1
|
Mowery CT, Freimer JW, Chen Z, Casaní-Galdón S, Umhoefer JM, Arce MM, Gjoni K, Daniel B, Sandor K, Gowen BG, Nguyen V, Simeonov DR, Garrido CM, Curie GL, Schmidt R, Steinhart Z, Satpathy AT, Pollard KS, Corn JE, Bernstein BE, Ye CJ, Marson A. Systematic decoding of cis gene regulation defines context-dependent control of the multi-gene costimulatory receptor locus in human T cells. Nat Genet 2024; 56:1156-1167. [PMID: 38811842 PMCID: PMC11176074 DOI: 10.1038/s41588-024-01743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/04/2024] [Indexed: 05/31/2024]
Abstract
Cis-regulatory elements (CREs) interact with trans regulators to orchestrate gene expression, but how transcriptional regulation is coordinated in multi-gene loci has not been experimentally defined. We sought to characterize the CREs controlling dynamic expression of the adjacent costimulatory genes CD28, CTLA4 and ICOS, encoding regulators of T cell-mediated immunity. Tiling CRISPR interference (CRISPRi) screens in primary human T cells, both conventional and regulatory subsets, uncovered gene-, cell subset- and stimulation-specific CREs. Integration with CRISPR knockout screens and assay for transposase-accessible chromatin with sequencing (ATAC-seq) profiling identified trans regulators influencing chromatin states at specific CRISPRi-responsive elements to control costimulatory gene expression. We then discovered a critical CCCTC-binding factor (CTCF) boundary that reinforces CRE interaction with CTLA4 while also preventing promiscuous activation of CD28. By systematically mapping CREs and associated trans regulators directly in primary human T cell subsets, this work overcomes longstanding experimental limitations to decode context-dependent gene regulatory programs in a complex, multi-gene locus critical to immune homeostasis.
Collapse
Grants
- P30 DK063720 NIDDK NIH HHS
- R01 HG008140 NHGRI NIH HHS
- T32 GM007618 NIGMS NIH HHS
- S10 OD028511 NIH HHS
- F99 CA234842 NCI NIH HHS
- S10 OD021822 NIH HHS
- K00 CA234842 NCI NIH HHS
- P01 AI138962 NIAID NIH HHS
- U01 HL157989 NHLBI NIH HHS
- R01 DK129364 NIDDK NIH HHS
- T32 DK007418 NIDDK NIH HHS
- R01 AI136972 NIAID NIH HHS
- F30 AI157167 NIAID NIH HHS
- R01 HG011239 NHGRI NIH HHS
- NIH grants 1R01DK129364-01A1, P01AI138962, and R01HG008140; the Larry L. Hillblom Foundation (grant no. 2020-D-002-NET); and Northern California JDRF Center of Excellence. A.M. is a member of the Parker Institute for Cancer Immunotherapy (PICI), and has received funding from the Arc Institute, Chan Zuckerberg Biohub, Innovative Genomics Institute (IGI), Cancer Research Institute (CRI) Lloyd J. Old STAR award, a gift from the Jordan Family, a gift from the Byers family and a gift from B. Bakar.
- UCSF ImmunoX Computational Immunology Fellow, is supported by NIH grant F30AI157167, and has received support from NIH grants T32DK007418 and T32GM007618
- NIH grant R01HG008140
- Career Award for Medical Scientists from the Burroughs Wellcome Fund, a Lloyd J. Old STAR Award from the Cancer Research Institute, and the Parker Institute for Cancer Immunotherapy
- NIH grant U01HL157989
Collapse
Affiliation(s)
- Cody T Mowery
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob W Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zeyu Chen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Jennifer M Umhoefer
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Maya M Arce
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Bence Daniel
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Microchemistry, Proteomics, Lipidomics and Next Generation Sequencing, Genentech, South San Francisco, CA, USA
| | - Katalin Sandor
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Benjamin G Gowen
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Vinh Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Christian M Garrido
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Gemma L Curie
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ralf Schmidt
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Zachary Steinhart
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Ansuman T Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Program in Immunology, Stanford University, Stanford, CA, USA
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Jacob E Corn
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Chun Jimmie Ye
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA.
- Rosalind Russell/Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Zhao J, Dong J, Deng C, Zhang Q, Sun S, Li H, Bai Y, Deng H. Enhancing T cell anti-tumor efficacy with a PD1-TIGIT chimeric immune-checkpoint switch receptor. Oncoimmunology 2023; 12:2265703. [PMID: 37808405 PMCID: PMC10557556 DOI: 10.1080/2162402x.2023.2265703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated success in the treatment of hematological malignancies; however, its efficacy and applications in solid tumors remain limited. Immunosuppressive factors, particularly inhibitory checkpoint molecules, restrict CAR T cell activity inside solid tumors. The modulation of checkpoint pathways has emerged as a promising approach to promote anti-tumor responses in CAR T cells. Programmed cell death protein 1 (PD1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two critical immune-checkpoint molecules that suppress anti-tumor activity in T cells. Simultaneous targeting of these two inhibitory molecules could be an efficient checkpoint modulation strategy. Here, we developed a PD1-TIGIT chimeric immune-checkpoint switch receptor (CISR) that enhances the efficacy of CAR T cell immunotherapy by reversing the inhibitory checkpoint signals of PD1/PDL1 and/or TIGIT/CD155. In addition to neutralizing PDL1 and CD155, this chimeric receptor is engineered with the transmembrane region and intracellular domain of CD28, thereby effectively enhancing T cell survival and tumor-targeting functions. Notably, under simultaneous stimulation of PDL1 and CD155, CISR-CAR T cells demonstrate superior performance in terms of cell survival, proliferation, cytokine release, and cytotoxicity in vitro, compared with conventional CAR T cells. Experiments utilizing both cell line- and patient-derived xenotransplantation tumor models showed that CISR-CAR T cells exhibit robust infiltration and anti-tumor efficiency in vivo. Our results highlight the potential for the CISR strategy to enhance T cell anti-tumor efficacy and provide an alternative approach for T cell-based immunotherapies.
Collapse
Affiliation(s)
- Jingjing Zhao
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Jiebin Dong
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Changwen Deng
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, School of medicine, Tongji University, Shanghai, China
| | - Qianjing Zhang
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Shicheng Sun
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Honggang Li
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Yun Bai
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
| | - Hongkui Deng
- Department of Cell Biology and MOE Engineering Research Center of Regenerative Medicine, School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Peking University, Hadian District, Beijing, China
- College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
3
|
Ahuja SK, Manoharan MS, Lee GC, McKinnon LR, Meunier JA, Steri M, Harper N, Fiorillo E, Smith AM, Restrepo MI, Branum AP, Bottomley MJ, Orrù V, Jimenez F, Carrillo A, Pandranki L, Winter CA, Winter LA, Gaitan AA, Moreira AG, Walter EA, Silvestri G, King CL, Zheng YT, Zheng HY, Kimani J, Blake Ball T, Plummer FA, Fowke KR, Harden PN, Wood KJ, Ferris MT, Lund JM, Heise MT, Garrett N, Canady KR, Abdool Karim SS, Little SJ, Gianella S, Smith DM, Letendre S, Richman DD, Cucca F, Trinh H, Sanchez-Reilly S, Hecht JM, Cadena Zuluaga JA, Anzueto A, Pugh JA, Agan BK, Root-Bernstein R, Clark RA, Okulicz JF, He W. Immune resilience despite inflammatory stress promotes longevity and favorable health outcomes including resistance to infection. Nat Commun 2023; 14:3286. [PMID: 37311745 PMCID: PMC10264401 DOI: 10.1038/s41467-023-38238-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/17/2023] [Indexed: 06/15/2023] Open
Abstract
Some people remain healthier throughout life than others but the underlying reasons are poorly understood. Here we hypothesize this advantage is attributable in part to optimal immune resilience (IR), defined as the capacity to preserve and/or rapidly restore immune functions that promote disease resistance (immunocompetence) and control inflammation in infectious diseases as well as other causes of inflammatory stress. We gauge IR levels with two distinct peripheral blood metrics that quantify the balance between (i) CD8+ and CD4+ T-cell levels and (ii) gene expression signatures tracking longevity-associated immunocompetence and mortality-associated inflammation. Profiles of IR metrics in ~48,500 individuals collectively indicate that some persons resist degradation of IR both during aging and when challenged with varied inflammatory stressors. With this resistance, preservation of optimal IR tracked (i) a lower risk of HIV acquisition, AIDS development, symptomatic influenza infection, and recurrent skin cancer; (ii) survival during COVID-19 and sepsis; and (iii) longevity. IR degradation is potentially reversible by decreasing inflammatory stress. Overall, we show that optimal IR is a trait observed across the age spectrum, more common in females, and aligned with a specific immunocompetence-inflammation balance linked to favorable immunity-dependent health outcomes. IR metrics and mechanisms have utility both as biomarkers for measuring immune health and for improving health outcomes.
Collapse
Affiliation(s)
- Sunil K Ahuja
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA.
| | - Muthu Saravanan Manoharan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Grace C Lee
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Pharmacotherapy Education and Research Center, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lyle R McKinnon
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Justin A Meunier
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Nathan Harper
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Alisha M Smith
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Marcos I Restrepo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Anne P Branum
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Matthew J Bottomley
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
| | - Fabio Jimenez
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Andrew Carrillo
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Lavanya Pandranki
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Caitlyn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Lauryn A Winter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alvaro A Gaitan
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Alvaro G Moreira
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Elizabeth A Walter
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Guido Silvestri
- Department of Pathology, Emory University School of Medicine & Emory National Primate Research Center, Atlanta, GA, 30322, USA
| | - Christopher L King
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- National Resource Center for Non-Human Primates, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650107, China
| | - Joshua Kimani
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - T Blake Ball
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis A Plummer
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith R Fowke
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Paul N Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 7LE, UK
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX1 2JD, UK
| | - Martin T Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jennifer M Lund
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Department of Global Health, University of Washington, Seattle, WA, 98195, USA
| | - Mark T Heise
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Kristen R Canady
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Salim S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, 4001, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Susan J Little
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sara Gianella
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Davey M Smith
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Scott Letendre
- Department of Medicine, University of California, La Jolla, CA, 92093, USA
| | - Douglas D Richman
- San Diego Center for AIDS Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato, 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, 07100, Italy
| | - Hanh Trinh
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
| | - Sandra Sanchez-Reilly
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Joan M Hecht
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jose A Cadena Zuluaga
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Antonio Anzueto
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Jacqueline A Pugh
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Brian K Agan
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, 20817, USA
| | | | - Robert A Clark
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| | - Jason F Okulicz
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Medicine, Infectious Diseases Service, Brooke Army Medical Center, San Antonio, TX, 78234, USA
| | - Weijing He
- VA Center for Personalized Medicine, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA
- The Foundation for Advancing Veterans' Health Research, San Antonio, TX, 78229, USA
| |
Collapse
|
4
|
Watanabe T, Ishino T, Ueda Y, Nagasaki J, Sadahira T, Dansako H, Araki M, Togashi Y. Activated CTLA-4-independent immunosuppression of Treg cells disturbs CTLA-4 blockade-mediated antitumor immunity. Cancer Sci 2023; 114:1859-1870. [PMID: 36762794 PMCID: PMC10154808 DOI: 10.1111/cas.15756] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Combination therapy with anti-cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death-1 (PD-1) monoclonal antibodies (mAbs) has dramatically improved the prognosis of patients with multiple types of cancer, including renal cell carcinoma (RCC). However, more than half of RCC patients fail to respond to this therapy. Regulatory T cells (Treg cells) are a subset of highly immunosuppressive CD4+ T cells that promote the immune escape of tumors by suppressing effector T cells in the tumor microenvironment (TME) through various mechanisms. CTLA-4 is constitutively expressed in Treg cells and is regarded as a key molecule for Treg-cell-mediated immunosuppressive functions, suppressing antigen-presenting cells by binding to CD80/CD86. Reducing Treg cells in the TME with an anti-CTLA-4 mAb with antibody-dependent cellular cytotoxicity (ADCC) activity is considered an essential mechanism to achieve tumor regression. In contrast, we demonstrated that CTLA-4 blockade without ADCC activity enhanced CD28 costimulatory signaling pathways in Treg cells and promoted Treg-cell proliferation in mouse models. CTLA-4 blockade also augmented CTLA-4-independent immunosuppressive functions, including cytokine production, leading to insufficient antitumor effects. Similar results were also observed in human peripheral blood lymphocytes and tumor-infiltrating lymphocytes from patients with RCC. Our findings highlight the importance of Treg-cell depletion to achieve tumor regression in response to CTLA-4 blockade therapies.
Collapse
Affiliation(s)
- Tomofumi Watanabe
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Takamasa Ishino
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Gastroenterology, Graduate School of MedicineChiba UniversityChibaJapan
| | - Youki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Joji Nagasaki
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
- Department of Hematology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Takuya Sadahira
- Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Hiromichi Dansako
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Motoo Araki
- Department of Urology, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical SciencesOkayama UniversityOkayamaJapan
| |
Collapse
|
5
|
Hülskötter K, Lühder F, Leitzen E, Flügel A, Baumgärtner W. CD28-signaling can be partially compensated in CD28-knockout mice but is essential for virus elimination in a murine model of multiple sclerosis. Front Immunol 2023; 14:1105432. [PMID: 37090733 PMCID: PMC10113529 DOI: 10.3389/fimmu.2023.1105432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/20/2023] [Indexed: 04/08/2023] Open
Abstract
The intracerebral infection of mice with Theiler’s murine encephalomyelitis virus (TMEV) represents a well-established animal model for multiple sclerosis (MS). Because CD28 is the main co-stimulatory molecule for the activation of T cells, we wanted to investigate its impact on the course of the virus infection as well as on a potential development of autoimmunity as seen in susceptible mouse strains for TMEV. In the present study, 5 weeks old mice on a C57BL/6 background with conventional or tamoxifen-induced, conditional CD28-knockout were infected intracerebrally with TMEV-BeAn. In the acute phase at 14 days post TMEV-infection (dpi), both CD28-knockout strains showed virus spread within the central nervous system (CNS) as an uncommon finding in C57BL/6 mice, accompanied by histopathological changes such as reduced microglial activation. In addition, the conditional, tamoxifen-induced CD28-knockout was associated with acute clinical deterioration and weight loss, which limited the observation period for this mouse strain to 14 dpi. In the chronic phase (42 and 147 dpi) of TMEV-infection, surprisingly only 33% of conventional CD28-knockout mice showed chronic TMEV-infection with loss of motor function concomitant with increased spinal cord inflammation, characterized by T- and B cell infiltration, microglial activation and astrogliosis at 33-42 dpi. Therefore, the clinical outcome largely depends on the time point of the CD28-knockout during development of the immune system. Whereas a fatal clinical outcome can already be observed in the early phase during TMEV-infection for conditional, tamoxifen-induced CD28-knockout mice, only one third of conventional CD28-knockout mice develop clinical symptoms later, accompanied by ongoing inflammation and an inability to clear the virus. However, the development of autoimmunity could not be observed in this C57BL/6 TMEV model irrespective of the time point of CD28 deletion.
Collapse
Affiliation(s)
- Kirsten Hülskötter
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Fred Lühder
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Eva Leitzen
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research (IMSF), University Medical Center Goettingen, Goettingen, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- *Correspondence: Wolfgang Baumgärtner,
| |
Collapse
|
6
|
Chye A, Allen I, Barnet M, Burnett DL. Insights Into the Host Contribution of Endocrine Associated Immune-Related Adverse Events to Immune Checkpoint Inhibition Therapy. Front Oncol 2022; 12:894015. [PMID: 35912205 PMCID: PMC9329613 DOI: 10.3389/fonc.2022.894015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Blockade of immune checkpoints transformed the paradigm of systemic cancer therapy, enabling substitution of a cytotoxic chemotherapy backbone to one of immunostimulation in many settings. Invigorating host immune cells against tumor neo-antigens, however, can induce severe autoimmune toxicity which in many cases requires ongoing management. Many immune-related adverse events (irAEs) are clinically and pathologically indistinguishable from inborn errors of immunity arising from genetic polymorphisms of immune checkpoint genes, suggesting a possible shared driver for both conditions. Many endocrine irAEs, for example, have analogous primary genetic conditions with varied penetrance and severity despite consistent genetic change. This is akin to onset of irAEs in response to immune checkpoint inhibitors (ICIs), which vary in timing, severity and nature despite a consistent drug target. Host contribution to ICI response and irAEs, particularly those of endocrine origin, such as thyroiditis, hypophysitis, adrenalitis and diabetes mellitus, remains poorly defined. Improved understanding of host factors contributing to ICI outcomes is essential for tailoring care to an individual’s unique genetic predisposition to response and toxicity, and are discussed in detail in this review.
Collapse
Affiliation(s)
- Adrian Chye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - India Allen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
| | - Megan Barnet
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| | - Deborah L. Burnett
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW, Australia
- *Correspondence: Megan Barnet, ; Deborah L. Burnett,
| |
Collapse
|
7
|
Dolatkhah K, Alizadeh N, Mohajjel-Shoja H, Abdoli Shadbad M, Hajiasgharzadeh K, Aghebati-Maleki L, Baghbanzadeh A, Hosseinkhani N, Karim Ahangar N, Baradaran B. B7 immune checkpoint family members as putative therapeutics in autoimmune disease: An updated overview. Int J Rheum Dis 2022; 25:259-271. [PMID: 34994525 DOI: 10.1111/1756-185x.14273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/11/2021] [Accepted: 12/18/2021] [Indexed: 12/23/2022]
Abstract
Autoimmune diseases, especially among young people in the US, are one of the leading causes of morbidity and death. The immune responses are the fundamental pathogenicity of autoimmune disorders. The equilibrium between stimulatory and inhibitory signals is critical for the stimulation, migration, survival, and T cell-related immune responses. The B7 family can substantially regulate T cell-mediated immune responses. Nevertheless, recent breakthroughs in immune checkpoint blockade in cancer immunotherapy have facilitated autoimmune diseases, especially among the prone populations. In the current study, we tried to concisely review the role of the B7 family in regulating immune reactions and the influence of immune checkpoint inhibitors on autoimmunity development.
Collapse
Affiliation(s)
- Katayoun Dolatkhah
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Mohajjel-Shoja
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | | | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Noora Karim Ahangar
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
AlSaieedi A, Salhi A, Tifratene F, Raies AB, Hungler A, Uludag M, Van Neste C, Bajic VB, Gojobori T, Essack M. DES-Tcell is a knowledgebase for exploring immunology-related literature. Sci Rep 2021; 11:14344. [PMID: 34253812 PMCID: PMC8275784 DOI: 10.1038/s41598-021-93809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
T-cells are a subtype of white blood cells circulating throughout the body, searching for infected and abnormal cells. They have multifaceted functions that include scanning for and directly killing cells infected with intracellular pathogens, eradicating abnormal cells, orchestrating immune response by activating and helping other immune cells, memorizing encountered pathogens, and providing long-lasting protection upon recurrent infections. However, T-cells are also involved in immune responses that result in organ transplant rejection, autoimmune diseases, and some allergic diseases. To support T-cell research, we developed the DES-Tcell knowledgebase (KB). This KB incorporates text- and data-mined information that can expedite retrieval and exploration of T-cell relevant information from the large volume of published T-cell-related research. This KB enables exploration of data through concepts from 15 topic-specific dictionaries, including immunology-related genes, mutations, pathogens, and pathways. We developed three case studies using DES-Tcell, one of which validates effective retrieval of known associations by DES-Tcell. The second and third case studies focuses on concepts that are common to Grave’s disease (GD) and Hashimoto’s thyroiditis (HT). Several reports have shown that up to 20% of GD patients treated with antithyroid medication develop HT, thus suggesting a possible conversion or shift from GD to HT disease. DES-Tcell found miR-4442 links to both GD and HT, and that miR-4442 possibly targets the autoimmune disease risk factor CD6, which provides potential new knowledge derived through the use of DES-Tcell. According to our understanding, DES-Tcell is the first KB dedicated to exploring T-cell-relevant information via literature-mining, data-mining, and topic-specific dictionaries.
Collapse
Affiliation(s)
- Ahdab AlSaieedi
- Department of Medical Laboratory Technology (MLT), Faculty of Applied Medical Sciences (FAMS), King Abdulaziz University (KAU), Jeddah, 21589-80324, Saudi Arabia
| | - Adil Salhi
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Faroug Tifratene
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arwa Bin Raies
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arnaud Hungler
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mahmut Uludag
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Christophe Van Neste
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Takashi Gojobori
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
9
|
Qiu H, Tian W, He Y, Li J, He C, Li Y, Liu N, Li J. Integrated Analysis Reveals Prognostic Value and Immune Correlates of CD86 Expression in Lower Grade Glioma. Front Oncol 2021; 11:654350. [PMID: 33954112 PMCID: PMC8089378 DOI: 10.3389/fonc.2021.654350] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Background CD86 has great potential to be a new target of immunotherapy by regulating cancer immune response. However, it remains unclear whether CD86 is a friend or foe in lower-grade glioma (LGG). Methods The prognostic value of CD86 expression in pan-cancer was analyzed using Cox regression and Kaplan-Meier analysis with data from the cancer genome atlas (TCGA). Cancer types where CD86 showed prognostic value in overall survival and disease-specific survival were identified for further analyses. The Chinese Glioma Genome Atlas (CGGA) dataset were utilized for external validation. Quantitative real-time PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) were conducted for further validation using surgical samples from Jiangsu Province hospital. The correlations between CD86 expression and tumor immunity were analyzed using the Estimation of Stromal and Immune cells in Malignant Tumours using Expression data (ESTIMATE) algorithm, Tumor IMmune Estimation Resource (TIMER) database, and expressions of immune checkpoint molecules. Gene Set Enrichment Analysis (GSEA) was performed using clusterprofiler r package to reveal potential pathways. Results Pan-cancer survival analysis established CD86 expression as an unfavorable prognostic factor in tumor progression and survival for LGG. CD86 expression between Grade-II and Grade-III LGG was validated using qRT-PCR and WB. Additionally, CD86 expression in LGG with unmethylated O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter was significantly higher than those with methylated MGMT (P<0.05), while in LGG with codeletion of 1p/19q it was significantly downregulated as opposed to those with non-codeletion (P<2.2*10-16). IHC staining validated that CD86 expression was correlated with MGMT status and X1p/19q subtypes, which was independent of tumor grade. Multivariate regression validated that CD86 expression acts as an unfavorable prognostic factor independent of clinicopathological factors in overall survival of LGG patients. Analysis of tumor immunity and GSEA revealed pivotal role of CD86 in immune response for LGG. Conclusions Integrated analysis shows that CD86 is an unfavorable prognostic biomarker in LGG patients. Targeting CD86 may become a novel approach for immunotherapy of LGG.
Collapse
Affiliation(s)
- Huaide Qiu
- Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China.,Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Tian
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yikang He
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Rehabilitation Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jiahui Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuan He
- Department of Rehabilitation Medicine, Jiangsu Shengze Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Yongqiang Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Mesenchymal stem cells protect against malaria pathogenesis by reprogramming erythropoiesis in the bone marrow. Cell Death Discov 2020; 6:125. [PMID: 33298881 PMCID: PMC7667156 DOI: 10.1038/s41420-020-00363-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022] Open
Abstract
Malaria remains a major public health problem worldwide. The immune mechanisms that mediate protection against malaria are still unclear. Previously, we reported that mesenchymal stem cells (MSCs) play a critical role in host protection against malaria by altering the dynamic balance of T regulatory cells and effector T cells producing inflammatory cytokines. Here, we report that MSCs reprogram haematopoiesis in primary (bone marrow) and secondary (spleen) lymphoid organs to provide host protection against malaria. Adoptive transfer of MSCs from malaria-infected mice to naïve recipient mice that were subsequently infected with malaria parasites dramatically accelerated the formation of colony-forming units-erythroid cells in the bone marrow. Adoptively transferred MSCs also induced expression of the key erythroid cell differentiation factor GATA-1 in the spleen of recipient animals. Interestingly, we further observed a subtle increase in the CD34+ hematopoietic stem and progenitor cells in lymphoid organs, including spleen and lymph nodes. Infusion of MSCs also enhanced T cell proliferation, resulting in increased numbers of both CD4+ and CD8+ T cells in the spleen. MSCs also inhibited the induction of the negative co-stimulatory receptor programmed death-1 by T cells in recipient animals upon infection with malaria parasites. Taken together, our findings suggest that MSCs play a critical role in host protection against malaria infection by modulating erythropoiesis and lymphopoiesis.
Collapse
|
11
|
Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K. Targeting B7‐1 in immunotherapy. Med Res Rev 2020; 40:654-682. [DOI: 10.1002/med.21632] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Chen
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Aravindhan Ganesan
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
| | - Isobel Okoye
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Elena Arutyunova
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Shokrollah Elahi
- Department of Dentistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
- Department of Oncology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
- Department of Medical Microbiology and Immunology, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - M. Joanne Lemieux
- Department of Biochemistry, Faculty of Medicine and DentistryUniversity of AlbertaEdmonton Alberta Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmonton Alberta Canada
- Li Ka Shing Institute of VirologyUniversity of AlbertaEdmonton Alberta Canada
| |
Collapse
|
12
|
Grywalska E, Smarz-Widelska I, Mertowski S, Gosik K, Mielnik M, Podgajna M, Abramiuk M, Drop B, Roliński J, Załuska W. CTLA-4 Expression Inversely Correlates with Kidney Function and Serum Immunoglobulin Concentration in Patients with Primary Glomerulonephritides. Arch Immunol Ther Exp (Warsz) 2019; 67:335-349. [PMID: 31177287 PMCID: PMC6732130 DOI: 10.1007/s00005-019-00548-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 05/21/2019] [Indexed: 12/01/2022]
Abstract
Major causes of chronic kidney disease are primary proliferative and nonproliferative glomerulonephritides (PGN and NPGN). However, the pathogenesis of PGN and NPGN is still not fully understood. Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is a T-cell membrane receptor that plays a key role in T-cell inhibition. Despite its role in autoimmunological diseases, little is known about the involvement of CTLA-4 in the pathogenesis of PGN and NPGN. The objective of this study was to determine the role of CTLA-4 in the pathogenesis of PGN and NPGN by evaluating the frequencies of T and B lymphocytes expressing CTLA-4 and the serum concentration of the sCTLA-4 isoform in patients with PGN and NPGN in relation to clinical parameters. The study included peripheral blood (PB) samples from 40 PGN and NPGN patients and 20 healthy age- and sex-matched volunteers (control group). The viable PB lymphocytes were labeled with fluorochrome-conjugated monoclonal anti-CTLA-4 antibodies and analyzed using flow cytometry. The serum concentration of sCTLA-4 was measured using ELISA. The frequencies and absolute counts of CD4+/CTLA-4+ T lymphocytes, CD8+/CTLA-4+ T lymphocytes and CD19+/CTLA-4+ B lymphocytes and the serum sCTLA-4 concentration were lower in PGN and NPGN patients that in the control group. Reduced sCTLA-4 expression was associated with a lower concentration of serum immunoglobulins. Our results indicate that deregulation of CTLA-4 expression may result in continuous activation of T cells and contribute to the pathogenesis of PGN and NPGN.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland.
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Lublin, Poland
| | - Sebastian Mertowski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Krzysztof Gosik
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Michał Mielnik
- Department of Hematooncology and Bone Marrow Transplantation, Medical University of Lublin, Lublin, Poland
| | - Martyna Podgajna
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Monika Abramiuk
- The First Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
| | - Bartłomiej Drop
- Department of Informatics and Medical Statistics, Medical University of Lublin, Lublin, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| | - Wojciech Załuska
- Department of Nephrology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Ganesan A, Moon TC, Barakat KH. Revealing the atomistic details behind the binding of B7–1 to CD28 and CTLA-4: A comprehensive protein-protein modelling study. Biochim Biophys Acta Gen Subj 2018; 1862:2764-2778. [DOI: 10.1016/j.bbagen.2018.08.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/06/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023]
|
14
|
Khailaie S, Rowshanravan B, Robert PA, Waters E, Halliday N, Badillo Herrera JD, Walker LSK, Sansom DM, Meyer-Hermann M. Characterization of CTLA4 Trafficking and Implications for Its Function. Biophys J 2018; 115:1330-1343. [PMID: 30219287 PMCID: PMC6170599 DOI: 10.1016/j.bpj.2018.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/06/2018] [Accepted: 08/02/2018] [Indexed: 12/21/2022] Open
Abstract
CTLA4 is an essential negative regulator of T-cell immune responses and a key checkpoint regulating autoimmunity and antitumor responses. Genetic mutations resulting in quantitative defects in the CTLA4 pathway are also associated with the development of immune dysregulation syndromes in humans. It has been proposed that CTLA4 functions to remove its ligands CD80 and CD86 from opposing cells by a process known as transendocytosis. A quantitative characterization of CTLA4 synthesis, endocytosis, degradation, and recycling and how these affect its function is currently lacking. In a combined in vitro and in silico study, we developed a mathematical model and identified these trafficking parameters. Our model predicts optimal ligand removal in an intermediate affinity range. The intracellular CTLA4 pool as well as fast internalization, recovery of free CTLA4 from internalized complexes, and recycling is critical for sustained functionality. CD80-CTLA4 interactions are predicted to dominate over CD86-CTLA4. Implications of these findings in the context of control of antigen-presenting cells by regulatory T cells and of pathologic genetic deficiencies are discussed. The presented mathematical model can be reused in the community beyond these questions to better understand other trafficking receptors and study the impact of CTLA4 targeting drugs.
Collapse
Affiliation(s)
- Sahamoddin Khailaie
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany
| | - Behzad Rowshanravan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Philippe A Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Erin Waters
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Neil Halliday
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - Jesus David Badillo Herrera
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Lucy S K Walker
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom
| | - David M Sansom
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, United Kingdom.
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Centre for Individualised Infection Medicine, Hannover, Germany; Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
15
|
Zimmermann-Franco DC, Esteves B, Lacerda LM, Souza IDO, Santos JAD, Pinto NDCC, Scio E, da Silva AD, Macedo GC. In vitro and in vivo anti-inflammatory properties of imine resveratrol analogues. Bioorg Med Chem 2018; 26:4898-4906. [PMID: 30193941 DOI: 10.1016/j.bmc.2018.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
Resveratrol is a natural polyphenol found mainly on red grapes and in red wine, pointed as an important anti-inflammatory/immunomodulatory molecule. However, its bioavailability problems have limited its use encouraging the search for new alternatives agents. Thus, in this study, we synthetize 12 resveratrol analogues (6 imines, 1 thioimine and 5 hydrazones) and investigated its cytotoxicity, antioxidant activity and in vitro anti-inflammatory/immunomodulatory properties. The most promising compounds were also evaluated in vivo. The results showed that imines presented less cytotoxicity, were more effective than resveratrol on DPPH scavenger and exhibited an anti-inflammatory profile. Among them, the imines with a radical in the para position, on the ring B, not engaged in an intramolecular hydrogen-interaction, showed more prominent anti-inflammatory activity modulating, in vivo, the edema formation, the inflammatory infiltration and cytokine levels. An immunomodulatory activity also was observed in these molecules. Thus, our results suggest that imines with these characteristics presents potential to control inflammatory disorders.
Collapse
Affiliation(s)
- Danielle Cristina Zimmermann-Franco
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Bruna Esteves
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Leticia Moroni Lacerda
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Isabela de Oliveira Souza
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Juliana Alves Dos Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Nícolas de Castro Campos Pinto
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Elita Scio
- Departamento de Bioquímica, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Adilson David da Silva
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | - Gilson Costa Macedo
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil.
| |
Collapse
|
16
|
Advanced Melanoma: Current Treatment Options, Biomarkers, and Future Perspectives. Am J Clin Dermatol 2018; 19:303-317. [PMID: 29164492 DOI: 10.1007/s40257-017-0325-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Malignant melanoma accounts for the highest number of deaths from skin cancer, and the prognosis of patients with stage IV disease has historically been poor. Novel insights into both mutations driving tumorigenesis and immune escape mechanisms of these tumors have led to effective treatment options that have revolutionized the treatment of this disease. Targeting the MAPK kinase pathway (with BRAF and MEK inhibitors), as well as targeting checkpoints, such as cytotoxic T-lymphocyte associated protein 4 (CTLA-4) or programmed death 1 (PD-1), have improved overall survival in patients with late-stage melanoma, and biomarker research for personalized therapy is ongoing for each of these treatment modalities. In this review, we will discuss current first-line treatment options, discuss biomarkers supporting treatment decisions, and give an outlook on (combination) therapies we expect to become relevant in the near future.
Collapse
|
17
|
Gan L, Zhou Q, Li X, Chen C, Meng T, Pu J, Zhu M, Xiao C. Intrinsic renal cells induce lymphocytosis of Th22 cells from IgA nephropathy patients through B7–CTLA-4 and CCL-CCR pathways. Mol Cell Biochem 2017; 441:191-199. [DOI: 10.1007/s11010-017-3185-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/01/2017] [Indexed: 01/08/2023]
|
18
|
Meerveld-Eggink A, Rozeman E, Lalezari F, van Thienen J, Haanen J, Blank C. Short-term CTLA-4 blockade directly followed by PD-1 blockade in advanced melanoma patients: a single-center experience. Ann Oncol 2017; 28:862-867. [DOI: 10.1093/annonc/mdw692] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Indexed: 01/23/2023] Open
|
19
|
Walker LS. EFIS Lecture: Understanding the CTLA-4 checkpoint in the maintenance of immune homeostasis. Immunol Lett 2017; 184:43-50. [DOI: 10.1016/j.imlet.2017.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023]
|
20
|
Th9 cells in the pathogenesis of EAE and multiple sclerosis. Semin Immunopathol 2016; 39:79-87. [DOI: 10.1007/s00281-016-0604-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/01/2016] [Indexed: 01/06/2023]
|
21
|
Blake SJ, Stannard K, Liu J, Allen S, Yong MCR, Mittal D, Aguilera AR, Miles JJ, Lutzky VP, de Andrade LF, Martinet L, Colonna M, Takeda K, Kühnel F, Gurlevik E, Bernhardt G, Teng MWL, Smyth MJ. Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy. Cancer Discov 2016; 6:446-59. [PMID: 26787820 DOI: 10.1158/2159-8290.cd-15-0944] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED CD96 has recently been shown as a negative regulator of mouse natural killer (NK)-cell activity, with Cd96(-/-)mice displaying hyperresponsive NK cells upon immune challenge. In this study, we have demonstrated that blocking CD96 with a monoclonal antibody inhibited experimental metastases in three different tumor models. The antimetastatic activity of anti-CD96 was dependent on NK cells, CD226 (DNAM-1), and IFNγ, but independent of activating Fc receptors. Anti-CD96 was more effective in combination with anti-CTLA-4, anti-PD-1, or doxorubicin chemotherapy. Blocking CD96 in Tigit(-/-)mice significantly reduced experimental and spontaneous metastases compared with its activity in wild-type mice. Co-blockade of CD96 and PD-1 potently inhibited lung metastases, with the combination increasing local NK-cell IFNγ production and infiltration. Overall, these data demonstrate that blocking CD96 is a new and complementary immunotherapeutic strategy to reduce tumor metastases. SIGNIFICANCE This article illustrates the antimetastatic activity and mechanism of action of an anti-CD96 antibody that inhibits the CD96-CD155 interaction and stimulates NK-cell function. Targeting host CD96 is shown to complement surgery and conventional immune checkpoint blockade.
Collapse
Affiliation(s)
- Stephen J Blake
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kimberley Stannard
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jing Liu
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Stacey Allen
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Michelle C R Yong
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Deepak Mittal
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - John J Miles
- Human Immunity, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| | - Viviana P Lutzky
- Human Immunity, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lucas Ferrari de Andrade
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ludovic Martinet
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Florian Kühnel
- Department for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Engin Gurlevik
- Department for Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia. School of Medicine, The University of Queensland, Herston, Queensland, Australia.
| |
Collapse
|
22
|
Meletta R, Müller Herde A, Dennler P, Fischer E, Schibli R, Krämer SD. Preclinical imaging of the co-stimulatory molecules CD80 and CD86 with indium-111-labeled belatacept in atherosclerosis. EJNMMI Res 2016; 6:1. [PMID: 26728358 PMCID: PMC4700042 DOI: 10.1186/s13550-015-0157-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 12/22/2022] Open
Abstract
Background The inflammatory nature of atherosclerosis provides a broad range of potential molecular targets for atherosclerosis imaging. Growing interest is focused on targets related to plaque vulnerability such as the co-stimulatory molecules CD80 and CD86. We investigated in this preclinical proof-of-concept study the applicability of the CD80/CD86-binding fusion protein belatacept as a probe for atherosclerosis imaging. Methods Belatacept was labeled with indium-111, and the binding affinity was determined with CD80/CD86-positive Raji cells. In vivo distribution was investigated in Raji xenograft-bearing mice in single-photon emission computed tomography (SPECT)/CT scans, biodistribution, and ex vivo autoradiography studies. Ex vivo SPECT/CT experiments were performed with aortas and carotids of ApoE KO mice. Accumulation in human carotid atherosclerotic plaques was investigated by in vitro autoradiography. Results 111In-DOTA-belatacept was obtained in >70 % yield, >99 % radiochemical purity, and ~40 GBq/μmol specific activity. The labeled belatacept bound with high affinity to Raji cells. In vivo, 111In-DOTA-belatacept accumulated specifically in Raji xenografts, lymph nodes, and salivary glands. Ex vivo SPECT experiments revealed displaceable accumulation in atherosclerotic plaques of ApoE KO mice fed an atherosclerosis-promoting diet. In human plaques, binding correlated with the infiltration by immune cells and the presence of a large lipid and necrotic core. Conclusions 111In-DOTA-belatacept accumulates in CD80/CD86-positive tissues in vivo and in vitro rendering it a research tool for the assessment of inflammatory activity in atherosclerosis and possibly other diseases. The tracer is suitable for preclinical imaging of co-stimulatory molecules of both human and murine origin. Radiolabeled belatacept could serve as a benchmark for future CD80/CD86-specific imaging agents. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0157-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Romana Meletta
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland
| | - Adrienne Müller Herde
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland
| | - Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Eliane Fischer
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland.,Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, OIPA10A, 5232, Villigen-PSI, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3/4, CH-8093, Zurich, Switzerland.
| |
Collapse
|
23
|
Deppong CM, Parulekar A, Boomer JS, Bricker TL, Green JM. CTLA4-Ig inhibits allergic airway inflammation by a novel CD28-independent, nitric oxide synthase-dependent mechanism. Eur J Immunol 2015; 40:1985-94. [PMID: 20443189 DOI: 10.1002/eji.200940282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The T-cell response to antigen depends upon coordinate signaling between costimulatory and inhibitory receptors. Altered function of either may underlie the pathophysiology of autoimmune and/or chronic inflammatory diseases and manipulation of these pathways is an important emerging area of therapeutics. We report here that the immunosuppressant drug CTLA4-Ig inhibits the effector phase of allergic airway inflammation through a CD28-independent, nitric oxide synthase dependent mechanism. Using mice deficient in both B and T lymphocyte attenuator (BTLA) and CD28, we demonstrate that simultaneous deficiency of an inhibitory receptor can rescue the in vivo but not the in vitro CD28-deficient phenotype. Furthermore, we demonstrate that inflammation in the CD28/BTLA-double-deficient mice is suppressed by CTLA4-Ig. This suppression is reversed by treatment with the Nitric Oxide Synthase (NOS) inhibitor, N(6)-methyl-L-arginine acetate (L-NMMA). In addition CTLA4-Ig was ineffective at inhibiting inflammation in NOS2-deficient mice when given at the effector phase. Thus, CD28 and BTLA coordinately regulate the in vivo response to inhaled allergen, and CTLA4-Ig binding to B7-proteins inhibits the effector phase of inflammation by a CD28-independent, NOS-dependent mechanism.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
24
|
Strazza M, Azoulay-Alfaguter I, Dun B, Baquero-Buitrago J, Mor A. CD28 inhibits T cell adhesion by recruiting CAPRI to the plasma membrane. THE JOURNAL OF IMMUNOLOGY 2015; 194:2871-7. [PMID: 25637021 DOI: 10.4049/jimmunol.1401492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD28 is a coreceptor expressed on T lymphocytes. Signaling downstream of CD28 promotes multiple T cell functions such as proliferation, survival, and cytokine secretion. Adhesion to APCs is another function of T cells; however, little is known with regard to the role of CD28 in this process. Our previous studies have shown that CD28 inhibits T cell adhesion, but the underlying mechanism that mediates this process remains unknown. In the present study we discovered that signaling downstream of CD28 resulted in inhibition of Rap1 activity and decreased LFA-1-mediated adhesion. We showed that this was regulated by the recruitment of calcium-promoted Ras inactivator (CAPRI), a GTPase-activating protein, to the plasma membrane downstream of CD28 signaling. CAPRI trafficking to the plasma membrane was secondary to calcium influx and was mediated by its C2A and C2B domains. We conclude that CD28 inhibits Rap1-mediated adhesion by recruiting the protein CAPRI to the plasma membrane.
Collapse
Affiliation(s)
- Marianne Strazza
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | | | - Bryan Dun
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| | | | - Adam Mor
- Department of Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
25
|
CTLA-4 controls follicular helper T-cell differentiation by regulating the strength of CD28 engagement. Proc Natl Acad Sci U S A 2014; 112:524-9. [PMID: 25548162 DOI: 10.1073/pnas.1414576112] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) is an essential regulator of T-cell responses, and its absence precipitates lethal T-cell hyperactivity. However, whether CTLA-4 acts simply to veto the activation of certain clones or plays a more nuanced role in shaping the quality of T-cell responses is not clear. Here we report that T cells in CTLA-4-deficient mice show spontaneous T-follicular helper (T(FH)) differentiation in vivo, and this is accompanied by the appearance of large germinal centers (GCs). Remarkably, short-term blockade with anti-CTLA-4 antibody in wild-type mice is sufficient to elicit T(FH) generation and GC development. The latter occurs in a CD28-dependent manner, consistent with the known role of CTLA-4 in regulating the CD28 pathway. CTLA-4 can act by down-regulating CD80 and CD86 on antigen presenting cells (APCs), thereby altering the level of CD28 engagement. To mimic reduced CD28 ligation, we used mice heterozygous for CD28, revealing that the magnitude of CD28 engagement is tightly linked to the propensity for T(FH) differentiation. In contrast, other parameters of T-cell activation, including CD62L down-regulation and Ki67 expression, were relatively insensitive to altered CD28 level. Altered T(FH) generation as a result of graded reduction in CD28 was associated with decreased numbers of GC B cells and a reduction in overall GC size. These data support a model in which CTLA-4 control of immunity goes beyond vetoing T-cell priming and encompasses the regulation of T(FH) differentiation by graded control of CD28 engagement.
Collapse
|
26
|
Schubert D, Bode C, Kenefeck R, Hou TZ, Wing JB, Kennedy A, Bulashevska A, Petersen BS, Schäffer AA, Grüning BA, Unger S, Frede N, Baumann U, Witte T, Schmidt RE, Dueckers G, Niehues T, Seneviratne S, Kanariou M, Speckmann C, Ehl S, Rensing-Ehl A, Warnatz K, Rakhmanov M, Thimme R, Hasselblatt P, Emmerich F, Cathomen T, Backofen R, Fisch P, Seidl M, May A, Schmitt-Graeff A, Ikemizu S, Salzer U, Franke A, Sakaguchi S, Walker LS, Sansom DM, Grimbacher B. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 2014; 20:1410-1416. [PMID: 25329329 PMCID: PMC4668597 DOI: 10.1038/nm.3746] [Citation(s) in RCA: 622] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/14/2014] [Indexed: 12/14/2022]
Abstract
The protein cytotoxic T lymphocyte antigen-4 (CTLA-4) is an essential negative regulator of immune responses, and its loss causes fatal autoimmunity in mice. We studied a large family in which five individuals presented with a complex, autosomal dominant immune dysregulation syndrome characterized by hypogammaglobulinemia, recurrent infections and multiple autoimmune clinical features. We identified a heterozygous nonsense mutation in exon 1 of CTLA4. Screening of 71 unrelated patients with comparable clinical phenotypes identified five additional families (nine individuals) with previously undescribed splice site and missense mutations in CTLA4. Clinical penetrance was incomplete (eight adults of a total of 19 genetically proven CTLA4 mutation carriers were considered unaffected). However, CTLA-4 protein expression was decreased in regulatory T cells (Treg cells) in both patients and carriers with CTLA4 mutations. Whereas Treg cells were generally present at elevated numbers in these individuals, their suppressive function, CTLA-4 ligand binding and transendocytosis of CD80 were impaired. Mutations in CTLA4 were also associated with decreased circulating B cell numbers. Taken together, mutations in CTLA4 resulting in CTLA-4 haploinsufficiency or impaired ligand binding result in disrupted T and B cell homeostasis and a complex immune dysregulation syndrome.
Collapse
MESH Headings
- Adolescent
- Adult
- Agammaglobulinemia/genetics
- Agammaglobulinemia/immunology
- Anemia, Hemolytic, Autoimmune/genetics
- Anemia, Hemolytic, Autoimmune/immunology
- Animals
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- B-Lymphocytes/immunology
- B7-1 Antigen/metabolism
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Child
- Codon, Nonsense
- Endocytosis/genetics
- Endocytosis/immunology
- Exons
- Female
- Granuloma/genetics
- Granuloma/immunology
- Heterozygote
- Humans
- Immune System Diseases/genetics
- Lung Diseases, Interstitial/genetics
- Lung Diseases, Interstitial/immunology
- Male
- Mice
- Middle Aged
- Mutation, Missense
- Pedigree
- Polyendocrinopathies, Autoimmune/genetics
- Polyendocrinopathies, Autoimmune/immunology
- Purpura, Thrombocytopenic, Idiopathic/genetics
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Recurrence
- Respiratory Tract Infections/genetics
- Respiratory Tract Infections/immunology
- Syndrome
- T-Lymphocytes, Regulatory/immunology
- Young Adult
Collapse
Affiliation(s)
- Desirée Schubert
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine and Faculty of Biology, Freiburg University, Freiburg, Germany
| | - Claudia Bode
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Rupert Kenefeck
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, UK
| | - Tie Zheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, UK
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Alan Kennedy
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, UK
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Britt-Sabina Petersen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | - Björn A. Grüning
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Susanne Unger
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Natalie Frede
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Reinhold E. Schmidt
- Department of Pediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | | | | | | - Maria Kanariou
- Department of Immunology and Histocompatibility, “Aghia Sophia” Children's Hospital, Athens, Greece
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Klaus Warnatz
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Mirzokhid Rakhmanov
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Robert Thimme
- Clinic for Internal Medicine 2, University Medical Center Freiburg, Freiburg, Germany
| | - Peter Hasselblatt
- Clinic for Internal Medicine 2, University Medical Center Freiburg, Freiburg, Germany
| | - Florian Emmerich
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
- Institute for Cell and Gene Therapy, University Medical Center Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Paul Fisch
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Maximilian Seidl
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - Annette May
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | | | - Shinji Ikemizu
- Division of structural biology, Kumamoto University, Kumamoto, Japan
| | - Ulrich Salzer
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Lucy S.K. Walker
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, UK
| | - David M. Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, UK
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany
| |
Collapse
|
27
|
Thymus-deriving natural regulatory T cell generation in vitro: role of the source of activation signals. Immunol Lett 2014; 162:199-209. [PMID: 25445615 DOI: 10.1016/j.imlet.2014.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/09/2014] [Accepted: 10/21/2014] [Indexed: 12/20/2022]
Abstract
In this research we have examined different sources of activation signals in order to optimize culture conditions for in vitro generation of thymus-deriving natural regulatory T cells (nTregs). We have established a novel model using JAWS II dendritic cell line of immature phenotype and compared it to commonly used methods for the generation of Tregs from peripheral lymphoid organs or blood T cells. In our model the first activation signal is provided by anti-CD3 monoclonal antibodies while the second is delivered by costimulatory molecules expressed on JAWS II cells. The presence of JAWS II cells co-cultured in vitro with unsorted thymocytes directly isolated from the thymus gland creates environment favoring SP CD4+ differentiation, provides the apoptotic cells clearance, maintains the survival of thymocytes and facilitate nTreg generation. Moreover the usage of immature dendritic cells stimuli enables to conduct research on agents affecting nTreg survival, proliferation and development in conditions of cell-to-cell contact of undifferentiated thymocytes with dendritic cells.
Collapse
|
28
|
Gardner D, Jeffery LE, Sansom DM. Understanding the CD28/CTLA-4 (CD152) pathway and its implications for costimulatory blockade. Am J Transplant 2014; 14:1985-91. [PMID: 25098238 DOI: 10.1111/ajt.12834] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 05/19/2014] [Accepted: 05/20/2014] [Indexed: 01/25/2023]
Abstract
T cell activation is a key event in the adaptive immune system and vital in the generation of protective cellular and humoral immunity. Activation is required to generate CD4 effector T cell responses and provide help for B cell and cytotoxic T cell responses. While defective T responses to foreign antigen result in infectious pathology, over-reactive T cell responses against self-antigens result in autoimmunity and, in a transplantation setting, tissue rejection. Understanding how T cell activation is normally regulated is critical to therapeutic intervention and the CD28/CTLA-4 (CD152) pathway represents the initial activation checkpoint in molecular terms. In particular, while the CTLA-4 pathway is well established as an essential regulator of self-reactivity, its mechanism of action is still uncertain. Such mechanistic issues are important given its central position in T cell activation and the increasing number of therapeutic modalities aimed at manipulating the CD28/CTLA-4 pathway. Here, we provide an updated view of CTLA-4 biology, reviewing the established features of the system and highlighting its interplay with CD28. We then discuss how recent progress in our understanding of this pathway affects our interpretations following intervention.
Collapse
Affiliation(s)
- D Gardner
- University of Birmingham, MRC Centre for Immune Regulation, Birmingham, UK
| | | | | |
Collapse
|
29
|
Ferreira GB, Gysemans CA, Demengeot J, da Cunha JPMCM, Vanherwegen AS, Overbergh L, Van Belle TL, Pauwels F, Verstuyf A, Korf H, Mathieu C. 1,25-Dihydroxyvitamin D3 promotes tolerogenic dendritic cells with functional migratory properties in NOD mice. THE JOURNAL OF IMMUNOLOGY 2014; 192:4210-20. [PMID: 24663679 DOI: 10.4049/jimmunol.1302350] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25(+)Foxp3(+) regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4(+) T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo.
Collapse
Affiliation(s)
- Gabriela B Ferreira
- Laboratory of Clinical and Experimental Endocrinology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
T cell activation is a key event in the adaptive immune response and vital to the generation of both cellular and humoral immunity. Activation is required not only for effective CD4 T cell responses but also to provide help for B cells and the generation of cytotoxic T cell responses. Unsurprisingly, impaired T cell activation results in infectious pathology, whereas dysregulated activation can result in autoimmunity. The decision to activate is therefore tightly regulated and the CD28/CTLA-4 pathway represents this apical decision point at the molecular level. In particular, CTLA-4 (CD152) is an essential checkpoint control for autoimmunity; however, the molecular mechanism(s) by which CTLA-4 achieves its regulatory function are not well understood, especially how it functionally intersects with the CD28 pathway. In this chapter, we review the established molecular and cellular concepts relating to CD28 and CTLA-4 biology, and attempt to integrate these by discussing the transendocytosis of ligands as a new model of CTLA-4 function.
Collapse
Affiliation(s)
- Blagoje Soskic
- School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Tiezheng Hou
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom
| | - David M Sansom
- UCL Institute of Immunity and Transplantation, Royal Free Campus, London, United Kingdom.
| |
Collapse
|
31
|
Pawlik A, Dabrowska-Zamojcin E, Dziedziejko V, Safranow K, Domanski L. Association between IVS3 +17T/C CD28 gene polymorphism and the acute kidney allograft rejection. Transpl Immunol 2013; 30:84-7. [PMID: 24368148 DOI: 10.1016/j.trim.2013.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 01/23/2023]
Abstract
CD28 is a costimulatory molecule which plays an important role in T cell-mediated immune response and transplantation. The aim of the present study was to examine the association between the IVS3 +17T/C (rs3116496:T/C) polymorphism in the CD28 gene and the development of delayed renal graft function (DGF), as well as the acute rejection and chronic allograft nephropathy. A total of 270 recipients of the first renal transplants were included in the study. SNP within the CD28 gene was genotyped using TaqMan genotyping assay. Acute rejection was diagnosed in 21.74% of the carriers of the TT genotype, 33.33% of CT carriers and 60.00% of CC homozygotes. The odds of acute rejection were statistically significantly higher in carriers of the C allele (with CT or CC genotype) compared with TT homozygotes (CC+CT vs TT: OR = 1.93, 95%CI = 1.10-3.39, p = 0.026). There were no statistically significant associations between CD28 gene polymorphism and DGF as well as chronic allograft nephropathy. The results of our study suggest an association between IVS3 +17T/C polymorphism in the CD28 gene and acute kidney allograft rejection.
Collapse
Affiliation(s)
- Andrzej Pawlik
- Department of Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111 Szczecin, Poland.
| | - Ewa Dabrowska-Zamojcin
- Department of Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Violetta Dziedziejko
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Leszek Domanski
- Clinical Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
32
|
Zhou F, Ciric B, Zhang GX, Rostami A. Immune tolerance induced by intravenous transfer of immature dendritic cells via up-regulating numbers of suppressive IL-10(+) IFN-γ(+)-producing CD4(+) T cells. Immunol Res 2013; 56:1-8. [PMID: 23292714 DOI: 10.1007/s12026-012-8382-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dendritic cells (DCs) regulate immunity and immune tolerance in vivo. However, the mechanisms of DC-mediated tolerance have not been fully elucidated. Here, we demonstrate that intravenous (i.v.) transfer of bone marrow-derived DCs pulsed with myelin oligodendrocyte glycoprotein (MOG) peptide blocks the development of experimental autoimmune encephalomyelitis in C57BL/6J mice. i.v. transfer of MOG-pulsed DCs leads to the down-regulation of the production of IL-17A and IFN-γ and up-regulation of IL-10 secretion. The development of regulatory T cells (Tregs) is facilitated via up-regulation of FoxP3 expression and production of IL-10. The number of suppressive CD4(+)IL-10(+)IFN-γ(+) T cells is also improved. The expression of OX40, CD154, and CD28 is down-regulated, but the expression of CD152, CD80, PD-1, ICOS, and BTLA is up-regulated on CD4(+) T cells after i.v. transfer of immature DCs. The expression of CCR4, CCR5, and CCR7 on CD4(+) T cells is also improved. Our results suggest that immature DCs may induce tolerance via facilitating the development of CD4(+)FoxP3(+) Tregs and suppressive CD4(+)IL-10(+)IFN-γ(+) T cells in vivo.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
33
|
Autoreactive thymic B cells are efficient antigen-presenting cells of cognate self-antigens for T cell negative selection. Proc Natl Acad Sci U S A 2013; 110:17011-6. [PMID: 24082098 DOI: 10.1073/pnas.1313001110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The thymus contains a population of B cells that colocalize with dendritic cells and medullary thymic epithelial cells in the thymic medulla. The development and functional significance of these cells are largely unknown. Using recombination-activating gene 2 GFP reporter mice along with parabiosis experiments, we demonstrate that the vast majority of thymic B cells develop from progenitors within the thymus. Thymic B cells express unique phenotypic markers compared with peripheral B cells; particularly they express high levels of MHC class II, suggesting that they are poised to present self-antigens efficiently. Using Ig knock-in and T-cell receptor transgenic mice specific for the self-antigen glucose-6-phosphate isomerase, we show that autoreactive thymic B cells serve as efficient antigen-presenting cells for T cell negative selection even when they are present at low frequencies. Furthermore, the endogenous thymic B-cell repertoire also functions in this capacity. These results suggest that developing thymic B cells could efficiently capture a broad array of autoantigens through their B-cell receptors, presenting peptides derived from those autoantigens to developing thymocytes and eliminating cognate T cells.
Collapse
|
34
|
Orrù V, Steri M, Sole G, Sidore C, Virdis F, Dei M, Lai S, Zoledziewska M, Busonero F, Mulas A, Floris M, Mentzen WI, Urru SA, Olla S, Marongiu M, Piras MG, Lobina M, Maschio A, Pitzalis M, Urru MF, Marcelli M, Cusano R, Deidda F, Serra V, Oppo M, Pilu R, Reinier F, Berutti R, Pireddu L, Zara I, Porcu E, Kwong A, Brennan C, Tarrier B, Lyons R, Kang HM, Uzzau S, Atzeni R, Valentini M, Firinu D, Leoni L, Rotta G, Naitza S, Angius A, Congia M, Whalen MB, Jones CM, Schlessinger D, Abecasis GR, Fiorillo E, Sanna S, Cucca F. Genetic variants regulating immune cell levels in health and disease. Cell 2013; 155:242-256. [PMID: 24074872 PMCID: PMC5541764 DOI: 10.1016/j.cell.2013.08.041] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/11/2013] [Accepted: 08/20/2013] [Indexed: 12/14/2022]
Abstract
The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease.
Collapse
Affiliation(s)
- Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Gabriella Sole
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Carlo Sidore
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| | - Francesca Virdis
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Mariano Dei
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | | | - Fabio Busonero
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| | - Matteo Floris
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Wieslawa I. Mentzen
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | | | - Stefania Olla
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Michele Marongiu
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Maria G. Piras
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| | - Andrea Maschio
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maristella Pitzalis
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Maria F. Urru
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Marco Marcelli
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Roberto Cusano
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Francesca Deidda
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Valentina Serra
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| | - Manuela Oppo
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Rosella Pilu
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Frederic Reinier
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Riccardo Berutti
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Luca Pireddu
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
- Università degli Studi di Cagliari, Cagliari 09010, Italy
| | - Ilenia Zara
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| | - Alan Kwong
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Christine Brennan
- University of Michigan Sequencing Core, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brendan Tarrier
- University of Michigan Sequencing Core, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Robert Lyons
- University of Michigan Sequencing Core, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Hyun M. Kang
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sergio Uzzau
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
- Laboratorio di Proteomica, Porto Conte Ricerche Srl, Tramariglio, Alghero 07041, Italy
| | - Rossano Atzeni
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Maria Valentini
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Davide Firinu
- Dipartimento di Allergologia e Immunologia, Università di Cagliari, Cagliari 09124, Italy
| | - Lidia Leoni
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | | | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Andrea Angius
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | - Mauro Congia
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Cagliari, Cagliari 09124, Italy
| | - Michael B. Whalen
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Chris M. Jones
- CRS4, Parco Tecnologico della Sardegna, Pula, Cagliari 09010, Italy
| | | | - Gonçalo R. Abecasis
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, Monserrato 09042, Italy
- Dipartimento di Scienze Biomediche, Università di Sassari, Sassari 07100, Italy
| |
Collapse
|
35
|
Genetic variants regulating immune cell levels in health and disease. Cell 2013. [PMID: 24074872 DOI: 10.1016/j.cell.2013.08.041.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The complex network of specialized cells and molecules in the immune system has evolved to defend against pathogens, but inadvertent immune system attacks on "self" result in autoimmune disease. Both genetic regulation of immune cell levels and their relationships with autoimmunity are largely undetermined. Here, we report genetic contributions to quantitative levels of 95 cell types encompassing 272 immune traits, in a cohort of 1,629 individuals from four clustered Sardinian villages. We first estimated trait heritability, showing that it can be substantial, accounting for up to 87% of the variance (mean 41%). Next, by assessing ∼8.2 million variants that we identified and confirmed in an extended set of 2,870 individuals, 23 independent variants at 13 loci associated with at least one trait. Notably, variants at three loci (HLA, IL2RA, and SH2B3/ATXN2) overlap with known autoimmune disease associations. These results connect specific cellular phenotypes to specific genetic variants, helping to explicate their involvement in disease.
Collapse
|
36
|
Sansom DM, Walker LSK. CD28 costimulation: walking the immunological tightrope. Eur J Immunol 2013; 43:42-5. [PMID: 23322693 DOI: 10.1002/eji.201243211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 11/28/2012] [Accepted: 12/04/2012] [Indexed: 01/13/2023]
Abstract
CD28 function has typically been associated with the generation of effector T-cell responses to Ag. However, it is also clear that CD28 plays an important role in Treg-cell biology. Understanding which functions predominate is important when designing therapeutic interventions based on CD28 targeting. An article by Hünig and colleagues [Eur. J. Immunol. 2013. 43: 188-193] in this issue of the European Journal of Immunology uses an inducible gene deletion approach to reveal that, in the steady state, Treg cells intrinsically require CD28 signals for their maintenance in the periphery, whereas homeostasis of conventional T cells is relatively unaffected. Here we highlight the delicate balance created by the ability of CD28 to modulate both regulatory and effector T-cell responses.
Collapse
Affiliation(s)
- David M Sansom
- MRC Centre for Immune Regulation, University of Birmingham, Birmingham, UK.
| | | |
Collapse
|
37
|
Lee IF, Wang X, Hao J, Akhoundsadegh N, Chen L, Liu L, Langermann S, Ou D, Warnock GL. B7-H4.Ig inhibits the development of type 1 diabetes by regulating Th17 cells in NOD mice. Cell Immunol 2013; 282:1-8. [PMID: 23623902 DOI: 10.1016/j.cellimm.2013.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 03/14/2013] [Accepted: 03/25/2013] [Indexed: 01/02/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease characterized by immunological destruction of insulin-producing pancreatic β-cells and subsequent hyperglycemia. The non-obese diabetic (NOD) mouse strain spontaneously develops a disease similar to human T1D and is commonly used as an animal model for studying this disease. We have previously shown that the administration of B7-H4-immunoglobulin fusion protein (B7-H4.Ig), a newly identified T-cell co-inhibitory signaling molecule, blocks the onset of diabetes in NOD mice. However, the mechanism(s) by which B7-H4 protects NOD mice from T1D is not fully understood. IL-17 is a pro-inflammatory cytokine, produced by Th17 cells, that activates T cells and other immune cells to produce a variety of cytokines and chemokines. Increasing evidence has shown that therapeutic agents targeting the IL-17 molecule or directly inhibiting IL-17-producing cells regulate autoimmune diabetes in NOD mice, suggesting that IL-17 is involved in the pathogenesis of this disease. In this study, we investigate whether B7-H4.Ig treatment inhibits the generation of Th17 cells which subsequently decreases IL-17 production and prevents the onset of T1D in NOD mice. Pre-diabetic female NOD mice were injected intraperitoneally with control mouse IgG or B7-H4.Ig starting at 4 weeks of age for 12 weeks. Our data showed that the frequency of Th17 cells in B7-H4.Ig-treated mice was significantly decreased. In addition, our data showed that B7-H4.Ig-treated mice had decreased levels of pro-inflammatory cytokines and Th17-associated cytokines, and an increased level of the potent Th17 inhibitor IFN-γ. To further investigate the effect of B7-H4.Ig on differentiation of Th17 cells, we co-cultured splenocytes with Th17-polarizing cytokines in the absence or presence of B7-H4.Ig. Our results indicated that splenocytes, under the Th17 driving conditions in the presence of B7-H4.Ig, had significantly decreased the numbers of Th17 cells compared to cells co-cultured in the absence of B7-H4.Ig. Together, this study suggests that blocking the generation of Th17 cells with the administration of B7-H4.Ig effectively inhibits the development of T1D in NOD mice.
Collapse
Affiliation(s)
- I-Fang Lee
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zeng XL, Nagavalli A, Smith CJ, Howard JF, Su MA. Divergent effects of T cell costimulation and inflammatory cytokine production on autoimmune peripheral neuropathy provoked by Aire deficiency. THE JOURNAL OF IMMUNOLOGY 2013; 190:3895-904. [PMID: 23487421 DOI: 10.4049/jimmunol.1203001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic inflammatory demyelinating polyneuropathy results from autoimmune destruction of the peripheral nervous system and is a component of the multiorgan autoimmunity syndrome that results from Aire gene mutations in humans. In parallel, peripheral nervous system autoimmunity resembling chronic inflammatory demyelinating polyneuropathy develops spontaneously in NOD mice with a partial loss of Aire function (NOD.Aire(GW/+) mice) and is a T cell-mediated disease. In this study, we analyze how key aspects of T cell activation and function modulate disease development in Aire-deficient mice. We show that genetic ablation of the Th1 cytokine IFN-γ completely prevents clinical and electrophysiological evidence of neuropathy in NOD.Aire(GW/+) mice. IFN-γ deficiency is associated with absence of immune infiltration and decreased expression of the T cell chemoattractant IP-10 in sciatic nerves. Thus, IFN-γ is absolutely required for the development of autoimmune peripheral neuropathy in NOD.Aire(GW/+) mice. Because IFN-γ secretion is enhanced by B7-CD28 costimulation of T cells, we sought to determine the effects of these costimulatory molecules on neuropathy development. Surprisingly, B7-2 deficiency accelerated neuropathy development in NOD.Aire(GW/+) mice, and Ab blockade of both B7-1 and B7-2 resulted in fulminant, early-onset neuropathy. Thus, in contrast to IFN-γ, B7-2 alone and B7-1/B7-2 in combination function to ameliorate neuropathy development in NOD.Aire(GW/+) mice. Together, these findings reveal distinct and opposing effects of the T cell costimulatory pathway and IFN-γ production on the pathogenesis of autoimmune peripheral neuropathy.
Collapse
Affiliation(s)
- Xiaopei L Zeng
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | |
Collapse
|
39
|
Saito K, Mori S, Date F, Ono M. Sjögren's syndrome-like autoimmune sialadenitis in MRL-Faslpr mice is associated with expression of glucocorticoid-induced TNF receptor-related protein (GITR) ligand and 4-1BB ligand. Autoimmunity 2013; 46:231-7. [PMID: 23301790 DOI: 10.3109/08916934.2012.757307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Although costimulatory molecules have been shown to play crucial roles in the immune response, their involvement in the pathogenesis of Sjögren's syndrome is incompletely understood. In this study, we evaluated the relationship between the severity of spontaneous Sjögren's syndrome-like autoimmune sialadenitis in MRL/MpJ-lpr/lpr (MRL-Fas(lpr)) mice and the expression of 6 costimulatory molecules that play important roles in the immune response: CD80, CD86, OX40 ligand (OX40L), 4-1BB ligand (4-1BBL), glucocorticoid-induced TNF receptor-related protein ligand (GITRL), and B cell-activating factor of the tumor necrosis factor family (BAFF). Expression of the costimulatory molecules in the submandibular salivary glands of age-matched autoimmune MRL-Fas(lpr) mice and non-autoimmune MRL/MpJ-+/+(MRL/+) and C3H/HeJ-lpr/lpr (C3H-Fas(lpr)) mice was examined immunohistochemically and scored on a scale of 0 to 3. The severity of sialadenitis was evaluated histologically and scored on a scale of 0 to 3. We found that all of the costimulatory molecules were expressed in duct epithelial cells of salivary glands from MRL-Fas(lpr) mice, whereas immunoreactivity was absent or weak in the MRL/+ mice. The staining intensity for all 6 costimulatory molecules was significantly higher in the MRL-Fas(lpr) than in the MRL/+ mice. Partial correlation analysis was performed to assess the degree of association between costimulatory molecule staining scores and disease scores, which clearly revealed a significant correlation for only GITRL and 4-1BBL. These molecules showed negligible immunoreactivity in the submandibular glands of C3H-Fas(lpr) mice, suggesting that their expression was independent of the Fas(lpr) mutation. In conclusion, the expression of GITRL and 4-1BBL in salivary gland duct epithelial cells is associated with background genes in the MRL strain, but not with the Fas(lpr) mutation itself, and contributes significantly to the pathogenesis of autoimmune sialadenitis in MRL-Fas(lpr) mice. These results suggest that GITRL and 4-1BBL may be effective targets for the development of therapies for Sjögren's syndrome.
Collapse
Affiliation(s)
- Keiichi Saito
- Liaison Centre for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan.
| | | | | | | |
Collapse
|
40
|
Deppong CM, Green JM. Experimental advances in understanding allergic airway inflammation. Front Biosci (Schol Ed) 2013; 5:167-80. [PMID: 23277043 DOI: 10.2741/s364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Asthma is largely an inflammatory disease, with the development of T cell mediated inflammation in the lung following exposure to allergen or other precipitating factors. Currently, the major therapies for this disease are directed either at relief of bronchoconstriction (ie beta-agonists) or are non-specific immunomodulators (ie, corticosteroids). While much attention has been paid to factors that regulate the initiation of an inflammatory response, chronic inflammation may also be due to defects in regulatory mechanisms that limit or terminate immune responses. In this review, we explore the elements controlling both the recruitment of T cells to the lung and their function. Possibilities for future therapeutic intervention are highlighted.
Collapse
Affiliation(s)
- Christine M Deppong
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
41
|
Frebel H, Nindl V, Schuepbach RA, Braunschweiler T, Richter K, Vogel J, Wagner CA, Loffing-Cueni D, Kurrer M, Ludewig B, Oxenius A. Programmed death 1 protects from fatal circulatory failure during systemic virus infection of mice. ACTA ACUST UNITED AC 2012; 209:2485-99. [PMID: 23230000 PMCID: PMC3526355 DOI: 10.1084/jem.20121015] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The PD-1–PD-L1 pathway inhibits perforin-mediated killing of PD-L1+ vascular endothelial cells by CD8+ T cells, thereby limiting vascular damage during systemic LCMV infection. The inhibitory programmed death 1 (PD-1)–programmed death ligand 1 (PD-L1) pathway contributes to the functional down-regulation of T cell responses during persistent systemic and local virus infections. The blockade of PD-1–PD-L1–mediated inhibition is considered as a therapeutic approach to reinvigorate antiviral T cell responses. Yet previous studies reported that PD-L1–deficient mice develop fatal pathology during early systemic lymphocytic choriomeningitis virus (LCMV) infection, suggesting a host protective role of T cell down-regulation. As the exact mechanisms of pathology development remained unclear, we set out to delineate in detail the underlying pathogenesis. Mice deficient in PD-1–PD-L1 signaling or lacking PD-1 signaling in CD8 T cells succumbed to fatal CD8 T cell–mediated immunopathology early after systemic LCMV infection. In the absence of regulation via PD-1, CD8 T cells killed infected vascular endothelial cells via perforin-mediated cytolysis, thereby severely compromising vascular integrity. This resulted in systemic vascular leakage and a consequential collapse of the circulatory system. Our results indicate that the PD-1–PD-L1 pathway protects the vascular system from severe CD8 T cell–mediated damage during early systemic LCMV infection, highlighting a pivotal physiological role of T cell down-regulation and suggesting the potential development of immunopathological side effects when interfering with the PD-1–PD-L1 pathway during systemic virus infections.
Collapse
Affiliation(s)
- Helge Frebel
- Institute of Microbiology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
The expression and anatomical distribution of BTLA and its ligand HVEM in rheumatoid synovium. Inflammation 2012; 35:1102-12. [PMID: 22179929 DOI: 10.1007/s10753-011-9417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Co-inhibitory signaling from B and T lymphocyte attenuator (BTLA) can suppress lymphocyte activation and maintain peripheral tolerance. However, the expression and anatomical distribution of BTLA and its ligand, herpesvirus entry mediator (HVEM), in rheumatoid arthritis (RA) synovium have not been reported. In this study, we analyzed the expression of HVEM and BTLA in RA synovium by immunohistochemistry, and our results showed that both factors were observed in all four cases of RA samples. At the cellular level, both HVEM and BTLA were found on the cell membrane and in the cytoplasm. Fluorescence dual staining demonstrated that HVEM was chiefly on CD3(+) T cells, CD68(+) macrophages, and to a lesser extent was found on CD31(+) endothelial cells. Similarly, the expression of BTLA was observed on infiltrated CD3(+) T cells and CD68(+) macrophages. The co-expression of HVEM and BTLA with some members of the B7 family in these sections was also analyzed, and the results showed that HVEM antigen was also found on B7-H3(+) capillaries, while it was absent on B7-H1(+), B7-DC(+), B7-H4(+), and Z39Ig(+) cells. Interestingly, BTLA was observed on B7-H1(+), B7-H4(+), and HVEM(+) cells in the synovium. The characteristic expression and distribution of BTLA/HVEM in the synovium indicated that their signaling probably affects the pathogenesis of RA, and a clear understanding of their functional roles may further elucidate the pathogenesis of this disease.
Collapse
|
43
|
Martín Mola E, Balsa A, Martínez Taboada V, Sanmartí R, Marenco JL, Navarro Sarabia F, Gómez-Reino J, Alvaro-Gracia JM, Román Ivorra JA, Lojo L, Plasencia C, Carmona L. Abatacept use in rheumatoid arthritis: evidence review and recommendations. ACTA ACUST UNITED AC 2012; 9:5-17. [PMID: 22766432 DOI: 10.1016/j.reuma.2012.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 04/29/2012] [Accepted: 05/02/2012] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To review the clinical evidence on abatacept and to formulate recommendations in order to clear up points related to its use in rheumatology. METHOD An expert panel of rheumatologists objectively summarized the evidence on the mechanism of action, practicalities, effectiveness and safety of abatacept, and formulated recommendations following a literature review. The level of evidence and degree of recommendation was established. RESULTS The document presents 21 statements focused on evidence or recommendations on abatacept (14 evidence summaries and 9 recommendations). The level of evidence was 2b or higher according to the Oxford Centre for Evidence-Based Medicine scale on 14 occasions. The degree of the recommendation was A in two recommendations, C in one, and D in the rest. It was considered important to make recommendations on aspects with lower levels of evidence. CONCLUSIONS This is a practical document to supplement the summary of product characteristics.
Collapse
Affiliation(s)
- Emilio Martín Mola
- Servicio de Reumatología, Hospital Universitario La Paz, IdiPAZ, Madrid, España.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Zhou F, Ciric B, Li H, Yan Y, Li K, Cullimore M, Lauretti E, Gonnella P, Zhang GX, Rostami A. IL-10 deficiency blocks the ability of LPS to regulate expression of tolerance-related molecules on dendritic cells. Eur J Immunol 2012; 42:1449-58. [PMID: 22622800 DOI: 10.1002/eji.201141733] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 01/17/2012] [Accepted: 02/17/2012] [Indexed: 11/08/2022]
Abstract
Interleukin-10 (IL-10) is an anti-inflammatory cytokine that plays an important role in regulating the local inflammatory immune response, but regulatory mechanisms of this cytokine have not been fully elucidated. Here, we demonstrate that IL-10 deficiency renders LPS treatment ineffective in regulating the expression of CD40, CD80, CD86, B7-H2, and B7-DC on dendritic cells (DCs) and blocks upregulation of IL-27. This inability to respond to LPS was found in both IL-10(-/-) bone marrow derived and splenic DCs. Compared with wild-type DCs, IL-10(-/-) DCs expressed similar levels of TLR4 and CD14, but produced less LPS-binding protein. The deficiency in LPS-binding protein production may explain the failure of IL-10(-/-) DCs to respond normally to LPS. Moreover, lack of IL-10 modulated the proportions of CD11c(+) CD8(+) and CD11c(+) B220(+) DCs, which play an important role in local inflammatory responses and tolerance. IL-10 deficiency also blocked expression of galectin-1, CD205, and CD103, which are necessary for central and peripheral tolerance. While they did not respond to LPS, IL-10(-/-) DCs produced increased levels of IL-6 and CCL4 after TNF-α treatment. Together, our results demonstrate that IL-10 deficiency affects the immune functions of DCs, which may contribute to the increased severity of autoimmune diseases seen in IL-10(-/-) mice.
Collapse
Affiliation(s)
- Fang Zhou
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Notch receptors and Smad3 signaling cooperate in the induction of interleukin-9-producing T cells. Immunity 2012; 36:623-34. [PMID: 22503540 DOI: 10.1016/j.immuni.2012.01.020] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 01/05/2012] [Accepted: 01/27/2012] [Indexed: 01/06/2023]
Abstract
Interleukin 9 (IL-9) is a pleiotropic cytokine that can regulate autoimmune responses by enhancing regulatory CD4(+)FoxP3(+) T regulatory (Treg) cell survival and T helper 17 (Th17) cell proliferation. Here, we analyzed the costimulatory requirements for the induction of Th9 cells, and demonstrated that Notch pathway cooperated with TGF-β signaling to induce IL-9. Conditional ablation of Notch1 and Notch2 receptors inhibited the development of Th9 cells. Notch1 intracellular domain (NICD1) recruited Smad3, downstream of TGF-β cytokine signaling, and together with recombining binding protein (RBP)-Jκ bound the Il9 promoter and induced its transactivation. In experimental autoimmune encephalomyelitis (EAE), Jagged2 ligation regulated clinical disease in an IL-9-dependent fashion. Signaling through Jagged2 expanded Treg cells and suppressed EAE when administered before antigen immunization, but worsened EAE when administered concurrently with immunization by favoring Th17 cell expansion. We propose that Notch and Smad3 cooperate to induce IL-9 and participate in regulating the immune response.
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW The goal of this study is to review key recent findings related to the immunopathogenesis of hepatitis C virus (HCV) infection, especially in regards to T lymphocytes. It aims to complement other reviews in this issue on the roles of host genetics (IL-28B), acute HCV infection (when disease outcome is determined) and other factors that may influence fibrosis progression (microbial translocation). The main focus is on specific immunity and T cells in the context of success and failure to control viral infection. RECENT FINDINGS This review focuses on two areas of intense interest in the recent literature: the relationship between the human leukocyte antigen (HLA), class I-restricted T-cell responses and the evolution of the virus and the role of inhibitory markers on T cells in the immunopathogenesis of HCV. When appropriate, we compare findings from studies of HIV-specific immunity. SUMMARY From examining the virus and the mutational changes associated with T-cell responses and from analyzing the markers on T cells, there have been numerous advances in the understanding of immune evasion mechanisms employed by HCV.
Collapse
|
47
|
Hager EJ, Piganelli JD, Tse HM, Gibson KM. Aberrant expression of costimulatory molecules in splenocytes of the mevalonate kinase-deficient mouse model of human hyper-IgD syndrome (HIDS). J Inherit Metab Dis 2012; 35:159-68. [PMID: 21607759 PMCID: PMC3654530 DOI: 10.1007/s10545-011-9349-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/30/2011] [Accepted: 05/04/2011] [Indexed: 12/30/2022]
Abstract
OBJECTIVE We sought to determine the activation status and proliferative capacities of splenic lymphocyte populations from a mevalonate kinase-deficient mouse model of hyper-IgD syndrome (HIDS). We previously reported that murine mevalonate kinase gene ablation was embryonic lethal for homozygous mutants while heterozygotes (Mvk (+/-)) demonstrated several phenotypic features of human HIDS including increased serum levels of IgD, IgA, and TNFα, temperature dysregulation, hematological abnormalities, and splenomegaly. METHODS AND RESULTS Flow cytometric analysis of cell surface activation markers on T and B lymphocytes, and macrophage populations, demonstrated aberrant expression of B7 glycoproteins in all splenic cell types studied. Differences in expression levels between Mvk (+/-) and Mvk (+/+) littermate controls were observed in both the basal state (unstimulated) and after Concanavalin A (Con-A) stimulation in vitro of whole splenocyte cultures. In Mvk (+/-) CD4 and CD8 T cells, alterations in expression of CD25, CD80, CD152, and CD28 were observed. Mvk (+/-) splenic macrophages expressed altered levels of CD80, CD86, CD40, and CD11c while Mvk (+/-) B lymphocytes had differential expression of CD40, CD80, and CD86. Mvk (+/-) splenocyte subpopulations also exhibited altered proliferative capacities in response to in vitro stimulation. CONCLUSION We postulate that imbalances in the expression of cell surface proteins necessary for activation, proliferation, and regulation of the intensity and duration of an immune response may result in defective T cell activation, proliferation, and effector functions in our model and potentially in human HIDS.
Collapse
Affiliation(s)
- Elizabeth J. Hager
- Department of Biological Sciences, DOW ESE Room 742, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Jon D. Piganelli
- Division of Immunogenetics, Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, Shelby 1202, University of Alabama at Birmingham, Birmingham, AL, USA
| | - K. Michael Gibson
- Department of Biological Sciences, DOW ESE Room 742, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
48
|
Beltrame MH, Pincerati MR, Dalla-Costa R, Wassem R, Köhler KF, Chautard-Freire-Maia EA, Tsuneto LT, Petzl-Erler ML. CD80 and CD86 polymorphisms in populations of various ancestries: 5 new CD80 promoter alleles. Hum Immunol 2012; 73:111-7. [DOI: 10.1016/j.humimm.2011.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/29/2011] [Accepted: 10/07/2011] [Indexed: 12/30/2022]
|
49
|
Walker LSK, Sansom DM. The emerging role of CTLA4 as a cell-extrinsic regulator of T cell responses. Nat Rev Immunol 2011; 11:852-63. [PMID: 22116087 DOI: 10.1038/nri3108] [Citation(s) in RCA: 561] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The T cell protein cytotoxic T lymphocyte antigen 4 (CTLA4) was identified as a crucial negative regulator of the immune system over 15 years ago, but its mechanisms of action are still under debate. It has long been suggested that CTLA4 transmits an inhibitory signal to the cells that express it. However, not all the available data fit with a cell-intrinsic function for CTLA4, and other studies have suggested that CTLA4 functions in a T cell-extrinsic manner. Here, we discuss the data for and against the T cell-intrinsic and -extrinsic functions of CTLA4.
Collapse
Affiliation(s)
- Lucy S K Walker
- MRC Centre for Immune Regulation, University of Birmingham Medical School, Birmingham, UK.
| | | |
Collapse
|
50
|
Tuladhar R, Natarajan G, Satoskar AR. Role of co-stimulation in Leishmaniasis. Int J Biol Sci 2011; 7:1382-90. [PMID: 22110389 PMCID: PMC3221945 DOI: 10.7150/ijbs.7.1382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 12/28/2022] Open
Abstract
Leishmania are obligate intracellular parasites that cause a wide spectrum of diseases ranging from cutaneous, mucocutaneous and the visceral kind. Persistence or resolution of leishmaniasis is governed by host immune response. Co-stimulation is an important secondary signal that governs the extent, strength and direction of the immune response that follows. Co-stimulation by CD40, B7 and OX40 family has been shown to influence the outcome following Leishmania infection and manipulation of these pathways has shown promise for use in immune therapy of leishmaniasis. In this review, we discuss the roles of CD40, B7 and OX40 co-stimulatory pathways in regulating immunity to Leishmania and their implications in the treatment of this disease.
Collapse
Affiliation(s)
- Rashmi Tuladhar
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| | - Gayathri Natarajan
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| | - Abhay R Satoskar
- 1. Department of Microbiology, The Ohio State University, Columbus, Ohio 43221, USA
- 2. Department of Pathology, The Ohio State University, Columbus, Ohio 43221, USA
| |
Collapse
|