1
|
Chen H, Huang S, Yao S, Wang J, Huang J, Yu Z. Multi-omics analyses of Bacillus amyloliquefaciens treated mice infected with Schistosoma japonicum reveal dynamics change of intestinal microbiome and its associations with host metabolism. PLoS Negl Trop Dis 2024; 18:e0012583. [PMID: 39466852 PMCID: PMC11515987 DOI: 10.1371/journal.pntd.0012583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Schistosomiasis japonica is a serious threat to human health. It causes damage to the intestine and liver. Probiotic therapy has been shown to be effective in alleviating intestinal diseases and improving host health. Previous studies have found that Bacillus amyloliquefaciens could alleviate the pathological symptoms of schistosomiasis japonica, but the regulatory mechanism of alleviating schistosomiasis japonica is still unknown. PRINCIPAL FINDINGS This study analyzed the dynamic changes of intestinal microbiome in mice infected with Schistosoma japonicum after the intervention of B. amyloliquefaciens and its connection to host metabolism by multi-omics sequencing technology. B. amyloliquefaciens was found to significantly regulate the homeostasis of intestinal microbiota by promoting the growth of beneficial bacteria and inhibiting potential pathogenic bacteria and protect the number of core microbes. Meanwhile, the genes related to the metabolism of glycerophospholipids and amino acid from intestinal microbiome changed significantly, and were shown to be significantly positively correlated with the associated metabolites of microbial origin. Moreover, host metabolism (lipid metabolism and steroid hormone biosynthesis) was also found to be significantly regulated. CONCLUSIONS The recovery of intestinal microbial homeostasis and the regulation of host metabolism revealed the potential probiotic properties of B. amyloliquefaciens, which also provided new ideas for the prevention and adjuvant treatment of schistosomiasis japonica.
Collapse
Affiliation(s)
- Hao Chen
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Shuaiqin Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Siqi Yao
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyan Wang
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Rajamanickam A, Babu S. Helminth Infections and Diabetes: Mechanisms Accounting for Risk Amelioration. Annu Rev Nutr 2024; 44:339-355. [PMID: 38724017 DOI: 10.1146/annurev-nutr-061121-100742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The global prevalence of type 2 diabetes mellitus (T2D) is increasing rapidly, with an anticipated 600 million cases by 2035. While infectious diseases such as helminth infections have decreased due to improved sanitation and health care, recent research suggests a link between helminth infections and T2D, with helminths such as Schistosoma, Nippostrongylus, Strongyloides, and Heligmosomoides potentially mitigating or slowing down T2D progression in human and animal models. Helminth infections enhance host immunity by promoting interactions between innate and adaptive immune systems. In T2D, type 1 immune responses are suppressed and type 2 responses are augmented, expanding regulatory T cells and innate immune cells, particularly type 2 immune cells and macrophages. This article reviews recent research shedding light on the favorable effects of helminth infections on T2D. The potential defense mechanisms identified include heightened insulin sensitivity and reduced inflammation. The synthesis of findings from studies investigating parasitic helminths and their derivatives underscores promising avenues for defense against T2D.
Collapse
Affiliation(s)
- Anuradha Rajamanickam
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| | - Subash Babu
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
- National Institutes of Health-National Institute of Allergy and Infectious Diseases International Center for Excellence in Research, Chennai, India;
| |
Collapse
|
3
|
Rosa AAD, Brandão-Bezerra L, Corrêa CL, Amaral G Da-Silva S, Rodrigues LS, Machado-Silva JR, Neves RH. Changes in splenic tissue and immune response profile of Schistosoma mansoni infected mice submitted to chronic ethanol intake. Exp Parasitol 2024; 259:108706. [PMID: 38309327 DOI: 10.1016/j.exppara.2024.108706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
In Schistosoma mansoni infection, the spleen is one of the organs affected, causing its enlargement (splenomegaly). Intake of ethanol through alcoholic beverages can cause spleen atrophy and interfere with immune activity. To gain knowledge of this association on the spleen and on the immune response profile, male mice were used as an experimental model. These animals were divided into four groups: C. control; EC. uninfected/ethanol gavage; I. infected; and IE. infected/ethanol gavage. Groups I and IE were infected with about 100 cercariae (BH strain) of S. mansoni and in the fifth week of infection, gavage 200 μL/day/animal of 18 % ethanol was started for 28 consecutive days. At the end of the gavage (9th week of infection) all animals were euthanized. The spleen was removed and longitudinally divided in two parts. After histological processing, the sections were stained with H&E and Gomori's Reticulin for histopathological and stereological analyses, white pulp morphometry and quantification of megakaryocytes. The other fragment was macerated (in laminar flow) and the cell suspension, after adjusting the concentration (2 × 106), was plated to obtain cytokines produced by spleen cells that were measured by flow cytometry (Citometric Bead Array). Histopathological and quantitative analyzes in the spleen of the IE group showed an increase in the number of trabeculae and megakaryocytes, a decrease in reticular fibers, as well as important organizational changes in the white pulp and red pulp. Due to the decrease in the levels of cytokines measured and the result of the calculation of the ratio between the IFN-y and IL-10 cytokines (p = 0.0079) of the infected groups, we suggest that ethanol decreased the inflammatory and anti-inflammatory response generated by the infection (group IE, the production of cytokines was significantly decreased (p < 0.01). These changes demonstrate that ethanol ingestion interferes with some parameters of experimental S. mansoni infection, such as changes in splenic tissue and in the pattern of cytokine production.
Collapse
Affiliation(s)
- Aline Aparecida da Rosa
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Brandão-Bezerra
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Christiane Leal Corrêa
- Department of Pathology and Laboratories, School of Medical Sciences, Rio de Janeiro State University, Brazil; Medicine School, Estácio de Sá University, Brazil
| | - Silvia Amaral G Da-Silva
- Laboratory of Parasitic Immunopharmacology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Luciana Silva Rodrigues
- Laboratory of Immunopathology, Department of Pathology and Laboratories, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - José Roberto Machado-Silva
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil
| | - Renata Heisler Neves
- Romero Lascasas Porto Laboratory of Helminthology, Department of Microbiology, Immunology and Parasitology, Faculty of Medical Sciences, Rio de Janeiro State University, Brazil.
| |
Collapse
|
4
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
5
|
Hamley M, Leyk S, Casar C, Liebold I, Jawazneh AA, Lanzloth C, Böttcher M, Haas H, Richardt U, Rothlin CV, Jacobs T, Huber S, Adlung L, Pelczar P, Henao-Mejia J, Bosurgi L. Nmes1 is a novel regulator of mucosal response influencing intestinal healing potential. Eur J Immunol 2024; 54:e2350434. [PMID: 37971166 DOI: 10.1002/eji.202350434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
The initiation of tissue remodeling following damage is a critical step in preventing the development of immune-mediated diseases. Several factors contribute to mucosal healing, leading to innovative therapeutic approaches for managing intestinal disorders. However, uncovering alternative targets and gaining mechanistic insights are imperative to enhance therapy efficacy and broaden its applicability across different intestinal diseases. Here we demonstrate that Nmes1, encoding for Normal Mucosa of Esophagus-Specific gene 1, also known as Aa467197, is a novel regulator of mucosal healing. Nmes1 influences the macrophage response to the tissue remodeling cytokine IL-4 in vitro. In addition, using two murine models of intestinal damage, each characterized by a type 2-dominated environment with contrasting functions, the ablation of Nmes1 results in decreased intestinal regeneration during the recovery phase of colitis, while enhancing parasitic egg clearance and reducing fibrosis during the advanced stages of Schistosoma mansoni infection. These outcomes are associated with alterations in CX3CR1+ macrophages, cells known for their wound-healing potential in the inflamed colon, hence promising candidates for cell therapies. All in all, our data indicate Nmes1 as a novel contributor to mucosal healing, setting the basis for further investigation into its potential as a new target for the treatment of colon-associated inflammation.
Collapse
Affiliation(s)
- Madeleine Hamley
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Stephanie Leyk
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Casar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Imke Liebold
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Amirah Al Jawazneh
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Clarissa Lanzloth
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Marius Böttcher
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Ulricke Richardt
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carla V Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Thomas Jacobs
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Samuel Huber
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lorenz Adlung
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Penelope Pelczar
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jorge Henao-Mejia
- The Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
6
|
Lima RRM, Lima JVA, Ribeiro JFF, Nascimento JB, Oliveira WF, Cabral Filho PE, Fontes A. Emerging biomedical tools for biomarkers detection and diagnostics in schistosomiasis. Talanta 2023; 265:124900. [PMID: 37423177 DOI: 10.1016/j.talanta.2023.124900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 07/01/2023] [Indexed: 07/11/2023]
Abstract
Schistosomiasis is a neglected disease that strikes many people from tropical and subtropical countries where there are not satisfactory sanitation and wide access to clean water. Schistosoma spp., the causative agents of schistosomiasis, exhibit a quite complex life cycle that involves two hosts (humans and snails, respectively, the definitive and the intermediate), and five evolutive forms: cercariae (human infective form), schistosomula, adult worms, eggs, and miracidia. The techniques to diagnose schistosomiasis still have various limitations, mainly regarding low-intensity infections. Although various mechanisms associated with schistosomiasis have already been evidenced, there is still a need to fulfill the comprehension of this disease, especially to prospect for novel biomarkers to improve its diagnosis. Developing methods with more sensitivity and portability to detect the infection is valuable to reach schistosomiasis control. In this context, this review has gathered information not only on schistosomiasis biomarkers but also on emerging optical and electrochemical tools proposed in selected studies from about the last ten years. Aspects of the assays regarding the sensibility, specificity, and time needed for detecting diverse biomarkers are described. We hope this review can guide future developments in the field of schistosomiasis, contributing to improving its diagnosis and eradication.
Collapse
Affiliation(s)
- Rennan R M Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - João V A Lima
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Jéssika F F Ribeiro
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Júlio B Nascimento
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Weslley F Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil
| | - Paulo E Cabral Filho
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| | - Adriana Fontes
- Departamento de Biofísica e Radiobiologia, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, 50670-901, Brazil.
| |
Collapse
|
7
|
Licá ICL, Frazão GCCG, Nogueira RA, Lira MGS, dos Santos VAF, Rodrigues JGM, Miranda GS, Carvalho RC, Silva LA, Guerra RNM, Nascimento FRF. Immunological mechanisms involved in macrophage activation and polarization in schistosomiasis. Parasitology 2023; 150:401-415. [PMID: 36601859 PMCID: PMC10089811 DOI: 10.1017/s0031182023000021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Human schistosomiasis is caused by helminths of the genus Schistosoma. Macrophages play a crucial role in the immune regulation of this disease. These cells acquire different phenotypes depending on the type of stimulus they receive. M1 macrophages can be ‘classically activated’ and can display a proinflammatory phenotype. M2 or ‘alternatively activated’ macrophages are considered anti-inflammatory cells. Despite the relevance of macrophages in controlling infections, the role of the functional types of these cells in schistosomiasis is unclear. This review highlights different molecules and/or macrophage activation and polarization pathways during Schistosoma mansoni and Schistosoma japonicum infection. This review is based on original and review articles obtained through searches in major databases, including Scopus, Google Scholar, ACS, PubMed, Wiley, Scielo, Web of Science, LILACS and ScienceDirect. Our findings emphasize the importance of S. mansoni and S. japonicum antigens in macrophage polarization, as they exert immunomodulatory effects in different stages of the disease and are therefore important as therapeutic targets for schistosomiasis and in vaccine development. A combination of different antigens can provide greater protection, as it possibly stimulates an adequate immune response for an M1 or M2 profile and leads to host resistance; however, this warrants in vitro and in vivo studies.
Collapse
Affiliation(s)
- Irlla Correia Lima Licá
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Gleycka Cristine Carvalho Gomes Frazão
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Ranielly Araujo Nogueira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Maria Gabriela Sampaio Lira
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Vitor Augusto Ferreira dos Santos
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Guilherme Silva Miranda
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - Rafael Cardoso Carvalho
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Lucilene Amorim Silva
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Rosane Nassar Meireles Guerra
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - Flávia Raquel Fernandes Nascimento
- Graduate Program in Health Sciences, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Laboratory of Immunophysiology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
- Department of Pathology, Center for Biological and Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
8
|
Baya B, Kone B, Somboro A, Kodio O, Somboro AM, Diarra B, Traore FG, Kone D, Traore MA, Kone M, Togo AG, Sarro YS, Maiga A, Maiga M, Toloba Y, Diallo S, Murphy RL, Doumbia S. Prevalence and Clinical Relevance of Schistosoma mansoni Co-Infection with Mycobacterium tuberculosis: A Systematic Literature Review. OPEN JOURNAL OF EPIDEMIOLOGY 2023; 13:97-111. [PMID: 36910425 PMCID: PMC9997105 DOI: 10.4236/ojepi.2023.131008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tuberculosis disease stands for the second leading cause of death worldwide after COVID-19, most active tuberculosis cases result from the reactivation of latent TB infection through impairment of immune response. Several factors are known to sustain that process. Schistosoma mansoni, a parasite of the helminth genus that possesses switching power from an immune profile type Th1 to Th2 that favors reactivation of latent TB bacteria. The aim of the study was to assess the prevalence of the co-infection between the two endemic infections. Systematic literature was contacted at the University Clinical Research Center at the University of Sciences, Techniques, and Technologies of Bamako in Mali. Original articles were included, and full texts were reviewed to assess the prevalence and better understand the immunological changes that occur during the co-infection. In total, 3530 original articles were retrieved through database search, 53 were included in the qualitative analysis, and data from 10 were included in the meta-analysis. Prevalence of the co-infection ranged from 4% to 34% in the literature. Most of the articles reported that immunity against infection with helminth parasite and more specifically Schistosoma mansoni infection enhances latent TB reactivation through Th1/Th2. In sum, the impact of Schistosoma mansoni co-infection with Mycobacterium tuberculosis is under-investigated. Understanding the role of this endemic tropical parasite as a contributing factor to TB epidemiology and burden could help integrate its elimination as one of the strategies to achieve the END-TB objectives by the year 2035.
Collapse
Affiliation(s)
- Bocar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou Moise Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fah Gaoussou Traore
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Kone
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mama Adama Traore
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mahamadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antieme Georges Togo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya Sadio Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Almoustapha Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali.,Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Yacouba Toloba
- Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
9
|
Du X, McManus DP, French JD, Collinson N, Sivakumaran H, MacGregor SR, Fogarty CE, Jones MK, You H. CRISPR interference for sequence-specific regulation of fibroblast growth factor receptor A in Schistosoma mansoni. Front Immunol 2023; 13:1105719. [PMID: 36713455 PMCID: PMC9880433 DOI: 10.3389/fimmu.2022.1105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Employing the flatworm parasite Schistosoma mansoni as a model, we report the first application of CRISPR interference (CRISPRi) in parasitic helminths for loss-of-function studies targeting the SmfgfrA gene which encodes the stem cell marker, fibroblast growth factor receptor A (FGFRA). SmFGFRA is essential for maintaining schistosome stem cells and critical in the schistosome-host interplay. The SmfgfrA gene was targeted in S. mansoni adult worms, eggs and schistosomula using a catalytically dead Cas9 (dCas9) fused to a transcriptional repressor KRAB. We showed that SmfgfrA repression resulted in considerable phenotypic differences in the modulated parasites compared with controls, including reduced levels of SmfgfrA transcription and decreased protein expression of SmFGFRA, a decline in EdU (thymidine analog 5-ethynyl-2'-deoxyuridine, which specifically stains schistosome stem cells) signal, and an increase in cell apoptosis. Notably, reduced SmfgfrA transcription was evident in miracidia hatched from SmfgfrA-repressed eggs, and resulted in a significant change in miracidial behavior, indicative of a durable repression effect caused by CRISPRi. Intravenous injection of mice with SmfgfrA-repressed eggs resulted in granulomas that were markedly reduced in size and a decline in the level of serum IgE, emphasizing the importance of SmFGFRA in regulating the host immune response induced during schistosome infection. Our findings show the feasibility of applying CRISPRi for effective, targeted transcriptional repression in schistosomes, and provide the basis for employing CRISPRi to selectively perturb gene expression in parasitic helminths on a genome-wide scale.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Juliet D. French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Natasha Collinson
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Haran Sivakumaran
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Skye R. MacGregor
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia,*Correspondence: Hong You,
| |
Collapse
|
10
|
Reinholdt C, Winkelmann F, Koslowski N, Reisinger EC, Sombetzki M. Unisexual infection with Schistosoma mansoni in mice has the potential to boost the immune response against eggs after challenge infection. Front Immunol 2023; 14:1125912. [PMID: 36923416 PMCID: PMC10009330 DOI: 10.3389/fimmu.2023.1125912] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
Introduction The complexity of the Schistosoma spp. life cycle and their effective immune evasion strategies, makes vaccine development challenging. Unisexual infection models, that excludes any immunomodulatory effects of the parasite eggs, may contribute to a better understanding of complex immunological processes and identification of new targets for vaccine research. We have recently shown that long-term unisexual infection with schistosomes in mice results in an unpolarized Th1/Th2 response associated with an abnormally enlarged spleen and diffuse liver inflammation. Herein, we investigated whether (i) unisexual worms can mate after three months of single sex infection and (ii) thus the Th2 response induced by oviposition can reverse or heal the described systemic inflammation. Methods Therefore, we infected 6-8 weeks old female C57BL/6j mice with 100 male or female cercariae and reinfected with the opposite sex for the same period after 12 weeks. At 24 weeks after initial infection, we histologically examined worm mating, as evidenced by the presence of parasite eggs, infection-related pathology associated with eggs, and characterization of fibrosis in the livers. Results Single worms are able to mate months after unisexual infection and start oviposition. Egg deposition has been associated with a typical Th2 immune response in the liver after unisexual reinfection, accompanied by increased recruitment of CD4+ T cells. Hepatic collagen levels were significantly increased in the reinfected groups compared to the naive and unisexually infected group. Discussion Our results indicate that the eggs are able to restore the Th1/Th2 immune balance of a previous unisexual infection. However, the organ damage caused by the unisexual worms does not subside, but rather provides the baseline for the emerging egg-triggered inflammation and fibrosis. Since single schistosomes can mate even several weeks after unisexual infection and then accumulate worm- and egg-related organ damage, infection status without positive egg detection is very important, especially in areas with low prevalence.
Collapse
Affiliation(s)
- Cindy Reinholdt
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Franziska Winkelmann
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Nicole Koslowski
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Emil C Reisinger
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Martina Sombetzki
- Department of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
11
|
Sombetzki M, Reinholdt C, Winkelmann F, Rabes A, Koslowski N, Reisinger EC. A one-year unisexual Schistosoma mansoni infection causes pathologic organ alterations and persistent non-polarized T cell-mediated inflammation in mice. Front Immunol 2022; 13:1010932. [PMID: 36505463 PMCID: PMC9730239 DOI: 10.3389/fimmu.2022.1010932] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/21/2022] [Indexed: 11/25/2022] Open
Abstract
In exhibiting gonochorism and phenotypic sexual dimorphism, Schistosoma spp. are unique among trematodes. Only females mating with male schistosomes can produce the highly immunogenic parasite eggs which determine the clinical picture of the disease schistosomiasis. The strong immune-modulatory effect of the eggs masks the influence of the adult worms. To shed light on the complexity of the immune response triggered by adult worms of Schistosoma mansoni, we performed a long-term unisexual infection experiment in mice. We were able to demonstrate that both male and female schistosomes can survive unpaired for one year in the murine host. Furthermore, unisexual S. mansoni infection leads to pronounced inflammation of the liver characterized by a non-polarized Th1/Th2 immune response, regardless of worm sex.
Collapse
|
12
|
Wesołowska A. Sex—the most underappreciated variable in research: insights from helminth-infected hosts. Vet Res 2022; 53:94. [PMID: 36397174 PMCID: PMC9672581 DOI: 10.1186/s13567-022-01103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/18/2022] Open
Abstract
The sex of a host affects the intensity, prevalence, and severity of helminth infection. In many cases, one sex has been found to be more susceptible than the other, with the prevalence and intensity of helminth infections being generally higher among male than female hosts; however, many exceptions exist. This observed sex bias in parasitism results primarily from ecological, behavioural, and physiological differences between males and females. Complex interactions between these influences modulate the risk of infection. Indeed, an interplay among sex hormones, sex chromosomes, the microbiome and the immune system significantly contributes to the generation of sex bias among helminth-infected hosts. However, sex hormones not only can modulate the course of infection but also can be exploited by the parasites, and helminths appear to have developed molecules and pathways for this purpose. Furthermore, host sex may influence the efficacy of anti-helminth vaccines; however, although little data exist regarding this sex-dependent efficacy, host sex is known to influence the response to vaccines. Despite its importance, host sex is frequently overlooked in parasitological studies. This review focuses on the key contributors to sex bias in the case of helminth infection. The precise nature of the mechanisms/factors determining these sex-specific differences generally remains largely unknown, and this represents an obstacle in the development of control methods. There is an urgent need to identify any protective elements that could be targeted in future therapies to provide optimal disease management with regard to host sex. Hence, more research is needed into the impact of host sex on immunity and protection.
Collapse
|
13
|
Liu X, Jiang Y, Ye J, Wang X. Helminth infection and helminth-derived products: A novel therapeutic option for non-alcoholic fatty liver disease. Front Immunol 2022; 13:999412. [PMID: 36263053 PMCID: PMC9573989 DOI: 10.3389/fimmu.2022.999412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is closely related to obesity, diabetes, and metabolic syndrome (MetS), and it has become the most common chronic liver disease. Helminths have co-evolved with humans, inducing multiple immunomodulatory mechanisms to modulate the host's immune system. By using their immunomodulatory ability, helminths and their products exhibit protection against various autoimmune and inflammatory diseases, including obesity, diabetes, and MetS, which are closely associated with NAFLD. Here, we review the pathogenesis of NAFLD from abnormal glycolipid metabolism, inflammation, and gut dysbiosis. Correspondingly, helminths and their products can treat or relieve these NAFLD-related diseases, including obesity, diabetes, and MetS, by promoting glycolipid metabolism homeostasis, regulating inflammation, and restoring the balance of gut microbiota. Considering that a large number of clinical trials have been carried out on helminths and their products for the treatment of inflammatory diseases with promising results, the treatment of NAFLD and obesity-related diseases by helminths is also a novel direction and strategy.
Collapse
Affiliation(s)
- Xi Liu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuyun Jiang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jixian Ye
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Nuclear Medicine and Institute of Digestive Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
14
|
Efficacy and safety of transjugular intrahepatic portosystemic shunt for the treatment of schistosomiasis-induced portal hypertension: a retrospective case series. Eur J Gastroenterol Hepatol 2022; 34:1090-1097. [PMID: 36062499 DOI: 10.1097/meg.0000000000002433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIM The aim of this study was to evaluate the efficacy and safety of transjugular intrahepatic portosystemic shunt (TIPS) in the treatment of portal hypertension caused by schistosomiasis. METHODS This study included 43 patients with schistosomiasis-induced portal hypertension treated with TIPS in our institution from December 2015 to May 2021. The demographic, imaging, clinical and follow-up data of patients were recorded retrospectively to evaluate the efficacy and safety of the procedure. RESULTS All patients were successfully implanted with stents to establish shunt, and 90.7% of the patients were in good postoperative condition with no complications. After TIPS, the Yerdel grade of portal vein thrombosis decreased, and the portal pressure gradient decreased from 27.0 ± 4.9 mmHg to 11.3 ± 3.8 mmHg (P < 0.001). Bleeding was effectively controlled, with a postoperative rebleeding rate of 9.3%, which was an 87.9% reduction from the preoperative rate. The cumulative incidence of postoperative refractory ascites, shunt dysfunction, overt hepatic encephalopathy (OHE) and death were all similar to those of TIPS for nonschistosomiasis portal hypertension. There were no differences in liver and kidney function and blood coagulation indexes before and 3 months after TIPS. Albumin was identified as an independent risk factor for mortality after TIPS for schistosomal liver fibrosis. CONCLUSION TIPS can be used as a well-tolerated and effective treatment for schistosomiasis-induced portal hypertension, effectively reduce portal pressure gradient and improve portal vein thrombosis.
Collapse
|
15
|
Miranda GS, Rodrigues JGM, de Rezende MC, Resende SD, Camelo GMA, de Oliveira Silva JKA, Maggi L, Rodrigues VF, de Oliveira VG, Negrão-Corrêa DA. Experimental infection with Schistosoma mansoni isolated from the wild rodent Holochilus sciureus shows a low parasite burden but induces high schistosomiasis severity in BALB/c mice. Parasitology 2022; 149:1381-1396. [PMID: 35641335 PMCID: PMC11010505 DOI: 10.1017/s0031182022000774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Wild mammals, especially rodents, can participate in the life cycle of Schistosoma mansoni; however, the impact of these parasite strains on the severity of schistosomiasis remains unclear. The aim of this study was to comparatively evaluate the parasitological and immunopathological alterations induced by an S. mansoni strain isolated from the wild rodent Holochilus sciureus (HS strain) and a parasite strain isolated from a human (LE strain) in experimentally infected mice. Male BALB/c mice were subcutaneously infected with 50 cercariae/mouse of either the HS or the LE strain and were evaluated for 12 weeks. In the experimental groups, the parasite burden was estimated by worm and egg (feces and tissues) count, and immunopathological alterations were evaluated in the liver and intestines. Compared to experimental infection with the LE parasite strain, HS-infected mice showed reduced number of parasite worms but higher fecundity rate, significant reduction in IL-5, IL-10 and IL-13 concentrations, lower EPO-activity in liver homogenate and higher concentrations of TNF-α, IFN-γ, IL-12 and IL-17 in the small intestine homogenate. Moreover, HS infection resulted in higher concentrations of NO end-products in both the liver and intestine, suggesting a predominance of the Th1/Th17 immune response. HS-infected mice also showed higher plasma transaminase levels, formed larger granulomas, and had a higher mortality rate in comparison with LE-infected mice. Data indicate that BALB/c mice infected with the HS strain of S. mansoni showed reduced susceptibility to the parasite but stronger tissue inflammation and high disease severity.
Collapse
Affiliation(s)
- Guilherme Silva Miranda
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
- Department of Biology, Federal Institute of Education, Science and Technology of Maranhão, São Raimundo das Mangabeiras, Brazil
| | - João Gustavo Mendes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Michelle Carvalho de Rezende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Samira Diniz Resende
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Genil Mororó Araújo Camelo
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | | - Laura Maggi
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vanessa Fernandes Rodrigues
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | - Vinícius Gustavo de Oliveira
- Department of Parasitology, Federal University of Minas Gerais, Institute of Biological Sciences, Belo Horizonte, Brazil
| | | |
Collapse
|
16
|
Cunha C, Koike T, Seki Y, Yamamoto M, Iwashima M. Schnurri 3 promotes Th2 cytokine production during the late phase of T-cell antigen stimulation. Eur J Immunol 2022; 52:1077-1094. [PMID: 35490426 PMCID: PMC9276650 DOI: 10.1002/eji.202149633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 03/22/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
Th1 and Th2 polarization is determined by the coordination of numerous factors including the affinity and strength of the antigen-receptor interaction, predominant cytokine environment, and costimulatory molecules present. Here, we show that Schnurri (SHN) proteins have distinct roles in Th1 and Th2 polarization. SHN2 was previously found to block the induction of GATA3 and Th2 differentiation. We found that, in contrast to SHN2, SHN3 is critical for IL-4 production and Th2 polarization. Strength of stimulation controls SHN2 and SHN3 expression patterns, where higher doses of antigen receptor stimulation promoted SHN3 expression and IL-4 production, along with repression of SHN2 expression. SHN3-deficient T cells showed a substantial defect in IL-4 production and expression of AP-1 components, particularly c-Jun and Jun B. This loss of early IL-4 production led to reduced GATA3 expression and impaired Th2 differentiation. Together, these findings uncover SHN3 as a novel, critical regulator of Th2 development.
Collapse
Affiliation(s)
- Christina Cunha
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
| | - Toru Koike
- Department of Biology, Faculty of ScienceShizuoka UniversityShizuokaJapan
| | - Yoichi Seki
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Mutsumi Yamamoto
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| | - Makio Iwashima
- Department of Microbiology and ImmunologyLoyola UniversityChicagoIllinoisUSA
- Van Kampen Cardiovascular Research Laboratory, Department of Thoracic and Cardiovascular Surgery, Stritch School of MedicineLoyola UniversityChicagoIllinoisUSA
| |
Collapse
|
17
|
Nava-Castro KE, Pavón L, Becerril-Villanueva LE, Ponce-Regalado MD, Aguilar-Díaz H, Segovia-Mendoza M, Morales-Montor J. Sexual Dimorphism of the Neuroimmunoendocrine Response in the Spleen during a Helminth Infection: A New Role for an Old Player? Pathogens 2022; 11:308. [PMID: 35335632 PMCID: PMC8955289 DOI: 10.3390/pathogens11030308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
The interaction of the nervous, immune, and endocrine systems is crucial in maintaining homeostasis in vertebrates, and vital in mammals. The spleen is a key organ that regulates the neuroimmunoendocrine system. The Taenia crassiceps mouse system is an excellent experimental model to study the complex host-parasite relationship, particularly sex-associated susceptibility to infection. The present study aimed to determine the changes in neurotransmitters, cytokines, sex steroids, and sex-steroid receptors in the spleen of cysticercus-infected male and female mice and whole parasite counts. We found that parasite load was higher in females in comparison to male mice. The levels of the neurotransmitter epinephrine were significantly decreased in infected male animals. The expression of IL-2 and IL-4 in the spleen was markedly increased in infected mice; however, the expression of Interleukin (IL)-10 and interferon (IFN)-γ decreased. We also observed sex-associated differences between non-infected and infected mice. Interestingly, the data show that estradiol levels increased in infected males but decreased in females. Our studies provide evidence that infection leads to changes in neuroimmunoendocrine molecules in the spleen, and these changes are dimorphic and impact the establishment, growth, and reproduction of T. crassiceps. Our findings support the critical role of the neuroimmunoendocrine network in determining sex-associated susceptibility to the helminth parasite.
Collapse
Affiliation(s)
- Karen Elizabeth Nava-Castro
- Laboratorio de Biología y Química Atmosférica, Departamento de Ciencias Ambientales, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Lenin Pavón
- Laboratory of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico; (L.P.); (L.E.B.-V.)
| | - Luis Enrique Becerril-Villanueva
- Laboratory of Psychoimmunology, National Institute of Psychiatry “Ramón de la Fuente Muñiz”, Mexico City 14370, Mexico; (L.P.); (L.E.B.-V.)
| | - María Dolores Ponce-Regalado
- Centro Universitario de los Altos, Departamento de Ciencias de la Salud, Universidad de Guadalajara, Jalisco 47610, Mexico;
| | - Hugo Aguilar-Díaz
- Centro Nacional de Investigaciones Disciplinarias en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias (INIFAP), Morelos 50550, Mexico;
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 00810, Mexico;
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| |
Collapse
|
18
|
Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res 2022; 15:475-491. [PMID: 35087284 PMCID: PMC8789313 DOI: 10.2147/jir.s348079] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjie Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Isabelle Vallée
- UMR BIPAR, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
- Correspondence: Xiaolei Liu; Mingyuan Liu, Tel +86-15943092280; +86-13019125996, Email ;
| |
Collapse
|
19
|
Abstract
Schistosomes are long lived, intravascular parasitic platyhelminths that infect >200 million people globally. The molecular mechanisms used by these blood flukes to dampen host immune responses are described in this review. Adult worms express a collection of host-interactive tegumental ectoenzymes that can cleave host signaling molecules such as the "alarmin" ATP (cleaved by SmATPDase1), the platelet activator ADP (SmATPDase1, SmNPP5), and can convert AMP into the anti-inflammatory mediator adenosine (SmAP). SmAP can additionally cleave the lipid immunomodulator sphingosine-1-phosphate and the proinflammatory anionic polymer, polyP. In addition, the worms release a barrage of proteins (e.g., SmCB1, SjHSP70, cyclophilin A) that can impinge on immune cell function. Parasite eggs also release their own immunoregulatory proteins (e.g., IPSE/α1, omega1, SmCKBP) as do invasive cercariae (e.g., Sm16, Sj16). Some schistosome glycans (e.g., LNFPIII, LNnT) and lipids (e.g., Lyso-PS, LPC), produced by several life stages, likewise affect immune cell responses. The parasites not only produce eicosanoids (e.g., PGE2, PGD2-that can be anti-inflammatory) but can also induce host cells to release these metabolites. Finally, the worms release extracellular vesicles (EVs) containing microRNAs, and these too have been shown to skew host cell metabolism. Thus, schistosomes employ an array of biomolecules-protein, lipid, glycan, nucleic acid, and more, to bend host biochemistry to their liking. Many of the listed molecules have been individually shown capable of inducing aspects of the polarized Th2 response seen following infection (with the generation of regulatory T cells (Tregs), regulatory B cells (Bregs) and anti-inflammatory, alternatively activated (M2) macrophages). Precisely how host cells integrate the impact of these myriad parasite products following natural infection is not known. Several of the schistosome immunomodulators described here are in development as novel therapeutics against autoimmune, inflammatory, and other, nonparasitic, diseases.
Collapse
Affiliation(s)
- Sreemoyee Acharya
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da’dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
20
|
Lok LSC, Walker JA, Jolin HE, Scanlon ST, Ishii M, Fallon PG, McKenzie ANJ, Clatworthy MR. Group 2 Innate Lymphoid Cells Exhibit Tissue-Specific Dynamic Behaviour During Type 2 Immune Responses. Front Immunol 2021; 12:711907. [PMID: 34484215 PMCID: PMC8415880 DOI: 10.3389/fimmu.2021.711907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 12/25/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) are early effectors of mucosal type 2 immunity, producing cytokines such as interleukin (IL)-13 to mediate responses to helminth infection and allergen-induced inflammation. ILC2s are also present in lymph nodes (LNs) and can express molecules required for antigen presentation, but to date there are limited data on their dynamic behaviour. We used a CD2/IL-13 dual fluorescent reporter mouse for in vivo imaging of ILC2s and Th2 T cells in real time following a type 2 priming helminth infection or egg injection. After helminth challenge, we found that ILC2s were the main source of IL-13 in lymphoid organs (Peyer’s patches and peripheral LNs), and were located in T cell areas. Intravital imaging demonstrated an increase in IL-13+ ILC2 size and movement following helminth infection, but reduced duration of interactions with T cells compared with those in homeostasis. In contrast, in the intestinal mucosa, we observed an increase in ILC2-T cell interactions post-infection, including some of prolonged duration, as well as increased IL-13+ ILC2 movement. These data suggest that ILC2 activation enhances cell motility, with the potential to increase the area of distribution of cytokines to optimise the early generation of type 2 responses. The prolonged ILC2 interactions with T cells within the intestinal mucosa are consistent with the conclusion that contact-based T cell activation may occur within inflamed tissues rather than lymphoid organs. Our findings have important implications for our understanding of the in vivo biology of ILC2s and the way in which these cells facilitate adaptive immune responses.
Collapse
Affiliation(s)
- Laurence S C Lok
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom.,Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Jennifer A Walker
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Helen E Jolin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Seth T Scanlon
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge, United Kingdom.,Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, United Kingdom.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
21
|
Ho CH, Cheng CH, Huang TW, Peng SY, Lee KM, Cheng PC. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:503-526. [PMID: 34330662 DOI: 10.1016/j.jmii.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.
Collapse
Affiliation(s)
- Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Kin-Mu Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Abdrabou W, Dieng MM, Diawara A, Sermé SS, Almojil D, Sombié S, Henry NB, Kargougou D, Manikandan V, Soulama I, Idaghdour Y. Metabolome modulation of the host adaptive immunity in human malaria. Nat Metab 2021; 3:1001-1016. [PMID: 34113019 DOI: 10.1038/s42255-021-00404-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
Host responses to infection with the malaria parasite Plasmodium falciparum vary among individuals for reasons that are poorly understood. Here we reveal metabolic perturbations as a consequence of malaria infection in children and identify an immunosuppressive role of endogenous steroid production in the context of P. falciparum infection. We perform metabolomics on matched samples from children from two ethnic groups in West Africa, before and after infection with seasonal malaria. Analysing 306 global metabolomes, we identify 92 parasitaemia-associated metabolites with impact on the host adaptive immune response. Integrative metabolomic and transcriptomic analyses, and causal mediation and moderation analyses, reveal an infection-driven immunosuppressive role of parasitaemia-associated pregnenolone steroids on lymphocyte function and the expression of key immunoregulatory lymphocyte genes in the Gouin ethnic group. In children from the less malaria-susceptible Fulani ethnic group, we observe opposing responses following infection, consistent with the immunosuppressive role of endogenous steroids in malaria. These findings advance our understanding of P. falciparum pathogenesis in humans and identify potential new targets for antimalarial therapeutic interventions.
Collapse
Affiliation(s)
- Wael Abdrabou
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Biology, New York University, New York, NY, USA
| | - Mame Massar Dieng
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Aïssatou Diawara
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Samuel Sindié Sermé
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Dareen Almojil
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Noelie Bere Henry
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Vinu Manikandan
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
23
|
Avni D, Avni O. Extracellular Vesicles: Schistosomal Long-Range Precise Weapon to Manipulate the Immune Response. Front Cell Infect Microbiol 2021; 11:649480. [PMID: 33869080 PMCID: PMC8044974 DOI: 10.3389/fcimb.2021.649480] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis (Bilharziasis), a neglected tropical disease that affects more than 240 million people around the world, is caused by infection with the helminth parasite Schistosoma. As part of their secretome, schistosomes release extracellular vesicles (EVs) that modulate the host immune response. The EV-harbored miRNAs upregulate the innate immune response of the M1 pathway and downregulate the differentiation toward the adaptive Th2 immunity. A schistosomal egg-derived miRNA increases the percentage of regulatory T cells. This schistosomal-inducible immunoediting process generates ultimately a parasitic friendly environment that is applied carefully as restrained Th2 response is crucial for the host survival and successful excretion of the eggs. Evidence indicates a selective targeting of schistosomal EVs, however, the underlying mechanisms are unclear yet. The effects of the schistosomes on the host immune system is in accordance with the hygiene hypothesis, attributing the dramatic increase in recent decades in allergy and other diseases associated with imbalanced immune response, to the reduced exposure to infectious agents that co-evolved with humans during evolution. Deciphering the bioactive cargo, function, and selective targeting of the parasite-secreted EVs may facilitate the development of novel tools for diagnostics and delivered therapy to schistosomiasis, as well as to immune-associated disorders.
Collapse
Affiliation(s)
- Dror Avni
- Laboratory of Molecular Cell Biology, Sheba Medical Center, Tel Hashomer, Israel.,Laboratory for the Study of Tropical Diseases, Sheba Medical Center, Tel Hashomer, Israel.,Department of Medicine C, Sheba Medical Center, Tel Hashomer, Israel
| | - Orly Avni
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
24
|
Mewamba EM, Nyangiri OA, Noyes HA, Egesa M, Matovu E, Simo G. The Genetics of Human Schistosomiasis Infection Intensity and Liver Disease: A Review. Front Immunol 2021; 12:613468. [PMID: 33659002 PMCID: PMC7917240 DOI: 10.3389/fimmu.2021.613468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis remains the fourth most prevalent parasitic disease affecting over 200 million people worldwide. Control efforts have focussed on the disruption of the life cycle targeting the parasite, vector and human host. Parasite burdens are highly skewed, and the majority of eggs are shed into the environment by a minority of the infected population. Most morbidity results from hepatic fibrosis leading to portal hypertension and is not well-correlated with worm burden. Genetics as well as environmental factors may play a role in these skewed distributions and understanding the genetic risk factors for intensity of infection and morbidity may help improve control measures. In this review, we focus on how genetic factors may influence parasite load, hepatic fibrosis and portal hypertension. We found 28 studies on the genetics of human infection and 20 studies on the genetics of pathology in humans. S. mansoni and S. haematobium infection intensity have been showed to be controlled by a major quantitative trait locus SM1, on chromosome 5q31-q33 containing several genes involved in the Th2 immune response, and three other loci of smaller effect on chromosomes 1, 6, and 7. The most common pathology associated with schistosomiasis is hepatic and portal vein fibroses and the SM2 quantitative trait locus on chromosome six has been linked to intensity of fibrosis. Although there has been an emphasis on Th2 cytokines in candidate gene studies, we found that four of the five QTL regions contain Th17 pathway genes that have been included in schistosomiasis studies: IL17B and IL12B in SM1, IL17A and IL17F in 6p21-q2, IL6R in 1p21-q23 and IL22RA2 in SM2. The Th17 pathway is known to be involved in response to schistosome infection and hepatic fibrosis but variants in this pathway have not been tested for any effect on the regulation of these phenotypes. These should be priorities for future studies.
Collapse
Affiliation(s)
- Estelle M. Mewamba
- Molecular Parasitology and Entomology Unit, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oscar A. Nyangiri
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Harry A. Noyes
- Centre for Genomic Research, School of Biological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Moses Egesa
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Enock Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
25
|
Rennie C, Fernandez R, Donnelly S, McGrath KCY. The Impact of Helminth Infection on the Incidence of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:728396. [PMID: 34456879 PMCID: PMC8397462 DOI: 10.3389/fendo.2021.728396] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. METHODS Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. RESULTS Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). CONCLUSIONS While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. SYSTEMATIC REVIEW REGISTRATION Website: PROSPERO Identified: CRD42021227619.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ritin Fernandez
- School of Nursing, University of Wollongong, Wollongong, NSW, Australia
- Centre for Research in Nursing and Health, St George Hospital, Sydney, NSW, Australia
- Centre for Evidence Based Initiatives in Health Care a JBI Centre of Excellence, Sydney, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| | - Kristine CY McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| |
Collapse
|
26
|
Angeles JMM, Mercado VJP, Rivera PT. Behind Enemy Lines: Immunomodulatory Armamentarium of the Schistosome Parasite. Front Immunol 2020; 11:1018. [PMID: 32582161 PMCID: PMC7295904 DOI: 10.3389/fimmu.2020.01018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
The deeply rooted, intricate relationship between the Schistosoma parasite and the human host has enabled the parasite to successfully survive within the host and surreptitiously evade the host's immune attacks. The parasite has developed a variety of strategies in its immunomodulatory armamentarium to promote infection without getting harmed or killed in the battlefield of immune responses. These include the production of immunomodulatory molecules, alteration of membranes, and the promotion of granuloma formation. Schistosomiasis thus serves as a paradigm for understanding the Th2 immune responses seen in various helminthiases. This review therefore aims to summarize the immunomodulatory mechanisms of the schistosome parasites to survive inside the host. Understanding these immunomodulatory strategies not only provides information on parasite-host interactions, but also forms the basis in the development of novel drugs and vaccines against the schistosome infection, as well as various types of autoimmune and inflammatory conditions.
Collapse
Affiliation(s)
- Jose Ma M Angeles
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Van Jerwin P Mercado
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| | - Pilarita T Rivera
- Department of Parasitology, College of Public Health, University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
27
|
Mota EA, do Patrocínio AB, Rodrigues V, da Silva JS, Pereira VC, Guerra-Sá R. Epigenetic and parasitological parameters are modulated in EBi3-/- mice infected with Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008080. [PMID: 32078636 PMCID: PMC7053770 DOI: 10.1371/journal.pntd.0008080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/03/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosoma mansoni adaptive success is related to regulation of replication, transcription and translation inside and outside the intermediate and definitive host. We hypothesize that S. mansoni alters its epigenetic state in response to the mammalian host immune system, reprogramming gene expression and altering the number of eggs. In response, a change in the DNA methylation profile of hepatocytes could occurs, modulating the extent of hepatic granuloma. To investigate this hypothesis, we used the EBi3-/- murine (Mus musculus) model of S. mansoni infection and evaluated changes in new and maintenance DNA methylation profiles in the liver after 55 days of infection. We evaluated expression of epigenetic genes and genes linked to histone deubiquitination in male and female S. mansoni worms. Comparing TET expression with DNMT expression indicated that DNA demethylation exceeds methylation in knockout infected and uninfected mice and in wild-type infected and uninfected mice. S. mansoni infection provokes activation of demethylation in EBi3-/-I mice (knockout infected). EBi3-/-C (knockout uninfected) mice present intrinsically higher DNA methylation than WTC (control uninfected) mice. EBi3-/-I mice show decreased hepatic damage considering volume and reduced number of granulomas compared to WTI mice; the absence of IL27 and IL35 pathways decreases the Th1 response resulting in minor liver damage. S. mansoni males and females recovered from EBi3-/-I mice have reduced expression of a deubiquitinating enzyme gene, orthologs of which target histones and affect chromatin state. SmMBD and SmHDAC1 expression levels are downregulated in male and female parasites recovered from EBi3-/-, leading to epigenetic gene downregulation in S. mansoni. Changes to the immunological background thus induce epigenetic changes in hepatic tissues and alterations in S. mansoni gene expression, which attenuate liver symptoms in the acute phase of schistosomiasis.
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Andressa Barban do Patrocínio
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanderlei Rodrigues
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro Pereira
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
28
|
Meningher T, Barsheshet Y, Ofir‐Birin Y, Gold D, Brant B, Dekel E, Sidi Y, Schwartz E, Regev‐Rudzki N, Avni O, Avni D. Schistosomal extracellular vesicle-enclosed miRNAs modulate host T helper cell differentiation. EMBO Rep 2020; 21:e47882. [PMID: 31825165 PMCID: PMC6944914 DOI: 10.15252/embr.201947882] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/22/2022] Open
Abstract
During the chronic stage of Schistosoma infection, the female lays fertile eggs, triggering a strong anti-parasitic type 2 helper T-cell (Th2) immune response. It is unclear how this Th2 response gradually declines even though the worms live for years and continue to produce eggs. Here, we show that Schistosoma mansoni downregulates Th2 differentiation in an antigen-presenting cell-independent manner, by modulating the Th2-specific transcriptional program. Adult schistosomes secrete miRNA-harboring extracellular vesicles that are internalized by Th cells in vitro. Schistosomal miRNAs are found also in T helper cells isolated from Peyer's patches and mesenteric lymph nodes of infected mice. In T helper cells, the schistosomal miR-10 targets MAP3K7 and consequently downmodulates NF-κB activity, a critical transcription factor for Th2 differentiation and function. Our results explain, at least partially, how schistosomes tune down the Th2 response, and provide further insight into the reciprocal geographic distribution between high prevalence of parasitic infections and immune disorders such as allergy. Furthermore, this worm-host crosstalk mechanism can be harnessed to develop diagnostic and therapeutic approaches for human schistosomiasis and Th2-associated diseases.
Collapse
Affiliation(s)
- Tal Meningher
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
| | | | - Yifat Ofir‐Birin
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Daniel Gold
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Boris Brant
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Elya Dekel
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Yechezkel Sidi
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Faculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
| | - Eli Schwartz
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
- Faculty of MedicineSackler School of MedicineTel Aviv UniversityTel AvivIsrael
- The Center for Geographic MedicineSheba Medical CenterTel HashomerIsrael
| | - Neta Regev‐Rudzki
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Orly Avni
- Azrieli Faculty of MedicineBar Ilan UniversitySafedIsrael
| | - Dror Avni
- Laboratory of Molecular Cell BiologyCenter for Cancer Research and Department of Medicine CSheba Medical CenterTel HashomerIsrael
- Molecular Laboratory for the Study of Tropical DiseasesSheba Medical CenterTel HashomerIsrael
| |
Collapse
|
29
|
Rogers KJ, Brunton B, Mallinger L, Bohan D, Sevcik KM, Chen J, Ruggio N, Maury W. IL-4/IL-13 polarization of macrophages enhances Ebola virus glycoprotein-dependent infection. PLoS Negl Trop Dis 2019; 13:e0007819. [PMID: 31825972 PMCID: PMC6905523 DOI: 10.1371/journal.pntd.0007819] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Ebolavirus (EBOV) outbreaks, while sporadic, cause tremendous morbidity and mortality. No therapeutics or vaccines are currently licensed; however, a vaccine has shown promise in clinical trials. A critical step towards development of effective therapeutics is a better understanding of factors that govern host susceptibility to this pathogen. As macrophages are an important cell population targeted during virus replication, we explore the effect of cytokine polarization on macrophage infection. METHODS/MAIN FINDINGS We utilized a BSL2 EBOV model virus, infectious, recombinant vesicular stomatitis virus encoding EBOV glycoprotein (GP) (rVSV/EBOV GP) in place of its native glycoprotein. Macrophages polarized towards a M2-like anti-inflammatory state by combined IL-4 and IL-13 treatment were more susceptible to rVSV/EBOV GP, but not to wild-type VSV (rVSV/G), suggesting that EBOV GP-dependent entry events were enhanced by these cytokines. Examination of RNA expression of known surface receptors that bind and internalize filoviruses demonstrated that IL-4/IL-13 stimulated expression of the C-type lectin receptor DC-SIGN in human macrophages and addition of the competitive inhibitor mannan abrogated IL-4/IL-13 enhanced infection. Two murine DC-SIGN-like family members, SIGNR3 and SIGNR5, were upregulated by IL-4/IL-13 in murine macrophages, but only SIGNR3 enhanced virus infection in a mannan-inhibited manner, suggesting that murine SIGNR3 plays a similar role to human DC-SIGN. In vivo IL-4/IL-13 administration significantly increased virus-mediated mortality in a mouse model and transfer of ex vivo IL-4/IL-13-treated murine peritoneal macrophages into the peritoneal cavity of mice enhanced pathogenesis. SIGNIFICANCE These studies highlight the ability of macrophage polarization to influence EBOV GP-dependent virus replication in vivo and ex vivo, with M2a polarization upregulating cell surface receptor expression and thereby enhancing virus replication. Our findings provide an increased understanding of the host factors in macrophages governing susceptibility to filoviruses and identify novel murine receptors mediating EBOV entry.
Collapse
Affiliation(s)
- Kai J. Rogers
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Bethany Brunton
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Laura Mallinger
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Dana Bohan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Kristina M. Sevcik
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Jing Chen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Natalie Ruggio
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
| | - Wendy Maury
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA United States of America
- * E-mail:
| |
Collapse
|
30
|
Vaccination against the digestive enzyme Cathepsin B using a YS1646 Salmonella enterica Typhimurium vector provides almost complete protection against Schistosoma mansoni challenge in a mouse model. PLoS Negl Trop Dis 2019; 13:e0007490. [PMID: 31790394 PMCID: PMC6907844 DOI: 10.1371/journal.pntd.0007490] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 12/12/2019] [Accepted: 10/01/2019] [Indexed: 12/03/2022] Open
Abstract
Schistosoma mansoni threatens hundreds of millions of people in >50 countries. Schistosomulae migrate through the lung and adult worms reside in blood vessels adjacent to the intestinal mucosa. Current candidate vaccines aren’t designed to elicit a mucosal response. We have repurposed an attenuated Salmonella enterica Typhimurium strain (YS1646) to produce such a vaccine targeting Cathepsin B (CatB), a digestive enzyme important for parasite survival. Promoter-Type 3 secretory signal pairs were screened for protein expression in vitro and transfected into YS1646 to generate candidate vaccine strains. Two strains were selected for in vivo evaluation (nirB_SspH1 and SspH1_SspH1). Female C57BL/6 mice were immunized twice, 3 weeks apart, using six strategies: i) saline gavage (control), ii) the ‘empty’ YS1646 vector orally (PO) followed by intramuscular (IM) recombinant CatB (20μg IM rCatB), iii) two doses of IM rCatB, iv) two PO doses of YS1646-CatB, v) IM rCatB then PO YS1646-CatB and vi) PO YS1646-CatB then IM rCatB. Serum IgG responses to CatB were monitored by ELISA. Three weeks after the second dose, mice were challenged with 150 cercariae and sacrificed 7 weeks later to assess adult worm and egg burden (liver and intestine), granuloma size and egg morphology. CatB-specific IgG antibodies were low/absent in the control and PO only groups but rose substantially in other groups (5898-6766ng/mL). The highest response was in animals that received nirB_SspH1 YS1646 PO then IM rCatB. In this group, reductions in worm and intestine/liver egg burden (vs. control) were 93.1% and 79.5%/90.3% respectively (all P < .0001). Granuloma size was reduced in all vaccinated groups (range 32.9–52.8 x103μm2) and most significantly in the nirB_SspH1 + CatB IM group (34.7±3.4 x103μm2vs. 62.2±6.1 x103μm2: vs. control P < .01). Many eggs in the vaccinated animals had abnormal morphology. Targeting CatB using a multi-modality approach can provide almost complete protection against S. mansoni challenge. Schistosomiasis is a parasitic disease that affects over 250 million people worldwide and over 800 million are at risk of infection. Of the three main species, Schistosoma mansoni is the most widely distributed and is endemic in the Caribbean, South America, and Africa. It causes a chronic disease with severe negative effects on quality of life. Mass drug administration of praziquantel is the only available course of action due to a current lack of vaccines. However, praziquantel does not protect from reinfection. Therefore, a vaccine would be beneficial as a long-term solution to reduce morbidity and transmission of the disease. Our group has repurposed the attenuated YS1646 strain of Salmonella Typhimurium as an oral vaccine vector for the digestive enzyme Cathepsin B of S. mansoni. Oral vaccination followed by an intramuscular dose of recombinant Cathepsin B lead to significant reductions in parasite burden in mice. These animals had the highest titers in serum IgG and intestinal IgA antibodies. This multimodal vaccination approach also elicited both Th1 and Th2 cytokines as seen by the increases in IFNγ and IL-5. Finally, vaccinated mice had reductions in granuloma size along with a higher proportion of morphologically-abnormal eggs. This work demonstrates that a YS1646-based, multimodality, prime-boost immunization schedule can provide nearly complete protection against S. mansoni in a well-established murine model.
Collapse
|
31
|
Tedla MG, Nahar MF, Hagen J, Every AL, Scheerlinck JPY. Recognition of Schistosoma mansoni egg-expressed ovalbumin by T cell receptor transgenic mice. Exp Parasitol 2019; 206:107767. [PMID: 31520603 DOI: 10.1016/j.exppara.2019.107767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 10/26/2022]
Abstract
Schistosoma mansoni eggs can influence immune responses directed at them, and the mechanisms by which this is achieved are being unravelled. Going towards, developing effective tools for the study of how S. mansoni influences naïve T cells, we have developed S. mansoni eggs expressing chicken ovalbumin (OVA), using a lentiviral transduction system. Indeed, such a parasite could be used in conjunction with cells from OT-II transgenic mice as a source of naïve, antigen-specific T cells. The expression of the transgenic protein was confirmed by real-time RT-PCR of OVA-specific mRNA and western blotting using polyclonal antibodies specific for OVA. T cells from OT-II transgenic mice expressing a T cell receptor specific for the OVA323-339 peptide recognised the OVA-transduced S. mansoni eggs. Using flow cytometry on CFSE-labelled OT-II splenocytes, we demonstrated that OVA-transduced eggs elicit higher OT-II proliferative responses than untransduced eggs. The OT-II T cells also produced TNF-α and IFN-γ following exposure to OVA-transduced eggs. In addition, moderate amounts of IL-6 and IL-17A were also detected. In contrast, no IL-10, IL-4 and IL-2 were detected in cultures, whether the cells were stimulated with transduced or untransduced eggs. Thus, the cytokine signatures showed the transfected eggs induced predominantly a Th1 response, with a small amount of IL-6 and IL-17.
Collapse
Affiliation(s)
- Mebrahtu G Tedla
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Musammat F Nahar
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jana Hagen
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Alison L Every
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jean-Pierre Y Scheerlinck
- Centre for Animal Biotechnology, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
32
|
De Marco Verissimo C, Potriquet J, You H, McManus DP, Mulvenna J, Jones MK. Qualitative and quantitative proteomic analyses of Schistosoma japonicum eggs and egg-derived secretory-excretory proteins. Parasit Vectors 2019; 12:173. [PMID: 30992086 PMCID: PMC6469072 DOI: 10.1186/s13071-019-3403-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/20/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Schistosome parasites lay up to a thousand eggs per day inside the veins of their mammalian hosts. The immature eggs deposited by females against endothelia of venules will embryonate within days. Approximately 30% of the eggs will migrate to the lumen of the intestine to continue the parasite life-cycle. Many eggs, however, are trapped in the liver and intestine causing the main pathology associated with schistosomiasis mansoni and japonica, the liver granulomatous response. Excretory-secretory egg proteins drive much of egg-induced pathogenesis of schistosomiasis mansoni, and Schistosoma japonicum induce a markedly distinct granulomatous response to that of S. mansoni. METHODS To explore the basis of variations in this responsiveness, we investigated the proteome of eggs of S. japonicum. Using mass spectrometry qualitative and quantitative (SWATH) analyses, we describe the protein composition of S. japonicum eggs secretory proteins (ESP), and the differential expression of proteins by fully mature and immature eggs, isolated from faeces and ex vivo adults. RESULTS Of 957 egg-related proteins identified, 95 were exclusively found in S. japonicum ESP which imply that they are accessible to host immune system effector elements. An in-silico analysis implies that ESP are able of stimulating the innate and adaptive immune system through several different pathways. While quantitative SWATH analysis revealed 124 proteins that are differentially expressed by mature and immature S. japonicum eggs, illuminating some important aspects of eggs biology and infection, we also show that mature eggs are more likely than immature eggs to stimulate host immune responses. CONCLUSIONS Here we present a list of potential targets that can be used to develop better strategies to avoid severe morbidity during S. japonicum infection, as well as improving diagnosis, treatment and control of schistosomiasis japonica.
Collapse
Affiliation(s)
- Carolina De Marco Verissimo
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia. .,Medical Biological Centre, Queen's University Belfast, Belfast, UK.
| | - Jeremy Potriquet
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Hong You
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
33
|
Pêgo B, Martinusso CA, Bernardazzi C, Ribeiro BE, de Araujo Cunha AF, de Souza Mesquita J, Nanini HF, Machado MP, Castelo-Branco MTL, Cavalcanti MG, de Souza HSP. Schistosoma mansoni Coinfection Attenuates Murine Toxoplasma gondii-Induced Crohn's-Like Ileitis by Preserving the Epithelial Barrier and Downregulating the Inflammatory Response. Front Immunol 2019; 10:442. [PMID: 30936867 PMCID: PMC6432985 DOI: 10.3389/fimmu.2019.00442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Background and aims: Mice orally infected with T. gondii develop Crohn's disease (CD)-like enteritis associated with severe mucosal damage and a systemic inflammatory response, resulting in high morbidity and mortality. Previously, helminthic infections have shown therapeutic potential in experimental colitis. However, the role of S. mansoni in T. gondii-induced CD-like enteritis has not been elucidated. Our study investigated the mechanisms underlying T. gondii-induced ileitis and the potential therapeutic effect of S. mansoni coinfection. Methods: C57BL/6 mice were infected by subcutaneous injection of cercariae of the BH strain of S. mansoni, and 7-9 weeks later, they were orally infected with cysts of the ME49 strain of T. gondii. After euthanasia, the ileum was removed for histopathological analysis; staining for goblet cells; immunohistochemistry characterizing mononuclear cells, lysozyme expression, apoptotic cells, and intracellular pathway activation; and measuring gene expression levels by real-time PCR. Cytokine concentrations were measured in the serial serum samples and culture supernatants of the ileal explants, in addition to myeloperoxidase (MPO) activity. Results:T. gondii-monoinfected mice presented dense inflammatory cell infiltrates and ulcerations in the terminal ileum, with abundant cell extrusion, apoptotic bodies, and necrosis; these effects were absent in S. mansoni-infected or coinfected animals. Coinfection preserved goblet cells and Paneth cells, remarkably depleted in T. gondii-infected mice. Densities of CD4- and CD11b-positive cells were increased in T. gondii- compared to S. mansoni-infected mice and controls. MPO was significantly increased among T. gondii-mice, while attenuated in coinfected animals. In T. gondii-infected mice, the culture supernatants of the explants showed increased concentrations of TNF-alpha, IFN-gamma, and IL-17, and the ileal tissue revealed increased expression of the mRNA transcripts for IL-1 beta, NOS2, HMOX1, MMP3, and MMP9 and activation of NF-kappa B and p38 MAPK signaling, all of which were counterregulated by S. mansoni coinfection. Conclusion:S. mansoni coinfection attenuates T. gondii-induced ileitis by preserving mucosal integrity and downregulating the local inflammatory response based on the activation of NF-kappa B and MAPK. The protective function of prior S. mansoni infection suggests the involvement of innate immune mechanisms and supports a conceptually new approach to the treatment of chronic inflammatory diseases, including CD.
Collapse
Affiliation(s)
- Beatriz Pêgo
- Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Claudio Bernardazzi
- Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | - Hayandra F. Nanini
- Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Marta Guimarães Cavalcanti
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Infectious Diseases Clinic, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor S. P. de Souza
- Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Soloviova K, Fox EC, Dalton JP, Caffrey CR, Davies SJ. A secreted schistosome cathepsin B1 cysteine protease and acute schistosome infection induce a transient T helper 17 response. PLoS Negl Trop Dis 2019; 13:e0007070. [PMID: 30653492 PMCID: PMC6353221 DOI: 10.1371/journal.pntd.0007070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 12/11/2018] [Indexed: 12/11/2022] Open
Abstract
The natural history of schistosome infection in the mammalian host is determined by CD4+ T helper responses mounted against different parasite life cycle stages. A T helper 2 (TH2) response to schistosome eggs is required for host survival and establishment of chronic infection. However, a TH2 cell-derived cytokine also contributes to an immune milieu that is conducive to schistosome growth and development. Thus, the same responses that allow for host survival have been co-opted by schistosomes to facilitate parasite development and transmission, underscoring the significance of CD4+ T cell responses to both worms and eggs in the natural history of schistosome infection. Here we show that a cathepsin B1 cysteine protease secreted by schistosome worms not only induces TH2 responses, but also TH1 and TH17 responses, by a mechanism that is dependent on the proteolytic activity of the enzyme. Further investigation revealed that, in addition to the expected TH1 and TH2 responses, acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated at the onset of oviposition. TH17 responses are implicated in the development of severe egg-induced pathology. The regulation of worm-induced TH17 responses during acute infection could therefore influence the expression of high and low pathology states as infection progresses. Schistosomiasis, a neglected tropical disease caused by parasites of the genus Schistosoma, is prevalent throughout the developing world, with more than 230 million people infected. Left untreated, schistosome infection may cause relatively mild disease with some morbidity, or, in a minority of cases, result in severe pathology and death. These variable outcomes are recapitulated in animal models, where the natural history of schistosome infection is profoundly influenced by the responses of host CD4+ T helper cells. Type 2 CD4+ T cell (TH2) responses, which allow for host survival by limiting pathology, have ironically also been co-opted by schistosomes to promote parasite development. On the other hand, TH17 responses have been implicated in the development of severe pathology, in both experimentally infected animals and naturally infected humans. Here we show that a schistosome proteolytic enzyme (SmCB1), produced in the parasite gut and released into the bloodstream, induces both TH2 and TH17 responses by a mechanism that requires the enzyme’s inherent proteolytic activity. Further investigation revealed that acute schistosome infection also induces a transient TH17 response that is rapidly down-regulated once parasite egg-laying commences. Regulation of TH17 responses during early infection may help determine whether mild or severe pathology develops as the infection progresses.
Collapse
Affiliation(s)
- Kateryna Soloviova
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ellen C. Fox
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - John P. Dalton
- School of Biological Sciences, Medical Biology Centre, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Stephen J. Davies
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
35
|
Ittiprasert W, Mann VH, Karinshak SE, Coghlan A, Rinaldi G, Sankaranarayanan G, Chaidee A, Tanno T, Kumkhaek C, Prangtaworn P, Mentink-Kane MM, Cochran CJ, Driguez P, Holroyd N, Tracey A, Rodpai R, Everts B, Hokke CH, Hoffmann KF, Berriman M, Brindley PJ. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. eLife 2019; 8:e41337. [PMID: 30644357 PMCID: PMC6355194 DOI: 10.7554/elife.41337] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022] Open
Abstract
CRISPR/Cas9-based genome editing has yet to be reported in species of the Platyhelminthes. We tested this approach by targeting omega-1 (ω1) of Schistosoma mansoni as proof of principle. This secreted ribonuclease is crucial for Th2 polarization and granuloma formation. Schistosome eggs were exposed to Cas9 complexed with guide RNA complementary to ω1 by electroporation or by transduction with lentiviral particles. Some eggs were also transfected with a single stranded donor template. Sequences of amplicons from gene-edited parasites exhibited Cas9-catalyzed mutations including homology directed repaired alleles, and other analyses revealed depletion of ω1 transcripts and the ribonuclease. Gene-edited eggs failed to polarize Th2 cytokine responses in macrophage/T-cell co-cultures, while the volume of pulmonary granulomas surrounding ω1-mutated eggs following tail-vein injection into mice was vastly reduced. Knock-out of ω1 and the diminished levels of these cytokines following exposure showcase the novel application of programmed gene editing for functional genomics in schistosomes.
Collapse
Affiliation(s)
- Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Shannon E Karinshak
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | | | - Apisit Chaidee
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Toshihiko Tanno
- Department of SurgeryUniversity of MarylandBaltimoreUnited States
- Institute of Human VirologyUniversity of MarylandBaltimoreUnited States
| | - Chutima Kumkhaek
- Cellular and Molecular Therapeutics LaboratoryNational Heart, Lungs and Blood Institute, National Institutes of HealthBethesdaUnited States
| | - Pannathee Prangtaworn
- Research Center for Neglected Diseases of Poverty, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
- Department of Parasitology, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | | | - Christina J Cochran
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| | - Patrick Driguez
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Rutchanee Rodpai
- Department of Parasitology, Faculty of MedicineKhon Kaen UniversityKhon KaenThailand
| | - Bart Everts
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Cornelis H Hokke
- Department of ParasitologyLeiden University Medical CenterLeidenNetherlands
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural SciencesAberystwyth UniversityAberystwythUnited Kingdom
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine and Health SciencesGeorge Washington UniversityWashington, DCUnited States
| |
Collapse
|
36
|
Magombedze G, Marino S. Mathematical and computational approaches in understanding the immunobiology of granulomatous diseases. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.coisb.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
37
|
Jenkins TP, Peachey LE, Ajami NJ, MacDonald AS, Hsieh MH, Brindley PJ, Cantacessi C, Rinaldi G. Schistosoma mansoni infection is associated with quantitative and qualitative modifications of the mammalian intestinal microbiota. Sci Rep 2018; 8:12072. [PMID: 30104612 PMCID: PMC6089957 DOI: 10.1038/s41598-018-30412-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/20/2018] [Indexed: 12/31/2022] Open
Abstract
In spite of the extensive contribution of intestinal pathology to the pathophysiology of schistosomiasis, little is known of the impact of schistosome infection on the composition of the gut microbiota of its mammalian host. Here, we characterised the fluctuations in the composition of the gut microbial flora of the small and large intestine, as well as the changes in abundance of individual microbial species, of mice experimentally infected with Schistosoma mansoni with the goal of identifying microbial taxa with potential roles in the pathophysiology of infection and disease. Bioinformatic analyses of bacterial 16S rRNA gene data revealed an overall reduction in gut microbial alpha diversity, alongside a significant increase in microbial beta diversity characterised by expanded populations of Akkermansia muciniphila (phylum Verrucomicrobia) and lactobacilli, in the gut microbiota of S. mansoni-infected mice when compared to uninfected control animals. These data support a role of the mammalian gut microbiota in the pathogenesis of hepato-intestinal schistosomiasis and serves as a foundation for the design of mechanistic studies to unravel the complex relationships amongst parasitic helminths, gut microbiota, pathophysiology of infection and host immunity.
Collapse
Affiliation(s)
- Timothy P Jenkins
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Laura E Peachey
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Nadim J Ajami
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew S MacDonald
- Manchester Collaborative Centre for Inflammation Research, Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PL, UK
| | - Michael H Hsieh
- Biomedical Research Institute, Rockville, Maryland, USA
- Department of Urology, School of Medicine and Health Sciences, George Washington University, Washington, USA
- Children's National Health System, Washington, District of Columbia, USA
| | - Paul J Brindley
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA.
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| | - Gabriel Rinaldi
- Department of Microbiology, Immunology & Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington, DC, 20037, USA.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.
| |
Collapse
|
38
|
Morel PA. Differential T-cell receptor signals for T helper cell programming. Immunology 2018; 155:63-71. [PMID: 29722021 DOI: 10.1111/imm.12945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/29/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022] Open
Abstract
Upon encounter with their cognate antigen, naive CD4 T cells become activated and are induced to differentiate into several possible T helper (Th) cell subsets. This differentiation depends on a number of factors including antigen-presenting cells, cytokines and co-stimulatory molecules. The strength of the T-cell receptor (TCR) signal, related to the affinity of TCR for antigen and antigen dose, has emerged as a dominant factor in determining Th cell fate. Recent studies have revealed that TCR signals of high or low strength do not simply induce quantitatively different signals in the T cells, but rather qualitatively distinct pathways can be induced based on TCR signal strength. This review examines the recent literature in this area and highlights important new developments in our understanding of Th cell differentiation and TCR signal strength.
Collapse
Affiliation(s)
- Penelope A Morel
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
39
|
van Die I, Cummings RD. The Mannose Receptor in Regulation of Helminth-Mediated Host Immunity. Front Immunol 2017; 8:1677. [PMID: 29238348 PMCID: PMC5712593 DOI: 10.3389/fimmu.2017.01677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Infection with parasitic helminths affects humanity and animal welfare. Parasitic helminths have the capacity to modulate host immune responses to promote their survival in infected hosts, often for a long time leading to chronic infections. In contrast to many infectious microbes, however, the helminths are able to induce immune responses that show positive bystander effects such as the protection to several immune disorders, including multiple sclerosis, inflammatory bowel disease, and allergies. They generally promote the generation of a tolerogenic immune microenvironment including the induction of type 2 (Th2) responses and a sub-population of alternatively activated macrophages. It is proposed that this anti-inflammatory response enables helminths to survive in their hosts and protects the host from excessive pathology arising from infection with these large pathogens. In any case, there is an urgent need to enhance understanding of how helminths beneficially modulate inflammatory reactions, to identify the molecules involved and to promote approaches to exploit this knowledge for future therapeutic interventions. Evidence is increasing that C-type lectins play an important role in driving helminth-mediated immune responses. C-type lectins belong to a large family of calcium-dependent receptors with broad glycan specificity. They are abundantly present on immune cells, such as dendritic cells and macrophages, which are essential in shaping host immune responses. Here, we will focus on the role of the C-type lectin macrophage mannose receptor (MR) in helminth-host interactions, which is a critically understudied area in the field of helminth immunobiology. We give an overview of the structural aspects of the MR including its glycan specificity, and the functional implications of the MR in helminth-host interactions focusing on a few selected helminth species.
Collapse
Affiliation(s)
- Irma van Die
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, Netherlands
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
40
|
Aravindhan V, Anand G. Cell Type-Specific Immunomodulation Induced by Helminthes: Effect on Metainflammation, Insulin Resistance and Type-2 Diabetes. Am J Trop Med Hyg 2017; 97:1650-1661. [PMID: 29141759 DOI: 10.4269/ajtmh.17-0236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent epidemiological studies have documented an inverse relationship between the decreasing prevalence of helminth infections and the increasing prevalence of metabolic diseases ("metabolic hygiene hypothesis"). Chronic inflammation leading to insulin resistance (IR) has now been identified as a major etiological factor for a variety of metabolic diseases other than obesity and Type-2 diabetes (metainflammation). One way by which helminth infections such as filariasis can modulate IR is by inducing a chronic, nonspecific, low-grade, immune suppression mediated by modified T-helper 2 (Th2) response (induction of both Th2 and regulatory T cells) which can in turn suppress the proinflammatory responses and promote insulin sensitivity (IS). This article provides evidence on how the cross talk between the innate and adaptive arms of the immune responses can modulate IR/sensitivity. The cross talk between innate (macrophages, dendritic cells, natural killer cells, natural killer T cells, myeloid derived suppressor cells, innate lymphoid cells, basophils, eosinophils, and neutrophils) and adaptive (helper T [CD4+] cells, cytotoxic T [CD8+] cells and B cells) immune cells forms two opposing circuits, one associated with IR and the other associated with IS under the conditions of metabolic syndrome and helminth-mediated immunomodulation, respectively.
Collapse
|
41
|
Amelio P, Portevin D, Reither K, Mhimbira F, Mpina M, Tumbo A, Nickel B, Marti H, Knopp S, Ding S, Penn-Nicholson A, Darboe F, Ohmiti K, Scriba TJ, Pantaleo G, Daubenberger C, Perreau M. Mixed Th1 and Th2 Mycobacterium tuberculosis-specific CD4 T cell responses in patients with active pulmonary tuberculosis from Tanzania. PLoS Negl Trop Dis 2017; 11:e0005817. [PMID: 28759590 PMCID: PMC5552332 DOI: 10.1371/journal.pntd.0005817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/10/2017] [Accepted: 07/19/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) and helminth infections elicit antagonistic immune effector functions and are co-endemic in several regions of the world. We therefore hypothesized that helminth infection may influence Mtb-specific T-cell immune responses. We evaluated the cytokine profile of Mtb-specific T cells in 72 individuals with pulmonary TB disease recruited from two Sub-Saharan regions with high and moderate helminth burden i.e. 55 from Tanzania (TZ) and 17 from South Africa (SA), respectively. We showed that Mtb-specific CD4 T-cell functional profile of TB patients from Tanzania are primarily composed of polyfunctional Th1 and Th2 cells, associated with increased expression of Gata-3 and reduced expression of T-bet in memory CD4 T cells. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by single IFN-γ and dual IFN-γ/TNF-α and associated with TB-induced systemic inflammation and elevated serum levels of type I IFNs. Of note, the proportion of patients with Mtb-specific CD8 T cells was significantly reduced in Mtb/helminth co-infected patients from TZ. It is likely that the underlying helminth infection and possibly genetic and other unknown environmental factors may have caused the induction of mixed Th1/Th2 Mtb-specific CD4 T cell responses in patients from TZ. Taken together, these results indicate that the generation of Mtb-specific CD4 and CD8 T cell responses may be substantially influenced by environmental factors in vivo. These observations may have major impact in the identification of immune biomarkers of disease status and correlates of protection. Mycobacterium tuberculosis (Mtb) and helminth infections are co-endemic in several regions of the world and their immune responses may be mutually antagonistic. We therefore hypothesized that helminth infection would impact and potentially shape Mtb-specific T-cell responses and systemic inflammation in patients suffering from active pulmonary tuberculosis (TB) enrolled from two helminth endemic regions i.e. Tanzania (TZ) and South Africa (SA). In this study, we demonstrate for the first time that TB patients from SA and TZ harbor distinct immune responses to Mtb antigens. Indeed, we showed that Mtb-specific CD4 T-cell responses of TB patients from TZ were composed by a mixed T helper type 1 (Th1) and Th2 responses. In contrast, the cytokine profile of Mtb-specific CD4 T cells of TB patients from SA was dominated by Th1 cells and associated with TB-induced systemic inflammation and elevated serum levels of type I IFN. Taken together, these data indicate that Mtb-specific T-cell responses are diverse in human populations and can be strongly influenced by host and pathogen genetic background, co-infections and yet unknown environmental factors. Identification of correlates of risk and protection from TB disease will help in the rational development of protective T-cell based vaccines against TB, early monitoring TB treatment outcomes and focused follow up of high risk populations.
Collapse
Affiliation(s)
- Patrizia Amelio
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Damien Portevin
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Klaus Reither
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | | | - Beatrice Nickel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hanspeter Marti
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Song Ding
- EuroVacc Foundation, Lausanne, Switzerland
| | - Adam Penn-Nicholson
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Fatoumatta Darboe
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Khalid Ohmiti
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thomas J. Scriba
- South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, Division of Immunology, Department of Pathology, University of Cape Town, South Africa
| | - Giuseppe Pantaleo
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- SVRI, Lausanne, Switzerland
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
42
|
Haptoglobin Phenotypes and Susceptibility to Schistosoma Parasites Infection in Central Sudan. Mediterr J Hematol Infect Dis 2017; 9:e2017042. [PMID: 28698785 PMCID: PMC5499500 DOI: 10.4084/mjhid.2017.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/08/2017] [Indexed: 12/17/2022] Open
Abstract
Haptoglobin (Hp) is an acute phase protein that binds the free hemoglobin (Hb), thus preventing iron loss and renal damage. Hp also has antioxidative and immunomodulatory properties. Three Hp phenotypes have been identified in human: Hp1-1, Hp2-1, and Hp2-2. Hp polymorphisms have been related to susceptibility of various diseases. In this study, we aimed to assess the possible association of Hp phenotypes polymorphism to Schistosoma parasites infection in central Sudan. We have investigated the Hp phenotypes polymorphism distribution in the serum of 125 (93 S. mansoni, 13 S. haematobium and 19 infected with both "co-infection") parasitologically confirmed infected individuals and 208 healthy individuals served as control. Hp phenotypes have been determined by polyacrylamide gel electrophoresis followed by benzidine staining. Our study revealed that Hp1-1 percentage frequency was significantly higher in infected individuals than healthy control individuals 51% and 26% respectively. Our data suggest that Hp1-1 phenotype may upsurge the susceptibility to Schistosoma parasites infection in central Sudan.
Collapse
|
43
|
Different populations of CD11b + dendritic cells drive Th2 responses in the small intestine and colon. Nat Commun 2017; 8:15820. [PMID: 28598427 PMCID: PMC5472728 DOI: 10.1038/ncomms15820] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/07/2017] [Indexed: 12/19/2022] Open
Abstract
T-helper 2 (Th2) cell responses defend against parasites. Although dendritic cells (DCs) are vital for the induction of T-cell responses, the DC subpopulations that induce Th2 cells in the intestine are unidentified. Here we show that intestinal Th2 responses against Trichuris muris worms and Schistosoma mansoni eggs do not develop in mice with IRF-4-deficient DCs (IRF-4f/f CD11c-cre). Adoptive transfer of conventional DCs, in particular CD11b-expressing DCs from the intestine, is sufficient to prime S. mansoni-specific Th2 responses. Surprisingly, transferred IRF-4-deficient DCs also effectively prime S. mansoni-specific Th2 responses. Egg antigens do not induce the expression of IRF-4-related genes. Instead, IRF-4f/f CD11c-cre mice have fewer CD11b+ migrating DCs and fewer DCs carrying parasite antigens to the lymph nodes. Furthermore, CD11b+CD103+ DCs induce Th2 responses in the small intestine, whereas CD11b+CD103− DCs perform this role in the colon, revealing a specific functional heterogeneity among intestinal DCs in inducing Th2 responses. T helper 2 (Th2) cell responses are essential for immunity against parasites, but how Th2 response is modulated in the gut is still unclear. Here the authors show that distinct dendritic cell subsets distinguishable by CD11b, CD103 and IRF4 function in the small intestine or colon to promote Th2 responses.
Collapse
|
44
|
Tang H, Liang YB, Chen ZB, Du LL, Zeng LJ, Wu JG, Yang W, Liang HP, Ma ZF. Soluble Egg Antigen Activates M2 Macrophages via the STAT6 and PI3K Pathways, and Schistosoma Japonicum Alternatively Activates Macrophage Polarization to Improve the Survival Rate of Septic Mice. J Cell Biochem 2017; 118:4230-4239. [PMID: 28419526 DOI: 10.1002/jcb.26073] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Sepsis is one of the most challenging health problems worldwide. Our previous study showed that chronic schistosoma japonica (SJ) infection might increase serum anti-inflammatory factors to play a protective role, thus improving the survival rate of septic mice. Further research revealed that SJ infection promoted J774A.1 macrophage differentiation into M2 macrophages; suppressed LPS-induced activation of M1 macrophages; up-regulated CD163, IL-10, and TGF-β1 expression; inhibited TNF-α and iNOS expression; and blocked the effect of LPS-promoted TNF-α and iNOS expression. Furthermore, adoptive transfer of ex vivo programed M2 macrophages significantly increased the survival rate of septic mice. In vitro studies suggested that soluble egg antigen (SEA) from SJ played the same role as worm infection but had no impact on M1 macrophages. SEA reduced LPS-induced TNF-α and iNOS expression, decreased the inhibitory effect of LPS on IL-10 and TGF-β1 expression, increased STAT6 phosphorylation, and up-regulated PI3K and Akt expression but inhibited SOCS1 expression. When PI3K inhibitors were added, SEA-induced expression of CD163, IL-10, and arg1 might be reduced. Therefore, worm infection has a protective effect in septic mice in which SEA may play a key role via the STAT6 and PI3K pathways. This finding may provide a favorable solution for the treatment of sepsis, especially early cases. J. Cell. Biochem. 118: 4230-4239, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hao Tang
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yan-Bing Liang
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhi-Bin Chen
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lin-Lin Du
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Li-Jin Zeng
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jing-Guo Wu
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen Yang
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua-Ping Liang
- The Third Military Medical University, Chongqing, 400038, China
| | - Zhong-Fu Ma
- Department of General Internal Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
45
|
Ke XD, Shen S, Song LJ, Yu CX, Kikuchi M, Hirayama K, Gao H, Wang J, Yin X, Yao Y, Liu Q, Zhou W. Characterization of Schistosoma japonicum CP1412 protein as a novel member of the ribonuclease T2 molecule family with immune regulatory function. Parasit Vectors 2017; 10:89. [PMID: 28212670 PMCID: PMC5316207 DOI: 10.1186/s13071-016-1962-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 12/29/2016] [Indexed: 01/05/2023] Open
Abstract
Background Schistosome infection typically induces a polarized Th2 type host immune response. As egg antigen molecules play key roles in this immunoregulatory process, clarifying their functions in schistosomiasis would facilitate the development of vaccine and immunotherapeutic methods. Schistosoma japonicum (Sj) CP1412 (GenBank: AY57074.1) has been identified as a new member of the RNase T2 family with immune regulatory functions. Methods The expression plasmid Sj CP1412-pET28a was constructed and transformed into bacteria for production of recombinant Sj CP1412 protein (rSj CP1412) via IPTG induction. The RNase activity of Sj CP1412 was predicted by bioinformatic analysis and confirmed by digesting the yeast tRNA with rSj CP1412.C57BL/6j mice were immunized with rSj CP1412, and its immune regulatory effects in vivo and in vitro were investigated. Meanwhile, the relationship between the RNase activity of Sj CP1412 and its immune regulation was observed. Results Sj CP1412 was confirmed as a novel RNase T2 family protein with RNase activity. Immunoblotting and RT-PCR analyses demonstrated Sj CP1412 as a protein exclusively secreted/excreted from eggs, but not cercariae and adult worms. Stimulating RAW264.7 macrophages with rSj CP1412 raised the expression of CD206, Arg-1 and IL-10, which are related to M2 type macrophage differentiation. Stimulating dendritic cells (DCs) with rSjCP1412 failed to induce their maturation, and the recombinant protein also inhibited LPS-stimulated DC maturation. Depletion of Sj CP1412 from soluble egg antigen (SEA) impaired the ability of SEA to induce M2 type polarization of RAW264.7 macrophages. Immunizing mice with rSj CP1412 induced high antibody titers, increased serum IL-4 and TGF-β levels and splenic CD4 + CD25 + Foxp3 + T cells, downregulated serum IFN-γ levels and alleviated the egg granuloma pathology of schistosome infection. In vitro stimulation by rSj CP1412 significantly increased CD4 + CD25 + Foxp3 + T cell numbers in splenocytes of healthy mice. The rSj CP1412 protein with RNase activity inactivated by DEPC failed to induce M2 surface marker CD206 expression in RAW264.7 macrophages. Conclusions The Sj CP1412 protein expressed specifically in S. japonicum eggs is a novel member of the RNase T2 family. Similar to Omega-1 of Schistosoma mansoni, the Sj CP1412 protein drives polarization of the host Th2 immune response, which is dependent on its RNase activity. These data provide new evidence towards understanding the immune regulatory role of RNase T2 family proteins during schistosome infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1962-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Dan Ke
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Shuang Shen
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.,Medical College, Jiangnan University, Wuxi, 214122, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, People's Republic of China.,Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China
| | - Li-Jun Song
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Chuan-Xin Yu
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China. .,Medical College, Jiangnan University, Wuxi, 214122, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, People's Republic of China.
| | - Mihoko Kikuchi
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Hong Gao
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China.,Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, 210003, People's Republic of China
| | - Jie Wang
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Xuren Yin
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Yuan Yao
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Qian Liu
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| | - Wei Zhou
- Key Laboratory on Technology for Parasitic Disease Prevention and Control, Ministry of Health; Jiangsu Provincial Key Laboratory on Technology for Parasite and Vector Control, Jiangsu Institute of Parasitic Diseases, Wuxi, 214064, People's Republic of China
| |
Collapse
|
46
|
Kaewraemruaen C, Sermswan RW, Wongratanacheewin S. Induction of regulatory T cells by Opisthorchis viverrini. Parasite Immunol 2016; 38:688-697. [PMID: 27552546 DOI: 10.1111/pim.12358] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 08/19/2016] [Indexed: 01/04/2023]
Abstract
Opisthorchis viverrini causes public health problems in South-East Asia. Recently, TGF-β and IL-10 have been reported to increase in O. viverrini-infected hamsters but the sources of these cytokines are still unknown. In this study, the CD4+ T cells in infected hamsters were investigated. It was demonstrated that IL-4+ CD4+ T cells were significantly increased in hamster spleens and mesenteric lymph nodes (MLNs) during chronic infection. Interestingly, IL-10+ CD4+ T cells were also discovered at a significant level while Treg (T regulatory)-like TGF- β+ CD4+ T cells were in MLNs of infected hamsters. Moreover, the CD4+ CD25+ Foxp3+ Treg cell response was significantly found both in spleens and MLNs in infected hamsters. The findings were then confirmed by development of T-cell clones against crude somatic antigens (CSAg) in immunized BALB/c mice. Five clones named TCC21, TCC23, TCC35, TCC41 and TCC108 were established. The TCC21 was found to be the TGF-β+ CD4+ while TCC35, TCC41 and TCC108 were IL-4+ CD4+ and TCC23 was IFN-γ+ CD4+ . This TGF-β+ CD4+ T clone showed an inhibitory function in vitro in mononuclear cell proliferation via TGF-β-mediated mechanisms. This study indicated that O. viverrini-infected hamsters could induce TGF-β+ CD4+ Treg-like cells. The CSAg-specific Tregs secreted high TGF-β, and limited immune cell proliferation.
Collapse
Affiliation(s)
- C Kaewraemruaen
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand.,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand
| | - R W Sermswan
- Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - S Wongratanacheewin
- Department of Microbiology, Khon Kaen University, Khon Kaen, Thailand. .,Melioidosis Research Center, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
47
|
DiNardo AR, Mace EM, Lesteberg K, Cirillo JD, Mandalakas AM, Graviss EA, Orange JS, Makedonas G. Schistosome Soluble Egg Antigen Decreases Mycobacterium tuberculosis-Specific CD4+ T-Cell Effector Function With Concomitant Arrest of Macrophage Phago-Lysosome Maturation. J Infect Dis 2016; 214:479-88. [PMID: 27389351 PMCID: PMC4936644 DOI: 10.1093/infdis/jiw156] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 04/08/2016] [Indexed: 01/01/2023] Open
Abstract
Helminth-infected individuals possess a higher risk of developing tuberculosis, but the precise immunologic mechanism of Mycobacterium tuberculosis control remains unclear. We hypothesized that a perturbation of the M. tuberculosis-specific CD4(+) T-cell response weakens the ability of macrophages to contain M. tuberculosis We exposed peripheral blood mononuclear cells from M. tuberculosis-infected humans to schistosome soluble egg antigen (SEA) and then profiled M. tuberculosis-specific CD4(+) T cells via multiparametric flow cytometry. SEA decreased the frequency of cells producing interferon γ (6.79% vs 3.20%; P = .017) and tumor necrosis factor α (6.98% vs 2.96%; P = .012), with a concomitant increase in the median fluorescence intensity of interleukin 4 (IL-4; P < .05) and interleukin 10 (IL-10; 1440 vs 1273; P < .05). Macrophages polarized with SEA-exposed, autologous CD4(+) T-cell supernatant had a 2.19-fold decreased colocalization of lysosomes and M. tuberculosis (P < .05). When polarized with IL-4 or IL-10, macrophages had increased expression of CD206 (P < .0001), 1.5-fold and 1.9 fold increased intracellular numbers of M. tuberculosis per macrophage (P < .0005), and 1.4-fold and 1.7-fold decreased colocalization between M. tuberculosis and lysosomes (P < .001). This clarifies a relationship in which helminth-induced CD4(+) T cells disrupt M. tuberculosis control by macrophages, thereby providing a mechanism for the observation that helminth infection advances the progression of tuberculosis among patients with M. tuberculosis infection.
Collapse
Affiliation(s)
- Andrew R DiNardo
- Section of Infectious Diseases, Department of Internal Medicine Immigrant and Global Health Program, Department of Pediatrics Global Tuberculosis Program
| | - Emily M Mace
- Department of Pathology and Immunology, Baylor College of Medicine Department of Pediatrics Center for Immunobiology, Texas Children's Hospital
| | - Kelsey Lesteberg
- Department of Pathology and Immunology, Baylor College of Medicine Department of Pediatrics Center for Immunobiology, Texas Children's Hospital
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Center for Airborne Pathogen Research and Tuberculosis Imaging, Texas A&M Health Science Center, College Station
| | - Anna M Mandalakas
- Immigrant and Global Health Program, Department of Pediatrics Global Tuberculosis Program
| | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital Research Institute
| | - Jordan S Orange
- Department of Pathology and Immunology, Baylor College of Medicine Department of Pediatrics Center for Immunobiology, Texas Children's Hospital
| | - George Makedonas
- Department of Pathology and Immunology, Baylor College of Medicine Department of Pediatrics Center for Immunobiology, Texas Children's Hospital
| |
Collapse
|
48
|
Veríssimo CM, Morassutti AL, von Itzstein M, Sutov G, Hartley-Tassell L, McAtamney S, Dell A, Haslam SM, Graeff-Teixeira C. Characterization of the N-glycans of female Angiostrongylus cantonensis worms. Exp Parasitol 2016; 166:137-43. [PMID: 27107931 DOI: 10.1016/j.exppara.2016.04.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 04/04/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022]
Abstract
Glycoconjugates play a crucial role in the host-parasite relationships of helminthic infections, including angiostrongyliasis. It has previously been shown that the antigenicity of proteins from female Angiostrongylus cantonensis worms may depend on their associated glycan moieties. Here, an N-glycan profile of A. cantonensis is reported. A total soluble extract (TE) was prepared from female A. cantonensis worms and was tested by western blot before and after glycan oxidation or N- and O-glycosidase treatment. The importance of N-glycans for the immunogenicity of A. cantonensis was demonstrated when deglycosylation of the TE with PNGase F completely abrogated IgG recognition. The TE was also fractionated using various lectin columns [Ulex europaeus (UEA), concanavalin A (Con A), Arachis hypogaea (PNA), Triticum vulgaris (WGA) and Lycopersicon esculentum (LEA)], and then each fraction was digested with PNGase F. Released N-glycans were analyzed with matrix-assisted laser desorption ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) and MALDI-TOF/TOF-MS/MS. Complex-type, high mannose, and truncated glycan structures were identified in all five fractions. Sequential MALDI-TOF-TOF analysis of the major MS peaks identified complex-type structures, with a α1-6 fucosylated core and truncated antennas. Glycoproteins in the TE were labeled with BodipyAF558-SE dye for a lectin microarray analysis. Fluorescent images were analyzed with ProScanArray imaging software followed by statistical analysis. A total of 29 lectins showed positive binding to the TE. Of these, Bandeiraea simplicifolia (BS-I), PNA, and Wisteria floribunda (WFA), which recognize galactose (Gal) and N-acetylgalactosamine (GalNAc), exhibited high affinity binding. Taken together, our findings demonstrate that female A. cantonensis worms have characteristic helminth N-glycans.
Collapse
Affiliation(s)
- Carolina M Veríssimo
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil; Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia.
| | - Alessandra L Morassutti
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Grigorij Sutov
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Lauren Hartley-Tassell
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Sarah McAtamney
- Institute for Glycomics, Griffith University, Gold Coast Campus, Queensland, 4222, Australia
| | - Anne Dell
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Carlos Graeff-Teixeira
- Laboratório de Parasitologia Molecular, Instituto de Pesquisas Biomédicas and Laboratório de Biologia Parasitária, Faculdade de Biociências da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS 90060-900, Brazil
| |
Collapse
|
49
|
Postmortem serum levels of total IgE. Int J Legal Med 2016; 130:1567-1573. [DOI: 10.1007/s00414-016-1398-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
|
50
|
Angelucci F, Miele AE, Ardini M, Boumis G, Saccoccia F, Bellelli A. Typical 2-Cys peroxiredoxins in human parasites: Several physiological roles for a potential chemotherapy target. Mol Biochem Parasitol 2016; 206:2-12. [PMID: 27002228 DOI: 10.1016/j.molbiopara.2016.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 01/07/2023]
Abstract
Peroxiredoxins (Prxs) are ubiquitary proteins able to play multiple physiological roles, that include thiol-dependent peroxidase, chaperone holdase, sensor of H2O2, regulator of H2O2-dependent signal cascades, and modulator of the immune response. Prxs have been found in a great number of human pathogens, both eukaryotes and prokaryotes. Gene knock-out studies demonstrated that Prxs are essential for the survival and virulence of at least some of the pathogens tested, making these proteins potential drug targets. However, the multiplicity of roles played by Prxs constitutes an unexpected obstacle to drug development. Indeed, selective inhibitors of some of the functions of Prxs are known (namely of the peroxidase and holdase functions) and are here reported. However, it is often unclear which function is the most relevant in each pathogen, hence which one is most desirable to inhibit. Indeed there are evidences that the main physiological role of Prxs may not be the same in different parasites. We here review which functions of Prxs have been demonstrated to be relevant in different human parasites, finding that the peroxidase and chaperone activities figure prominently, whereas other known functions of Prxs have rarely, if ever, been observed in parasites, or have largely escaped detection thus far.
Collapse
Affiliation(s)
- Francesco Angelucci
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Adriana Erica Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Matteo Ardini
- Department of Health, Life and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Giovanna Boumis
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Fulvio Saccoccia
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Bellelli
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.
| |
Collapse
|