphy L. The demography of tree species response to climate: seedling recruitment and survival. Ecosphere 2016. [DOI: 10.1002/ecs2.1424] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Charles D. Canham
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| | - Lora Murphy
- Cary Institute of Ecosystem Studies Box AB Millbrook New York 12545 USA
| |
Collapse
|