1
|
Kirdaite G, Denkovskij J, Mieliauskaite D, Pachaleva J, Bernotiene E. The Challenges of Local Intra-Articular Therapy. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1819. [PMID: 39597004 PMCID: PMC11596802 DOI: 10.3390/medicina60111819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024]
Abstract
Fibroblast-like synoviocytes (FLSs) are among the main disease-driving players in most cases of monoarthritis (MonoA), oligoarthritis, and polyarthritis. In this review, we look at the characteristics and therapeutic challenges at the onset of arthritis and during follow-up management. In some cases, these forms of arthritis develop into autoimmune polyarthritis, such as rheumatoid arthritis (RA), whereas local eradication of the RA synovium could still be combined with systemic treatment using immunosuppressive agents. Currently, the outcomes of local synovectomies are well studied; however, there is still a lack of a comprehensive analysis of current local intra-articular treatments highlighting their advantages and disadvantages. Therefore, the aim of this study is to review local intra-articular therapy strategies. According to publications from the last decade on clinical studies focused on intra-articular treatment with anti-inflammatory molecules, a range of novel slow-acting forms of steroidal drugs for the local treatment of synovitis have been investigated. As pain is an essential symptom, caused by both inflammation and cartilage damage, various molecules acting on pain receptors are being investigated in clinical trials as potential targets for local intra-articular treatment. We also overview the new targets for local treatment, including surface markers and intracellular proteins, non-coding ribonucleic acids (RNAs), etc.
Collapse
Affiliation(s)
- Gailute Kirdaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jaroslav Denkovskij
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Diana Mieliauskaite
- Department of Personalised Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania (E.B.)
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, VilniusTech, Sauletekio al. 11, LT-10223 Vilnius, Lithuania
| |
Collapse
|
2
|
Younesi FS, Miller AE, Barker TH, Rossi FMV, Hinz B. Fibroblast and myofibroblast activation in normal tissue repair and fibrosis. Nat Rev Mol Cell Biol 2024; 25:617-638. [PMID: 38589640 DOI: 10.1038/s41580-024-00716-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
The term 'fibroblast' often serves as a catch-all for a diverse array of mesenchymal cells, including perivascular cells, stromal progenitor cells and bona fide fibroblasts. Although phenotypically similar, these subpopulations are functionally distinct, maintaining tissue integrity and serving as local progenitor reservoirs. In response to tissue injury, these cells undergo a dynamic fibroblast-myofibroblast transition, marked by extracellular matrix secretion and contraction of actomyosin-based stress fibres. Importantly, whereas transient activation into myofibroblasts aids in tissue repair, persistent activation triggers pathological fibrosis. In this Review, we discuss the roles of mechanical cues, such as tissue stiffness and strain, alongside cell signalling pathways and extracellular matrix ligands in modulating myofibroblast activation and survival. We also highlight the role of epigenetic modifications and myofibroblast memory in physiological and pathological processes. Finally, we discuss potential strategies for therapeutically interfering with these factors and the associated signal transduction pathways to improve the outcome of dysregulated healing.
Collapse
Affiliation(s)
- Fereshteh Sadat Younesi
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Andrew E Miller
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, School of Engineering and Applied Science, University of Virginia, Charlottesville, VA, USA
| | - Fabio M V Rossi
- School of Biomedical Engineering and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Boris Hinz
- Keenan Research Institute for Biomedical Science of the St. Michael's Hospital, Toronto, Ontario, Canada.
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Weyand CM, Wu B, Huang T, Hu Z, Goronzy JJ. Mitochondria as disease-relevant organelles in rheumatoid arthritis. Clin Exp Immunol 2023; 211:208-223. [PMID: 36420636 PMCID: PMC10038327 DOI: 10.1093/cei/uxac107] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Mitochondria are the controllers of cell metabolism and are recognized as decision makers in cell death pathways, organizers of cytoplasmic signaling networks, managers of cellular stress responses, and regulators of nuclear gene expression. Cells of the immune system are particularly dependent on mitochondrial resources, as they must swiftly respond to danger signals with activation, trafficking, migration, and generation of daughter cells. Analogously, faulty immune responses that lead to autoimmunity and tissue inflammation rely on mitochondria to supply energy, cell building blocks and metabolic intermediates. Emerging data endorse the concept that mitochondrial fitness, and the lack of it, is of particular relevance in the autoimmune disease rheumatoid arthritis (RA) where deviations of bioenergetic and biosynthetic flux affect T cells during early and late stages of disease. During early stages of RA, mitochondrial deficiency allows naïve RA T cells to lose self-tolerance, biasing fundamental choices of the immune system toward immune-mediated tissue damage and away from host protection. During late stages of RA, mitochondrial abnormalities shape the response patterns of RA effector T cells engaged in the inflammatory lesions, enabling chronicity of tissue damage and tissue remodeling. In the inflamed joint, autoreactive T cells partner with metabolically reprogrammed tissue macrophages that specialize in antigen-presentation and survive by adapting to the glucose-deplete tissue microenvironment. Here, we summarize recent data on dysfunctional mitochondria and mitochondria-derived signals relevant in the RA disease process that offer novel opportunities to deter autoimmune tissue inflammation by metabolic interference.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bowen Wu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Tao Huang
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Zhaolan Hu
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | - Jörg J Goronzy
- Department of Medicine, Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Sun W, Ma J, Chen M, Zhang W, Xu C, Nan Y, Wu W, Mao X, Cheng X, Cai H, Zhang J, Xu H, Wang Y. 4-Iodo-6-phenylpyrimidine (4-IPP) suppresses fibroblast-like synoviocyte- mediated inflammation and joint destruction associated with rheumatoid arthritis. Int Immunopharmacol 2023; 115:109714. [PMID: 36657337 DOI: 10.1016/j.intimp.2023.109714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/20/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023]
Abstract
Rheumatoid arthritis (RA) is a systemic immune-mediated inflammatory disease that significantly impacts patients' quality of life. Fibroblast-like synovial cells (FLSs) within the synovial intima exhibit "tumor-like" properties such as increased proliferation, migration, and invasion. Activation of FLSs and secretion of pro-inflammation factors result in pannus formation and cartilage destruction. As an inhibitor of the cytokine, macrophage migration inhibitory factor (MIF), 4-Iodo-6-phenylpyrimidine (4-IPP) has been shown to reduce cell proliferation, migration, invasion, and the secretion of pro-inflammatory mediators in a variety of diseases. However, the usefulness of 4-IPP for RA treatment has not been assessed and was the purpose of this study. In vitro, 4-IPP was demonstrated to inhibit proliferation, migration, and invasion of RA FLSs, as well as the expression of pro-inflammatory cytokines. 4-IPP was also shown to inhibit MIF-induced phosphorylation of ERK, JNK, and p38, as well as reduce expression of COX2 and PGE2. In order to efficiently deliver 4-IPP to anatomical RA sites, we developed lactic-co-glycolic acid (PLGA) nanospheres, which not only protected 4-IPP from degradation but also controlled the release of 4-IPP. 4-IPP/PLGA nanospheres had potent anti-inflammatory activity and a high degree of biosafety. Results showed that local 4-IPP concentration was increased by nanosphere delivery, effectively reducing the inflammatory microenvironment as well as synovial inflammation, joint swelling, and cartilage destruction in a collagen-induced rheumatoid arthritis (CIA) rat model. Therefore, 4-IPP nanospheres are a sustained-release delivery system that may be an effective therapeutic strategy for RA treatment.
Collapse
Affiliation(s)
- Weiwei Sun
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jinquan Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Minhao Chen
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weidong Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Chunxiang Xu
- Department of Nursing, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yunyi Nan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Weijie Wu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xingxing Mao
- Department of Orthopaedics, The Sixth People's Hospital of Nantong, Nantong, Jiangsu 226001, China
| | - Xi Cheng
- Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hao Cai
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhua Zhang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hua Xu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| | - Youhua Wang
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
6
|
Misra S, Ikbal AMA, Bhattacharjee D, Hore M, Mishra S, Karmakar S, Ghosh A, Srinivas R, Das A, Agarwal S, Saha KD, Bhardwaj P, Ubhadia IB, Ghosh P, De S, Tiwari ON, Chattopadhyay D, Palit P. Validation of antioxidant, antiproliferative, and in vitro anti-rheumatoid arthritis activities of epigallo-catechin-rich bioactive fraction from Camellia sinensis var. assamica, Assam variety white tea, and its comparative evaluation with green tea fraction. J Food Biochem 2022; 46:e14487. [PMID: 36309930 DOI: 10.1111/jfbc.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 10/02/2022] [Accepted: 10/08/2022] [Indexed: 01/14/2023]
Abstract
The epigallocatechin-rich polyphenolic fraction of Assam variety white tea, traditionally used for the management of diverse inflammatory ailments and health drink, was investigated through eco-friendly green aqueous extraction, TLC, and HPLC characterization, phytochemical screening, in vitro DPPH assay, anti-proteinase, MTT assay on synovial fibroblast and colon cancer cells, apoptotic FACS analysis, cytokine ELISA, p-STAT3 western blotting, and in silico docking analysis. HPLC-TLC standardized white tea fraction (WT-F) rendered higher extractive-yield (21%, w/w), than green tea fraction(GT-F) (12%, w/w). WT-F containing flavonoids and non-hydrolysable polyphenols showed better antioxidant activity, rather than equivalent GT-F. WT-F demonstrated remarkable anti-rheumatoid-arthritis activity via killing of synovial fibroblast cells (66.1%), downregulation of TNF-α (93.33%), IL-6 (87.97%), and p-STAT3 inhibition (77.75%). Furthermore, WT-F demonstrated better anti-proliferative activity against colon cancer cells (HCT-116). Collectively, our study revealed that the white tea fraction has boundless potential as anti-rheumatoid arthritis and anti-proliferative agent coupled with apoptotic, antioxidant anti-proteinase, and anti-inflammatory properties. PRACTICAL APPLICATIONS: Our eco-friendly extracted bioactive aqueous fraction of white tea, characterized by TLC-HPLC study and phytochemical screening have demonstrated remarkable anti-rheumatoid arthritis property and anti-proliferative action on colon cancer cells including potential anti-oxidant, anti-inflammatory, and anti-proteinase efficacy. The test WT-F sample has shown impressive safety on normal mammalian cells. WT-F has demonstrated better efficacy against rheumatoid arthritis and cancer model compared to equivalent green tea fraction. Traditionally, it is extensively used for boosting immunity, and energy, with cosmetic, and agricultural applications by the native inhabitants. So, the aqueous fraction of WT is suggested to be used as a prophylactic nutraceutical supplement and or therapeutic agent in commercial polyherbal formulation to attenuate and management of auto-inflammatory rheumatoid arthritis and carcinogenesis of colon. It is additionally suggested to establish in vivo rheumatoid arthritis animal and clinical study to validate their pharmacokinetic stability and dose optimization coupled with anti-inflammatory, cytotoxicity, and anti-oxidant property.
Collapse
Affiliation(s)
- Sanchaita Misra
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | - Dipanjan Bhattacharjee
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Minakshi Hore
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| | | | - Sankha Karmakar
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Alakendu Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | - Abhik Das
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | | | | | - Prashant Bhardwaj
- ICMR-Virus Unit (Presently ICMR-National Institute of Cholera & Enteric Diseases), Kolkata, India
| | - Ishvarlal Bhudarbhai Ubhadia
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India.,Rosekandi Tea Estate, Grant Pt I, Assam, India
| | - Parasar Ghosh
- Department of Clinical immunology and Rheumatology, Institute of Post-Graduate Medical Education & Research, Kolkata, India
| | - Sirshendu De
- Department of Chemical Engineering, Indian Institute of Technology, Kharagpur, India
| | - Onkar Nath Tiwari
- Department of Computer Science and Engineering, National Institute of Technology, Agartala, India
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Belagavi, India.,Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India.,NSHM Knowledge Campus, Kolkata, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar, India
| |
Collapse
|
7
|
Szostak B, Gorący A, Pala B, Rosik J, Ustianowski Ł, Pawlik A. Latest models for the discovery and development of rheumatoid arthritis drugs. Expert Opin Drug Discov 2022; 17:1261-1278. [PMID: 36184990 DOI: 10.1080/17460441.2022.2131765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that reduces the quality of life. The current speed of development of therapeutic agents against RA is not satisfactory. Models on which initial experiments are conducted do not fully reflect human pathogenesis. Overcoming this oversimplification might be a crucial step to accelerate studies on RA treatment. AREAS COVERED The current approaches to produce novel models or to improve currently available models for the development of RA drugs have been discussed. Advantages and drawbacks of two- and three-dimensional cell cultures and animal models have been described based on recently published results of the studies. Moreover, approaches such as tissue engineering or organ-on-a-chip have been reviewed. EXPERT OPINION The cell cultures and animal models used to date appear to be of limited value due to the complexity of the processes involved in RA. Current models in RA research should take into account the heterogeneity of patients in terms of disease subtypes, course, and activity. Several advanced models and tools using human cells and tissues have been developed, including three-dimensional tissues, liquid bioreactors, and more complex joint-on-a-chip devices. This may increase knowledge of the molecular mechanisms leading to disease development, to help identify new biomarkers for early detection, and to develop preventive strategies and more effective treatments.
Collapse
Affiliation(s)
- Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Pala
- Department of Neurosurgery, Pomeranian Medical University Hospital No. 1, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
8
|
Katsoula G, Steinberg J, Tuerlings M, Coutinho de Almeida R, Southam L, Swift D, Meulenbelt I, Wilkinson JM, Zeggini E. A molecular map of long non-coding RNA expression, isoform switching and alternative splicing in osteoarthritis. Hum Mol Genet 2022; 31:2090-2105. [PMID: 35088088 PMCID: PMC9239745 DOI: 10.1093/hmg/ddac017] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Osteoarthritis is a prevalent joint disease and a major cause of disability worldwide with no curative therapy. Development of disease-modifying therapies requires a better understanding of the molecular mechanisms underpinning disease. A hallmark of osteoarthritis is cartilage degradation. To define molecular events characterizing osteoarthritis at the whole transcriptome level, we performed deep RNA sequencing in paired samples of low- and high-osteoarthritis grade knee cartilage derived from 124 patients undergoing total joint replacement. We detected differential expression between low- and high-osteoarthritis grade articular cartilage for 365 genes and identified a 38-gene signature in osteoarthritis cartilage by replicating our findings in an independent dataset. We also found differential expression for 25 novel long non-coding RNA genes (lncRNAs) and identified potential lncRNA interactions with RNA-binding proteins in osteoarthritis. We assessed alterations in the relative usage of individual gene transcripts and identified differential transcript usage for 82 genes, including ABI3BP, coding for an extracellular matrix protein, AKT1S1, a negative regulator of the mTOR pathway and TPRM4, coding for a transient receptor potential channel. We further assessed genome-wide differential splicing, for the first time in osteoarthritis, and detected differential splicing for 209 genes, which were enriched for extracellular matrix, proteoglycans and integrin surface interactions terms. In the largest study of its kind in osteoarthritis, we find that isoform and splicing changes, in addition to extensive differences in both coding and non-coding sequence expression, are associated with disease and demonstrate a novel layer of genomic complexity to osteoarthritis pathogenesis.
Collapse
Affiliation(s)
- Georgia Katsoula
- Technical University of Munich (TUM), School of Medicine, Munich 81675, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Julia Steinberg
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Daffodil Centre, University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 1340, Australia
| | - Margo Tuerlings
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Rodrigo Coutinho de Almeida
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - Lorraine Southam
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Diane Swift
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Section Molecular Epidemiology, Leiden University Medical Center, Leiden 2333 ZC, The Netherlands
| | - J Mark Wilkinson
- Department of Oncology and Metabolism, University of Sheffield, Metabolic Bone Unit, Sorby Wing Northern General Hospital Sheffield, Sheffield, S5 7AU, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg 85764, Germany
- Technical University of Munich (TUM) and Klinikum Rechts der Isar, TUM School of Medicine, Munich 81675, Germany
| |
Collapse
|
9
|
Ji M, Ryu HJ, Baek HM, Shin DM, Hong JH. Dynamic synovial fibroblasts are modulated by NBCn1 as a potential target in rheumatoid arthritis. Exp Mol Med 2022; 54:503-517. [PMID: 35414711 PMCID: PMC9076869 DOI: 10.1038/s12276-022-00756-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/09/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by aggressive fibroblast-like synoviocytes (FLSs) and pannus formation. Various therapeutic strategies have been developed against inflammatory cytokines in RA in recent decades. Based on the migratory features of FLSs, we examined whether modulation of the migratory module attenuates RA severity. In this study, inflamed synovial fluid-stimulated FLSs exhibited enhanced migration and migratory apparatus expression, and sodium bicarbonate cotransporter n1 (NBCn1) was identified in primary cultured RA-FLSs for the first time. The NBC inhibitor S0859 attenuated the migration of FLSs induced with synovial fluid from patients with RA or with TNF-α stimulation. Inhibition of NBCs with S0859 in a collagen-induced arthritis (CIA) mouse model reduced joint swelling and destruction without blood, hepatic, or renal toxicity. Primary FLSs isolated from the CIA-induced mouse model also showed reduced migration in the presence of S0859. Our results suggest that inflammatory mediators in synovial fluid, including TNF-α, recruit NBCn1 to the plasma membrane of FLSs to provide dynamic properties and that modulation of NBCn1 could be developed into a therapeutic strategy for RA.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Hee Jung Ryu
- Division of Rheumatology, Department of Internal Medicine, Gachon University Gil Medical Center, 21 Namdongdae-ro 774-gil, Nandong-gu, Incheon, South Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea
| | - Dong Min Shin
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, South Korea.
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon, South Korea.
| |
Collapse
|
10
|
Wu JY, Chen YJ, Fu XQ, Li JK, Chou JY, Yin CL, Bai JX, Wu Y, Wang XQ, Li ASM, Wong LY, Yu ZL. Chrysoeriol suppresses hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes and inhibits JAK2/STAT3 signaling. BMC Complement Med Ther 2022; 22:73. [PMID: 35296317 PMCID: PMC8928618 DOI: 10.1186/s12906-022-03553-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background Fibroblast-like synoviocytes (FLS) have cancer cell-like characteristics, such as abnormal proliferation and resistance to apoptosis, and play a pathogenic role in rheumatoid arthritis (RA). Hyperproliferation of RA-FLS that can be triggered by the activation of interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) signaling destructs cartilage and bone in RA patients. Chrysoeriol is a flavone found in medicinal herbs such as Chrysanthemi Indici Flos (the dried capitulum of Chrysanthemum indicum L.). These herbs are commonly used in treating RA. Chrysoeriol has been shown to exert anti-inflammatory effects and inhibit STAT3 signaling in our previous studies. This study aimed to determine whether chrysoeriol inhibits hyperproliferation of RA-FLS, and whether inhibiting STAT3 signaling is one of the underlying mechanisms. Methods IL-6/soluble IL-6 receptor (IL-6/sIL-6R)-stimulated RA-FLS were used to evaluate the effects of chrysoeriol. CCK-8 assay and crystal violet staining were used to examine cell proliferation. Annexin V-FITC/PI double staining was used to detect cell apoptosis. Western blotting was employed to determine protein levels. Results Chrysoeriol suppressed hyperproliferation of, and evoked apoptosis in, IL-6/sIL-6R-stimulated RA-FLS. The apoptotic effect of chrysoeriol was verified by its ability to cleave caspase-3 and caspase-9. Mechanistic studies revealed that chrysoeriol inhibited activation/phosphorylation of Janus kinase 2 (JAK2, Tyr1007/1008) and STAT3 (Tyr705); decreased STAT3 nuclear level and down-regulated protein levels of Bcl-2 and Mcl-1 that are transcriptionally regulated by STAT3. Over-activation of STAT3 significantly diminished anti-proliferative effects of chrysoeriol in IL-6/sIL-6R-stimulated RA-FLS. Conclusions We for the first time demonstrated that chrysoeriol suppresses hyperproliferation of RA-FLS, and suppression of JAK2/STAT3 signaling contributes to the underlying mechanisms. This study provides pharmacological and chemical justifications for the traditional use of chrysoeriol-containing herbs in treating RA, and provides a pharmacological basis for developing chrysoeriol into a novel anti-RA agent. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03553-w.
Collapse
Affiliation(s)
- Jia-Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying-Jie Chen
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiu-Qiong Fu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jun-Kui Li
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ji-Yao Chou
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Cheng-Le Yin
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jing-Xuan Bai
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Ying Wu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xiao-Qi Wang
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Amy Sze-Man Li
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lut Yi Wong
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China.,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China.,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhi-Ling Yu
- Research and Development Centre for Natural Health Products, HKBU Shenzhen Institute of Research and Continuing Education, Shenzhen, China. .,School of Chinese Medicine, Consun Chinese Medicines Research Centre for Renal Diseases, Hong Kong Baptist University, Hong Kong, China. .,Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China. .,JaneClare Transdermal TCM Therapy Laboratory, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
11
|
Cai C, Hu W, Chu T. Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol 2022; 9:817104. [PMID: 35096841 PMCID: PMC8795893 DOI: 10.3389/fcell.2021.817104] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
There are multiple diseases or conditions such as hereditary hemochromatosis, hemophilia, thalassemia, sickle cell disease, aging, and estrogen deficiency that can cause iron overload in the human body. These diseases or conditions are frequently associated with osteoarthritic phenotypes, such as progressive cartilage degradation, alterations in the microarchitecture and biomechanics of the subchondral bone, persistent joint inflammation, proliferative synovitis, and synovial pannus. Growing evidences suggest that the conditions of pathological iron overload are associated with these osteoarthritic phenotypes. Osteoarthritis (OA) is an important complication in patients suffering from iron overload-related diseases and conditions. This review aims to summarize the findings and observations made in the field of iron overload-related OA while conducting clinical and basic research works. OA is a whole-joint disease that affects the articular cartilage lining surfaces of bones, subchondral bones, and synovial tissues in the joint cavity. Chondrocytes, osteoclasts, osteoblasts, and synovial-derived cells are involved in the disease. In this review, we will elucidate the cellular and molecular mechanisms associated with iron overload and the negative influence that iron overload has on joint homeostasis. The promising value of interrupting the pathologic effects of iron overload is also well discussed for the development of improved therapeutics that can be used in the field of OA.
Collapse
Affiliation(s)
- Chenhui Cai
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wenhui Hu
- Department of Biomedical Materials Science, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
12
|
Xu D, Lin L, Chen Z. LncRNA cardiac autophagy inhibitory factor is downregulated in rheumatoid arthritis and suppresses the apoptosis of fibroblast-like synoviocytes by promoting the maturation of miRNA-20a. Arch Rheumatol 2021; 37:383-392. [PMID: 36589606 PMCID: PMC9791550 DOI: 10.46497/archrheumatol.2022.9089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/24/2021] [Indexed: 01/04/2023] Open
Abstract
Objectives In this study, we aimed to investigate the effects of LncRNA cardiac autophagy inhibitory factor (CAIF) and miR-20a on the apoptosis of synovial cells in rheumatoid arthritis (RA) and the regulatory mechanism. Patients and methods Between May 2018 and March 2020, a total of 62 RA patients (24 males, 38 females; mean age: 55.2±4.9 years; range, 42 to 68 years) and 62 controls (24 males, 38 females; mean age: 55.3±4.8 years; range, 41 to 68 years) were included in this study. Plasma samples were collected from all participants. The expression levels of CAIF, mature miR-20a, and miR-20a precursor in these plasma samples were determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Correlations were analyzed using linear regression analysis. Overexpression of CAIF was achieved in human fibroblast-like synoviocytes (HFLSs) and the expression levels of mature miR-20a and miR-20a precursor were determined using RT-qPCR. Cell apoptosis was analyzed by cell apoptosis assay. Results The CAIF was downregulated in RA and positively correlated with the expression of mature miR-20a. In HFLSs, LPS treatment resulted in downregulation of both CAIF and miR-20a in a dose-dependent manner. In HFLSs, overexpression of CAIF did not affect the expression of miR-20a precursor, but upregulated the expression of mature miR-20a. Cell apoptosis analysis showed that overexpression of CAIF and miR-20a inhibited the apoptosis of HFLSs induced by LPS. The combination of overexpression of CAIF and miR-20a showed a stronger effect. Conclusion The CAIF may suppress the apoptosis of HFLSs in RA by promoting the maturation of miR-20a.
Collapse
Affiliation(s)
- Dongming Xu
- Department of Rheumatology & Immunology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Ling Lin
- Department of Rheumatology & Immunology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| | - Zhen Chen
- Department of Rheumatology & Immunology, the Second Affiliated Hospital of Fujian Medical University, Quanzhou City, China
| |
Collapse
|
13
|
Zafari P, Rafiei A, Faramarzi F, Ghaffari S, Amiri AH, Taghadosi M. Human fibroblast-like synoviocyte isolation matter: a comparison between cell isolation from synovial tissue and synovial fluid from patients with rheumatoid arthritis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2021; 67:1654-1658. [PMID: 34909894 DOI: 10.1590/1806-9282.20210706] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Cell culture technology has become a popular method in the field of cell biology, pharmacology, and medical researches. Primary cells represent the normal physiological condition of human cells. Fibroblasts are the most common native cells of connective tissue that play a crucial role in the entire pathogenesis of various disorders, such as rheumatoid arthritis (RA). Fibroblast-like synoviocytes (FLSs), which overlie the loose connective tissue of the synovial sublining, are known to be the central mediators of joint damage. The most routine approach for the isolation of FLS is an enzymatic digestion of synovial tissue. This experimental study is designed to introduce an easy, fast, and high-throughput method compared with enzymatic digestion for isolation of FLS. METHODS The synovial tissue and synovial fluid (SF) samples were collected from eight patients with RA who underwent routine knee replacement surgery. Synovial tissue was incubated with collagenase VIII enzyme, while SF was washed with a similar volume of phosphate-buffered saline. The cells were further subcultured and stored based on the standard protocols. The purity of isolated synoviocytes was confirmed using flow cytometry analysis. RESULTS Isolation of FLS from SF was more successful with a faster rate, 3-5 days after culture. The morphological assessment and flow cytometry analysis confirmed the purity of SF-derived cells in passage 4. CONCLUSIONS SF could be a more accessible source of FLS than synovial tissue. Obtaining primary FLS from SF is a simple, fast, and cost-effective way to have a large-scale cell during a short time.
Collapse
Affiliation(s)
- Parisa Zafari
- Mazandaran University of Medical Sciences, School of Medicine, Department of Immunology, Molecular and Cell Biology Research Center - Sari, Iran
| | - Alireza Rafiei
- Mazandaran University of Medical Sciences, School of Medicine, Department of Immunology, Molecular and Cell Biology Research Center - Sari, Iran
| | - Fatemeh Faramarzi
- Mazandaran University of Medical Sciences, School of Medicine, Department of Immunology, Molecular and Cell Biology Research Center - Sari, Iran
| | - Salman Ghaffari
- Mazandaran University of Medical Sciences, Orthopedic Research Center - Sari, Iran
| | - Aref Hosseinian Amiri
- Mazandaran University of Medical Sciences, Imam Khomeini Hospital, Rheumatology Department - Sari, Iran
| | - Mahdi Taghadosi
- Kermanshah University of Medical Sciences, School of Medicine, Department of Immunology - Kermanshah, Iran
| |
Collapse
|
14
|
Sisto M, Ribatti D, Lisi S. Cadherin Signaling in Cancer and Autoimmune Diseases. Int J Mol Sci 2021; 22:ijms222413358. [PMID: 34948155 PMCID: PMC8704376 DOI: 10.3390/ijms222413358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023] Open
Abstract
Cadherins mediate cell–cell adhesion through a dynamic process that is strongly dependent on the cellular context and signaling. Cadherin regulation reflects the interplay between fundamental cellular processes, including morphogenesis, proliferation, programmed cell death, surface organization of receptors, cytoskeletal organization, and cell trafficking. The variety of molecular mechanisms and cellular functions regulated by cadherins suggests that we have only scratched the surface in terms of clarifying the functions mediated by these versatile proteins. Altered cadherins expression is closely connected with tumorigenesis, epithelial–mesenchymal transition (EMT)-dependent fibrosis, and autoimmunity. We review the current understanding of how cadherins contribute to human health and disease, considering the mechanisms of cadherin involvement in diseases progression, as well as the clinical significance of cadherins as therapeutic targets.
Collapse
|
15
|
Xiao C, Lv C, Sun S, Zhao H, Ling H, Li M, Qin Y, Zhang J, Wang J, Yang X. TSP1 is the essential domain of SEMA5A involved in pannus formation in rheumatoid arthritis. Rheumatology (Oxford) 2021; 60:5833-5842. [PMID: 33616619 DOI: 10.1093/rheumatology/keab133] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/12/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE In this study, we explored the effect of semaphorin5A (SEMA5A) on RA pathogenesis and its specific TSP1 domain on pannus formation. METHODS The expression of SEMA5A was detected in the synovium, the fibroblast-like synoviocytes (FLSs) and the SF of RA patients and healthy controls (HCs) by real-time quantitative PCR (q-PCR), immunohistochemistry staining, western blot and ELISA. SEMA5A-mAb intervention was performed to appraise the severity of joints in the CIA model. Transcriptome sequencing and bioinformatics analysis in SEMA5A-transfected FLSs from HCs were performed to screen differentially expressed genes after SEMA5A overexpression. An MTT assay in RA-FLSs, a chicken embryo allantoic membrane experiment and a tube formation experiment were used to clarify the influence of SEMA5A on cell proliferation and angiogenesis. Furthermore, a rescue experiment verified the function of the TSP1 domain of SEMA5A in the progress of RA with Sema5a-/- CIA mice. RESULTS The expression of SEMA5A increased in RA compared with that in HCs. Simultaneously, SEMA5A-mAbs significantly attenuated joint injury and the inflammatory response in CIA models. In addition, transcriptome sequencing and angiogenesis-related experiments verified the ability of SEMA5A to promote FLS proliferation and angiogenesis. Moreover, TSP1 was proved to be an essential domain in SEMA5A-induced angiogenesis in vitro. Additionally, rescue of TSP1-deleted SEMA5A failed to reduce the severity of arthritis in a CIA model constructed with Sema5a -/- mice. CONCLUSION In summary, upregulation of SEMA5A was first confirmed in pathological lesions of RA patients. Furthermore, treatment with SEMA5A-mAbs attenuated the progress of RA in the CIA model. Moreover, TSP1 was indicated as the key domain of SEMA5A in the promotion of pannus formation in RA.
Collapse
Affiliation(s)
- Chipeng Xiao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Chen Lv
- Department of Orthopedics, Wenzhou Medical University First Affiliated Hospital
| | - Siyuan Sun
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Heping Zhao
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Hanzhi Ling
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Man Li
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Yang Qin
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Jinhao Zhang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Jianguang Wang
- Department of Biochemistry, School of Basic Medical Sciences, Wenzhou Medical University
| | - Xinyu Yang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Li J, Cao R, Wang Q, Shi H, Wu Y, Sun K, Liu X, Jiang H. Cadherin-11 promotes the mechanical strength of engineered elastic cartilage by enhancing extracellular matrix synthesis and microstructure. J Tissue Eng Regen Med 2021; 16:188-199. [PMID: 34837334 DOI: 10.1002/term.3271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/03/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022]
Abstract
Limitations of current treatments for auricular cartilage defects have prompted the field of auricular cartilage tissue engineering. To date, inducing the formation of cartilaginous constructs with biochemical and biomechanical properties of native tissue is the final aim. Through hematoxylin-eosin and immunohistochemistry staining, Cadherin-11(CDH11) was confirmed highly expressed in the auricular cartilage tissue and chondrocytes. In vitro, by knockdown and overexpression of CDH11 in chondrocytes, CDH11 was demonstrated to promote the expression of collagen type II (COL2A), elastin (ELN), aggrecan (ACAN), and cartilage oligomeric matrix protein (COMP). In addition, the CDH11 overexpressed chondrocytes promoted neo-cartilage formation and its biomechanical property by increasing the key transcription factor of chondrogenesis SOX9 expression and cartilage extracellular matrix (ECM) production. The young's modulus and yield stress of the neo-cartilage in CDH11 overexpression group were about 1.7 times (p = 0.0152) and 2 times (p = 0.0428) higher than those in control group, respectively. Then, the immunohistochemistry staining, qRT-PCR and western blot examination results showed that the expression of COL2A and ELN were significantly increased. Notably, the electron microscopy results showed that the collagen and elastic fibers of the neo-cartilage in CDH11-OV group arranged in bunches and were more uniform and compact compared to the control group. Furthermore, CDH11 promoted elastic fiber assembly by increasing lysyl oxidase (LOX), fibrillin-1 (FBN1) expression. Taken together, our results demonstrated that CDH11 improves the mechanical strength of tissue-engineered elastic cartilage by promoting ECM synthesis and elastic fiber assembly.
Collapse
Affiliation(s)
- Jia Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Rui Cao
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qian Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hang Shi
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kexin Sun
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Liu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Long ZY, Zhou YF, Yuan H, Peng YM, Wu SX, Peng F. Expression and Correlation of IgG4 and IL-21 in Collagen-Induced Arthritis Rats. J Inflamm Res 2021; 14:5051-5058. [PMID: 34629885 PMCID: PMC8493012 DOI: 10.2147/jir.s317420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose We explored the expression levels of IgG4 and interleukin (IL)-21 in the serum and ankle joints of collagen-induced arthritis (CIA) rats at different disease stages. Materials and Methods Wistar rats were randomly divided into normal and model groups, and the latter group was administered bovine type II collagen to induce arthritis. Enzyme-linked immunosorbent assay was performed at 21, 28, 35, and 42 days to detect IgG4 and IL-21 in the serum, followed by histological and immunohistochemical analyses of IgG4 and IL-21r in the ankle joint of rats. Results The contents of IgG4 and IL-21 in the serum of the CIA model group were positively correlated and increased with disease progression. The expression of IgG4 and IL-21 receptors in the ankle joint of the CIA model group was significantly higher than that in the control group. These proteins were closely related to the pathological score. The serum IL-21 level in the model group was closely related to the level of IL-21 receptor in the ankle joint. Conclusion IL-21 may promote the occurrence and development of rheumatoid arthritis by combining with IL-21r to regulate the content of IgG4.
Collapse
Affiliation(s)
- Zhen-Yi Long
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yi-Feng Zhou
- Operating Room, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Hao Yuan
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Ya-Meng Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Si-Xian Wu
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Fang Peng
- Department of Clinical Laboratory, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| |
Collapse
|
18
|
Johnson CL, Riley L, Bersi M, Linton MF, Merryman WD. Impaired macrophage trafficking and increased helper T-cell recruitment with loss of cadherin-11 in atherosclerotic immune response. Am J Physiol Heart Circ Physiol 2021; 321:H756-H769. [PMID: 34506228 PMCID: PMC8794229 DOI: 10.1152/ajpheart.00263.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/11/2022]
Abstract
Inflammation caused by infiltrating macrophages and T cells promotes plaque growth in atherosclerosis. Cadherin-11 (CDH11) is a cell-cell adhesion protein implicated in several fibrotic and inflammatory diseases. Much of the research on CDH11 concerns its role in fibroblasts, although its expression in immune cells has been noted as well. The objective of this study was to assess the effect of CDH11 on the atherosclerotic immune response. In vivo studies of atherosclerosis indicated an increase in Cdh11 in plaque tissue. However, global loss of Cdh11 resulted in increased atherosclerosis and inflammation. It also altered the immune response in circulating leukocytes, decreasing myeloid cell populations and increasing T-cell populations, suggesting possible impaired myeloid migration. Bone marrow transplants from Cdh11-deficient mice resulted in similar immune cell profiles. In vitro examination of Cdh11-/- macrophages revealed reduced migration, despite upregulation of a number of genes related to locomotion. Flow cytometry revealed an increase in CD3+ and CD4+ helper T-cell populations in the blood of both the global Cdh11 loss and the bone marrow transplant animals, possibly resulting from increased expression by Cdh11-/- macrophages of major histocompatibility complex class II molecule genes, which bind to CD4+ T cells for coordinated activation. CDH11 fundamentally alters the immune response in atherosclerosis, resulting in part from impaired macrophage migration and altered macrophage-induced T-cell activation.NEW & NOTEWORTHY Cadherin-11 is well known to contribute to inflammatory and fibrotic disease. Here, we examined its role in atherosclerosis progression, which is predominantly an inflammatory process. We found that while cadherin-11 is associated with plaque progression, global loss of cadherin-11 exacerbated the disease phenotype. Moreover, loss of cadherin-11 in bone marrow-derived immune cells resulted in impaired macrophage migration and an unexplained increase in circulating helper T cells, presumably due to altered macrophage function without cadherin-11.
Collapse
Grants
- F32 HL154596 NHLBI NIH HHS
- R00 HL146951 NHLBI NIH HHS
- HL148137 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL127173 NHLBI NIH HHS
- HL127173 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL135790 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- DK059637 HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
- K99 HL146951 NHLBI NIH HHS
- HL146951 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- P01 HL116263 NHLBI NIH HHS
- R35 HL135790 NHLBI NIH HHS
- R01 HL148137 NHLBI NIH HHS
- R01 HL146134 NHLBI NIH HHS
- HL146134 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- U24 DK059637 NIDDK NIH HHS
- HL154596 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL116263 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- American Heart Association (AHA)
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Lance Riley
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Matthew Bersi
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - MacRae F Linton
- Atherosclerosis Research Unit, Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
19
|
Lu J, Feng X, Zhang H, Wei Y, Yang Y, Tian Y, Bai L. Maresin-1 suppresses IL-1β-induced MMP-13 secretion by activating the PI3K/AKT pathway and inhibiting the NF-κB pathway in synovioblasts of an osteoarthritis rat model with treadmill exercise. Connect Tissue Res 2021; 62:508-518. [PMID: 32546009 DOI: 10.1080/03008207.2020.1780218] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Maresin-1 is a metabolite of docosahexaenoic acid (DHA) that has potential anti-inflammatory effects. To explore whether maresin-1 changes and has a therapeutic effect in osteoarthritis (OA) model rats undergoing treadmill exercise, we examined endogenous maresin-1 in a single-session treadmill experiment and OA model rats were treated with maresin-1, moreover, we examined the effects of maresin-1 on IL-1β induced rat fibroblast-like synoviocytes (FLSs) and possible mechanisms.Methods: In single-session treadmill experiment, 48 rats were randomly divided into 3 groups and performed three different intensities of exercise (15.2 m/min, 0°; 19.3 m/min, 5°; 26.8 m/min, 10°) for 60 min. Intra-articular lavage fluid (IALF) samples were harvested after 0, 2, and 4 h from each group (n = 4) and maresin-1 levels were evaluated by ELISA. Another 30 rats were treated with monosodium iodoacetate (MIA) to induce osteoarthritis and exogenous maresin-1 (MaR-1) and were divided into three groups (n = 10, OA: MIA, OAM: MIA+MaR1, and CG: control group). The level of injury was evaluated by OARSI and Mankin scores, and the levels of type II collagen and MMP13 were evaluated by immunohistochemistry. FLSs were obtained from the knee joint of SD rats, and the expression of MMP13 and activation of the PI3k/Akt and NF-κB p65 pathways in IL-1β-induced FLSs were evaluated by western blotting.Results: Maresin-1 levels were increased in IALF at 4 h after exercise, and type II collagen increased in cartilage and MMP13 decreased in the synovium after treatment with maresin-1 in MIA-induced osteoarthritis. The results of vitro experiment showed decreased MMP13, activation of the PI3k/Akt pathway, and suppression of the NF-κB p65 pathway upon treatment with maresin-1 in IL-1β-induced FLSs.Conclusions: The changes in maresin-1 in IALF, as seen in our single-section treadmill exercise, provides an explanation for the therapeutic effect of appropriate-strength treadmill exercise on osteoarthritis, and our experiments confirmed the therapeutic effect of maresin-1 both in vivo and in vitro.
Collapse
Affiliation(s)
- Jinghan Lu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyuan Feng
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - He Zhang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yicheng Tian
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Koss H, Honig B, Shapiro L, Palmer AG. Dimerization of Cadherin-11 involves multi-site coupled unfolding and strand swapping. Structure 2021; 29:1105-1115.e6. [PMID: 34166612 DOI: 10.1016/j.str.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Cadherin extracellular domain 1 (EC1) mediates homophilic dimerization in adherens junctions. Conserved Trp2 and Trp4 residues in type II cadherins anchor the EC1 A strand intermolecularly in strand-swapped dimers. Herein, NMR spectroscopy is used to elucidate the roles of Trp2 and Trp4 in Cadherin-11 dimerization. The monomeric state, with the A strand and Trp side chains packed intramolecularly, is in equilibrium with sparsely populated partially and fully A-strand-exposed states, in which Trp2 (and Trp4, respectively) side-chain packing is disrupted. Exchange kinetics between the major state and the partially (fully) A-strand-exposed state is slow-intermediate (intermediate-fast). A separate very fast process exchanges ordered and random-coil BC-loop conformations with populations dependent on A-strand exposure and dimerization status. In addition, very slow processes connect the folded A-strand-exposed conformation to partially unfolded states, which may represent additional domain-swapping intermediates. The dimerization mechanism of type II cadherins is revealed as coupled folding and strand swapping.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
21
|
He Z, Liu Z, Gong L. Biomarker identification and pathway analysis of rheumatoid arthritis based on metabolomics in combination with ingenuity pathway analysis. Proteomics 2021; 21:e2100037. [PMID: 33969925 DOI: 10.1002/pmic.202100037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/19/2022]
Abstract
Rheumatoid arthritis (RA) is a common autoimmune and inflammatory disease worldwide, but understanding its pathogenesis is still limited. In this study, plasma untargeted metabolomics of a discovery cohort and targeted analysis of a verification cohort were performed by gas chromatograph mass spectrometry (GC/MS). Univariate and multivariate statistical analysis were utilized to reveal differential metabolites, followed by the construction of biomarker panel through random forest (RF) algorithm. The pathways involved in RA were enriched by differential metabolites using Ingenuity Pathway Analysis (IPA) suite. Untargeted metabolomics revealed eighteen significantly altered metabolites in RA. Among these metabolites, a three-metabolite marker panel consisting of L-cysteine, citric acid and L-glutamine was constructed, using random forest algorithm that could predict RA with high accuracy, sensitivity and specificity based on a multivariate exploratory receiver operator characteristic (ROC) curve analysis. The panel was further validated by support vector machine (SVM) and partial least squares discriminant analysis (PLS-DA) algorithms, and also verified with targeted metabolomics using a verification cohort. Additionally, the dysregulated taurine biosynthesis pathway in RA was revealed by an integrated analysis of metabolomics and transcriptomics. Our findings in this study not only provided a mechanism underlying RA pathogenesis, but also offered alternative therapeutic targets for RA.
Collapse
Affiliation(s)
- Zhuoru He
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| |
Collapse
|
22
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
23
|
Ji M, Ryu HJ, Hong JH. Signalling and putative therapeutic molecules on the regulation of synoviocyte signalling in rheumatoid arthritis. Bone Joint Res 2021; 10:285-297. [PMID: 33890482 PMCID: PMC8077181 DOI: 10.1302/2046-3758.104.bjr-2020-0331.r1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by symmetrical and chronic polyarthritis. Fibroblast-like synoviocytes are mainly involved in joint inflammation and cartilage and bone destruction by inflammatory cytokines and matrix-degrading enzymes in RA. Approaches that induce various cellular growth alterations of synoviocytes are considered as potential strategies for treating RA. However, since synoviocytes play a critical role in RA, the mechanism and hyperplastic modulation of synoviocytes and their motility need to be addressed. In this review, we focus on the alteration of synoviocyte signalling and cell fate provided by signalling proteins, various antioxidant molecules, enzymes, compounds, clinical candidates, to understand the pathology of the synoviocytes, and finally to achieve developed therapeutic strategies of RA. Cite this article: Bone Joint Res 2021;10(4):285–297.
Collapse
Affiliation(s)
- Minjeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea
| | - Hee Jung Ryu
- Department of Rheumatology, Gachon University Gil Medical Center, Incheon, South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, Incheon, South Korea.,Department of Health Sciences and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea
| |
Collapse
|
24
|
Johnson CL, Merryman WD. Side-specific valvular endothelial-interstitial cell mechano-communication via cadherin-11. J Biomech 2021; 119:110253. [PMID: 33636459 DOI: 10.1016/j.jbiomech.2021.110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022]
Abstract
Calcific aortic valve disease (CAVD) is a condition causing stiffening of the aortic valve, impeding cardiac function and resulting in significant morbidity worldwide. CAVD is thought to be driven by the persistent activation of the predominant cell type in the valve, aortic valve interstitial cells (AVICs), into myofibroblasts, resulting in subsequent calcification and stenosis of the valve. Although much of the research into CAVD focuses on AVICs, the aortic valve endothelial cells (AVECs) have been shown to regulate AVICs and maintain tissue homeostasis. Exposed to distinct flow patterns during the cardiac cycle, the AVECs lining either side of the valve demonstrate crucial differences which could contribute to the preferential formation of calcific nodules on the aorta-facing (fibrosa) side of the valve. Cadherin-11 (CDH11) is a cell-cell adhesion protein which has been previously associated with AVIC myofibroblast activation, nodule formation, and CAVD in mice. In this study, we investigated the role of CDH11 in AVECs and examined side-specific differences. The aorta-facing or fibrosa endothelial cells (fibAVECs) express higher levels of CDH11 than the ventricle-facing or ventricularis endothelial cells (venAVECs). This increase in expression corresponds with increased contraction of a free-floating collagen gel compared to venAVECs. Additionally, co-culture of fibAVECs with AVICs demonstrated decreased contraction compared to an AVIC + AVIC control, but increased contraction compared to the venAVECs co-culture. This aligns with the known preferential formation of calcific nodules on the fibrosa. These results together indicate a potential role for CDH11 expression by AVECs in regulating AVIC contraction and subsequent calcification.
Collapse
Affiliation(s)
- Camryn L Johnson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - W David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
25
|
Lin JJ, Tao K, Gao N, Zeng H, Wang DL, Yang J, Weng J. Triptolide Inhibits Expression of Inflammatory Cytokines and Proliferation of Fibroblast-like Synoviocytes Induced by IL-6/sIL-6R-Mediated JAK2/STAT3 Signaling Pathway. Curr Med Sci 2021; 41:133-139. [PMID: 33582917 DOI: 10.1007/s11596-020-2302-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Triptolide, a component of the Chinese herb Tripterygium wilfordii Hook F, has been proved to be effective in the treatment of rheumatoid arthritis (RA). However, its underlying mechanisms on RA have not yet been well established. We observed the inhibitory effect of triptolide on the expression of inflammatory cytokines and proliferation of fibroblast-like synoviocytes (FLS) induced by the complex of interleukin-6 (IL-6) and the soluble form of the IL-6 receptor (sIL-6R). Furthermore, to clarify the underlying mechanisms, we treated FLS with the Janus-activated kinase 2 (JAK2) inhibitor/signal transducer and activator of transcription 3 (STAT3) activation blocker AZD1480. In this study, immunohistochemical staining was used to identify vimentin (+) and CD68 (-) in FLS. The FLS proliferation was measured by cell proliferation assay, and the cell cycles were analyzed by flow cytometry. Furthermore, ELISA was used to detect the expression of the inflammatory factors in culture solution. The expression levels of p-JAK2, JAK2, p-STAT3 and STAT3 were investigated through Western blotting analysis. The results showed that IL-6/sIL-6R significantly increased the cell proliferation and expression of inflammatory cytokines, including IL-6, interleukin-1β (IL-1β) and vascular endothelial growth factor (VEGF). Triptolide or AZD1480 inhibited the cell proliferation and inflammatory cytokine expression in IL-6/sIL-6R-stimulated FLS by suppressing JAK2/STAT3. The study suggested that the physiological effects of triptolide on RA were due to its contribution to the inhibition of the inflammatory cytokine expression and FLS proliferation by suppressing the JAK2/STAT3 signaling pathway. It may provide an innovative insight into the effect of triptolide in preventing RA pathogenesis.
Collapse
Affiliation(s)
- Jian-Jing Lin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Ke Tao
- Arthritis Clinical and Research Center, Peking University People's Hospital, Beijing, 100044, China
| | - Nan Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - De-Li Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Jun Yang
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone and Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518000, China.
| |
Collapse
|
26
|
Chen X, Xiang H, Yu S, Lu Y, Wu T. Research progress in the role and mechanism of Cadherin-11 in different diseases. J Cancer 2021; 12:1190-1199. [PMID: 33442417 PMCID: PMC7797656 DOI: 10.7150/jca.52720] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/29/2020] [Indexed: 12/16/2022] Open
Abstract
Cadherin is an important cell-cell adhesion molecule, which mediates intercellular adhesion through calcium dependent affinity interaction. Cadherin-11 (CDH11, OB-cadherin) is a member of cadherin family, and its gene is situated on chromosome 16q22.1. Increasing lines of researches have proved that CDH11 plays important roles in the occurrence and development of a lot of diseases, such as tumors, arthritis and so on. CDH11 often leads to promoter methylation inactivation, which can induce cancer cell apoptosis, suppress cell motility and invasion, and can inhibit cancer through Wnt/β-catenin, AKT/Rho A and NF-κB signaling pathways. This review focused on the current knowledge of CDH11, including its function and mechanism in different diseases. In this article, we aimed to have a more comprehensive and in-depth understanding of CDH11 and to provide new ideas for the treatment of some diseases.
Collapse
Affiliation(s)
- Xinyi Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shiyu Yu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
27
|
He SD, Tan N, Sun CX, Liao KH, Zhu HJ, Luo XG, Zhang JY, Li DY, Huang SG. Treatment with Melittin Induces Apoptosis and Autophagy of Fibroblast-like Synoviocytes in Patients with Rheumatoid Arthritis. Curr Pharm Biotechnol 2020; 21:734-740. [PMID: 31820689 DOI: 10.2174/1389201021666191210110826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 01/07/2023]
Abstract
Background:
Melittin, the major medicinal component of honeybee venom, exerts antiinflammatory,
analgesic, and anti-arthritic effects in patients with Rheumatoid Arthritis (RA). RA is an
inflammatory autoimmune joint disease that leads to irreversible joint destruction and functional loss.
Fibroblast-Like Synoviocytes (FLS) are dominant, special mesenchymal cells characterized by the
structure of the synovial intima, playing a crucial role in both the initiation and progression of RA.
Objective:
In this study, we evaluated the effects of melittin on the viability and apoptosis of FLS isolated
from patients with RA.
Methods:
Cell viability was determined using CCK-8 assays; apoptosis was evaluated by flow cytometry,
and the expression levels of apoptosis-related proteins (caspase-3, caspase-9, BAX, and Bcl-2)
were also determined. To explore whether melittin alters inflammatory processes in RA-FLS, IL-1β
levels were determined using an enzyme-linked immunosorbent assay (ELISA). Furthermore, we performed
GFP-LC3 punctate fluorescence dot assays and western blotting (for LC3, ATG5, p62, and Beclin
1) to assess autophagy in RA-FLS.
Results:
Our results show that melittin can significantly impair viability, promote apoptosis and autophagy,
and inhibit IL-1β secretion in RA-FLS.
Conclusion:
Melittin may be useful in preventing damage to the joints during accidental local stimulation.
Collapse
Affiliation(s)
- Shou-di He
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Ning Tan
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Chen-xia Sun
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Kang-han Liao
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Hui-jun Zhu
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Xiao-guang Luo
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Jie-yao Zhang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - De-yu Li
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| | - Sheng-guang Huang
- Traditional Chinese Medicine Department of Rheumatism, Huazhong University of Science and Techology Union Shenzhen Hospital, Shenzhen Nanshan People's Hospital, Shenzhen 518060, Guangdong, China
| |
Collapse
|
28
|
Li M, Luo X, Long X, Jiang P, Jiang Q, Guo H, Chen Z. Potential role of mitochondria in synoviocytes. Clin Rheumatol 2020; 40:447-457. [PMID: 32613391 DOI: 10.1007/s10067-020-05263-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Synoviocytes are located in the synovium lining layer, which is composed of macrophage-like synoviocytes (MLS) and fibroblast-like synoviocytes (FLS) with different characteristics. Mitochondria, which exist in most cells, are two membrane-covered organelles. In addition to providing the necessary ATP for synoviocytes, mitochondria are involved in the regulation of redox homeostasis and the integration of synoviocytes death signals. In recent years, mitochondrial dysfunction has been found in rheumatoid arthritis (RA) and osteoarthritis (OA). Interestingly, recent studies have started uncovering that mitochondria that were previously reported to play a role in chondrocytes or immune cells, but not known to have pronounced roles in synoviocytes, can actually play crucial roles in the regulation of the pathological properties of the synoviocytes. The purpose of this review is to summarize our current understanding of the key role of mitochondria in synoviocytes, including mitochondrial dysfunction in synoviocytes can induce and aggravate inflammatory responses and changes in mitochondrial structure and function with the involvement of multiple cytokines, signal pathway, and hypoxic state of synovial tissue alter the response of synoviocytes to apoptotic stimulation. Also, mitochondrial abnormalities in synoviocytes promote the synoviocytes invasion and proliferation.
Collapse
Affiliation(s)
- Muzhe Li
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xuling Luo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Xin Long
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Peishi Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Qin Jiang
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Heng Guo
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China
| | - Zhiwei Chen
- Department of Orthopedic, the First Affiliated Hospital of University of South China, No. 69, Chuanshan Road, Hengyang City, 421001, Hunan Province, China.
| |
Collapse
|
29
|
Svensson MND, Zoccheddu M, Yang S, Nygaard G, Secchi C, Doody KM, Slowikowski K, Mizoguchi F, Humby F, Hands R, Santelli E, Sacchetti C, Wakabayashi K, Wu DJ, Barback C, Ai R, Wang W, Sims GP, Mydel P, Kasama T, Boyle DL, Galimi F, Vera D, Tremblay ML, Raychaudhuri S, Brenner MB, Firestein GS, Pitzalis C, Ekwall AKH, Stanford SM, Bottini N. Synoviocyte-targeted therapy synergizes with TNF inhibition in arthritis reversal. SCIENCE ADVANCES 2020; 6:eaba4353. [PMID: 32637608 PMCID: PMC7319753 DOI: 10.1126/sciadv.aba4353] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression. Here, we assessed the potential of immunoglobulin-like domains 1 and 2 (Ig1&2), a decoy protein that activates the receptor tyrosine phosphatase sigma (PTPRS) on FLS, for RA therapy. We report that PTPRS expression is enriched in synovial lining RA FLS and that Ig1&2 reduces migration of RA but not osteoarthritis FLS. Administration of an Fc-fusion Ig1&2 attenuated arthritis in mice without affecting innate or adaptive immunity. Furthermore, PTPRS was down-regulated in FLS by tumor necrosis factor (TNF) via a phosphatidylinositol 3-kinase-mediated pathway, and TNF inhibition enhanced PTPRS expression in arthritic joints. Combination of ineffective doses of TNF inhibitor and Fc-Ig1&2 reversed arthritis in mice, providing an example of synergy between FLS-targeted and immunosuppressive DMARD therapies.
Collapse
Affiliation(s)
- Mattias N. D. Svensson
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Martina Zoccheddu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shen Yang
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gyrid Nygaard
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian Secchi
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - Karen M. Doody
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kamil Slowikowski
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Bioinformatics and Integrative Genomics, Harvard University, Cambridge, MA 02138, USA
| | - Fumitaka Mizoguchi
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Rheumatology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8519, Japan
| | - Frances Humby
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Rebecca Hands
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Eugenio Santelli
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Cristiano Sacchetti
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kuninobu Wakabayashi
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Dennis J. Wu
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christopher Barback
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Rizi Ai
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gary P. Sims
- Respiratory, Inflammation and Autoimmunity, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Piotr Mydel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, The Laboratory Building, 5th Floor, 5021 Bergen, Norway
- Department of Microbiology, Jagiellonian University, Kraków, Poland
| | - Tsuyoshi Kasama
- Division of Rheumatology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - David L. Boyle
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Francesco Galimi
- Department of Biomedical Sciences, National Institute of Biostructures and Biosystems, University of Sassari Medical School, 07100 Sassari, Italy
| | - David Vera
- Department of Radiology, University of California, La Jolla, CA 92093, USA
- UCSD Molecular Imaging Program, University of California, La Jolla, CA 92093, USA
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada
- Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
| | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Partners HealthCare Personalized Medicine, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Technical Institute and Harvard University, Cambridge, MA 02138, USA
- Rheumatology Unit, Karolinska Institutet, Stockholm S-171 76, Sweden
- Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PT, UK
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gary S. Firestein
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, John Vane Science Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Anna-Karin H. Ekwall
- Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Bone and Arthritis Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stephanie M. Stanford
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, Altman Clinical and Translational Research Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
30
|
Nygaard G, Firestein GS. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat Rev Rheumatol 2020; 16:316-333. [PMID: 32393826 DOI: 10.1038/s41584-020-0413-5] [Citation(s) in RCA: 515] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2020] [Indexed: 12/31/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic immune-mediated disease that primarily affects the synovium of diarthrodial joints. During the course of RA, the synovium transforms into a hyperplastic invasive tissue that causes destruction of cartilage and bone. Fibroblast-like synoviocytes (FLS), which form the lining of the joint, are epigenetically imprinted with an aggressive phenotype in RA and have an important role in these pathological processes. In addition to producing the extracellular matrix and joint lubricants, FLS in RA produce pathogenic mediators such as cytokines and proteases that contribute to disease pathogenesis and perpetuation. The development of multi-omics integrative analyses have enabled new ways to dissect the mechanisms that imprint FLS, have helped to identify potential FLS subsets with distinct functions and have identified differences in FLS phenotypes between joints in individual patients. This Review provides an overview of advances in understanding of FLS biology and highlights omics approaches and studies that hold promise for identifying future therapeutic targets.
Collapse
Affiliation(s)
- Gyrid Nygaard
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA
| | - Gary S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California San Diego School of Medicine, San Diego, CA, USA.
| |
Collapse
|
31
|
Wang BH, Lu YH, Wu LF, Lu X, Guo W, Deng FY, Lei SF. Evaluation of plasma cytokine protein array profile: the highlighted PDGF-BB in rheumatoid arthritis. Clin Rheumatol 2020; 39:3323-3330. [PMID: 32385763 DOI: 10.1007/s10067-020-05109-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The cytokines play critical roles in the complex pathogenesis of rheumatoid arthritis (RA), but the specific cytokines are still in need of being discovered. This multi-stage study was performed to identify novel RA cytokines in plasma and further understand the pathological mechanism of the identified cytokines. METHOD The plasma cytokine protein profile was evaluated by using Human Cytokine Antibody Array 440 in 18 subjects (RA: healthy control = 9:9). Then, enzyme-linked immunosorbent assay (ELISA) was used to validate the highlighted cytokines in 80 subjects (RA: healthy control = 40:40). Further functional experiments on fibroblast-like synoviocytes were performed to identify the pathological mechanisms of the highlighted cytokines for RA. RESULTS A total of seven significant cytokines have differential expressions between RA patients and controls (fold change (FC) > 2, P value < 0.05). The difference in plasma for the highlighted platelet-derived growth factor (PDGF)-BB was validated in an independent validation sample (P = 0.005). Further, the PDGF-BB obviously promotes cell proliferation of MH7A cell, probably by inhibiting cell apoptosis and accelerating the cell cycle. The PDGF-BB can also promote MH7A cell migration. CONCLUSIONS This study evaluated the plasma cytokine protein array profile associated with RA and highlighted the importance of PDGF-BB. PDGF-BB has an important role in RA-FLS proliferation and migration. These results suggest that PDGF-BB might contribute to occurrence and development of RA. Key Points • The levels of plasma cytokines were systemically tested using Human Cytokine Antibody Arrays. • The expression difference of PDGF-BB was validated in an independent sample. • PDGF-BB obviously promotes cell proliferation and migration in RA-FLS.
Collapse
Affiliation(s)
- Bing-Hua Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Department of Epidemiology and Health Statistics, School of Public Health, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Yi-Hua Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Wei Guo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China. .,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Li XF, Chen X, Bao J, Xu L, Zhang L, Huang C, Meng XM, Li J. PTEN negatively regulates the expression of pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes in adjuvant-induced arthritis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:3687-3696. [PMID: 31842626 DOI: 10.1080/21691401.2019.1661849] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is characterized by tumor-like expansion of the synovium and the subsequent destruction of adjacent articular cartilage and bone. The latest studies proved phosphatase and tension homolog deleted on chromosome 10 (PTEN) might contribute to the surviving, proliferation and pro-inflammatory cytokines in RA. The purpose of this study was to explore the function and underlying mechanisms of PTEN in RA pro-inflammatory cytokines and chemokines of fibroblast-like synoviocytes (FLSs). Increased level of PTEN was observed in adjuvant-induced arthritis (AIA) FLSs in comparison to normal rats. Increased concentrations of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β), chemokines (CCL-2 and CCL-3), VCAM-1 and VEGF-α expression were observed in FLSs with PTEN inhibitor bpv or PTEN-RNAi. Moreover, co-incubation FLSs with overexpression vector with PTEN-GV141 reduced the expression of pro-inflammatory cytokines, chemokines, VCAM-1 and VEGF-α in AIA. Interestingly, we also found DNA methylation could regulate PTEN expression and activation of AKT signaling was with a change of PTEN. Altogether, our findings in the present study suggested that PTEN might play a pivotal role during pro-inflammatory cytokines and chemokines of FLSs through activation of AKT signaling pathway. In addition, PTEN expression may be regulated by DNA methylation in the pathogenesis of AIA.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Chen
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Hematology Department, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Le Xu
- Departments of Stomatology, Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lei Zhang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiao-Ming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-Inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
33
|
Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proc Natl Acad Sci U S A 2020; 117:8900-8911. [PMID: 32253314 DOI: 10.1073/pnas.1913788117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.
Collapse
|
34
|
Su J, Zhang J, Zhu J, Liu Y. The promoting effect of MMP13 on mediating the development of HFLS-RA by the target of miR-19a through IL-17 signaling pathway. J Cell Biochem 2020; 121:4282-4294. [PMID: 31960999 DOI: 10.1002/jcb.29609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 12/19/2019] [Indexed: 02/05/2023]
Abstract
By investigating the expression profiles of miR-19a and metalloproteinases (MMP13) in human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) and HFL cells lines, this study intends to confirm the directly target connection between them and reveal the effect of suppressing MMP13 on HLFS-RA migration, invasion and apoptosis. After screening the abnormal expressed messenger RNAs and microRNAs in synovial tissues of patients with RA, the underlying pathway was determined by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The HFLS-RA cell line was transfected for the following experiments with pcDNA3.1(+) served as vector. The directly target association between miR-19a and MMP13 was confirmed by Luciferase reporter assay. Microarray analysis suggested that MMP13 was upregulated while miR-19a was downregulated in HFLS of RA tissues compared with the healthy control group. MMP13 was related to many proteins in protein-protein interaction network, which might be the main influencing factor of RA. KEGG pathway analysis identified that interleukin (IL)-17 pathway was activated in the regulation of MMP13 in the development of RA. Through observing the alteration of luciferase activity, miR-19a could indeed bind to the 3'UTR of the downstream of MMP13, the target association was then confirmed. The proliferation and invasion of HFLS-RA were promoted by overexpressing MMP13 protein. miR-19a could function as a suppressor of MMP13 and thereby retard the severity of RA. The results showed that miR-19a could regulate the expression of MMP13 in HFLS-RA by mediating the proliferation and invasion of HFLS-RA through IL-17 signaling pathway, thereby participating in the degradation of chondrocytes in the progression of RA.
Collapse
Affiliation(s)
- Jiang Su
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China.,Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Zhang
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Jing Zhu
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Liu S, Cao C, Zhang Y, Liu G, Ren W, Ye Y, Sun T. PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res 2019; 14:425. [PMID: 31829201 PMCID: PMC6907257 DOI: 10.1186/s13018-019-1394-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/25/2019] [Indexed: 01/15/2023] Open
Abstract
Background The Cadherin-11 and PI3K/Akt pathway are increasingly recognized as the potential therapeutic target of osteoarthritis (OA) synovitis. The study aimed to investigate the role of PI3K/Akt signaling pathway in the expression of Cadherin-11 and migration and invasive capacity of fibroblast-like synoviocytes (FLS) of OA patients under stimulation of TNF-α and to explore the effect of the PI3K/Akt inhibitor and Cadherin-11 antibody in the therapy of the collagenase-induced osteoarthritis (CIOA) mice. Methods FLS were primarily cultured from synovium of osteoarthritic patients during total knee arthroplasty. Under the simulation of TNF-α, with or without PI3K/Akt inhibitor LY294002, Cadherin-11 expression was detected by real-time PCR and Western blot, as well as the migration and invasive capacity changes of OA FLS. Cadherin-11 antibody was injected intraarticularly or LY294002 was injected intraperitoneally in CIOA mice to evaluate the changes of synovitis score, cartilage damage, and Cadherin-11 expression. Results TNF-α stimulation increased Cadherin-11 expression at mRNA and protein level in OA FLS and also increased the phosphorylation-dependent activation of Akt. PI3K inhibitor LY294002 attenuated TNF-α-induced overexpression of Cadherin-11 and decreased the invasive capacity of OA FLS. Intraperitoneal injection of PI3K inhibitor LY294002 could decrease the Cadherin-11 protein expression in synovium of CIOA mice, although it has no significant inhibitory effect on synovitis and cartilage damage. Intraarticular injection of Cadherin-11 antibody attenuated the synovitis and cartilage damage in the CIOA joints and decreased Cadherin-11 expression in the synovial lining. Conclusions PI3K/Akt pathway was associated with TNF-α-induced activation of OA FLS, which may involve in the pathogenesis of osteoarthritis. Anti-Cadherin-11 therapy in CIOA mice could attenuate the pathological changes of OA joints.
Collapse
Affiliation(s)
- Songyang Liu
- Arthritis Clinic and Research Center, People's Hospital, Peking University, Beijing, 100044, People's Republic of China
| | - Chenxi Cao
- Arthritis Clinic and Research Center, People's Hospital, Peking University, Beijing, 100044, People's Republic of China.,Institute of Sports Medicine, Peking University Third Hospital, Peking University, Beijing, 100044, People's Republic of China
| | - Yujun Zhang
- The Institute of Clinical molecular Biology and the Central Lab, Peking University, People's Hospital, Peking University , Beijing, 100044, People's Republic of China
| | - Guangyu Liu
- Arthritis Clinic and Research Center, People's Hospital, Peking University, Beijing, 100044, People's Republic of China
| | - Weixia Ren
- The Institute of Clinical molecular Biology and the Central Lab, Peking University, People's Hospital, Peking University , Beijing, 100044, People's Republic of China
| | - Yanqi Ye
- Arthritis Clinic and Research Center, People's Hospital, Peking University, Beijing, 100044, People's Republic of China
| | - Tiezheng Sun
- Arthritis Clinic and Research Center, People's Hospital, Peking University, Beijing, 100044, People's Republic of China.
| |
Collapse
|
36
|
Abstract
Tendons connect muscles to bones to transfer the forces necessary for movement. Cell-cell junction proteins, cadherins and connexins, may play a role in tendon development and injury. In this review, we begin by highlighting current understanding of how cell-cell junctions may regulate embryonic tendon development and differentiation. We then examine cell-cell junctions in postnatal tendon, before summarizing the role of cadherins and connexins in adult tendons. More information exists regarding the role of cell-cell junctions in the formation and homeostasis of other musculoskeletal tissues, namely cartilage and bone. Therefore, to inform future tendon studies, we include a brief survey of cadherins and connexins in chondrogenesis and osteogenesis, and summarize how cell-cell junctions are involved in some musculoskeletal tissue pathologies. An enhanced understanding of how cell-cell junctions participate in tendon development, maintenance, and disease will benefit future regenerative strategies.
Collapse
Affiliation(s)
| | - Jett B Murray
- Biological Engineering, University of Idaho, Moscow, ID
| | | |
Collapse
|
37
|
Du X, Zhang H, Zhang W, Wang Q, Wang W, Ge G, Bai J, Guo X, Zhang Y, Jiang X, Gu J, Xu Y, Geng D. The protective effects of lixisenatide against inflammatory response in human rheumatoid arthritis fibroblast-like synoviocytes. Int Immunopharmacol 2019; 75:105732. [DOI: 10.1016/j.intimp.2019.105732] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 06/27/2019] [Accepted: 06/29/2019] [Indexed: 12/22/2022]
|
38
|
Tseng CC, Wu LY, Tsai WC, Ou TT, Wu CC, Sung WY, Kuo PL, Yen JH. Differential Expression Profiles of the Transcriptome and miRNA Interactome in Synovial Fibroblasts of Rheumatoid Arthritis Revealed by Next Generation Sequencing. Diagnostics (Basel) 2019; 9:diagnostics9030098. [PMID: 31426562 PMCID: PMC6787660 DOI: 10.3390/diagnostics9030098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022] Open
Abstract
Using next-generation sequencing to decipher the molecular mechanisms underlying aberrant rheumatoid arthritis synovial fibroblasts (RASF) activation, we performed transcriptome-wide RNA-seq and small RNA-seq on synovial fibroblasts from rheumatoid arthritis (RA) subject and normal donor. Differential expression of mRNA and miRNA was integrated with interaction analysis, functional annotation, regulatory network mapping and experimentally verified miRNA–target interaction data, further validated with microarray expression profiles. In this study, 3049 upregulated mRNA and 3552 downregulated mRNA, together with 50 upregulated miRNA and 35 downregulated miRNA in RASF were identified. Interaction analysis highlighted contribution of miRNA to altered transcriptome. Functional annotation revealed metabolic deregulation and oncogenic signatures of RASF. Regulatory network mapping identified downregulated FOXO1 as master transcription factor resulting in altered transcriptome of RASF. Differential expression in three miRNA and corresponding targets (hsa-miR-31-5p:WASF3, hsa-miR-132-3p:RB1, hsa-miR-29c-3p:COL1A1) were also validated. The interactions of these three miRNA–target genes were experimentally validated with past literature. Our transcriptomic and miRNA interactomic investigation identified gene signatures associated with RASF and revealed the involvement of transcription factors and miRNA in an altered transcriptome. These findings help facilitate our understanding of RA with the hope of serving as a springboard for further discoveries relating to the disease.
Collapse
Affiliation(s)
- Chia-Chun Tseng
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Ling-Yu Wu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Wen-Chan Tsai
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tsan-Teng Ou
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Cheng-Chin Wu
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Yu Sung
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Lin Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Jeng-Hsien Yen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
- Division of Rheumatology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
- Institute of Biomedical Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| |
Collapse
|
39
|
Effects of Qingluo Tongbi Decoction on Gut Flora of Rats with Adjuvant-Induced Arthritis and the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6308021. [PMID: 31531116 PMCID: PMC6721445 DOI: 10.1155/2019/6308021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease. Recent studies show that gut flora plays an important role in regulating the systemic immune response, and gut dysbacteria are linked with systemic chronic inflammation in the development of RA. Our previous results found that Qingluo Tongbi decoction (QLT) can treat RA effectively. The present study explored the effect of QLT on gut flora in an adjuvant-induced arthritis (AA) rat model. Thirty rats were divided randomly into three groups: a control group, a model group, and a treatment group (n = 10 per group). The rats in the model group were injected with complete Freund's adjuvant (FCA), while the treatment group received FCA combined with QLT treatment. After 27 days, the gut flora was profiled by 16S rRNA gene sequencing. The levels of cadherin-11, IL-17α, TLR2, and TLR4 proteins in the synovial tissues were detected by western blotting (WB). The results showed that QLT treatment significantly inhibited raw swelling during the 15–27 d period compared with the model group. QLT treatment reversed the ten altered bacterial genera in the model group, and three families (Lachnospiraceae, Eubacteriaceae, and Leuconostocaceae) were closely related to QLT treatment based on linear discriminant analysis (LDA). Functional prediction showed seven types of predicted functions were related to the QLT treatment, and WB results showed that QLT treatment reversed the increased expression levels of cadherin-11, IL-17α, TLR2, and TLR4 in synovial tissues significantly. The expression levels of cadherin-11, IL-17α, and TLR2 correlated negatively with the abundance of Staphylococcus and Candidatus_Saccharimonas. Therefore, RA development was related to gut dysbiosis, and QLT effectively ameliorated RA with decreased inflammatory responses regulated by the gut flora.
Collapse
|
40
|
Alvarez C, Monasterio G, Cavalla F, Córdova LA, Hernández M, Heymann D, Garlet GP, Sorsa T, Pärnänen P, Lee HM, Golub LM, Vernal R, Kantarci A. Osteoimmunology of Oral and Maxillofacial Diseases: Translational Applications Based on Biological Mechanisms. Front Immunol 2019; 10:1664. [PMID: 31379856 PMCID: PMC6657671 DOI: 10.3389/fimmu.2019.01664] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/03/2019] [Indexed: 12/23/2022] Open
Abstract
The maxillofacial skeleton is highly dynamic and requires a constant equilibrium between the bone resorption and bone formation. The field of osteoimmunology explores the interactions between bone metabolism and the immune response, providing a context to study the complex cellular and molecular networks involved in oro-maxillofacial osteolytic diseases. In this review, we present a framework for understanding the potential mechanisms underlying the immuno-pathobiology in etiologically-diverse diseases that affect the oral and maxillofacial region and share bone destruction as their common clinical outcome. These otherwise different pathologies share similar inflammatory pathways mediated by central cellular players, such as macrophages, T and B cells, that promote the differentiation and activation of osteoclasts, ineffective or insufficient bone apposition by osteoblasts, and the continuous production of osteoclastogenic signals by immune and local stromal cells. We also present the potential translational applications of this knowledge based on the biological mechanisms involved in the inflammation-induced bone destruction. Such applications can be the development of immune-based therapies that promote bone healing/regeneration, the identification of host-derived inflammatory/collagenolytic biomarkers as diagnostics tools, the assessment of links between oral and systemic diseases; and the characterization of genetic polymorphisms in immune or bone-related genes that will help diagnosis of susceptible individuals.
Collapse
Affiliation(s)
- Carla Alvarez
- Forsyth Institute, Cambridge, MA, United States
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Gustavo Monasterio
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, San Jose's Hospital and Clínica Las Condes, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Dominique Heymann
- INSERM, UMR 1232, LabCT, CRCINA, Institut de Cancérologie de l'Ouest, Université de Nantes, Université d'Angers, Saint-Herblain, France
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
- Department of Oral Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Lorne M. Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
- Dentistry Unit, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | | |
Collapse
|
41
|
Deloch L, Rückert M, Fietkau R, Frey B, Gaipl US. Low-Dose Radiotherapy Has No Harmful Effects on Key Cells of Healthy Non-Inflamed Joints. Int J Mol Sci 2018; 19:ijms19103197. [PMID: 30332826 PMCID: PMC6214021 DOI: 10.3390/ijms19103197] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 02/02/2023] Open
Abstract
Low-dose radiotherapy (LD-RT) for benign inflammatory and/or bone destructive diseases has been used long. Therefore, mechanistic investigations on cells being present in joints are mostly made in an inflammatory setting. This raises the question whether similar effects of LD-RT are also seen in healthy tissue and thus might cause possible harmful effects. We performed examinations on the functionality and phenotype of key cells within the joint, namely on fibroblast-like synoviocytes (FLS), osteoclasts and osteoblasts, as well as on immune cells. Low doses of ionizing radiation showed only a minor impact on cytokine release by healthy FLS as well as on molecules involved in cartilage and bone destruction and had no significant impact on cell death and migration properties. The bone resorbing abilities of healthy osteoclasts was slightly reduced following LD-RT and a positive impact on bone formation of healthy osteoblasts was observed after in particular exposure to 0.5 Gray (Gy). Cell death rates of bone-marrow cells were only marginally increased and immune cell composition of the bone marrow showed a slight shift from CD8+ to CD4+ T cell subsets. Taken together, our results indicate that LD-RT with particularly a single dose of 0.5 Gy has no harmful effects on cells of healthy joints.
Collapse
Affiliation(s)
- Lisa Deloch
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Michael Rückert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany.
| |
Collapse
|
42
|
Liu L, Guo W, Liang XJ. Move to Nano-Arthrology: Targeted Stimuli-Responsive Nanomedicines Combat Adaptive Treatment Tolerance (ATT) of Rheumatoid Arthritis. Biotechnol J 2018; 14:e1800024. [DOI: 10.1002/biot.201800024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/15/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Lu Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| | - Weisheng Guo
- Translational Medicine Center, State Key Laboratory of Respiratory Disease; The Second Affiliated Hospital; Guangzhou Medical University; Guangzhou 510260 P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Beijing 100190 P. R. China
- University of Chinese Academy of Sciences; Beijing 100049 P. R. China
| |
Collapse
|
43
|
Ma HP, Deng X, Chen DY, Zhu D, Tong JL, Zhao T, Ma JH, Liu YQ. A microfluidic chip-based co-culture of fibroblast-like synoviocytes with osteoblasts and osteoclasts to test bone erosion and drug evaluation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180528. [PMID: 30839692 PMCID: PMC6170564 DOI: 10.1098/rsos.180528] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/21/2018] [Indexed: 05/04/2023]
Abstract
Targeting fibroblast-like synoviocyte (FLS) migration and invasion-mediated bone erosion is a promising clinical strategy for the treatment of rheumatoid arthritis (RA). Drug sensitivity testing is fundamental to this scheme. We designed a microfluidic chip-based, cell co-cultured platform to mimic RA FLS-mediated bone erosion and perform drug-sensitive assay. Human synovium SW982 cells were cultured in the central channel and migrated to flow through matrigel-coated side channels towards cell culture chamber where RANKL-stimulated osteoclastic RAW264.7 and osteogenic medium (OS)-stimulated bone marrow mesenchymal stem cells (BMSC) were cultured in the microfluidic chip device, mimicking FLS migration and invasion-mediated bone erosion in RA. These SW982 cells showed different migration potentials to osteoclasts and BMSC. The migration of SW982 cells with high expression of cadherin-11 was more potent when SW982 cells were connected with the co-culture of RAW264.7 and BMSC. Simultaneously, in the co-cultured chamber, tartrate-resistant acid phosphatase (TRAP) activity of RANKL-stimulated RAW264.7 cells was enhanced, but alkaline phosphatase (ALP) activity was decreased in comparison with mono-cultured chamber. Furthermore, it was confirmed that celastrol, a positive drug for the treatment of RA, inhibited SW982 cell migration as well as TRAP activity in the cell-cultured microfluidic chips. Thus, the migration and invasion to bone-related cells was reconstituted on the microfluidic model. It may provide an effective anti-RA drug screen model for targeting FLS migration-mediated bone erosion.
Collapse
Affiliation(s)
- Hui-Peng Ma
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xue Deng
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Deng-Yi Chen
- College of Laboratory Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Di Zhu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jin-Ling Tong
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Ting Zhao
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Jin-Hui Ma
- People's Liberation Army No. 202 Hospital, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yan-Qiu Liu
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116044, People's Republic of China
- Author for correspondence: Yan-Qiu Liu e-mail:
| |
Collapse
|
44
|
Ferro T, Santhagunam A, Madeira C, Salgueiro JB, Silva CL, Cabral JMS. Successful isolation and ex vivo expansion of human mesenchymal stem/stromal cells obtained from different synovial tissue‐derived (biopsy) samples. J Cell Physiol 2018; 234:3973-3984. [DOI: 10.1002/jcp.27202] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 07/13/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Tiago Ferro
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - Aruna Santhagunam
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Catarina Madeira
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- CEDOC Chronic Diseases FCM NOVA
- NOVA Medical School, Universidade NOVA de Lisboa Lisboa Portugal
| | - João B. Salgueiro
- Centro Hospitalar de Lisboa Ocidental (CHLO)—Hospital S. Francisco Xavier Lisboa Portugal
| | - Cláudia L. Silva
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Instituto Superior Técnico, Universidade de Lisboa Lisboa Portugal
| |
Collapse
|
45
|
Fu Q, Gao Y, Zhao H, Wang Z, Wang J. Galangin protects human rheumatoid arthritis fibroblast‑like synoviocytes via suppression of the NF‑κB/NLRP3 pathway. Mol Med Rep 2018; 18:3619-3624. [PMID: 30152847 DOI: 10.3892/mmr.2018.9422] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 06/21/2018] [Indexed: 11/06/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that significantly affects patient quality of life. Galangin is an extract with multiple health benefits, including anti‑oxidative, anti‑proliferative, immunoprotective and cardioprotective effects. However, to the best of the authors' knowledge, no detailed studies have investigated its regulatory effects on the nuclear factor (NF)‑κB/NLR family pyrin domain containing 3 (NLRP3) signaling pathway. The present study aimed to investigate the protective mechanism of galangin in RA fibroblast‑like synoviocytes with regards to the NF‑κB/NLRP3 signaling pathway. Human RA fibroblast‑like synovium cells (RAFSCs) were treated with lipopolysaccharide (LPS) to induce inflammation. The levels of interleukin (IL)‑1β, tumor necrosis factor (TNF)‑α, IL‑18, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)‑2, prostaglandin E2 (PGE2), and nitric oxide (NO) were measured by enzyme‑linked immunosorbent assay or western blotting in the absence or presence of different concentrations of galangin. Superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were additionally evaluated. Furthermore, factors involved in the NF‑κB/NLRP3 pathway, including NLRP3, apoptosis‑associated speck‑like protein containing A, IL‑1β, pro‑caspase‑1, caspase‑1, phosphorylated (p)‑NF‑κB inhibitor α and p‑NF‑κB, were assessed by western blotting. The results revealed that LPS significantly stimulated IL‑1β, TNF‑α, IL‑18, PGE2, NO, iNOS, COX‑2 and NF‑κB/NLRP3 factor expression, compared with the control. SOD activity was reduced. Pre‑treatment with galangin significantly attenuated the effects of LPS, and galangin was demonstrated to have effective anti‑oxidative properties. In conclusion, galangin protected RAFSCs through downregulation of the NF‑κB/NLRP3 signaling pathway. These findings suggested that galangin may provide a novel direction for the development of RA therapies in the future.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yuzhong Gao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Hui Zhao
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Zaijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jian Wang
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
46
|
Niu HQ, Zhao WP, Zhao XC, Luo J, Qin KL, Chen KL, Li XF. Combination of 4-hydroperoxy cyclophosphamide and methotrexate inhibits IL-6/sIL-6R-induced RANKL expression in fibroblast-like synoviocytes via suppression of the JAK2/STAT3 and p38MAPK signaling pathway. Int Immunopharmacol 2018; 61:45-53. [DOI: 10.1016/j.intimp.2018.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 01/01/2023]
|
47
|
Therapeutic Potential of Sclareol in Experimental Models of Rheumatoid Arthritis. Int J Mol Sci 2018; 19:ijms19051351. [PMID: 29751535 PMCID: PMC5983692 DOI: 10.3390/ijms19051351] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that the natural diterpene compound, sclareol, potentially inhibits inflammation, but it has not yet been determined whether sclareol can alleviate inflammation associated with rheumatoid arthritis (RA). Here, we utilized human synovial cell line, SW982, and an experimental murine model of rheumatoid arthritis, collagen-induced arthritis (CIA), to evaluate the therapeutic effects of sclareol in RA. Arthritic DBA/1J mice were dosed with 5 and 10 mg/kg sclareol intraperitoneally every other day over 21 days. Arthritic severity was evaluated by levels of anti-collagen II (anti-CII) antibody, inflammatory cytokines, and histopathologic examination of knee joint tissues. Our results reveal that the serum anti-CII antibody, cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and IL-17, as well as Th17 and Th1 cell population in inguinal lymph nodes, were significantly lower in sclareol-treated mice compared to the control group. Also, the sclareol treatment groups showed reduced swelling in the paws and lower histological arthritic scores, indicating that sclareol potentially mitigates collagen-induced arthritis. Furthermore, IL-1β-stimulated SW982 cells secreted less inflammatory cytokines (TNF-α and IL-6), which is associated with the downregulation of p38-mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), and NF-κB pathways. Overall, we demonstrate that sclareol could relieve arthritic severities by modulating excessive inflammation and our study merits the pharmaceutical development of sclareol as a therapeutic treatment for inflammation associated with RA.
Collapse
|
48
|
Xie Z, Qu Y, Shen P, Wang B, Wei K, Du B. PU.1 attenuates TNF‑α‑induced proliferation and cytokine release of rheumatoid arthritis fibroblast‑like synoviocytes by regulating miR‑155 activity. Mol Med Rep 2018; 17:8349-8356. [PMID: 29693176 DOI: 10.3892/mmr.2018.8920] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/11/2017] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to determine the role of transcription factor PU.1 (PU.1) in tumor necrosis factor‑α (TNF‑α)‑induced proliferation and cytokine release of rheumatoid arthritis fibroblast‑like synoviocytes (RA‑FLS). It was determined that TNF‑α induced proliferation of RA‑FLS, whereas transfection with PU.1 3'untranslated region (UTR) inhibited this proliferation. Additionally, PU.1 3'UTR attenuated TNF‑α‑induced production of interleukin (IL)‑6 and IL‑1β, and downregulated the expression level of micro RNA (miR)‑155 in a dose‑dependent manner. Furthermore, transfection with PU.1 3'UTR significantly attenuated TNF‑α‑induced decrease in forkhead box protein O3 (FOXO3) expression level in RA‑FLS and these effects were consistent with the effects of miR‑155 inhibition. PU.1 and FOXO3 formed a competing endogenous RNA (ceRNA) network that regulated miR‑155 activity. In this competing endogenous RNA network, PU.1 3'UTR modulated FOXO3 expression in a miRNA‑ and 3'UTR‑dependent manner. Downregulation of FOXO3 expression reversed the PU.1 3'UTR‑mediated protective effects. Therefore, the results of the present study indicate that PU.1 3'UTR attenuates TNF‑α‑induced proliferation and cytokine release of RA‑FLS by acting as a ceRNA for FOXO3 to regulate miR‑155 activity.
Collapse
Affiliation(s)
- Zikang Xie
- Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yuxing Qu
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Pengfei Shen
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Wang
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Kang Wei
- Department of Orthopedics, Changzhou Traditional Chinese Medicine Hospital, Changzhou, Jiangsu 213003, P.R. China
| | - Bin Du
- Department of Orthopedics, Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
49
|
Stecco C, Fede C, Macchi V, Porzionato A, Petrelli L, Biz C, Stern R, De Caro R. The fasciacytes: A new cell devoted to fascial gliding regulation. Clin Anat 2018; 31:667-676. [DOI: 10.1002/ca.23072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Carla Stecco
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| | - Caterina Fede
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| | - Veronica Macchi
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| | - Andrea Porzionato
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| | - Lucia Petrelli
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| | - Carlo Biz
- Department of Surgery, Oncology and Gastroenterology DiSCOG; Orthopedic Clinic, University of Padova, via Giustiniani 2; Padova 35121 Italy
| | - Robert Stern
- Division of Basic Biomedical Sciences; Touro College of Osteopathic Medicine, 230 West-125th Street; New York New York 10027
| | - Raffaele De Caro
- Department of Neuroscience; University of Padova, via Gabelli 65; Padova 35121 Italy
| |
Collapse
|
50
|
The immunoglobulin D Fc receptor expressed on fibroblast-like synoviocytes from patients with rheumatoid arthritis contributes to the cell activation. Acta Pharmacol Sin 2017; 38:1466-1474. [PMID: 28770826 DOI: 10.1038/aps.2017.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/04/2017] [Indexed: 12/27/2022]
Abstract
Immunoglobulin IgD might play an important role in autoimmune diseases, but the function of IgD has remained elusive, despite multiple attempts to define its biological function. Fibroblast-like synoviocytes (FLSs) are specialized cells of the synovium that play a key role in the pathogenesis of rheumatoid arthritis (RA). In this study we explored the possible roles of excessive IgD expression on the function of FLSs from RA patients (RA-FLSs). We showed that IgD Fc receptor (IgDR) was constitutively expressed on FLSs, and was significantly elevated in RA-FLSs compared with FLSs prepared from synovial tissues of healthy controls (HC-FLSs). Furthermore, IgDR was mainly detected on the cell surface and in the cytoplasm. We further detected the intrinsic binding affinity of IgD to IgDR on HC-FLSs with an equilibrium dissociation constant (KD) of 0.067 nmol/L. Incubation of RA-FLSs with IgD (1-10 μg/mL) for 48 h dose-dependently promoted the expression of IgDR, and stimulated the production of inflammatory cytokines and chemokines, such as IL-1β, IL-6, monocyte chemotactic protein (MCP)-1, TNF-α and receptor activator of nuclear factor-κB ligand (RANKL), thus potentially contributing to IgD-IgDR crosslinking. Moreover, incubation with IgD (0.1-10 μg/mL) for 48 h dose-dependently enhanced viability for both HC-FLSs and RA-FLSs. Our results demonstrate that IgDR is expressed on RA-FLSs and contributes to the activation of FLSs, and suggest that IgD-IgDR is a potential novel immunotherapeutic target for the management of RA.
Collapse
|