1
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Takamura N, Seo H, Ohta K. TET3 dioxygenase modulates gene conversion at the avian immunoglobulin variable region via demethylation of non-CpG sites in pseudogene templates. Genes Cells 2021; 26:121-135. [PMID: 33421268 PMCID: PMC7986818 DOI: 10.1111/gtc.12828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/20/2022]
Abstract
Diversification of the avian primary immunoglobulin (Ig) repertoire is achieved in developing B cells by somatic hypermutation (SHM) and gene conversion (GCV). GCV is a type of homologous recombination that unidirectionally transfers segments of Ig pseudogenes to Ig variable domains. It is regulated by epigenetic mechanisms like histone modifications, but the role of DNA methylation remains unclear. Here, we demonstrate that the chicken B‐cell line DT40 lacking TET3, a member of the TET (Ten‐eleven translocation) family dioxygenases that facilitate DNA demethylation, exhibited a marked reduction in GCV activity in Ig variable regions. This was accompanied by a drop in the bulk levels of 5‐hydroxymethylcytosine, an oxidized derivative of 5‐methylcytosine, whereas TET1‐deficient or TET2‐deficient DT40 strains did not exhibit such effects. Deletion of TET3 caused little effects on the expression of proteins required for SHM and GCV, but induced hypermethylation in some Ig pseudogene templates. Notably, the enhanced methylation occurred preferably on non‐CpG cytosines. Disruption of both TET1 and TET3 significantly inhibited the expression of activation‐induced cytidine deaminase (AID), an essential player in Ig diversification. These results uncover unique roles of TET proteins in avian Ig diversification, highlighting the potential importance of TET3 in maintaining hypomethylation In Ig pseudogenes.
Collapse
Affiliation(s)
- Natsuki Takamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Hidetaka Seo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Japan.,Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
3
|
Boller S, Ramamoorthy S, Akbas D, Nechanitzky R, Burger L, Murr R, Schübeler D, Grosschedl R. Pioneering Activity of the C-Terminal Domain of EBF1 Shapes the Chromatin Landscape for B Cell Programming. Immunity 2016; 44:527-541. [PMID: 26982363 DOI: 10.1016/j.immuni.2016.02.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 11/03/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022]
Abstract
Lymphopoiesis requires the activation of lineage-specific genes embedded in naive, inaccessible chromatin or in primed, accessible chromatin. The mechanisms responsible for de novo gain of chromatin accessibility, known as "pioneer" function, remain poorly defined. Here, we showed that the EBF1 C-terminal domain (CTD) is required for the regulation of a specific gene set involved in B cell fate decision and differentiation, independently of activation and repression functions. Using genome-wide analysis of DNaseI hypersensitivity and DNA methylation in multipotent Ebf1(-/-) progenitors and derivative EBF1wt- or EBF1ΔC-expressing cells, we found that the CTD promoted chromatin accessibility and DNA demethylation in previously naive chromatin. The CTD allowed EBF1 to bind at inaccessible genomic regions that offer limited co-occupancy by other transcription factors, whereas the CTD was dispensable for EBF1 binding at regions that are occupied by multiple transcription factors. Thus, the CTD enables EBF1 to confer permissive lineage-specific changes in progenitor chromatin landscape.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Duygu Akbas
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Robert Nechanitzky
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lukas Burger
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Rabih Murr
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Dirk Schübeler
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
4
|
Histone reader BRWD1 targets and restricts recombination to the Igk locus. Nat Immunol 2015; 16:1094-103. [PMID: 26301565 PMCID: PMC4575638 DOI: 10.1038/ni.3249] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 12/12/2022]
Abstract
B lymphopoiesis requires that immunoglobulin genes be accessible to the RAG1-RAG2 recombinase. However, the RAG proteins bind widely to open chromatin suggesting that additional mechanisms must restrict RAG-mediated DNA cleavage. Here, we demonstrate developmental downregulation of interleukin 7 (IL-7) receptor signaling in small pre-B cells induced expression of the bromodomain family member BRWD1, which was recruited to a specific epigenetic landscape at Igk dictated by pre-BCR-dependent Erk activation. BRWD1 enhanced RAG recruitment, increased gene accessibility and positioned nucleosomes 5′ to each Jκ recombination signal sequence. BRWD1 thus targets recombination to Igk and places recombination within the context of signaling cascades that control B cell development. Our findings provide a paradigm in which, at any particular antigen receptor locus, specialized mechanisms enforce lineage and stage specific recombination.
Collapse
|
5
|
Proudhon C, Hao B, Raviram R, Chaumeil J, Skok JA. Long-Range Regulation of V(D)J Recombination. Adv Immunol 2015; 128:123-82. [PMID: 26477367 DOI: 10.1016/bs.ai.2015.07.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Given their essential role in adaptive immunity, antigen receptor loci have been the focus of analysis for many years and are among a handful of the most well-studied genes in the genome. Their investigation led initially to a detailed knowledge of linear structure and characterization of regulatory elements that confer control of their rearrangement and expression. However, advances in DNA FISH and imaging combined with new molecular approaches that interrogate chromosome conformation have led to a growing appreciation that linear structure is only one aspect of gene regulation and in more recent years, the focus has switched to analyzing the impact of locus conformation and nuclear organization on control of recombination. Despite decades of work and intense effort from numerous labs, we are still left with an incomplete picture of how the assembly of antigen receptor loci is regulated. This chapter summarizes our advances to date and points to areas that need further investigation.
Collapse
Affiliation(s)
- Charlotte Proudhon
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Bingtao Hao
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Ramya Raviram
- Department of Pathology, New York University School of Medicine, New York, USA
| | - Julie Chaumeil
- Institut Curie, CNRS UMR3215, INSERM U934, Paris, France
| | - Jane A Skok
- Department of Pathology, New York University School of Medicine, New York, USA.
| |
Collapse
|
6
|
The 3'-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells. PLoS One 2015; 10:e0132856. [PMID: 26177549 PMCID: PMC4503570 DOI: 10.1371/journal.pone.0132856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 06/18/2015] [Indexed: 11/19/2022] Open
Abstract
Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive.
Collapse
|
7
|
The proximal J kappa germline-transcript promoter facilitates receptor editing through control of ordered recombination. PLoS One 2015; 10:e0113824. [PMID: 25559567 PMCID: PMC4283955 DOI: 10.1371/journal.pone.0113824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/31/2014] [Indexed: 12/31/2022] Open
Abstract
V(D)J recombination creates antibody light chain diversity by joining a Vκ gene segment with one of four Jκ segments. Two Jκ germline-transcript (GT) promoters control Vκ-Jκ joining, but the mechanisms that govern Jκ choice are unclear. Here, we show in gene-targeted mice that the proximal GT promoter helps targeting rearrangements to Jκ1 by preventing premature DNA breaks at Jκ2. Consequently, cells lacking the proximal GT promoter show a biased utilization of downstream Jκ segments, resulting in a diminished potential for receptor editing. Surprisingly, the proximal—in contrast to the distal—GT promoter is transcriptionally inactive prior to Igκ recombination, indicating that its role in Jκ choice is independent of classical promoter function. Removal of the proximal GT promoter increases H3K4me3 levels at Jκ segments, suggesting that this promoter could act as a suppressor of recombination by limiting chromatin accessibility to RAG. Our findings identify the first cis-element critical for Jκ choice and demonstrate that ordered Igκ recombination facilitates receptor editing.
Collapse
|
8
|
Buchner M, Swaminathan S, Chen Z, Müschen M. Mechanisms of pre-B-cell receptor checkpoint control and its oncogenic subversion in acute lymphoblastic leukemia. Immunol Rev 2015; 263:192-209. [PMID: 25510278 DOI: 10.1111/imr.12235] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pre-B cells within the bone marrow represent the normal counterpart for most acute lymphoblastic leukemia (ALL). During normal early B-cell development, survival and proliferation signals are dominated by cytokines, particularly interleukin-7 (IL-7) for murine developing B cells. With expression of a functional pre-B-cell receptor (BCR), cytokine signaling is attenuated and the tonic/autonomous pre-BCR signaling pathway provides proliferation as well as differentiation signals. In this review, we first describe checkpoint mechanisms during normal B-cell development and then discuss how genetic lesions in these pathways function as oncogenic mimicries and allow transformed pre-B cells to bypass checkpoint control. We focus on cytokine receptor signaling that is mimicked by activating lesions in receptor subunits or downstream mediators as well as aberrant activation of non-B lymphoid cytokine receptors. Furthermore, we describe the molecular switch from cytokine receptor to pre-BCR signaling, how this pathway is of particular importance for certain ALL subtypes, and how pre-BCR signaling is engaged by genetic lesions, such as BCR-ABL1. We discuss the transcriptional control mechanisms downstream of both cytokine- and pre-BCR signaling and how normal checkpoint control mechanisms are circumvented in pre-B ALL. Finally, we highlight new therapeutic concepts for targeted inhibition of oncogenic cytokine or pre-BCR signaling pathways.
Collapse
Affiliation(s)
- Maike Buchner
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | | | | |
Collapse
|
9
|
de Almeida CR, Hendriks RW, Stadhouders R. Dynamic Control of Long-Range Genomic Interactions at the Immunoglobulin κ Light-Chain Locus. Adv Immunol 2015; 128:183-271. [DOI: 10.1016/bs.ai.2015.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Stadhouders R, de Bruijn MJW, Rother MB, Yuvaraj S, de Almeida CR, Kolovos P, Van Zelm MC, van Ijcken W, Grosveld F, Soler E, Hendriks RW. Pre-B cell receptor signaling induces immunoglobulin κ locus accessibility by functional redistribution of enhancer-mediated chromatin interactions. PLoS Biol 2014; 12:e1001791. [PMID: 24558349 PMCID: PMC3928034 DOI: 10.1371/journal.pbio.1001791] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022] Open
Abstract
Chromatin conformation analyses provide novel insights into how variable segments in the immunoglobulin light chain gene become accessible for recombination in precursor B lymphocytes. During B cell development, the precursor B cell receptor (pre-BCR) checkpoint is thought to increase immunoglobulin κ light chain (Igκ) locus accessibility to the V(D)J recombinase. Accordingly, pre-B cells lacking the pre-BCR signaling molecules Btk or Slp65 showed reduced germline Vκ transcription. To investigate whether pre-BCR signaling modulates Vκ accessibility through enhancer-mediated Igκ locus topology, we performed chromosome conformation capture and sequencing analyses. These revealed that already in pro-B cells the κ enhancers robustly interact with the ∼3.2 Mb Vκ region and its flanking sequences. Analyses in wild-type, Btk, and Slp65 single- and double-deficient pre-B cells demonstrated that pre-BCR signaling reduces interactions of both enhancers with Igκ locus flanking sequences and increases interactions of the 3′κ enhancer with Vκ genes. Remarkably, pre-BCR signaling does not significantly affect interactions between the intronic enhancer and Vκ genes, which are already robust in pro-B cells. Both enhancers interact most frequently with highly used Vκ genes, which are often marked by transcription factor E2a. We conclude that the κ enhancers interact with the Vκ region already in pro-B cells and that pre-BCR signaling induces accessibility through a functional redistribution of long-range chromatin interactions within the Vκ region, whereby the two enhancers play distinct roles. B lymphocyte development involves the generation of a functional antigen receptor, comprising two heavy chains and two light chains arranged in a characteristic “Y” shape. To do this, the receptor genes must first be assembled by ordered genomic recombination events, starting with the immunoglobulin heavy chain (IgH) gene segments. On successful rearrangement, the resulting IgH μ protein is presented on the cell surface as part of a preliminary version of the B cell receptor—the “pre-BCR.” Pre-BCR signaling then redirects recombination activity to the immunoglobulin κ light chain gene. The activity of two regulatory κ enhancer elements is known to be crucial for opening up the gene, but it remains largely unknown how the hundred or so Variable (V) segments in the κ locus gain access to the recombination system. Here, we studied a panel of pre-B cells from mice lacking specific signaling molecules, reflecting absent, partial, or complete pre-BCR signaling. We identify gene regulatory changes that are dependent on pre-BCR signaling and occur via long-range chromatin interactions between the κ enhancers and the V segments. Surprisingly the light chain gene initially contracts, but the interactions then become more functionally redistributed when pre-BCR signaling occurs. Interestingly, we find that the two enhancers play distinct roles in the process of coordinating chromatin interactions towards the V segments. Our study combines chromatin conformation techniques with data on transcription factor binding to gain unique insights into the functional role of chromatin dynamics.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly
- Enhancer Elements, Genetic
- Epistasis, Genetic
- Histones/metabolism
- Immunoglobulin kappa-Chains/genetics
- Immunoglobulin kappa-Chains/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Precursor Cells, B-Lymphoid/metabolism
- Protein Processing, Post-Translational
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction
- Transcriptome
- V(D)J Recombination
Collapse
Affiliation(s)
| | | | | | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
| | | | - Petros Kolovos
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
| | | | | | - Frank Grosveld
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
| | - Eric Soler
- Department of Cell Biology, Erasmus MC Rotterdam, The Netherlands
- The Cancer Genomics Center, Erasmus MC Rotterdam, The Netherlands
- INSERM UMR967 and French Alternative Energies and Atomic Energy Commission (CEA), Fontenay-aux-Roses, France
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
11
|
Orchestrating B cell lymphopoiesis through interplay of IL-7 receptor and pre-B cell receptor signalling. Nat Rev Immunol 2013; 14:69-80. [PMID: 24378843 DOI: 10.1038/nri3570] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of B cells is dependent on the sequential DNA rearrangement of immunoglobulin loci that encode subunits of the B cell receptor. The pathway navigates a crucial checkpoint that ensures expression of a signalling-competent immunoglobulin heavy chain before commitment to rearrangement and expression of an immunoglobulin light chain. The checkpoint segregates proliferation of pre-B cells from immunoglobulin light chain recombination and their differentiation into B cells. Recent advances have revealed the molecular circuitry that controls two rival signalling systems, namely the interleukin-7 (IL-7) receptor and the pre-B cell receptor, to ensure that proliferation and immunoglobulin recombination are mutually exclusive, thereby maintaining genomic integrity during B cell development.
Collapse
|
12
|
Bevington S, Boyes J. Transcription-coupled eviction of histones H2A/H2B governs V(D)J recombination. EMBO J 2013; 32:1381-92. [PMID: 23463099 PMCID: PMC3655464 DOI: 10.1038/emboj.2013.42] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
Initiation of V(D)J recombination critically relies on the formation of an accessible chromatin structure at recombination signal sequences (RSSs) but how this accessibility is generated is poorly understood. Immunoglobulin light-chain loci normally undergo recombination in pre-B cells. We show here that equipping (earlier) pro-B cells with the increased pre-B-cell levels of just one transcription factor, IRF4, triggers the entire cascade of events leading to premature light-chain recombination. We then used this finding to dissect the critical events that generate RSS accessibility and show that the chromatin modifications previously associated with recombination are insufficient. Instead, we establish that non-coding transcription triggers IgL RSS accessibility and find that the accessibility is transient. Transcription transiently evicts H2A/H2B dimers, releasing 35-40 bp of nucleosomal DNA, and we demonstrate that H2A/H2B loss can explain the RSS accessibility observed in vivo. We therefore propose that the transcription-mediated eviction of H2A/H2B dimers is an important mechanism that makes RSSs accessible for the initiation of recombination.
Collapse
Affiliation(s)
- Sarah Bevington
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joan Boyes
- Institute of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
13
|
Pan X, Papasani M, Hao Y, Calamito M, Wei F, Quinn Iii WJ, Basu A, Wang J, Hodawadekar S, Zaprazna K, Liu H, Shi Y, Allman D, Cancro M, Atchison ML. YY1 controls Igκ repertoire and B-cell development, and localizes with condensin on the Igκ locus. EMBO J 2013; 32:1168-82. [PMID: 23531880 DOI: 10.1038/emboj.2013.66] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/11/2013] [Indexed: 12/25/2022] Open
Abstract
Conditional knock-out (KO) of Polycomb Group (PcG) protein YY1 results in pro-B cell arrest and reduced immunoglobulin locus contraction needed for distal variable gene rearrangement. The mechanisms that control these crucial functions are unknown. We deleted the 25 amino-acid YY1 REPO domain necessary for YY1 PcG function, and used this mutant (YY1ΔREPO), to transduce bone marrow from YY1 conditional KO mice. While wild-type YY1 rescued B-cell development, YY1ΔREPO failed to rescue the B-cell lineage yielding reduced numbers of B lineage cells. Although the IgH rearrangement pattern was normal, there was a selective impact at the Igκ locus that showed a dramatic skewing of the expressed Igκ repertoire. We found that the REPO domain interacts with proteins from the condensin and cohesin complexes, and that YY1, EZH2 and condensin proteins co-localize at numerous sites across the Ig kappa locus. Knock-down of a condensin subunit protein or YY1 reduced rearrangement of Igκ Vκ genes suggesting a direct role for YY1-condensin complexes in Igκ locus structure and rearrangement.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiang Y, Park SK, Garrard WT. Vκ gene repertoire and locus contraction are specified by critical DNase I hypersensitive sites within the Vκ-Jκ intervening region. THE JOURNAL OF IMMUNOLOGY 2013; 190:1819-26. [PMID: 23296705 DOI: 10.4049/jimmunol.1203127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The processes of Ig gene locus contraction and looping during V(D)J-recombination are essential for creating a diverse Ab repertoire. However, no cis-acting sequence that plays a major role in specifying locus contraction has been uncovered within the Igκ gene locus. In this article, we demonstrate that a 650-bp sequence corresponding to DNase I hypersensitive sites HS1-2 within the mouse Igκ gene V-J intervening region binds CCCTC-binding factor and specifies locus contraction and long-range Vκ gene usage spanning 3.2 Mb in pre-B cells. We call this novel element Cer (for "contracting element for recombination"). Targeted deletion of Cer caused markedly increased proximal and greatly diminished upstream Vκ gene usage, higher allele usage, more splenic Igκ(+) B cells, and nonlineage-specific Igκ rearrangement in T cells. Relative to wild-type mice, Cer-deletion mice exhibited similar levels of Vκ gene germline transcription and H3K4me3 epigenetic marks but displayed a dramatic decrease in locus contraction in pre-B cells. Thus, our studies demonstrate that DNase I hypersensitive sites HS1-2 within the Vκ-Jκ intervening region are essential for controlling locus contraction and creating a diverse Ab repertoire.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | | | |
Collapse
|
15
|
Extensive gene-specific translational reprogramming in a model of B cell differentiation and Abl-dependent transformation. PLoS One 2012; 7:e37108. [PMID: 22693568 PMCID: PMC3365017 DOI: 10.1371/journal.pone.0037108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 04/15/2012] [Indexed: 01/19/2023] Open
Abstract
To what extent might the regulation of translation contribute to differentiation programs, or to the molecular pathogenesis of cancer? Pre-B cells transformed with the viral oncogene v-Abl are suspended in an immortalized, cycling state that mimics leukemias with a BCR-ABL1 translocation, such as Chronic Myelogenous Leukemia (CML) and Acute Lymphoblastic Leukemia (ALL). Inhibition of the oncogenic Abl kinase with imatinib reverses transformation, allowing progression to the next stage of B cell development. We employed a genome-wide polysome profiling assay called Gradient Encoding to investigate the extent and potential contribution of translational regulation to transformation and differentiation in v-Abl-transformed pre-B cells. Over half of the significantly translationally regulated genes did not change significantly at the level of mRNA abundance, revealing biology that might have been missed by measuring changes in transcript abundance alone. We found extensive, gene-specific changes in translation affecting genes with known roles in B cell signaling and differentiation, cancerous transformation, and cytoskeletal reorganization potentially affecting adhesion. These results highlight a major role for gene-specific translational regulation in remodeling the gene expression program in differentiation and malignant transformation.
Collapse
|
16
|
Sakamoto S, Wakae K, Anzai Y, Murai K, Tamaki N, Miyazaki M, Miyazaki K, Romanow WJ, Ikawa T, Kitamura D, Yanagihara I, Minato N, Murre C, Agata Y. E2A and CBP/p300 Act in Synergy To Promote Chromatin Accessibility of the Immunoglobulin κ Locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:5547-60. [DOI: 10.4049/jimmunol.1002346] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Zhou X, Xiang Y, Ding X, Garrard WT. A new hypersensitive site, HS10, and the enhancers, E3' and Ed, differentially regulate Igκ gene expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2722-32. [PMID: 22323542 PMCID: PMC3294001 DOI: 10.4049/jimmunol.1102758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mouse Igκ gene locus has three known transcriptional enhancers: an intronic enhancer (Ei), a 3' enhancer (E3'), and a further downstream enhancer (Ed). We previously discovered, using the chromosome conformation-capture technique, that Ei and E3' interact with a novel DNA sequence near the 3' end of the Igκ locus, specifically in B cells. In the present investigation, we examined the function of this far downstream element. The sequence is evolutionarily conserved and exhibits a plasmacytoma cell-specific DNase I-hypersensitive site in chromatin, henceforth termed HS10 in the locus. HS10 acts as a coactivator of E3' in transient transfection assays. Although HS10(-/-) mice exhibited normal patterns of B cell development, they were tested further along with E3'(-/-) and Ed(-/-) mice for their Igκ expression levels in plasma cells, as well as for both allelic and isotype exclusion in splenic B cells. HS10(-/-) and Ed(-/-), but not E3'(-/-), mice exhibited 2.5-fold lower levels of Igκ expression in antigenically challenged plasma cells. E3'(-/-) mice, but not HS10(-/-) mice, exhibited impaired IgL isotype and allelic exclusion in splenic B cells. We have suggestive results that Ed may also weakly participate in these processes. In addition, HS10(-/-) mice no longer exhibited regional chromosome interactions with E3', and they exhibited modestly reduced somatic hypermutation in the Jκ-Cκ intronic region in germinal center B cells from Peyer's patches. We conclude that the HS10, E3', and Ed differentially regulate Igκ gene dynamics.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
- Department of Microbiology and Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China
| | - Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| | - Xiaoling Ding
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| | - William T. Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| |
Collapse
|
18
|
Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat Immunol 2011; 12:1212-20. [PMID: 22037603 PMCID: PMC3233979 DOI: 10.1038/ni.2136] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/09/2011] [Indexed: 12/11/2022]
Abstract
During B lymphopoiesis, recombination of the locus encoding the immunoglobulin κ-chain complex (Igk) requires expression of the precursor to the B cell antigen receptor (pre-BCR) and escape from signaling via the interleukin 7 receptor (IL-7R). By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that a STAT5 tetramer bound the Igk intronic enhancer (E(κi)), which led to recruitment of the histone methyltransferase Ezh2. Ezh2 marked trimethylation of histone H3 at Lys27 (H3K27me3) throughout the κ-chain joining region (J(κ)) to the κ-chain constant region (C(κ)). In the absence of Ezh2, IL-7 failed to repress Igk germline transcription. H3K27me3 modifications were lost after termination of IL-7R-STAT5 signaling, and the transcription factor E2A bound E(κi), which resulted in acquisition of H3K4me1 and acetylated histone H4 (H4Ac). Genome-wide analyses showed a STAT5 tetrameric binding motif associated with transcriptional repression. Our data demonstrate how IL-7R signaling represses Igk germline transcription and provide a general model for STAT5-mediated epigenetic transcriptional repression.
Collapse
|
19
|
Abstract
Lymphopoiesis generates mature B, T, and NK lymphocytes from hematopoietic stem cells via a series of increasingly restricted developmental intermediates. The transcriptional networks that regulate these fate choices are composed of both common and lineage-specific components, which combine to create a cellular context that informs the developmental response to external signals. E proteins are an important factor during lymphopoiesis, and E2A in particular is required for normal T- and B-cell development. Although the other E proteins, HEB and E2-2, are expressed during lymphopoiesis and can compensate for some of E2A's activity, E2A proteins have non-redundant functions during early T-cell development and at multiple checkpoints throughout B lymphopoiesis. More recently, a role for E2A has been demonstrated in the generation of lymphoid-primed multipotent progenitors and shown to favor their specification toward lymphoid over myeloid lineages. This review summarizes both our current understanding of the wide-ranging functions of E proteins during the development of adaptive lymphocytes and the novel functions of E2A in orchestrating a lymphoid-biased cellular context in early multipotent progenitors.
Collapse
Affiliation(s)
- Renée F de Pooter
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
20
|
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251-63. [PMID: 21394103 DOI: 10.1038/nri2941] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are regulated by the chromatin structure and architecture of antigen receptor genes. These advances suggest novel mechanisms for both the targeting and the mistargeting of V(D)J recombination, and have implications for how these events contribute to genome instability and lymphoid malignancy.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
21
|
Zhou X, Xiang Y, Garrard WT. The Igκ gene enhancers, E3' and Ed, are essential for triggering transcription. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:7544-52. [PMID: 21076060 PMCID: PMC3059262 DOI: 10.4049/jimmunol.1002665] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mouse Igκ gene locus has three known transcriptional enhancers: an intronic enhancer (Ei), a 3' enhancer (E3'), and a further downstream enhancer (Ed). Previous studies on B lymphocytes derived from mutant embryonic stem cells have shown that deletion of either Ei or E3' significantly reduces Igκ gene rearrangement, whereas the combined deletion of both Ei and E3' eliminates such recombination. Furthermore, deletion of either E3' or Ed significantly reduces rearranged Igκ gene transcription. To determine whether the combined presence of both E3' and Ed are essential for Igκ gene expression, we generated homozygous double knockout (DKO) mice with targeted deletions in both elements. Significantly, homozygous DKO mice were unable to generate κ(+) B cells both in bone marrow and the periphery and exhibited surface expression almost exclusively of Igλ-chains, despite the fact that they possessed potentially functional rearranged Igκ genes. Compared with their single-enhancer-deleted counterparts, Igκ loci in homozygous DKO mice exhibited dramatically reduced germline and rearranged gene transcription, lower levels of gene rearrangement and histone H3 acetylation, and markedly increased DNA methylation. This contributed to a partial developmental block at the pre-B cell stage of development. We conclude that the two downstream enhancers are essential in Igκ gene expression and that Ei in homozygous DKO mice is incapable of triggering Igκ gene transcription. Furthermore, these results reveal unexpected compensatory roles for Ed in E3' knockout mice in triggering germline transcription and Vκ gene rearrangements to both Jκ and RS elements.
Collapse
Affiliation(s)
- Xiaorong Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
- Department of Microbiology and Immunology, Medical School of Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, PR China
| | - Yougui Xiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| | - William T. Garrard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9148
| |
Collapse
|
22
|
Sikes ML, McMillan RE, Bradshaw JM. The center of accessibility: Dβ control of V(D)J recombination. Arch Immunol Ther Exp (Warsz) 2010; 58:427-33. [PMID: 20890731 DOI: 10.1007/s00005-010-0101-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/23/2010] [Indexed: 12/26/2022]
Abstract
Developmental patterning of antigen receptor gene assembly in lymphocyte precursors correlates with decondensation of the chromatin surrounding individual gene segments. Ongoing V(D)J recombination is associated with hyperacetylation of histones H3 and H4 and the expression of sterile germline transcripts across the region of recombinational accessibility. Likewise, histone acetyltransferase and SWI/SNF chromatin remodeling complexes each appear to be required for recombination, and the PHD-finger of RAG-2 preferentially associates with recombination signal sequence (RSS) chromatin that contains H3 trimethylated on lysine 4. However, the regulatory mechanisms that direct chromatin alteration and rearrangement have proven elusive, due in large part to the interdependency of individual stages in gene activation, our limited understanding of functional significance of changes to the histone code, and the difficulty of modeling recombinational accessibility in existing experimental systems. Examining Tcrb assembly in developing thymocytes, we review the central roles of RSS elements and germline promoters as foci for epigenetic reorganization of recombinationally accessible gene segments in light of recent findings and persistent questions.
Collapse
Affiliation(s)
- Michael L Sikes
- Department of Microbiology, North Carolina State University, 100 Derieux Place, Campus Box 7615, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
23
|
Gray KS, Forrest JC, Speck SH. The de novo methyltransferases DNMT3a and DNMT3b target the murine gammaherpesvirus immediate-early gene 50 promoter during establishment of latency. J Virol 2010; 84:4946-59. [PMID: 20200245 PMCID: PMC2863815 DOI: 10.1128/jvi.00060-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022] Open
Abstract
The role of epigenetic modifications in the regulation of gammaherpesvirus latency has been a subject of active study for more than 20 years. DNA methylation, associated with transcriptional silencing in mammalian genomes, has been shown to be an important mechanism in the transcriptional control of several key gammaherpesvirus genes. In particular, DNA methylation of the functionally conserved immediate-early replication and transcription activator (RTA) has been shown to regulate Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus Rta expression. Here we demonstrate that the murine gammaherpesvirus (MHV68) homolog, encoded by gene 50, is also subject to direct repression by DNA methylation, both in vitro and in vivo. We observed that the treatment of latently MHV68-infected B-cell lines with a methyltransferase inhibitor induced virus reactivation. In addition, we show that the methylation of the recently characterized distal gene 50 promoter represses activity in a murine macrophage cell line. To evaluate the role of de novo methyltransferases (DNMTs) in the establishment of these methylation marks, we infected mice in which conditional DNMT3a and DNMT3b alleles were selectively deleted in B lymphocytes. DNMT3a/DNMT3b-deficient B cells were phenotypically normal, displaying no obvious compromise in cell surface marker expression or antibody production either in naïve mice or in the context of nonviral and viral immunogens. However, mice lacking functional DNMT3a and DNMT3b in B cells exhibited hallmarks of deregulated MHV68 lytic replication, including increased splenomegaly and the presence of infectious virus in the spleen at day 18 following infection. In addition, total gene 50 transcript levels were elevated in the spleens of these mice at day 18, which correlated with the hypomethylation of the distal gene 50 promoter. However, by day 42 postinfection, aberrant virus replication was resolved, and we observed wild-type frequencies of viral genome-positive splenocytes in mice lacking functional DNMT3a and DNMT3b in B lymphocytes. The latter correlated with increased CpG methylation in the distal gene 50 promoter, which was restored to levels similar to those of littermate controls harboring functional DNMT3a and DNMT3b alleles in B lymphocytes, suggesting the existence of an alternative mechanism for the de novo methylation of the MHV68 genome. Importantly, this DNMT3a/DNMT3b-independent methylation appeared to be targeted specifically to the gene 50 promoter, as we observed that the promoters for MHV68 gene 72 (v-cyclin) and M11 (v-bcl2) remained hypomethylated at day 42 postinfection. Taken together, these data provide the first evidence of the importance of DNA methylation in regulating gammaherpesvirus RTA/gene 50 transcription during virus infection in vivo and provide insight into the hierarchy of host machinery required to establish this modification.
Collapse
Affiliation(s)
- Kathleen S. Gray
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - J. Craig Forrest
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Samuel H. Speck
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
24
|
Ergen AV, Goodell MA. Mechanisms of hematopoietic stem cell aging. Exp Gerontol 2009; 45:286-90. [PMID: 20034552 DOI: 10.1016/j.exger.2009.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 01/05/2023]
Abstract
New blood cells are continually produced from the hematopoietic stem cells (HSCs) that reside in the bone marrow. Throughout the life-span of the organism, this stem cell reservoir sustains life. Although HSCs can persist in vivo longer than one life-span (Harrison et al., 1978), with aging, HSC regenerative potential diminishes and skewing from lymphopoiesis toward myelopoiesis occurs. The expansion in the HSC pool with aging provides sufficient, yet abnormal, blood production. Examination of gene expression changes in aged HSCs has provided a link between aging and genomic instability. Furthermore, studies on the effects of reactive oxygen species (ROS) on HSC aging has given more insight into the reasons for HSC failure. Understanding of the interactions between niche cells and HSCs and changes in them with aging, may give us insights into the lineage skewing phenotype observed in the aged, and also other immune dysfunctions.
Collapse
|
25
|
Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat Immunol 2009; 10:1110-7. [PMID: 19734904 DOI: 10.1038/ni.1785] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/27/2009] [Indexed: 12/12/2022]
Abstract
Signals through the pre-B cell antigen receptor (pre-BCR) and interleukin 7 receptor (IL-7R) coordinate pre-B cell population expansion with subsequent recombination of the locus encoding immunoglobulin kappa-chain (Igk). Although many 'downstream' effectors of each receptor are known, how they integrate to mediate development has remained unclear. Here we report that pre-BCR-mediated activation of the Ras-MEK-Erk signaling pathway silenced transcription of Ccnd3 (encoding cyclin D3) and coordinated exit from the cell cycle with induction of the transcription factor E2A and the initiation of Igk recombination. IL-7R-mediated activation of the transcription factor STAT5 opposed this pathway by promoting Ccnd3 expression and concomitantly inhibiting Igk transcription by binding to the Igk intronic enhancer and preventing E2A recruitment. Our data show how pre-BCR signaling poises pre-B cells to undergo differentiation after escape from IL-7R signaling.
Collapse
|
26
|
Liu Z, Ma Z, Terada LS, Garrard WT. Divergent roles of RelA and c-Rel in establishing chromosomal loops upon activation of the Igkappa gene. THE JOURNAL OF IMMUNOLOGY 2009; 183:3819-30. [PMID: 19710460 DOI: 10.4049/jimmunol.0901781] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Precise regulation of eukaryotic gene expression requires interactions between distal cis-acting regulatory sequences with the looping out of the intervening DNA, but how trans-acting regulatory proteins work to establish and maintain DNA loops during gene activation remains largely unexplored. LPS-induced transcription of the mouse Igkappa gene in B lymphocytes utilizes three distal enhancers and requires the transcription factor NF-kappaB, whose family members include RelA and c-Rel. Using chromosome conformation capture technology in combination with chromatin immunoprecipitation, here we demonstrate that LPS-induced Igkappa gene activation creates chromosomal loops by bridging together all three pairwise interactions between the distal enhancers and RNA polymerase II, the apparent molecular tie for the bases of these loops. RelA and actin polymerization are essential for triggering these processes, which do not require new transcription, protein synthesis, or c-Rel. We have thus identified both essential and nonessential events that establish higher order chromatin reorganization during Igkappa gene activation.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | |
Collapse
|
27
|
H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell 2009; 34:535-44. [PMID: 19524534 DOI: 10.1016/j.molcel.2009.05.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/31/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
The PHD finger of the RAG2 polypeptide of the RAG1/RAG2 complex binds to the histone H3 modification, trimethylated lysine 4 (H3K4me3), and in some manner increases V(D)J recombination. In the absence of biochemical studies of H3K4me3 on purified RAG enzyme activity, the precise role of H3K4me3 remains unclear. Here, we find that H3K4me3 stimulates purified RAG enzymatic activity at both the nicking (2- to 5-fold) and hairpinning (3- to 11-fold) steps of V(D)J recombination. Remarkably, this stimulation can be achieved with free H3K4me3 peptide (in trans), indicating that H3K4me3 functions via two distinct mechanisms. It not only tethers the RAG enzyme complex to a region of DNA, but it also induces a substantial increase in the catalytic turnover number (k(cat)) of the RAG complex. The H3K4me3 catalytic stimulation applies to suboptimal cryptic RSS sites located at H3K4me3 peaks that are critical in the inception of human T cell acute lymphoblastic lymphomas.
Collapse
|
28
|
Herzog S, Reth M, Jumaa H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 2009; 9:195-205. [PMID: 19240758 DOI: 10.1038/nri2491] [Citation(s) in RCA: 230] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pre-B-cell receptor (pre-BCR) is expressed following the productive recombination of the immunoglobulin heavy chain gene. Signals through the pre-BCR are required for initiating diverse processes in pre-B cells, including proliferation and recombination of the light chain gene, which eventually lead to the differentiation of pre-B cells to immature B cells. However, the molecular mechanisms by which the pre-BCR promotes these processes remain largely unresolved. Recent findings suggest that forkhead box O (FOXO) transcription factors connect pre-BCR signalling to the activation of the recombination machinery. In this Review, we discuss how FOXO transcription factors are regulated by the pre-BCR to allow the progression of the cell cycle and the recombination of the light chain gene.
Collapse
Affiliation(s)
- Sebastian Herzog
- Centre for Biological Signalling Studies, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
29
|
|
30
|
Johnson K, Reddy KL, Singh H. Molecular pathways and mechanisms regulating the recombination of immunoglobulin genes during B-lymphocyte development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 650:133-47. [PMID: 19731807 DOI: 10.1007/978-1-4419-0296-2_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hallmark of B-cell development is the ordered recombination of immunoglobulin (Ig) genes. Recently, considerable progress has been achieved in assembling gene regulatory networks comprised of signaling components and transcription factors that regulate B-cell development. In this chapter we synthesize experimental evidence to explain how such signaling pathways and transcription factors can orchestrate the ordered recombination of immunoglobulin (Ig) genes. Recombination of antigen-receptor loci is regulated both by the developmentally controlled expression of the Rag1 and Rag2 genes and the accessibility of particular loci and their gene segments to recombination. A new framework has emerged that invokes nuclear compartmentalization, large-scale chromatin dynamics and localized changes in chromatin structure in regulating the accessibility of Ig loci at specific stages of B-cell development. We review this emergent framework and discuss new experimental approaches that will be needed to explore the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Kristen Johnson
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
31
|
Biallelic, ubiquitous transcription from the distal germline Ig{kappa} locus promoter during B cell development. Proc Natl Acad Sci U S A 2008; 106:522-7. [PMID: 19116268 DOI: 10.1073/pnas.0808895106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Allelic exclusion of Ig gene expression is necessary to limit the number of functional receptors to one per B cell. The mechanism underlying allelic exclusion is unknown. Because germline transcription of Ig and TCR loci is tightly correlated with rearrangement, we created two novel knock-in mice that report transcriptional activity of the Jkappa germline promoters in the Igkappa locus. Analysis of these mice revealed that germline transcription is biallelic and occurs in all pre-B cells. Moreover, we found that the two germline promoters in this region are not equivalent but that the distal promoter accounts for the vast majority of observed germline transcript in pre-B cells while the activity of the proximal promoter increases later in development. Allelic exclusion of the Igkappa locus thus occurs at the level of rearrangement, but not germline transcription.
Collapse
|
32
|
Wang JH, Alt FW, Gostissa M, Datta A, Murphy M, Alimzhanov MB, Coakley KM, Rajewsky K, Manis JP, Yan CT. Oncogenic transformation in the absence of Xrcc4 targets peripheral B cells that have undergone editing and switching. ACTA ACUST UNITED AC 2008; 205:3079-90. [PMID: 19064702 PMCID: PMC2605230 DOI: 10.1084/jem.20082271] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nonhomologous end-joining (NHEJ) repairs DNA double-strand breaks (DSBs) during V(D)J recombination in developing lymphocytes and during immunoglobulin (Ig) heavy chain (IgH) class switch recombination (CSR) in peripheral B lymphocytes. We now show that CD21-cre–mediated deletion of the Xrcc4 NHEJ gene in p53-deficient peripheral B cells leads to recurrent surface Ig-negative B lymphomas (“CXP lymphomas”). Remarkably, CXP lymphomas arise from peripheral B cells that had attempted both receptor editing (secondary V[D]J recombination of Igκ and Igλ light chain genes) and IgH CSR subsequent to Xrcc4 deletion. Correspondingly, CXP tumors frequently harbored a CSR-based reciprocal chromosomal translocation that fused IgH to c-myc, as well as large chromosomal deletions or translocations involving Igκ or Igλ, with the latter fusing Igλ to oncogenes or to IgH. Our findings reveal peripheral B cells that have undergone both editing and CSR and show them to be common progenitors of CXP tumors. Our studies also reveal developmental stage-specific mechanisms of c-myc activation via IgH locus translocations. Thus, Xrcc4/p53-deficient pro–B lymphomas routinely activate c-myc by gene amplification, whereas Xrcc4/p53-deficient peripheral B cell lymphomas routinely ectopically activate a single c-myc copy.
Collapse
Affiliation(s)
- Jing H Wang
- Howard Hughes Medical Institute, Harvard Medical School, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Kuzin II, Bagaeva L, Young FM, Bottaro A. Requirement for enhancer specificity in immunoglobulin heavy chain locus regulation. THE JOURNAL OF IMMUNOLOGY 2008; 180:7443-50. [PMID: 18490744 DOI: 10.4049/jimmunol.180.11.7443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intronic Emicro enhancer has been implicated in IgH locus transcription, VDJ recombination, class switch recombination, and somatic hypermutation. How Emicro controls these diverse mechanisms is still largely unclear, but transcriptional enhancer activity is thought to play a central role. In this study we compare the phenotype of mice lacking the Emicro element (DeltaEmicro) with that of mice in which Emu was replaced with the ubiquitous SV40 transcriptional enhancer (SV40eR mutation) and show that SV40e cannot functionally complement Emu loss in pro-B cells. Surprisingly, in fact, the SV40eR mutation yields a more profound defect than DeltaEmicro, with an almost complete block in micro0 germline transcription in pro-B cells. This active transcriptional suppression caused by enhancer replacement appears to be specific to the early stages of B cell development, as mature SV40eR B cells express micro0 transcripts at higher levels than DeltaEmicro mice and undergo complete DNA demethylation at the IgH locus. These results indicate an unexpectedly stringent, developmentally restricted requirement for enhancer specificity in regulating IgH function during the early phases of B cell differentiation, consistent with the view that coordination of multiple independent regulatory mechanisms and elements is essential for locus activation and VDJ recombination.
Collapse
Affiliation(s)
- Igor I Kuzin
- Department of Medicine, J.P Wilmot Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
34
|
Xiang Y, Garrard WT. The Downstream Transcriptional Enhancer, Ed, positively regulates mouse Ig kappa gene expression and somatic hypermutation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 180:6725-32. [PMID: 18453592 PMCID: PMC2424255 DOI: 10.4049/jimmunol.180.10.6725] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The mouse Igkappa locus has three known transcriptional enhancers: the matrix association region/intronic enhancer, the 3' enhancer (E3'), and the further downstream enhancer (Ed). Previous studies have shown that both matrix association region/intronic and E3' enhancers are required for maximal gene rearrangement of the locus, and that E3' is also required for maximal expression and somatic hypermutation (SHM). To functionally elucidate Ed in vivo, we generated knockout mice with a targeted germline deletion of Ed. Ed deleted homozygous mice (Ed-/-) have moderately reduced numbers of Igkappa expressing B cells and correspondingly increased numbers of Iglambda expressing B cells in spleen. Ed-/- mice also have decreased Igkappa mRNA expression in resting and T cell-dependent activated splenic B cells and reduced Igkappa chains in sera. However, our analysis indicates that Igkappa gene rearrangement is normal in Ed-/- mice. In addition, our results show that Ed-/- mice exhibit reduced SHM in the Igkappa gene J-C intronic region in germinal center B cells from Peyer's patches. We conclude that Ed positively regulates Igkappa gene expression and SHM, but not gene rearrangement.
Collapse
Affiliation(s)
- Yougui Xiang
- Department of Molecular Biology University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
35
|
Nielsen P, Grosschedl R. Multitasking of interferon regulatory factor-4 in early B cells. Immunity 2008; 28:295-7. [PMID: 18342001 DOI: 10.1016/j.immuni.2008.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Immunoglobulin heavy- and light-chain genes are rearranged in a temporally ordered manner. In this issue, Johnson et al. (2008) show that interferon regulatory factor-4 regulates light-chain gene rearrangement by activating enhancers and attenuating interleukin-7 signaling.
Collapse
Affiliation(s)
- Peter Nielsen
- Max Planck Institute of Immunobiology, Freiburg, Germany
| | | |
Collapse
|
36
|
Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA. Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 2008; 5:e201. [PMID: 17676974 PMCID: PMC1925137 DOI: 10.1371/journal.pbio.0050201] [Citation(s) in RCA: 590] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 05/21/2007] [Indexed: 12/22/2022] Open
Abstract
Age-related defects in stem cells can limit proper tissue maintenance and hence contribute to a shortened lifespan. Using highly purified hematopoietic stem cells from mice aged 2 to 21 mo, we demonstrate a deficit in function yet an increase in stem cell number with advancing age. Expression analysis of more than 14,000 genes identified 1,500 that were age-induced and 1,600 that were age-repressed. Genes associated with the stress response, inflammation, and protein aggregation dominated the up-regulated expression profile, while the down-regulated profile was marked by genes involved in the preservation of genomic integrity and chromatin remodeling. Many chromosomal regions showed coordinate loss of transcriptional regulation; an overall increase in transcriptional activity with age and inappropriate expression of genes normally regulated by epigenetic mechanisms was also observed. Hematopoietic stem cells from early-aging mice expressing a mutant p53 allele reveal that aging of stem cells can be uncoupled from aging at an organismal level. These studies show that hematopoietic stem cells are not protected from aging. Instead, loss of epigenetic regulation at the chromatin level may drive both functional attenuation of cells, as well as other manifestations of aging, including the increased propensity for neoplastic transformation. Aging is marked by a decline in function of the entire organism. The effect of age on the regenerative capacity of adult stem cells, which should rejuvenate tissues throughout life, is poorly understood. Bone marrow stem cells, also known as hematopoietic stem cells (HSCs), continuously regenerate the cells that comprise the blood, including the immune system, which fails with age. Here, we show that older HSCs were less able to regenerate the blood system than young HSCs. Paradoxically, the HSC number increased concomitantly, leading to no major difference in overall blood production, even though the immune system did exhibit some defects. To determine why these changes occurred, we looked at global patterns of gene expression in young versus old HSC. Stem cells exhibited an elevated inflammatory response and a decline in factors, called chromatin regulators, that orchestrate DNA accessibility and gene expression. Additional evidence supports the idea that loss of overall gene regulation (epigenetic regulation) is a major event during aging. Whereas much of aging research is concentrated on accumulation of mutations in DNA rather than on global regulatory mechanisms, we speculate that these epigenetic changes could drive many of the manifestations of age. This view also may explain the increased incidence of cancer with age. In highly purified hematopoietic stem cells from mice aged 2 to 21 months, gene expression analysis indicates a deficit in function yet an increase in stem cell number with advancing age.
Collapse
Affiliation(s)
- Stuart M Chambers
- Program for Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Chad A Shaw
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Catherine Gatza
- Program for Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - C. Joseph Fisk
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lawrence A Donehower
- Program for Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Margaret A Goodell
- Program for Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Johnson K, Hashimshony T, Sawai CM, Pongubala JMR, Skok JA, Aifantis I, Singh H. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 2008; 28:335-45. [PMID: 18280186 DOI: 10.1016/j.immuni.2007.12.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/04/2007] [Accepted: 12/20/2007] [Indexed: 01/04/2023]
Abstract
Productive rearrangement of the immunoglobulin heavy-chain locus triggers a major developmental checkpoint that promotes limited clonal expansion of pre-B cells, thereby culminating in cell-cycle arrest and rearrangement of light-chain loci. By using Irf4-/-Irf8-/- pre-B cells, we demonstrated that two pathways converge to synergistically drive light-chain rearrangement, but not simply as a consequence of cell-cycle exit. One pathway was directly dependent on transcription factor IRF-4, whose expression was elevated by pre-B cell receptor signaling. IRF-4 targeted the immunoglobulin 3'Ekappa and Elambda enhancers and positioned a kappa allele away from pericentromeric heterochromatin. The other pathway was triggered by attenuation of IL-7 signaling and activated the iEkappa enhancer via binding of the transcription factor E2A. IRF-4 also regulated expression of chemokine receptor Cxcr4 and promoted migration of pre-B cells in response to the chemokine ligand CXCL12. We propose that IRF-4 coordinates the two pathways regulating light-chain recombination by positioning pre-B cells away from IL-7-expressing stromal cells.
Collapse
Affiliation(s)
- Kristen Johnson
- Department of Molecular Genetics and Cell Biology, University of Chicago, 929 East 57(th) Street, GCIS W522, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Alt FW. From gene amplification to V(D)J recombination and back: a personal account of my early years in B cell biology. Eur J Immunol 2007; 37 Suppl 1:S138-47. [PMID: 17972338 PMCID: PMC2572819 DOI: 10.1002/eji.200737848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
I have been invited to write a short historical feature in the context of being a co-recipient with Klaus Rajewsky and Fritz Melchers of the 2007 Novartis Prize in Basic Immunology that was given in the general area of the molecular biology of B cells. In this feature, I cover the main points of the short talk that I presented at the Award Ceremony at the International Immunology Congress in Rio de Janeiro, Brazil. This talk focused primarily on the work and people involved early on in generating the models and ideas that have formed the basis for my ongoing efforts in the areas of V(D)J recombination and B cell development.
Collapse
Affiliation(s)
- Frederick W Alt
- Howard Hughes Medical Institute, The Children's Hospital, The Immune Disease Institute, Department of Genetics, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
39
|
Abstract
The expression of lineage-associated genes, as well as the survival and expansion of committed B cell progenitors, is controlled by multiple transcriptional regulators and growth-factor receptors. Whereas certain DNA-binding proteins, such as Ikaros and PU.1, are required primarily for the formation of more primitive lymphoid progenitors, other factors such as E2A and EBF1 have more direct roles in specifying the B cell-specific gene-expression program. Further, Pax5 functions to promote B cell commitment by repressing lineage-inappropriate gene expression and reinforcing B cell-specific gene expression. In this review, we focus on recent studies that have revealed that instead of a simple transcriptional hierarchy, efficient B cell commitment and differentiation requires the combinatorial activity of multiple transcription factors in a complex gene regulatory network.
Collapse
Affiliation(s)
- Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
40
|
Casellas R, Zhang Q, Zheng NY, Mathias MD, Smith K, Wilson PC. Igkappa allelic inclusion is a consequence of receptor editing. J Exp Med 2007; 204:153-60. [PMID: 17210730 PMCID: PMC2118438 DOI: 10.1084/jem.20061918] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 12/06/2006] [Indexed: 12/23/2022] Open
Abstract
The discovery of lymphocytes bearing two light chains in mice carrying self-reactive antibody transgenes has challenged the "one lymphocyte-one antibody" rule. However, the extent and nature of allelically included cells in normal mice is unknown. We show that 10% of mature B cells coexpress both Igkappa alleles. These cells are not the result of failure in allelic exclusion per se, but arise through receptor editing. We find that under physiological conditions, editing occurs both by deletion and by inclusion with equal probability. In addition, we demonstrate that B lymphocytes carrying two B-cell receptors are recruited to germinal center reactions, and thus fully participate in humoral immune responses. Our data measure the scope of allelic inclusion and provide a mechanism whereby autoreactive B cells might "escape" central tolerance.
Collapse
Affiliation(s)
- Rafael Casellas
- Genomic Integrity and Immunity, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
Somatic hypermutation (SHM) introduces mutations in the variable region of immunoglobulin genes at a rate of approximately 10(-3) mutations per base pair per cell division, which is 10(6)-fold higher than the spontaneous mutation rate in somatic cells. To ensure genomic integrity, SHM needs to be targeted specifically to immunoglobulin genes. The rare mistargeting of SHM can result in mutations and translocations in oncogenes, and is thought to contribute to the development of B-cell malignancies. Despite years of intensive investigation, the mechanism of SHM targeting is still unclear. We review and attempt to reconcile the numerous and sometimes conflicting studies on the targeting of SHM to immunoglobulin loci, and highlight areas that hold promise for further investigation.
Collapse
Affiliation(s)
- Valerie H Odegard
- VaxInnate Corporation, 300 George Street, Suite 311, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
42
|
Claudio E, Brown K, Siebenlist U. NF-kappaB guides the survival and differentiation of developing lymphocytes. Cell Death Differ 2006; 13:697-701. [PMID: 16528380 DOI: 10.1038/sj.cdd.4401894] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
43
|
Wang Y, Zhang P, Li W, Hou L, Wang J, Liang Y, Han H. Mouse follicular and marginal zone B cells show differential expression of Dnmt3a and sensitivity to 5′-azacytidine. Immunol Lett 2006; 105:174-9. [PMID: 16584789 DOI: 10.1016/j.imlet.2006.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/14/2006] [Accepted: 02/19/2006] [Indexed: 12/31/2022]
Abstract
Mature B cells in the spleen of mouse and human comprise of two main subsets, the follicular (Fo) B cells and the marginal zone (MZ) B cells. In this study, we report that Fo and MZ B cells express different levels of DNA methyltransferase Dnmt3a. By using RT-PCR and immunohistochemistry, we found that Fo B cells expressed high level of Dnmt3a while MZ B cells expressed little. Treatment of mice by in vivo administration of 5'-azacytidine, an inhibitor of DNA methyltransferases, induced B cell loss in both the bone marrow and the spleen. We noticed that this treatment resulted in a much faster and more severe disappearance of Fo B cells than MZ B cells in the spleen. Further analysis showed that MZ progenitors increased significantly in mice treated with 5'-azacytidine. These results suggest that epigenetic mechanisms involving Dnmt3a might participate in the development of B cells including the differentiation of Fo B cells and MZ B cells in the periphery.
Collapse
Affiliation(s)
- Yaochun Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu Z, Widlak P, Zou Y, Xiao F, Oh M, Li S, Chang MY, Shay JW, Garrard WT. A recombination silencer that specifies heterochromatin positioning and ikaros association in the immunoglobulin kappa locus. Immunity 2006; 24:405-15. [PMID: 16618599 DOI: 10.1016/j.immuni.2006.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 01/05/2006] [Accepted: 02/01/2006] [Indexed: 01/03/2023]
Abstract
Allelic exclusion ensures that individual B lymphocytes produce only one kind of antibody molecule. Previous studies have shown that allelic exclusion of the mouse Igkappa locus occurs by the combination of monoallelic silencing and a low level of monoallelic activation for rearrangement combined with a negative feedback loop blocking additional functional rearrangements. Using yeast artificial chromosome-based single-copy isotransgenic mice, we have identified a cis-acting element that negatively regulates rearrangement in this locus, specifically in B cells. The element, termed Sis, resides in the V-J intervening sequence. Sis specifies the targeting of Igkappa transgenes in pre-B and B cells to centromeric heterochromatin and associates with Ikaros, a repressor protein that also colocalizes with centromeric heterochromatin. Significantly, these are hallmarks of silenced endogenous germline Igkappa genes in B cells. These results lead us to propose that Sis participates in the monoallelic silencing aspect of allelic exclusion regulation.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Kersseboom R, Ta VBT, Zijlstra AJE, Middendorp S, Jumaa H, van Loo PF, Hendriks RW. Bruton's tyrosine kinase and SLP-65 regulate pre-B cell differentiation and the induction of Ig light chain gene rearrangement. THE JOURNAL OF IMMUNOLOGY 2006; 176:4543-52. [PMID: 16585544 DOI: 10.4049/jimmunol.176.8.4543] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bruton's tyrosine kinase (Btk) and the adapter protein SLP-65 (Src homology 2 domain-containing leukocyte-specific phosphoprotein of 65 kDa) transmit precursor BCR (pre-BCR) signals that are essential for efficient developmental progression of large cycling into small resting pre-B cells. We show that Btk- and SLP-65-deficient pre-B cells have a specific defect in Ig lambda L chain germline transcription. In Btk/SLP-65 double-deficient pre-B cells, both kappa and lambda germline transcripts are severely reduced. Although these observations point to an important role for Btk and SLP-65 in the initiation of L chain gene rearrangement, the possibility remained that these signaling molecules are only required for termination of pre-B cell proliferation or for pre-B cell survival, whereby differentiation and L chain rearrangement is subsequently initiated in a Btk/SLP-65-independent fashion. Because transgenic expression of the antiapoptotic protein Bcl-2 did not rescue the developmental arrest of Btk/SLP-65 double-deficient pre-B cells, we conclude that defective L chain opening in Btk/SLP-65-deficient small resting pre-B cells is not due to their reduced survival. Next, we analyzed transgenic mice expressing the constitutively active Btk mutant E41K. The expression of E41K-Btk in Ig H chain-negative pro-B cells induced 1) surface marker changes that signify cellular differentiation, including down-regulation of surrogate L chain and up-regulation of CD2, CD25, and MHC class II; and 2) premature rearrangement and expression of kappa and lambda light chains. These findings demonstrate that Btk and SLP-65 transmit signals that induce cellular maturation and Ig L chain rearrangement independently of their role in termination of pre-B cell expansion.
Collapse
Affiliation(s)
- Rogier Kersseboom
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
46
|
Lazorchak AS, Schlissel MS, Zhuang Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin kappa locus in pre-B cells. Mol Cell Biol 2006; 26:810-21. [PMID: 16428437 PMCID: PMC1347029 DOI: 10.1128/mcb.26.3.810-821.2006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The immunoglobulin kappa light chain (Igkappa) locus is regulated in a lineage- and stage-specific manner during B-cell development. The highly restricted timing of V to J gene recombination at the pre-B-cell stage is under the control of two enhancers, the intronic enhancer (kappaEi) and the 3' enhancer (kappaE3'), flanking the constant exon. E2A transcription factors have been indicated to be directly involved in the regulation of Igkappa locus activation. In this study, we utilize E2A-deficient pre-B cells to directly investigate the mechanism of E2A-mediated Igkappa activation. We demonstrate that Igkappa germ line transcription is severely impaired and recombination is blocked in the absence of E2A. Reconstitution of E2A-/- pre-B cells with inducible human E2A (E47R) is sufficient to promote chromatin modification of Igkappa and rescue Igkappa germ line transcription and Jkappa gene recombinase accessibility. Furthermore, we show that increased E2A recruitment to kappaEi and kappaE3' correlates with activation of Igkappa in pre-B cells and that recruitment of E2A to kappaE3' is in part dependent on the transcription factor IRF-4. Inhibition of IRF-4 expression in pre-B cells leads to a significant reduction of Igkappa germ line transcription and enhancer acetylation. In the absence of E2A, increased IRF-4 expression is not sufficient to promote Igkappa enhancer chromatin modification or transcription, suggesting that the sequential involvement of IRF-4 and E2A is necessary for the activation of the Igkappa locus. Finally, we provide genetic evidence in the mouse that E2A gene dosage can influence the development of pre-B cells during the phase of Igkappa gene activation.
Collapse
Affiliation(s)
- Adam S Lazorchak
- Department of Immunology, Duke University Medical Center, Box 3010, 328 Jones Building, Research Drive, Durham, NC 27710, USA
| | | | | |
Collapse
|
47
|
Abstract
After the demonstration that surrogate JCkappa polypeptides could covalently bind mu heavy chain and upon the characterization of the Vkappa-like component of the kappa-like pre-B cell receptor, it became evident that germline transcription is not sterile. The present review discusses the concept of the alternative usage of kappa-like pre-B cell receptors and classical pre-B cell receptors utilizing the lambda-like surrogate light chain composed of lambda5 and VpreB. We propose that both kappa-like and lambda-like pre-B cell receptors work in concert in a fail-safe mechanism to promote light chain rearrangement, heavy chain allelic exclusion and B-lymphocyte maturation.
Collapse
Affiliation(s)
- Morgan R McKeller
- Department of Immunology, The University of Texas M.D. Anderson Cancer Center, P.O. Box 301402, Unit # 902, Houston, TX 77030, USA
| | | |
Collapse
|
48
|
Hendriks RW, Kersseboom R. Involvement of SLP-65 and Btk in tumor suppression and malignant transformation of pre-B cells. Semin Immunol 2006; 18:67-76. [PMID: 16300960 DOI: 10.1016/j.smim.2005.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signals from the precursor-B cell receptor (pre-BCR) are essential for selection and clonal expansion of pre-B cells that have performed productive immunoglobulin heavy chain V(D)J recombination. In the mouse, the downstream signaling molecules SLP-65 and Btk cooperate to limit proliferation and induce differentiation of pre-B cells, thereby acting as tumor suppressors to prevent pre-B cell leukemia. In contrast, recent observations in human BCR-ABL1(+) pre-B lymphoblastic leukemia cells demonstrate that Btk is constitutively phosphorylated and activated by the BCR-ABL1 fusion protein. As a result, activated Btk transmits survival signals that are essential for the transforming activity of oncogenic Abl tyrosine kinase.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Immunology, Erasmus MC Rotterdam, P.O. Box 1738, NL-3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
49
|
Abstract
Progenitor B lymphocytes that successfully assemble a heavy chain gene encoding an immunoglobulin capable of pairing with surrogate light chain proteins trigger their own further differentiation by signaling via the pre-BCR complex. The pre-BCR signals several rounds of proliferation and, in this expanded population, directs a complex, B cell-specific set of epigenetic changes resulting in allelic exclusion of the heavy chain locus and activation of the light chain loci for V(D)J recombination.
Collapse
Affiliation(s)
- Jamie K Geier
- UC-Berkeley, Department of Molecular & Cell Biology, Division of Immunology, 439 Life Sciences Addition, Berkeley, CA 94720-3200, USA
| | | |
Collapse
|
50
|
Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-kappaB. Nat Rev Immunol 2005; 5:435-45. [PMID: 15905862 DOI: 10.1038/nri1629] [Citation(s) in RCA: 230] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The evolutionarily conserved nuclear factor-kappaB family of transcription factors is known to have a crucial role in rapid responses to stress and pathogens, inducing transcription of many genes that are essential for host defence. Now, studies of mice that are deficient in nuclear factor-kappaB-family members (or deficient in the activation of these factors) reveal that nuclear factor-kappaB is extensively involved in the development of T cells and B cells. And, as we review here, although these factors have several roles, their primary cell-autonomous function is to ensure lymphocyte survival at various developmental stages. This function is subverted in numerous diseases and can lead, for example, to survival of self-reactive lymphocytes or tumour cells.
Collapse
Affiliation(s)
- Ulrich Siebenlist
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA.
| | | | | |
Collapse
|