1
|
Gabele A, Sprang M, Cihan M, Welzel M, Nurbekova A, Romaniuk K, Dietzen S, Klein M, Bündgen G, Emelianov M, Harms G, Rajalingam K, Ziesmann T, Pape K, Wasser B, Gomez-Zepeda D, Braband K, Delacher M, Lemmermann N, Bittner S, Andrade-Navarro MA, Tenzer S, Luck K, Bopp T, Distler U. Unveiling IRF4-steered regulation of context-dependent effector programs in CD4 + T cells under Th17- and Treg-skewing conditions. Cell Rep 2025; 44:115407. [PMID: 40067830 DOI: 10.1016/j.celrep.2025.115407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 11/16/2024] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
The transcription factor interferon regulatory factor 4 (IRF4) is crucial for the fate determination of pro-inflammatory T helper (Th) 17 and the functionally opposing group of immunomodulatory regulatory T (Treg) cells. However, the molecular mechanisms of how IRF4 steers diverse transcriptional programs in Th17 and Treg cells are far from being definitive. Here, we integrated data derived from affinity-purification and full mass-spectrometry-based proteome analysis with chromatin immunoprecipitation sequencing. This allowed the characterization of subtype-specific molecular programs and the identification of IRF4 interactors in the Th17/Treg context. Our data reveal that IRF4-interacting transcription factors are recruited to IRF composite elements for the regulation of cell-type-specific transcriptional programs as exemplarily demonstrated for FLI1, which, in cooperation with IRF4, promotes Th17-specific gene expression. FLI1 inhibition markedly impaired Th17 differentiation. The present "omics" dataset provides a valuable resource for studying IRF4-mediated gene regulatory programs in pro- and anti-inflammatory immune responses.
Collapse
Affiliation(s)
- Anna Gabele
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mert Cihan
- Faculty of Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Mareen Welzel
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Assel Nurbekova
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Karolina Romaniuk
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Sarah Dietzen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Novo Nordisk Pharma GmbH, 55124 Mainz, Germany
| | - Matthias Klein
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Georg Bündgen
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maxim Emelianov
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Gregory Harms
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Krishnaraj Rajalingam
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Tanja Ziesmann
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Katrin Pape
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - David Gomez-Zepeda
- Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Kathrin Braband
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Niels Lemmermann
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Institute of Virology, Medical Faculty, University Bonn, 53127 Bonn, Germany
| | - Stefan Bittner
- Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | | | - Stefan Tenzer
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Helmholtz Institute for Translational Oncology, 55131 Mainz, Germany; Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Katja Luck
- Institute of Molecular Biology gGmbH, 55128 Mainz, Germany
| | - Tobias Bopp
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Ute Distler
- Institute of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Zhang R, Huang W, Zhao T, Fang J, Chang C, He D, Wang X. Comprehensive analysis and validation of autophagy-related gene in rheumatoid arthritis. Front Cell Dev Biol 2025; 13:1563911. [PMID: 40181826 PMCID: PMC11965638 DOI: 10.3389/fcell.2025.1563911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic autoimmune disease in which autophagy is pivotal in its pathogenesis. This study aims to identify autophagy-related genes associated with RA and investigate their functional roles. Methods We performed mRNA sequencing to identify differentially expressed genes (DEGs) between RA and osteoarthritis (OA) and intersected these with autophagy-related genes to obtain autophagy-related DEGs (ARDEGs) in RA. Bioinformatics and machine learning approaches were used to identify key biomarkers. Functional experiments, including real-time cellular analysis (RTCA), scratch healing, and flow cytometry, were conducted to examine the effects of gene silencing on the proliferation and migration of MH7A cells. Results A total of 37 ARDEGs were identified in RA. Through bioinformatics analysis, interferon regulatory factor 4 (IRF4) emerged as a key hub gene, with its high expression confirmed in RA synovial tissues and RA FLS cells. IRF4 knockdown inhibited the proliferation and migration and promoted the death of MH7A cells. Conclusion IRF4 is an autophagy-related diagnostic biomarker for RA. Targeting IRF4 could serve as a potential diagnostic and therapeutic strategy for RA, although further clinical studies are required to validate its effectiveness.
Collapse
Affiliation(s)
- Runrun Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenhan Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Zhao
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jintao Fang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xinchang Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Wang L, Zhu Y, Zhang N, Xian Y, Tang Y, Ye J, Reza F, He G, Wen X, Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct Target Ther 2024; 9:282. [PMID: 39384770 PMCID: PMC11486635 DOI: 10.1038/s41392-024-01980-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/11/2024] Open
Abstract
Interferon Regulatory Factors (IRFs), a family of transcription factors, profoundly influence the immune system, impacting both physiological and pathological processes. This review explores the diverse functions of nine mammalian IRF members, each featuring conserved domains essential for interactions with other transcription factors and cofactors. These interactions allow IRFs to modulate a broad spectrum of physiological processes, encompassing host defense, immune response, and cell development. Conversely, their pivotal role in immune regulation implicates them in the pathophysiology of various diseases, such as infectious diseases, autoimmune disorders, metabolic diseases, and cancers. In this context, IRFs display a dichotomous nature, functioning as both tumor suppressors and promoters, contingent upon the specific disease milieu. Post-translational modifications of IRFs, including phosphorylation and ubiquitination, play a crucial role in modulating their function, stability, and activation. As prospective biomarkers and therapeutic targets, IRFs present promising opportunities for disease intervention. Further research is needed to elucidate the precise mechanisms governing IRF regulation, potentially pioneering innovative therapeutic strategies, particularly in cancer treatment, where the equilibrium of IRF activities is of paramount importance.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yanghui Zhu
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yali Xian
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Tang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Ye
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fekrazad Reza
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Gu He
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiang Wen
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xian Jiang
- Department of Dermatology & Venerology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Achiron A, Falb R, Menascu S, Magalashvili D, Mandel M, Sonis P, Gurevich M. Deciphering the shift from benign to active relapsing-remitting multiple sclerosis: Insights into T regulatory cell dysfunction and apoptosis regulation. Neurobiol Dis 2024; 194:106475. [PMID: 38521093 DOI: 10.1016/j.nbd.2024.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/05/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND Relapsing-remitting multiple sclerosis (RRMS), a common demyelinating disease among young adults, follows a benign course in 10-15% of cases, where patients experience minimal neurological disability for a decade following disease onset. However, there is potential for these benign cases to transition into a clinically active, relapsing state. OBJECTIVE To elucidate the biological mechanisms underlying the transition from benign to active RRMS using gene expression analysis. METHODS We employed complementary-DNA microarrays to examine peripheral-blood gene expression patterns in patients with benign MS, defined as having a disease duration exceeding 10 years and an Expanded Disability Status Scale (EDSS) score of ≤3.0. We compared the gene expression pattern between patients who switched to active disease (Switching BMS) with those who maintained a benign state (Permanent-BMS) during an additional 5-year follow-up. RESULTS We identified two primary mechanisms linked to the transition from benign MS to clinically active disease. The first involves the suppression of regulatory T cell activity, and the second pertains to the dysfunction of nuclear receptor 4 A family-dependent apoptosis. These mechanisms collectively contribute to an augmented autoimmune response and increased disease activity. CONCLUSIONS The intricate gene regulatory networks that operate in switching-BMS are related to suppression of immune tolerance and aberrant apoptosis. These findings may lead to new therapeutic targets to prevent the escalation to active disease.
Collapse
Affiliation(s)
- Anat Achiron
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | - Rina Falb
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Shay Menascu
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Mathilda Mandel
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Polina Sonis
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel
| | - Michael Gurevich
- Multiple Sclerosis Center, Sheba Medical Center, Ramat-Gan, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
5
|
Trujillo-Ochoa JL, Kazemian M, Afzali B. The role of transcription factors in shaping regulatory T cell identity. Nat Rev Immunol 2023; 23:842-856. [PMID: 37336954 PMCID: PMC10893967 DOI: 10.1038/s41577-023-00893-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/21/2023]
Abstract
Forkhead box protein 3-expressing (FOXP3+) regulatory T cells (Treg cells) suppress conventional T cells and are essential for immunological tolerance. FOXP3, the master transcription factor of Treg cells, controls the expression of multiples genes to guide Treg cell differentiation and function. However, only a small fraction (<10%) of Treg cell-associated genes are directly bound by FOXP3, and FOXP3 alone is insufficient to fully specify the Treg cell programme, indicating a role for other accessory transcription factors operating upstream, downstream and/or concurrently with FOXP3 to direct Treg cell specification and specialized functions. Indeed, the heterogeneity of Treg cells can be at least partially attributed to differential expression of transcription factors that fine-tune their trafficking, survival and functional properties, some of which are niche-specific. In this Review, we discuss the emerging roles of accessory transcription factors in controlling Treg cell identity. We specifically focus on members of the basic helix-loop-helix family (AHR), basic leucine zipper family (BACH2, NFIL3 and BATF), CUT homeobox family (SATB1), zinc-finger domain family (BLIMP1, Ikaros and BCL-11B) and interferon regulatory factor family (IRF4), as well as lineage-defining transcription factors (T-bet, GATA3, RORγt and BCL-6). Understanding the imprinting of Treg cell identity and specialized function will be key to unravelling basic mechanisms of autoimmunity and identifying novel targets for drug development.
Collapse
Affiliation(s)
- Jorge L Trujillo-Ochoa
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA
| | - Majid Kazemian
- Departments of Biochemistry and Computer Science, Purdue University, West Lafayette, IN, USA
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, MD, USA.
| |
Collapse
|
6
|
Gu X, Nardone C, Kamitaki N, Mao A, Elledge SJ, Greenberg ME. The midnolin-proteasome pathway catches proteins for ubiquitination-independent degradation. Science 2023; 381:eadh5021. [PMID: 37616343 PMCID: PMC10617673 DOI: 10.1126/science.adh5021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/11/2023] [Indexed: 08/26/2023]
Abstract
Cells use ubiquitin to mark proteins for proteasomal degradation. Although the proteasome also eliminates proteins that are not ubiquitinated, how this occurs mechanistically is unclear. Here, we found that midnolin promoted the destruction of many nuclear proteins, including transcription factors encoded by the immediate-early genes. Diverse stimuli induced midnolin, and its overexpression was sufficient to cause the degradation of its targets by a mechanism that did not require ubiquitination. Instead, midnolin associated with the proteasome via an α helix, used its Catch domain to bind a region within substrates that can form a β strand, and used a ubiquitin-like domain to promote substrate destruction. Thus, midnolin contains three regions that function in concert to target a large set of nuclear proteins to the proteasome for degradation.
Collapse
Affiliation(s)
- Xin Gu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher Nardone
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Nolan Kamitaki
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Aoyue Mao
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Stephen J. Elledge
- Division of Genetics, Department of Medicine, Howard Hughes Medical Institute, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
7
|
Gao Y, Liu B, Guo X, Nie J, Zou H, Wen S, Yu W, Liang H. Interferon regulatory factor 4 deletion protects against kidney inflammation and fibrosis in deoxycorticosterone acetate/salt hypertension. J Hypertens 2023; 41:794-810. [PMID: 36883469 DOI: 10.1097/hjh.0000000000003401] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
BACKGROUND Inflammation and renal interstitial fibrosis are the main pathological features of hypertensive nephropathy. Interferon regulatory factor 4 (IRF-4) has an important role in the pathogenesis of inflammatory and fibrotic diseases. However, its role in hypertension-induced renal inflammation and fibrosis remains unexplored. METHOD AND RESULTS We showed that deoxycorticosterone acetate (DOCA)-salt resulted in an elevation of blood pressure and that there was no difference between wild-type and IRF-4 knockout mice. IRF-4 -/- mice presented less severe renal dysfunction, albuminuria, and fibrotic response after DOCA-salt stress compared with wild-type mice. Loss of IRF-4 inhibited extracellular matrix protein deposition and suppressed fibroblasts activation in the kidneys of mice subjected to DOCA-salt treatment. IRF-4 disruption impaired bone marrow-derived fibroblasts activation and macrophages to myofibroblasts transition in the kidneys in response to DOCA-salt treatment. IRF-4 deletion impeded the infiltration of inflammatory cells and decreased the production of proinflammatory molecules in injured kidneys. IRF-4 deficiency activated phosphatase and tensin homolog and weakened phosphoinositide-3 kinase/AKT signaling pathway in vivo or in vitro . In cultured monocytes, TGFβ1 also induced expression of fibronectin and α-smooth muscle actin and stimulated the transition of macrophages to myofibroblasts, which was blocked in the absence of IRF-4. Finally, macrophages depletion blunted macrophages to myofibroblasts transition, inhibited myofibroblasts accumulation, and ameliorated kidney injury and fibrosis. CONCLUSION Collectively, IRF-4 plays a critical role in the pathogenesis of kidney inflammation and fibrosis in DOCA-salt hypertension.
Collapse
Affiliation(s)
- Ying Gao
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Benquan Liu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | | | - Jiayi Nie
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hao Zou
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| | - Shihong Wen
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Wenqiang Yu
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan
| | - Hua Liang
- Guangdong Medical University, Zhanjiang
- Department of Anesthesiology, Foshan Women and Children Hospital
- Department of Anesthesiology, Affiliated Foshan Women and Children Hospital of Southern Medical University, Foshan
| |
Collapse
|
8
|
Meng L, Jiang Y, You J, Zhao P, Liu W, Zhao N, Yu Z, Ma J. IRF4 as a novel target involved in malignant transformation of oral submucous fibrosis into oral squamous cell carcinoma. Sci Rep 2023; 13:2775. [PMID: 36797470 PMCID: PMC9935854 DOI: 10.1038/s41598-023-29936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) in the context of oral submucous fibrosis (OSF) has a high incidence owing to undefined pathogenesis. Identifying key genes and exploring the underlying molecular mechanisms involved in the conversion of OSF into OSCC are in urgent need. Differentially expressed genes (DEGs) between OSCC and OSF were dug from GEO databases and a total of 170 DEGs were acquired. Functional association of DEGs were analyzed by GO and KEGG. Protein-protein interactions (PPIs) analysis was carried out and candidate biomarkers were identified by Gene co-expression analysis and Cox analyses. Hub genes were confirmed by qRT-PCR in tissues and cell lines, of which we found that IRF4 mRNA was successively up-regulated from Normal to OSF and then to OSCC and associated with immune infiltrating levels. In addition, Immunohistochemical (IHC) and Immunofluorescence (IF) assays were conducted to validate the consistent upregulation of IRF4 and the oncogene role of IRF4 in OSF and OSCC at translation level. IRF4 may be indicative biomarker in transformation of OSF into OSCC. High IRF4 expression contribute to increased immune infiltration of OSCC and may provide a novel diagnostic marker for OSCC patients translated from OSF.
Collapse
Affiliation(s)
- Li Meng
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - Yucheng Jiang
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - Jiawen You
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - Panpan Zhao
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - Weiguang Liu
- grid.260474.30000 0001 0089 5711Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Na Zhao
- grid.89957.3a0000 0000 9255 8984Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029 China
| | - Zhichun Yu
- Green Hope High School, Cary, NC 27519 USA
| | - Junqing Ma
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 140 Hanzhong Road, Nanjing, 210029, China. .,Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
9
|
Wound repair in sea urchin larvae involves pigment cells and blastocoelar cells. Dev Biol 2022; 491:56-65. [PMID: 36067837 DOI: 10.1016/j.ydbio.2022.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
Abstract
Sea urchin larvae spend weeks to months feeding on plankton prior to metamorphosis. When handled in the laboratory they are easily injured, suggesting that in the plankton they are injured with some frequency. Fortunately, larval wounds are repaired through an efficient wound response with mesenchymal pigment cells and blastocoelar cells assisting as the epithelium closes. An injury to the epithelium leads to an immediate calcium transient that rapidly spreads around the entire larva and is necessary for activating pigment cell migration toward the wound. If calcium transport is blocked, the pigment cells fail to activate and remain in place. When activated, pigment cells initiate directed migration to the wound site from distances of at least 85 μm. Upon arrival at the wound site they participate in an innate immune response. Blastocoelar cells are recruited to the injury site as well, though the calcium transient is unnecessary for activating these cells. At the wound site, blastocoelar cells participate in several functions including remodeling the skeleton if it protrudes through the epithelium.
Collapse
|
10
|
Sundararaj S, Seneviratne S, Williams SJ, Enders A, Casarotto MG. The molecular basis for the development of Adult T-cell leukemia/lymphoma in patients with an IRF4 K59R mutation. Protein Sci 2021; 31:787-796. [PMID: 34913532 DOI: 10.1002/pro.4260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/12/2022]
Abstract
Interferon regulatory factor 4 (IRF4) is an essential regulator in the development of many immune cells, including B and T cells and has been implicated directly in numerous haematological malignancies, including Adult T-cell leukemia/lymphoma (ATLL). Recently, an activating mutation in the DNA binding domain of IRF4 (IRF4K59R ), was found as a recurrent somatic mutation in ATLL patients. However, it remains unknown how this mutation gives rise to the observed oncogenic effect. To understand the mode of IRF4K59R mediated gain of function in ATLL pathogenesis, we have determined the structural and affinity basis of IRF4K59R /DNA homodimer complex using X-ray crystallography and surface plasmon resonance. Our study shows that arginine substitution (R59) results in the reorientation of the side chain, enabling the guanidium group to interact with the phosphate backbone of the DNA helix. This markedly contrasts with the IRF4WT wherein the K59 interacts exclusively with DNA bases. Further, the arginine mutation causes enhanced DNA bending, enabling the IRF4K59R to interact more robustly with known DNA targets, as evidenced by increased binding affinity of the protein-DNA complex. Together, we demonstrate how key structural features underpin the basis for this activating mutation, thereby providing a molecular rationale for IRF4K59R -mediated ATLL development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Srinivasan Sundararaj
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Sandali Seneviratne
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Simon J Williams
- Research School of Biology, Australian National University, Canberra, Australia
| | - Anselm Enders
- Department of Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia.,Center for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, Australia
| |
Collapse
|
11
|
Braun LM, Zeiser R. Kinase Inhibition as Treatment for Acute and Chronic Graft- Versus-Host Disease. Front Immunol 2021; 12:760199. [PMID: 34868001 PMCID: PMC8635802 DOI: 10.3389/fimmu.2021.760199] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/28/2021] [Indexed: 01/25/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) is a potentially curative therapy for patients suffering from hematological malignancies via the donor immune system driven graft-versus-leukemia effect. However, the therapy is mainly limited by severe acute and chronic graft-versus-host disease (GvHD), both being life-threatening complications after allo-HCT. GvHD develops when donor T cells do not only recognize remaining tumor cells as foreign, but also the recipient’s tissue, leading to a severe inflammatory disease. Typical GvHD target organs include the skin, liver and intestinal tract. Currently all approved strategies for GvHD treatment are immunosuppressive therapies, with the first-line therapy being glucocorticoids. However, therapeutic options for glucocorticoid-refractory patients are still limited. Novel therapeutic approaches, which reduce GvHD severity while preserving GvL activity, are urgently needed. Targeting kinase activity with small molecule inhibitors has shown promising results in preclinical animal models and clinical trials. Well-studied kinase targets in GvHD include Rho-associated coiled-coil-containing kinase 2 (ROCK2), spleen tyrosine kinase (SYK), Bruton’s tyrosine kinase (BTK) and interleukin-2-inducible T-cell kinase (ITK) to control B- and T-cell activation in acute and chronic GvHD. Janus Kinase 1 (JAK1) and 2 (JAK2) are among the most intensively studied kinases in GvHD due to their importance in cytokine production and inflammatory cell activation and migration. Here, we discuss the role of kinase inhibition as novel treatment strategies for acute and chronic GvHD after allo-HCT.
Collapse
Affiliation(s)
- Lukas M Braun
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Cancer Consortium (DKTK) Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies (BIOSS) and Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Zhai X, Hong T, Zhang T, Xing B, Wang J, Wang X, Miao R, Li T, Wei L. Identification and antiviral effect of Cherry Valley duck IRF4. Poult Sci 2021; 101:101560. [PMID: 34823176 PMCID: PMC8628015 DOI: 10.1016/j.psj.2021.101560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/26/2021] [Accepted: 10/10/2021] [Indexed: 11/24/2022] Open
Abstract
Interferon regulatory factor 4 (IRF4) is a multifunctional transcription factor that plays an important regulatory role in the interferon (IFN) signaling. IRF4 participates in the process of antivirus, Th cell differentiation and B cell maturation by regulating the expression of IFN and some lymphokines. In this study, Cherry Valley duck IRF4 (duIRF4) was cloned and its cDNA was analyzed. Expression of duIRF4 in a wide variety of tissues and changes in duIRF4 expression due to viral infection also was detected by quantitative real-time PCR. The results show that duIRF4 contains 1,341 bp of ORF encoding a protein with 446 amino acids and contains 3 domains: DNA-binding domain (DBD), IRF-association domain (IAD) and nuclear localization signal (NLS). Quantitative real-time PCR analysis showed that duIRF4 was evenly expressed in all tissues examined, with the highest expression in the spleen, followed by the bursa of Fabricius, and lower in the skin and brain. In addition, expression of duIRF4 in the brain and spleen was significantly upregulated after being infected by duck plague virus, duck Tembusu virus, and novel duck reovirus. These data suggest that duIRF4 may be involved in innate immune response.
Collapse
Affiliation(s)
- Xinyu Zhai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tianqi Hong
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tingting Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City 271000, Shandong Province, China
| | - Bin Xing
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Jinchao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Xiuyuan Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Runchun Miao
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Tianxu Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an City, 271018, Shandong Province, China; Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, College of Basic Medical Sciences, Shandong First Medical University, Tai'an City 271000, Shandong Province, China.
| |
Collapse
|
13
|
Yu W, Ji N, Gu C, Yao J, Ding M, Zhou D, Huang M, Zhang M. IRF4 is Correlated with the Conversion to a Th17-Like Phenotype in Regulatory T Cells from the Malignant Pleural Effusion. Int J Gen Med 2021; 14:6009-6019. [PMID: 34588805 PMCID: PMC8476179 DOI: 10.2147/ijgm.s330389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/23/2022] Open
Abstract
Background RORγt+Foxp3+ (Th17-like) Tregs are a plastic Treg subset implicated in immune-related diseases; however, the mechanism of Treg phenotypic transformation in malignant pleural effusion (MPE) has not been elucidated. Methods The percentage of CD4+CD25+Foxp3+Helios+ and RORγt+Foxp3+ Tregs from peripheral blood and pleural effusion mononuclear cells were measured. The level of interferon regulatory factor 4 (IRF4) mRNA expression was detected by quantitative real-time reverse transcription polymerase chain reaction. The effects of IRF4 on the induction of Tregs from patients with non-small cell lung cancer (NSCLC) were evaluated in vitro. Correlation assays between IRF4 expression and the frequency of RORγt+Foxp3+ Tregs were performed. Results The frequency of CD4+CD25+Foxp3+Helios+ Tregs and CD4+RORγt+ Th17 cells was both increased in the MPE of NSCLC patients. The group of double-positive Foxp3+RORγt+ Treg phenotype were identified in the pleural effusion. A significant increase in the frequency of Foxp3+RORγt+ Tregs was found in MPE compared with the non-malignant pleural effusion (NPE). Compared to NPE, the relative level of IRF4 expression was increased in the MPE. IRF4 expression was positively associated with the frequency of Foxp3+RORγt+ Tregs in the PE. In vitro, the level of Helios mRNA and protein expression was reduced in induced Tregs following IRF4 over-expression. Additionally, the level of RORγt protein expression was substantially increased. However, ectopic Helios expression in induced Tregs reversed the effects induced by enhanced IRF4 expression. Conclusion IRF4 may serve as a potential molecule that promotes the conversion of regulatory T cells from MPE to a Th17-like phenotype by modulating Helios.
Collapse
Affiliation(s)
- Wenqing Yu
- Department of Infectious Diseases, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Chengjing Gu
- Department of Pharmacy, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Juan Yao
- Department of Oncology, Huaian Hospital of Huaian City, Huaian, Jiangsu, 223200, People's Republic of China
| | - Mingdong Ding
- Department of Infectious Diseases, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Daming Zhou
- Department of Infectious Diseases, Taizhou People's Hospital Affiliated to Nantong University, Taizhou, Jiangsu, 225300, People's Republic of China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,NHC Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| |
Collapse
|
14
|
Kang M, Lee HS, Choi JK, Yu CR, Egwuagu CE. Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4 + T Cell Differentiation and Metabolism. Int J Mol Sci 2021; 22:ijms22052775. [PMID: 33803441 PMCID: PMC7967141 DOI: 10.3390/ijms22052775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4-IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte differentiation, metabolism and cell-fate decisions. Thus, synergistic effects of IRF4 and IkZFs might induce metabolic reprogramming of differentiating lymphocytes and thereby dynamically regulate relative abundance of T and B lymphocyte subsets that mediate immunopathogenic mechanisms during uveitis. Moreover, the diametrically opposite effects of IRF4 and IRF8 during EAU suggests that intrinsic function of IRF4 in T cells might be activating proinflammatory responses while IRF8 promotes expansion of immune-suppressive mechanisms.
Collapse
Affiliation(s)
- Minkyung Kang
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Hyun-Su Lee
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Jin Kyeong Choi
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
- Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Korea
| | - Cheng-Rong Yu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
| | - Charles E. Egwuagu
- Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; (M.K.); (H.-S.L.); (J.K.C.); (C.-R.Y.)
- Correspondence: ; Tel.: +301-496-0049; Fax: +301-480-3914
| |
Collapse
|
15
|
Deng Z, Ng C, Inoue K, Chen Z, Xia Y, Hu X, Greenblatt M, Pernis A, Zhao B. Def6 regulates endogenous type-I interferon responses in osteoblasts and suppresses osteogenesis. eLife 2020; 9:e59659. [PMID: 33373293 PMCID: PMC7771961 DOI: 10.7554/elife.59659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/15/2020] [Indexed: 12/28/2022] Open
Abstract
Bone remodeling involves a balance between bone resorption and formation. The mechanisms underlying bone remodeling are not well understood. DEF6 is recently identified as a novel loci associated with bone mineral density. However, it is unclear how Def6 impacts bone remodeling. We identify Def6 as a novel osteoblastic regulator that suppresses osteoblastogenesis and bone formation. Def6 deficiency enhances both bone resorption and osteogenesis. The enhanced bone resorption in Def6-/- mice dominates, leading to osteoporosis. Mechanistically, Def6 inhibits the differentiation of both osteoclasts and osteoblasts via a common mechanism through endogenous type-I IFN-mediated feedback inhibition. RNAseq analysis shows expression of a group of IFN stimulated genes (ISGs) during osteoblastogenesis. Furthermore, we found that Def6 is a key upstream regulator of IFNβ and ISG expression in osteoblasts. Collectively, our results identify a novel immunoregulatory function of Def6 in bone remodeling, and shed insights into the interaction between immune system and bone.
Collapse
Affiliation(s)
- Zhonghao Deng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Courtney Ng
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ziyu Chen
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua UniversityBeijingChina
| | - Matthew Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Research Division, Hospital for Special SurgeryNew YorkUnited States
| | - Alessandra Pernis
- Autoimmunity and Inflammation Program, Hospital for Special SurgeryNew YorkUnited States
- Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
16
|
Tan AHM, Tso GHW, Zhang B, Teo PY, Ou X, Ng SW, Wong AXF, Tan SJX, Sanny A, Kim SSY, Lee AP, Xu S, Lam KP. TACI Constrains T H17 Pathogenicity and Protects against Gut Inflammation. iScience 2020; 23:101707. [PMID: 33205021 PMCID: PMC7653077 DOI: 10.1016/j.isci.2020.101707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/20/2020] [Accepted: 10/07/2020] [Indexed: 11/24/2022] Open
Abstract
TACI (transmembrane activator and calcium modulator and cyclophilin ligand interactor) plays critical roles in B cells by promoting immunoglobulin class switching and plasma cell survival. However, its expression and function in T cells remain controversial. We show here that TACI expression can be strongly induced in murine CD4+ T cells in vitro by cytokines responsible for TH17 but not TH1 or TH2 differentiation. Frequencies and numbers of TH17 cells were elevated in TACI-/ - compared with wild-type mice as well as among TACI-/ - versus wild-type CD4+ T cells in mixed bone marrow chimeras, arguing for a T cell-intrinsic effect in the contribution of TACI deficiency to TH17 cell accumulation. TACI-/ - mice were more susceptible to severe colitis induced by dextran sodium sulfate or adoptive T cell transfer, suggesting that TACI negatively regulates TH17 function and limits intestinal inflammation in a cell-autonomous manner. Finally, transcriptomic and biochemical analyses revealed that TACI-/ - CD4+ T cells exhibited enhanced activation of TH17-promoting transcription factors NFAT, IRF4, c-MAF, and JUNB. Taken together, these findings reveal an important role of TACI in constraining TH17 pathogenicity and protecting against gut disease.
Collapse
Affiliation(s)
- Andy Hee-Meng Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Gloria Hoi Wan Tso
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Biyan Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Pei-Yun Teo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Xijun Ou
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sze-Wai Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alex Xing Fah Wong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Sean Jing Xiang Tan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Arleen Sanny
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Susana Soo-Yeon Kim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Alison P Lee
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Shengli Xu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Kong-Peng Lam
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore.,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,Departments of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
17
|
Assessment of TCR signal strength of antigen-specific memory CD8 + T cells in human blood. Blood Adv 2020; 3:2153-2163. [PMID: 31320320 DOI: 10.1182/bloodadvances.2019000292] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/24/2019] [Indexed: 02/07/2023] Open
Abstract
Assessment of the quality and the breadth of antigen (Ag)-specific memory T cells in human samples is of paramount importance to elucidate the pathogenesis and to develop new treatments in various diseases. T-cell receptor (TCR) signal strength, primarily controlled by TCR affinity, affects many fundamental aspects of T-cell biology; however, no current assays for detection of Ag-specific CD8+ T cells can assess their TCR signal strength in human samples. Here, we provide evidence that interferon regulatory factor 4 (IRF4), a transcription factor rapidly upregulated in correlation with TCR signal strength, permits the assessment of the TCR signal strength of Ag-specific CD8+ T cells in human peripheral blood mononuclear cells (PBMCs). Coexpression of IRF4 and CD137 sensitively detected peptide-specific CD8+ T cells with extremely low background in PBMCs stimulated for 18 hours with MHC class I peptides. Our assay revealed that human memory CD8+ T cells with high-affinity TCRs have an intrinsic ability to highly express CD25. Furthermore, HIV-specific CD8+ T cells in chronic HIV+ subjects were found to display primarily low-affinity TCRs with low CD25 expression capacity. Impairment in the functions of HIV-specific CD8+ T cells might be associated with their suboptimal TCR signals, as well as impaired responsiveness to interleukin-2.
Collapse
|
18
|
Brune Z, Rice MR, Barnes BJ. Potential T Cell-Intrinsic Regulatory Roles for IRF5 via Cytokine Modulation in T Helper Subset Differentiation and Function. Front Immunol 2020; 11:1143. [PMID: 32582209 PMCID: PMC7283537 DOI: 10.3389/fimmu.2020.01143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022] Open
Abstract
Interferon Regulatory Factor 5 (IRF5) is one of nine members of the IRF family of transcription factors. Although initially discovered as a key regulator of the type I interferon and pro-inflammatory cytokine arm of the innate immune response, IRF5 has now been found to also mediate pathways involved in cell growth and differentiation, apoptosis, metabolic homeostasis and tumor suppression. Hyperactivation of IRF5 has been implicated in numerous autoimmune diseases, chief among them systemic lupus erythematosus (SLE). SLE is a heterogeneous autoimmune disease in which patients often share similar characteristics in terms of autoantibody production and strong genetic risk factors, yet also possess unique disease signatures. IRF5 pathogenic alleles contribute one of the strongest risk factors for SLE disease development. Multiple models of murine lupus have shown that loss of Irf5 is protective against disease development. In an attempt to elucidate the regulatory role(s) of IRF5 in driving SLE pathogenesis, labs have begun to examine the function of IRF5 in several immune cell types, including B cells, macrophages, and dendritic cells. A somewhat untouched area of research on IRF5 is in T cells, even though Irf5 knockout mice were reported to have skewing of T cell subsets from T helper 1 (Th1) and T helper 17 (Th17) toward T helper 2 (Th2), indicating a potential role for IRF5 in T cell regulation. However, most studies attributed this T cell phenotype in Irf5 knockout mice to dysregulation of antigen presenting cell function rather than an intrinsic role for IRF5 in T cells. In this review, we offer a different interpretation of the literature. The role of IRF5 in T cells, specifically its control of T cell effector polarization and the resultant T cell-mediated cytokine production, has yet to be elucidated. A strong understanding of the regulatory role(s) of this key transcription factor in T cells is necessary for us to grasp the full picture of the complex pathogenesis of autoimmune diseases like SLE.
Collapse
Affiliation(s)
- Zarina Brune
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Matthew R. Rice
- Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Betsy J. Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Diseases, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
- Departments of Molecular Medicine and Pediatrics, Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
19
|
McDaniel MM, Kottyan LC, Singh H, Pasare C. Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming. Cell Rep 2020; 31:107604. [PMID: 32375053 PMCID: PMC7325595 DOI: 10.1016/j.celrep.2020.107604] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/13/2020] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Inflammasome activation leads to pyroptotic cell death, thereby eliminating the replicative niche of virulent pathogens. Although inflammasome-associated cytokines IL-1β and IL-18 have an established role in T cell function, whether inflammasome activation in dendritic cells (DCs) is critical for T cell priming is not clear. Here, we find that conventional DCs (cDCs) suppress inflammasome activation to prevent pyroptotic cell death, thus preserving their ability to prime both CD4 and CD8 T cells. Transcription factors IRF8 and IRF4, in cDC1s and cDC2s, respectively, mediate suppression of inflammasome activation by limiting the expression of inflammasome-associated genes. Overexpression of IRF4 or IRF8 inhibits inflammasome activation in macrophages, while reduced expression of IRF8 leads to aberrant inflammasome activation in cDC1s and hampers their ability to prime CD8 T cells. Thus, activation of inflammasome in DCs is detrimental to adaptive immunity, and our results reveal that cDCs use IRF4 and IRF8 to suppress this response.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Immunology Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
20
|
Abstract
The immune system is central to our interactions with the world in which we live and importantly dictates our response to potential allergens, toxins, and pathogens to which we are constantly exposed. Understanding the mechanisms that underlie protective host immune responses against microbial pathogens is vital for the development of improved treatment and vaccination strategies against infections. To that end, inherited immunodeficiencies that manifest with susceptibility to bacterial, viral, and/or fungal infections have provided fundamental insights into the indispensable contribution of key immune pathways in host defense against various pathogens. In this mini-review, we summarize the findings from a series of recent publications in which inherited immunodeficiencies have helped illuminate the interplay of human immunity and resistance to infection.
Collapse
Affiliation(s)
- Gregory M Constantine
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20814, USA
| |
Collapse
|
21
|
Qaiyum Z, Gracey E, Yao Y, Inman RD. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann Rheum Dis 2019; 78:1566-1575. [PMID: 31471299 DOI: 10.1136/annrheumdis-2019-215349] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/20/2019] [Accepted: 08/21/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Current evidence suggests that immune events in the gut may impact joint inflammation in ankylosing spondylitis (AS) but the expression of gut-related trafficking molecules in the inflammed joint is poorly characterised. We aimed to (1) assess differential expression patterns of trafficking molecules between patients and controls, (2) generate joint-specific cellular signatures and (3) obtain transcriptomic profiles of noteworthy cell subpopulations. METHODS Male subjects under 40 years of age fulfilling the mNY criteria were recruited. The following cells were surface stained using a 36-marker mass cytometry antibody panel: (1) peripheral blood mononuclear cells from AS patients, and healthy controls; (2) synovial fluid mononuclear cells from AS and rheumatoid arthritis (RA) patients. Additionally, RNA-seq was performed on CD8+ T cell subpopulations from the synovial fluid (SF). RESULTS Mature CD8+ T cells were enriched in AS SF, with a distinct pattern of integrin expression (β7, CD103, CD29 and CD49a). RNA-seq analysis of SF-derived CD103+CD49a+CD8+ T cells revealed elevated TNFAIP3, GZMB, PRF1 and IL-10. CONCLUSIONS We have identified a novel integrin-expressing mature CD8+ T cell population (CD49a+CD103+β7+CD29+) that appears to be more prevalent in AS SF than RA SF. These cells seem to possess dual cytotoxic and regulatory profiles which may play a role in AS pathogenesis.
Collapse
Affiliation(s)
- Zoya Qaiyum
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Eric Gracey
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - YuChen Yao
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Robert D Inman
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Transcription Factor IRF4 Dysfunction Affects the Immunosuppressive Function of Treg Cells in Patients with Primary Immune Thrombocytopenia. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1050285. [PMID: 31380412 PMCID: PMC6652070 DOI: 10.1155/2019/1050285] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/12/2019] [Accepted: 06/13/2019] [Indexed: 01/16/2023]
Abstract
Background Th17/Treg balance skews towards Th17 in ITP patient. IRF4 has been highlighted for its close relationship to the immunosuppressive function of Treg cells and the IL-17 synthesis in CD4+ T cells. This study was aimed at examining the effects of IRF4 to the Th17/Treg cells in patients with ITP. Methods Treg and Teff cells were isolated from PBMCs of newly diagnosed ITP patients. The percentages of CD4+CD25hiFoxp3+Treg cells and the CD3+CD4+IL-17+Th17 cells were detected by flow cytometry. After being cultured, the supernatants of Tregs were collected for IL-10 concentration test. The IRF4 levels of Tregs were measured. Teffs were cultured alone or with Tregs for 24 hours. Then the supernatants were collected for IL-17 concentration test. The binding intensity of IRF4 to the gene IL-10 in Treg cells was detected by ChIP-qPCR. Metabolic assays for Teffs and Tregs were performed with Agilent Seahorse XF96 Analyzer. Results The secretion of IL-10 by Tregs was decreased in ITP patients. The intensity of IRF4 binding to IL-10 DNA of Tregs in patients was higher than that of normal controls and Teffs in ITP patients. The expressions of IRF4 of Tregs in ITP patients were remarkably lower than that of healthy controls. The percentage of Th17 cells in healthy controls was significantly increased after IRF4 mRNA silencing. Abnormal metabolism of Treg and Teff cells was found in ITP patients. Conclusion The skewed ratio of Th17/Treg cells and dysfunction of Treg cells in newly diagnosed ITP patients was at least partly caused by IRF4 dysfunction. The underlying mechanism might be the impact of IRF4 on the metabolism of Treg and Teff cells.
Collapse
|
23
|
Veytia-Bucheli JI, Jiménez-Vargas JM, Melchy-Pérez EI, Sandoval-Hernández MA, Possani LD, Rosenstein Y. K v1.3 channel blockade with the Vm24 scorpion toxin attenuates the CD4 + effector memory T cell response to TCR stimulation. Cell Commun Signal 2018; 16:45. [PMID: 30107837 PMCID: PMC6092819 DOI: 10.1186/s12964-018-0257-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/02/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In T cells, the Kv1.3 and the KCa3.1 potassium channels regulate the membrane potential and calcium homeostasis. Notably, during TEM cell activation, the number of Kv1.3 channels on the cell membrane dramatically increases. Kv1.3 blockade results in inhibition of Ca2+ signaling in TEM cells, thus eliciting an immunomodulatory effect. Among the naturally occurring peptides, the Vm24 toxin from the Mexican scorpion Vaejovis mexicanus is the most potent and selective Kv1.3 channel blocker known, which makes it a promissory candidate for its use in the clinic. We have shown that addition of Vm24 to TCR-activated human T cells inhibits CD25 expression, cell proliferation and reduces delayed-type hypersensitivity reactions in a chronic inflammation model. Here, we used the Vm24 toxin as a tool to investigate the molecular events that follow Kv1.3 blockade specifically on human CD4+ TEM cells as they are actively involved in inflammation and are key mediators of autoimmune diseases. METHODS We combined cell viability, activation, and multiplex cytokine assays with a proteomic analysis to identify the biological processes affected by Kv1.3 blockade on healthy donors CD4+ TEM cells, following TCR activation in the presence or absence of the Vm24 toxin. RESULTS The peptide completely blocked Kv1.3 channels currents without impairing TEM cell viability, and in response to TCR stimulation, it inhibited the expression of the activation markers CD25 and CD40L (but not that of CD69), as well as the secretion of the pro-inflammatory cytokines IFN-γ and TNF and the anti-inflammatory cytokines IL-4, IL-5, IL-9, IL-10, and IL-13. These results, in combination with data from the proteomic analysis, indicate that the biological processes most affected by the blockade of Kv1.3 channels in a T cell activation context were cytokine-cytokine receptor interaction, mRNA processing via spliceosome, response to unfolded proteins and intracellular vesicle transport, targeting the cell protein synthesis machinery. CONCLUSIONS The Vm24 toxin, a highly specific inhibitor of Kv1.3 channels allowed us to define downstream functions of the Kv1.3 channels in human CD4+ TEM lymphocytes. Blocking Kv1.3 channels profoundly affects the mRNA synthesis machinery, the unfolded protein response and the intracellular vesicle transport, impairing the synthesis and secretion of cytokines in response to TCR engagement, underscoring the role of Kv1.3 channels in regulating TEM lymphocyte function.
Collapse
Affiliation(s)
- José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juana María Jiménez-Vargas
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Erika Isabel Melchy-Pérez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Monserrat Alba Sandoval-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Lourival Domingos Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos Mexico
| |
Collapse
|
24
|
Critical role of ROCK2 activity in facilitating mucosal CD4 + T cell activation in inflammatory bowel disease. J Autoimmun 2018; 89:125-138. [DOI: 10.1016/j.jaut.2017.12.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
|
25
|
Regulation of age-associated B cells by IRF5 in systemic autoimmunity. Nat Immunol 2018; 19:407-419. [PMID: 29483597 PMCID: PMC6095139 DOI: 10.1038/s41590-018-0056-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 01/23/2018] [Indexed: 12/20/2022]
Abstract
Age-associated B cells (ABCs) are a T-bet–dependent B cell subset,
which accumulates prematurely in autoimmune settings. The pathways regulating
ABCs in autoimmunity are largely unknown. SWAP-70 and
DEF6 (also known as IBP or SLAT) are the only two
members of the SWEF family, a unique family of Rho GTPase-regulatory proteins
that controls both cytoskeletal dynamics and IRF4 activity. Notably,
DEF6 is a newly identified human SLE-risk variant. Here we
show that the lupus syndrome that developed in SWEF-deficient mice is
accompanied by the accumulation of ABCs, which produce autoantibodies upon
stimulation. ABCs from SWEF-deficient mice exhibited a distinctive transcriptome
and a unique chromatin landscape characterized by enrichment in motifs bound by
transcription factors of the IRF family, AP-1/BATF, and T-bet. Enhanced ABC
formation in SWEF-deficient mice was controlled by interleukin 21 (IL-21) and
IRF5, whose variants are strongly associated with lupus. The lack of SWEF
proteins led to dysregulated IRF5 activity in response to IL-21 stimulation.
These studies thus uncover a new genetic pathway controlling ABCs in
autoimmunity.
Collapse
|
26
|
Mei S, Meyer CA, Zheng R, Qin Q, Wu Q, Jiang P, Li B, Shi X, Wang B, Fan J, Shih C, Brown M, Zang C, Liu XS. Cistrome Cancer: A Web Resource for Integrative Gene Regulation Modeling in Cancer. Cancer Res 2017; 77:e19-e22. [PMID: 29092931 DOI: 10.1158/0008-5472.can-17-0327] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/02/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
Cancer results from a breakdown of normal gene expression control, so the study of gene regulation is critical to cancer research. To gain insight into the transcriptional and epigenetic factors regulating abnormal gene expression patterns in cancers, we developed the Cistrome Cancer web resource (http://cistrome.org/CistromeCancer/). We conducted the systematic integration and modeling of over 10,000 tumor molecular profiles from The Cancer Genome Atlas (TCGA) with over 23,000 ChIP-seq and chromatin accessibility profiles from our Cistrome collection. The results include reconstruction of functional enhancer profiles, "super-enhancer" target genes, as well as predictions of active transcription factors and their target genes for each TCGA cancer type. Cistrome Cancer reveals novel insights from integrative analyses combining chromatin profiles with tumor molecular profiles and will be a useful resource to the cancer gene regulation community. Cancer Res; 77(21); e19-22. ©2017 AACR.
Collapse
Affiliation(s)
- Shenglin Mei
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Clifford A Meyer
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rongbin Zheng
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qian Qin
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiu Wu
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Peng Jiang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bo Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xiaohui Shi
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Binbin Wang
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyu Fan
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China.,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Celina Shih
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Chongzhi Zang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts. .,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts.,Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia.,University of Virginia Cancer Center, Charlottesville, Virginia
| | - X Shirley Liu
- Shanghai Key Laboratory of Tuberculosis, Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China. .,Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
27
|
Cheng WL, She ZG, Qin JJ, Guo JH, Gong FH, Zhang P, Fang C, Tian S, Zhu XY, Gong J, Wang ZH, Huang Z, Li H. Interferon Regulatory Factor 4 Inhibits Neointima Formation by Engaging Krüppel-Like Factor 4 Signaling. Circulation 2017; 136:1412-1433. [PMID: 28851732 DOI: 10.1161/circulationaha.116.026046] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/02/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND The mechanisms underlying neointima formation remain unclear. Interferon regulatory factors (IRFs), which are key innate immune regulators, play important roles in cardiometabolic diseases. However, the function of IRF4 in arterial restenosis is unknown. METHODS IRF4 expression was first detected in human and mouse restenotic arteries. Then, the effects of IRF4 on neointima formation were evaluated with universal IRF4-deficient mouse and rat carotid artery injury models. We performed immunostaining to identify IRF4-expressing cells in the lesions. Smooth muscle cell (SMC)-specific IRF4-knockout (KO) and -transgenic (TG) mice were generated to evaluate the effects of SMC-IRF4 on neointima formation. We used microarray, bioinformatics analysis, and chromatin immunoprecipitation assay to identify the downstream signals of IRF4 and to verify the targets in vitro. We compared SMC-IRF4-KO/Krüppel-like factor 4 (KLF4)-TG mice with SMC-IRF4-KO mice and SMC-specific IRF4-TG/KLF4-KO mice with SMC-specific IRF4-TG mice to investigate whether the effect of IRF4 on neointima formation is KLF4-dependent. The effect of IRF4 on SMC phenotype switching was also evaluated. RESULTS IRF4 expression in both the human and mouse restenotic arteries is eventually downregulated. Universal IRF4 ablation potentiates neointima formation in both mice and rats. Immunostaining indicated that IRF4 was expressed primarily in SMCs in restenotic arteries. After injury, SMC-IRF4-KO mice developed a thicker neointima than control mice. This change was accompanied by increased SMC proliferation and migration. However, SMC-specific IRF4-TG mice exhibited the opposite phenotype, demonstrating that IRF4 exerts protective effects against neointima formation. The mechanistic study indicated that IRF4 promotes KLF4 expression by directly binding to its promoter. Genetic overexpression of KLF4 in SMCs largely reversed the neointima-promoting effect of IRF4 ablation, whereas ablation of KLF4 abolished the protective function of IRF4, indicating that the protective effects of IRF4 against neointima formation are KLF4-dependent. In addition, IRF4 promoted SMC dedifferentiation. CONCLUSIONS IRF4 protects arteries against neointima formation by promoting the expression of KLF4 by directly binding to its promoter. Our findings suggest that this previously undiscovered IRF4-KLF4 axis plays a key role in vasculoproliferative pathology and may be a promising therapeutic target for the treatment of arterial restenosis.
Collapse
Affiliation(s)
- Wen-Lin Cheng
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Zhi-Gang She
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Juan-Juan Qin
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Jun-Hong Guo
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Fu-Han Gong
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Peng Zhang
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Chun Fang
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Song Tian
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Xue-Yong Zhu
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Jun Gong
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Zhi-Hua Wang
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Zan Huang
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.)
| | - Hongliang Li
- From Department of Cardiology, Renmin Hospital of Wuhan University, China (W.-L.C., Z.-G.S., F.-H.G., S.T., X.-Y.Z., Z.-H.W., H.L.); Basic Medical School (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), Medical Research Institute, School of Medicine (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.), and College of Life Science (J.G., Z.H.), Wuhan University, China; and Institute of Model Animal of Wuhan University, China (W.-L.C., Z.-G.S., J.-J.Q., J.-H.G., F.-H.G., P.Z., C.F., S.T., X.-Y.Z., J.G., Z.-H.W., Z.H., H.L.).
| |
Collapse
|
28
|
Choi S, Park H, Jung S, Kim EK, Cho ML, Min JK, Moon SJ, Lee SM, Cho JH, Lee DH, Nam JH. Therapeutic Effect of Exogenous Truncated IK Protein in Inflammatory Arthritis. Int J Mol Sci 2017; 18:E1976. [PMID: 28906466 PMCID: PMC5618625 DOI: 10.3390/ijms18091976] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 12/18/2022] Open
Abstract
Inhibitor K562 (IK) protein was first isolated from the culture medium of K562, a leukemia cell line. It is known to be an inhibitory regulator of interferon-γ-induced major histocompatibility complex class (MHC) II expression. Previously, we found that transgenic (Tg) mice constitutively expressing truncated IK (tIK) showed reduced numbers of pathogenic Th1 and Th17 cells, which are known to be involved in the development of rheumatoid arthritis (RA). Here, we investigated whether exogenous tIK protein has a therapeutic effect in arthritis in disease models and analyzed its mechanism. Exogenous tIK protein was produced in an insect expression system and applied to the collagen antibody-induced arthritis (CAIA) mouse disease model. Injection of tIK protein alleviated the symptoms of arthritis in the CAIA model and reduced Th1 and Th17 cell populations. In addition, treatment of cultured T cells with tIK protein induced expression of A20, a negative regulator of nuclear factor-κB (NFκB)-induced inflammation, and reduced expression of several transcription factors related to T cell activation. We conclude that exogenous tIK protein has the potential to act as a new therapeutic agent for RA patients, because it has a different mode of action to biopharmaceutical agents, such as tumor necrosis factor antagonists, that are currently used to treat RA.
Collapse
Affiliation(s)
- Seulgi Choi
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - HyeLim Park
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - SeoYeon Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| | - Eun-Kyung Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Jun-Ki Min
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea.
| | - Sang-Myeong Lee
- Department of Biotechnology, Chonbuk National University, Iksan 54596, Korea.
| | - Jang-Hee Cho
- Biomaterials Research Center, Cellinbio, Suwon 16680, Korea.
| | - Dong-Hee Lee
- Biomaterials Research Center, Cellinbio, Suwon 16680, Korea.
| | - Jae-Hwan Nam
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea.
| |
Collapse
|
29
|
The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity. Nat Commun 2017; 8:254. [PMID: 28811467 PMCID: PMC5557982 DOI: 10.1038/s41467-017-00348-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/12/2017] [Indexed: 01/24/2023] Open
Abstract
Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1–4E-BP–eIF4E axis, secondary to aberrant assembly of a raptor–p62–TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity. Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.
Collapse
|
30
|
Manni M, Ricker E, Pernis AB. Regulation of systemic autoimmunity and CD11c + Tbet + B cells by SWEF proteins. Cell Immunol 2017; 321:46-51. [PMID: 28780965 DOI: 10.1016/j.cellimm.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
Recent studies have revealed the existence of a T-bet dependent subset of B cells, which expresses unique phenotypic and functional characteristics including high levels of CD11c and CD11b. In the murine system this B cell subset has been termed Age/autoimmune-associated B cells (ABCs) since it expands with age in non-autoimmune mice and it prematurely accumulates in autoimmune-prone strains. The molecular mechanisms that promote the expansion and function of ABCs are largely unknown. This review will focus on the SWEF proteins, a small family of Rho GEFs comprised of SWAP-70 and its homolog DEF6, a newly identified risk variant for human SLE. We will first provide an overview of the SWEF proteins and then discuss the complex array of biological processes that they control and the autoimmune phenotypes that spontaneously develop in their absence, highlighting the emerging involvement of these proteins in regulating ABCs. A better understanding of the pathways controlled by the SWEF proteins could help provide new insights into the mechanisms responsible for the expansion of ABCs in autoimmunity and potentially guide the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Michela Manni
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA
| | - Edd Ricker
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Alessandra B Pernis
- Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY, USA; Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA; David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY, USA; Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
31
|
Chandrasekaran U, Yi W, Gupta S, Weng CH, Giannopoulou E, Chinenov Y, Jessberger R, Weaver CT, Bhagat G, Pernis AB. Regulation of Effector Treg Cells in Murine Lupus. Arthritis Rheumatol 2017; 68:1454-66. [PMID: 26816213 DOI: 10.1002/art.39599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/14/2016] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Treg cells need to acquire an effector phenotype to function in settings of inflammation. Whether effector Treg cells can limit disease severity in lupus is unknown. Interferon regulatory factor 4 (IRF-4) is an essential controller of effector Treg cells and regulates their ability to express interleukin-10 (IL-10). In non-Treg cells, IRF-4 activity is modulated by interactions with DEF-6 and its homolog switch-associated protein 70 (SWAP-70). Although mice lacking both DEF-6 and SWAP-70 (double-knockout [DKO] mice) develop lupus, they display normal survival, suggesting that in DKO mice, Treg cells can moderate disease development. The purpose of this study was to investigate whether Treg cells from DKO mice have an increased capacity to become effector Treg cells due to the ability of DEF-6 and SWAP-70 to restrain IRF-4 activity. METHODS Treg cells were evaluated by fluorescence-activated cell sorting. The B lymphocyte-induced maturation protein 1 (BLIMP-1)/IL-10 axis was assessed by crossing DKO mice with BLIMP-1-YFP-10BiT dual-reporter mice. Deletion of IRF-4 in Treg cells from DKO mice was achieved by generating FoxP3(Cre) IRF-4(fl/fl) DKO mice. RESULTS The concomitant absence of DEF-6 and SWAP-70 led to increased numbers of Treg cells, which acquired an effector phenotype in a cell-intrinsic manner. In addition, Treg cells from DKO mice exhibited enhanced expression of the BLIMP-1/IL-10 axis. Notably, DKO effector Treg cells survived and expanded as disease progressed. The accumulation of Treg cells from DKO mice was associated with the up-regulation of genes controlling autophagy. IRF-4 was required for the expansion and function of effector Treg cells from DKO mice. CONCLUSION This study revealed the existence of mechanisms that, by acting on IRF-4, can fine-tune the function and survival of effector Treg cells in lupus. These findings suggest that the existence of a powerful effector Treg cell compartment that successfully survives in an unfavorable inflammatory environment could limit disease development.
Collapse
Affiliation(s)
| | - Woelsung Yi
- Hospital for Special Surgery, New York, New York
| | - Sanjay Gupta
- Hospital for Special Surgery, New York, New York
| | - Chien-Huan Weng
- Hospital for Special Surgery and Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Eugenia Giannopoulou
- Hospital for Special Surgery, New York, and New York City College of Technology, City University of New York, Brooklyn, New York
| | | | | | | | - Govind Bhagat
- Columbia University Medical Center and New York Presbyterian Hospital, New York, New York
| | - Alessandra B Pernis
- Hospital for Special Surgery, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Medicine, Cornell University, New York, New York
| |
Collapse
|
32
|
Myers DR, Lau T, Markegard E, Lim HW, Kasler H, Zhu M, Barczak A, Huizar JP, Zikherman J, Erle DJ, Zhang W, Verdin E, Roose JP. Tonic LAT-HDAC7 Signals Sustain Nur77 and Irf4 Expression to Tune Naive CD4 T Cells. Cell Rep 2017; 19:1558-1571. [PMID: 28538176 PMCID: PMC5587137 DOI: 10.1016/j.celrep.2017.04.076] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 12/20/2022] Open
Abstract
CD4+ T cells differentiate into T helper cell subsets in feedforward manners with synergistic signals from the T cell receptor (TCR), cytokines, and lineage-specific transcription factors. Naive CD4+ T cells avoid spontaneous engagement of feedforward mechanisms but retain a prepared state. T cells lacking the adaptor molecule LAT demonstrate impaired TCR-induced signals yet cause a spontaneous lymphoproliferative T helper 2 (TH2) cell syndrome in mice. Thus, LAT constitutes an unexplained maintenance cue. Here, we demonstrate that tonic signals through LAT constitutively export the repressor HDAC7 from the nucleus of CD4+ T cells. Without such tonic signals, HDAC7 target genes Nur77 and Irf4 are repressed. We reveal that Nur77 suppresses CD4+ T cell proliferation and uncover a suppressive role for Irf4 in TH2 polarization; halving Irf4 gene-dosage leads to increases in GATA3+ and IL-4+ cells. Our studies reveal that naive CD4+ T cells are dynamically tuned by tonic LAT-HDAC7 signals.
Collapse
Affiliation(s)
- Darienne R Myers
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tannia Lau
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Evan Markegard
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hyung W Lim
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Herbert Kasler
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Minghua Zhu
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrea Barczak
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John P Huizar
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - David J Erle
- Lung Biology Center, Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Weiguo Zhang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Verdin
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, 1650 Owens Street, San Francisco, CA 94158, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
33
|
Identification of a Novel Alternatively Spliced Form of Inflammatory Regulator SWAP-70-Like Adapter of T Cells. Int J Inflam 2017; 2017:1324735. [PMID: 28523202 PMCID: PMC5421089 DOI: 10.1155/2017/1324735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Activation of naive CD4+ T cells results in the development of several distinct subsets of effector Th cells, including Th2 cells that play a pivotal role in allergic inflammation and helminthic infections. SWAP-70-like adapter of T cells (SLAT), also known as Def6 or IBP, is a guanine nucleotide exchange factor for small GTPases, which regulates CD4+ T cell inflammatory responses by controlling Ca2+/NFAT signaling. In this study, we have identified a novel alternatively spliced isoform of SLAT, named SLAT2, which lacks the region encoded by exons 2-7 of the Def6 gene. SLAT2 was selectively expressed in differentiated Th2 cells after the second round of in vitro stimulation, but not in differentiated Th1, Th17, or regulatory T (Treg) cells. Functional assays revealed that SLAT2 shared with SLAT the ability to enhance T cell receptor- (TCR-) mediated activation of NFAT and production of IL-4 but was unable to enhance TCR-induced adhesion to ICAM-1. Ectopic expression of SLAT2 or SLAT in Jurkat T cells resulted in the expression of distinct forms of filopodia, namely, short versus long ones, respectively. These results demonstrate that modulating either SLAT2 or SLAT protein expression could play critical roles in cytokine production and actin reorganization during inflammatory immune responses.
Collapse
|
34
|
Binder N, Miller C, Yoshida M, Inoue K, Nakano S, Hu X, Ivashkiv LB, Schett G, Pernis A, Goldring SR, Ross FP, Zhao B. Def6 Restrains Osteoclastogenesis and Inflammatory Bone Resorption. THE JOURNAL OF IMMUNOLOGY 2017; 198:3436-3447. [PMID: 28314855 DOI: 10.4049/jimmunol.1601716] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/19/2017] [Indexed: 01/08/2023]
Abstract
Inflammatory bone resorption mediated by osteoclasts is a major cause of morbidity and disability in many inflammatory disorders, including rheumatoid arthritis (RA). The mechanisms that regulate osteoclastogenesis and bone resorption in inflammatory settings are complex and have not been well elucidated. In this study, we identify the immunoregulator differentially expressed in FDCP 6 homolog (Def6) as a novel inhibitor of osteoclastogenesis in physiological and inflammatory conditions. Def6 deficiency in Def6-/- mice enhanced the sensitivity of osteoclast precursors to the physiological osteoclastogenic inducer receptor activator for NF-κB ligand, and Def6-/- osteoclasts formed actin rings. Furthermore, Def6 deficiency markedly increased TNF-α-induced osteoclastogenesis in vitro and in vivo and enhanced bone resorption in an inflammatory osteolysis mouse model. TNF-α serum levels correlated negatively with Def6 expression levels in osteoclast precursors obtained from RA patients, and the osteoclastogenic capacity of the osteoclast precursors was significantly inversely correlated with their Def6 expression levels, indicating that Def6 functions as an inhibitor of excessive osteoclast formation and bone destruction in RA. Mechanistically, Def6 suppressed osteoclastogenesis and the expression of key osteoclastogenic factors NFATc1, B lymphocyte-induced maturation protein-1, and c-Fos by regulating an endogenous IFN-β-mediated autocrine feedback loop. The Def6-dependent pathway may represent a novel therapeutic target to prevent pathological bone destruction.
Collapse
Affiliation(s)
- Nikolaus Binder
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Christine Miller
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Masaki Yoshida
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Kazuki Inoue
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Shinichi Nakano
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Xiaoyu Hu
- Institute for Immunology, Tsinghua University, Beijing 100084, China.,School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021
| | - Georg Schett
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Alessandra Pernis
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021.,Graduate Program in Immunology and Microbial Pathogenesis, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021.,Autoimmunity and Inflammation Program, Hospital for Special Surgery, New York, NY 10021; and
| | - Steven R Goldring
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - F Patrick Ross
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021; .,Department of Medicine, Weill Cornell Medical College, New York, NY 10021
| |
Collapse
|
35
|
Mamun AA, Liu F. Role of IRF4-Mediated Inflammation: Implication in Neurodegenerative Diseases. NEUROLOGY & NEUROTHERAPY OPEN ACCESS JOURNAL 2017; 2:107. [PMID: 39473489 PMCID: PMC11521387 DOI: 10.23880/nnoaj-16000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Neuro-inflammation is a common feature of various central nervous system (CNS) disorders, including stroke, Alzheimer's disease, Multiple sclerosis, etc., and has a significant impact on the outcomes. Regulation of the immune response has therapeutic value. Interferon regulatory factor 4 (IRF4) is a hemopoietic transcription factor critical for activation of microglia/macrophages and modulation of inflammatory responses. The effects of IRF4 signaling on inflammation are pleiotropic, and vary depending on immune cell types and the pathological microenvironment that is regulated by both pro- and anti-inflammatory cytokines. Mechanistically, IRF4 is a quintessential 'context-dependent' transcription factor that regulates distinct groups of inflammatory mediators in a differential manner depending on their activation in different cell types including phagocytes, T-cell subtypes, and neuronal cells. In this review, we summarized the recent findings of IRF4 in the context of immune responses in different cell types with diverse pathological conditions. The primary goal of this review is to understand the signaling pathways and beneficial functions of IRF4, in hope of developing effective therapeutic strategies targeting the immune responses to neurodegenerative diseases.
Collapse
Affiliation(s)
- AA Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| | - F Liu
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| |
Collapse
|
36
|
Wang L, Ren J, Li G, Moorman JP, Yao ZQ, Ning S. LMP1 signaling pathway activates IRF4 in latent EBV infection and a positive circuit between PI3K and Src is required. Oncogene 2016; 36:2265-2274. [PMID: 27819673 DOI: 10.1038/onc.2016.380] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
Interferon (IFN) regulatory factors (IRFs) have crucial roles in immune regulation and oncogenesis. We have recently shown that IRF4 is activated through c-Src-mediated tyrosine phosphorylation in virus-transformed cells. However, the intracellular signaling pathway triggering Src activation of IRF4 remains unknown. In this study, we provide evidence that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) promotes IRF4 phosphorylation and markedly stimulates IRF4 transcriptional activity, and that Src mediates LMP1 activation of IRF4. As to more precise mechanism, we show that LMP1 physically interacts with c-Src, and the phosphatidylinositol 3 kinase (PI3K) subunit P85 mediates their interaction. Depletion of P85 by P85-specific short hairpin RNAs disrupts their interaction and diminishes IRF4 phosphorylation in EBV-transformed cells. Furthermore, we show that Src is upstream of PI3K for activation of both IRF4 and Akt. In turn, inhibition of PI3K kinase activity by the PI3K-speicfic inhibitor LY294002 impairs Src activity. Our results show that LMP1 signaling is responsible for IRF4 activation, and further characterize the IRF4 regulatory network that is a promising therapeutic target for specific hematological malignancies.
Collapse
Affiliation(s)
- L Wang
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J Ren
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - G Li
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - J P Moorman
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Z Q Yao
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - S Ning
- Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Center of Excellence for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
37
|
Joly S, Rhea L, Volk P, Moreland JG, Dunnwald M. Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock. PLoS One 2016; 11:e0152385. [PMID: 27035130 PMCID: PMC4817988 DOI: 10.1371/journal.pone.0152385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/14/2016] [Indexed: 01/26/2023] Open
Abstract
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production.
Collapse
Affiliation(s)
- Sophie Joly
- Department of Internal Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Lindsey Rhea
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Paige Volk
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Jessica G. Moreland
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
| | - Martine Dunnwald
- Department of Pediatrics, The University of Iowa, Iowa City, IA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Akazawa S, Kobayashi M, Kuriya G, Horie I, Yu L, Yamasaki H, Okita M, Nagayama Y, Matsuyama T, Akbari M, Yui K, Kawakami A, Abiru N. Haploinsufficiency of interferon regulatory factor 4 strongly protects against autoimmune diabetes in NOD mice. Diabetologia 2015; 58:2606-14. [PMID: 26271342 DOI: 10.1007/s00125-015-3724-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/21/2015] [Indexed: 01/12/2023]
Abstract
AIMS/HYPOTHESIS Interferon regulatory factor (IRF)4 plays a critical role in lymphoid development and the regulation of immune responses. Genetic deletion of IRF4 has been shown to suppress autoimmune disease in several mouse models, but its role in autoimmune diabetes in NOD mice remains unknown. METHODS To address the role of IRF4 in the pathogenesis of autoimmune diabetes in NOD mice, we generated IRF4-knockout NOD mice and investigated the impact of the genetic deletion of IRF4 on diabetes, insulitis and insulin autoantibody; the effector function of T cells in vivo and in vitro; and the proportion of dendritic cell subsets. RESULTS Heterozygous IRF4-deficient NOD mice maintained the number and phenotype of T cells at levels similar to NOD mice. However, diabetes and autoantibody production were completely suppressed in both heterozygous and homozygous IRF4-deficient NOD mice. The level of insulitis was strongly suppressed in both heterozygous and homozygous IRF4-deficient mice, with minimal insulitis observed in heterozygous mice. An adoptive transfer study revealed that IRF4 deficiency conferred disease resistance in a gene-dose-dependent manner in recipient NOD/severe combined immunodeficiency mice. Furthermore, the proportion of migratory dendritic cells in lymph nodes was reduced in heterozygous and homozygous IRF4-deficient NOD mice in an IRF4 dose-dependent manner. These results suggest that the levels of IRF4 in T cells and dendritic cells are important for the pathogenesis of diabetes in NOD mice. CONCLUSIONS/INTERPRETATION Haploinsufficiency of IRF4 halted disease development in NOD mice. Our findings suggest that an IRF4-targeted strategy might be useful for modulating autoimmunity in type 1 diabetes.
Collapse
Affiliation(s)
- Satoru Akazawa
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masakazu Kobayashi
- Center for Health and Community Medicine, Nagasaki University, Nagasaki, Japan
| | - Genpei Kuriya
- Department of Endocrinology and Metabolism, National Hospital Organization Nagasaki Medical Center, Nagasaki, Japan
| | - Ichiro Horie
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Liping Yu
- Barbara Davis Center for Diabetes, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Hironori Yamasaki
- Center for Health and Community Medicine, Nagasaki University, Nagasaki, Japan
| | - Minoru Okita
- Department of Locomotive Rehabilitation Science, Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Division of Cytokine Signaling, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masoud Akbari
- Division of Immunology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsuyuki Yui
- Division of Immunology, Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Kawakami
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Unit of Translational Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| |
Collapse
|
39
|
Konya C, Paz Z, Apostolidis SA, Tsokos GC. Update on the role of Interleukin 17 in rheumatologic autoimmune diseases. Cytokine 2015; 75:207-15. [PMID: 26028353 DOI: 10.1016/j.cyto.2015.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/02/2015] [Accepted: 01/09/2015] [Indexed: 12/14/2022]
Abstract
Interleukin 17 is a proinflammatory cytokine produced by CD4+ T cells when in the presence of a distinct set of cytokines and other cells. Preclinical and clinical studies have assigned a role to IL-17 in tissue inflammation and damage in patients with rheumatoid arthritis, psoriasis and psoriatic arthritis, ankylosing spondylitis and systemic lupus erythematosus. Antibodies blocking the action of IL-17 have already been approved to treat patients with psoriasis and it is expected that they may also benefit patients with other rheumatic diseases.
Collapse
Affiliation(s)
- Christine Konya
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Ziv Paz
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - Sokratis A Apostolidis
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| | - George C Tsokos
- Rheumatology Department at Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, United States.
| |
Collapse
|
40
|
Wang J, Yin T, Wen Y, Tian F, He X, Zhou D, Lin Y, Yang J. Potential effects of interferon regulatory factor 4 in a murine model of polyinosinic-polycytidylic acid-induced embryo resorption. Reprod Fertil Dev 2015; 28:RD14499. [PMID: 25873314 DOI: 10.1071/rd14499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/15/2015] [Indexed: 12/19/2022] Open
Abstract
Interferon regulatory factor (IRF) 4 has been reported to modulate Toll-like receptor (TLR) signalling. Polyinosinic-polycytidylic acid (poly(I:C)) can be specifically recognised by TLR3, triggering the innate immune response and subsequently resulting in pregnancy loss. In the present study, poly(I:C) was administered to mice with or without TLR3 blockade. Chemokine (C-X-C motif) receptor 4 (CXCR4) expression was measured with or without chemokine (C-X-C motif) ligand 12 (CXCL12) inhibition. In cultured murine splenic mononuclear cells, IRF4 was knocked down by a specific short interference (si) RNA. IRF4 mRNA and protein levels and T helper (Th) 17 cell frequencies in the poly(I:C)-treated group were significantly higher than in the phosphate-buffered saline (PBS)-treated control group, and were correlated with a significantly higher embryo resorption rate. Interleukin (IL)-17A and IL-21 levels were markedly lower in the IRF4 siRNA-treated group than in the non-specific siRNA- or vehicle control-treated groups. The CXCR4+ cell frequency was significantly higher among IRF4+ uterine mononuclear and granular cells (UMGCs) compared with IRF4- cells. Inhibition of CXCL12 significantly abrogated poly(I:C)-induced increases in the frequency of IRF4+CXCR4+ cells in UMGCs. IRF4 might play a critical role in TLR3 signalling, which mediates Th17 cell activation and upregulates the expression of IL-17A and IL-21, which results in pregnancy loss. CXCL12 may modulate IRF4+CXCR4+ cell migration at the fetomaternal interface. TLR3 and IRF4 blockade could potentially prevent spontaneous abortion under certain conditions.
Collapse
|
41
|
Christie D, Zhu J. Transcriptional regulatory networks for CD4 T cell differentiation. Curr Top Microbiol Immunol 2015; 381:125-72. [PMID: 24839135 DOI: 10.1007/82_2014_372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD4(+) T cells play a central role in controlling the adaptive immune response by secreting cytokines to activate target cells. Naïve CD4(+) T cells differentiate into at least four subsets, Th1Th1 , Th2Th2 , Th17Th17 , and inducible regulatory T cellsregulatory T cells , each with unique functions for pathogen elimination. The differentiation of these subsets is induced in response to cytokine stimulation, which is translated into Stat activation, followed by induction of master regulator transcription factorstranscription factors . In addition to these factors, multiple other transcription factors, both subset specific and shared, are also involved in promoting subset differentiation. This review will focus on the network of transcription factors that control CD4(+) T cell differentiation.
Collapse
Affiliation(s)
- Darah Christie
- Molecular and Cellular Immunoregulation Unit, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
42
|
Dietz L, Frommer F, Vogel AL, Vaeth M, Serfling E, Waisman A, Buttmann M, Berberich-Siebelt F. NFAT1 deficit and NFAT2 deficit attenuate EAE via different mechanisms. Eur J Immunol 2015; 45:1377-89. [DOI: 10.1002/eji.201444638] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 09/30/2014] [Accepted: 01/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Lena Dietz
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Friederike Frommer
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg; University of Mainz; Mainz Germany
| | - Anna-Lena Vogel
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Martin Vaeth
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Edgar Serfling
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
| | - Ari Waisman
- Institute for Molecular Medicine; University Medical Center of the Johannes Gutenberg; University of Mainz; Mainz Germany
| | - Mathias Buttmann
- Department of Neurology; University of Wuerzburg; Wuerzburg Germany
| | - Friederike Berberich-Siebelt
- Institute of Pathology; University of Wuerzburg; Wuerzburg Germany
- Comprehensive Cancer Center Mainfranken; University of Wuerzburg; Wuerzburg Germany
| |
Collapse
|
43
|
Selective oral ROCK2 inhibitor down-regulates IL-21 and IL-17 secretion in human T cells via STAT3-dependent mechanism. Proc Natl Acad Sci U S A 2014; 111:16814-9. [PMID: 25385601 DOI: 10.1073/pnas.1414189111] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Rho-associated kinase 2 (ROCK2) regulates the secretion of proinflammatory cytokines and the development of autoimmunity in mice. Data from a phase 1 clinical trial demonstrate that oral administration of KD025, a selective ROCK2 inhibitor, to healthy human subjects down-regulates the ability of T cells to secrete IL-21 and IL-17 by 90% and 60%, respectively, but not IFN-γ in response to T-cell receptor stimulation in vitro. Pharmacological inhibition with KD025 or siRNA-mediated inhibition of ROCK2, but not ROCK1, significantly diminished STAT3 phosphorylation and binding to IL-17 and IL-21 promoters and reduced IFN regulatory factor 4 and nuclear hormone RAR-related orphan receptor γt protein levels in T cells derived from healthy subjects or rheumatoid arthritis patients. Simultaneously, treatment with KD025 also promotes the suppressive function of regulatory T cells through up-regulation of STAT5 phosphorylation and positive regulation of forkhead box p3 expression. The administration of KD025 in vivo down-regulates the progression of collagen-induced arthritis in mice via targeting of the Th17-mediated pathway. Thus, ROCK2 signaling appears to be instrumental in regulating the balance between proinflammatory and regulatory T-cell subsets. Targeting of ROCK2 in man may therefore restore disrupted immune homeostasis and have a role in the treatment of autoimmunity.
Collapse
|
44
|
Wang L, Yao ZQ, Moorman JP, Xu Y, Ning S. Gene expression profiling identifies IRF4-associated molecular signatures in hematological malignancies. PLoS One 2014; 9:e106788. [PMID: 25207815 PMCID: PMC4160201 DOI: 10.1371/journal.pone.0106788] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/31/2014] [Indexed: 12/29/2022] Open
Abstract
The lymphocyte-specific transcription factor Interferon (IFN) Regulatory Factor 4 (IRF4) is implicated in certain types of lymphoid and myeloid malignancies. However, the molecular mechanisms underlying its interactions with these malignancies are largely unknown. In this study, we have first profiled molecular signatures associated with IRF4 expression in associated cancers, by analyzing existing gene expression profiling datasets. Our results show that IRF4 is overexpressed in melanoma, in addition to previously reported contexts including leukemia, myeloma, and lymphoma, and that IRF4 is associated with a unique gene expression pattern in each context. A pool of important genes involved in B-cell development, oncogenesis, cell cycle regulation, and cell death including BATF, LIMD1, CFLAR, PIM2, and CCND2 are common signatures associated with IRF4 in non-Hodgkin B cell lymphomas. We confirmed the correlation of IRF4 with LIMD1 and CFLAR in a panel of cell lines derived from lymphomas. Moreover, we profiled the IRF4 transcriptome in the context of EBV latent infection, and confirmed several genes including IFI27, IFI44, GBP1, and ARHGAP18, as well as CFLAR as novel targets for IRF4. These results provide valuable information for understanding the IRF4 regulatory network, and improve our knowledge of the unique roles of IRF4 in different hematological malignancies.
Collapse
Affiliation(s)
- Ling Wang
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Zhi Q. Yao
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- HIV/HCV Program, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
| | - Jonathan P. Moorman
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- HIV/HCV Program, James H. Quillen VA Medical Center, Johnson City, Tennessee, United States of America
| | - Yanji Xu
- Shaun and Lilly International, LLC, Collierville, Tennessee, United States of America
| | - Shunbin Ning
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
45
|
Lally L, Pernis A, Narula N, Huang WT, Spiera R. Increased rho kinase activity in temporal artery biopsies from patients with giant cell arteritis. Rheumatology (Oxford) 2014; 54:554-8. [PMID: 25213129 DOI: 10.1093/rheumatology/keu364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Aberrant rho kinase (ROCK) activity is implicated in the pathogenesis of several vascular diseases and is associated with Th17 differentiation. Th17 immune response is recognized in the pathogenesis of GCA. The aim of this study was to assess ROCK activity in GCA. METHODS All patients who underwent temporal artery biopsy (TAB) at a tertiary care centre over 5 years were identified and charts reviewed. Subjects were categorized into three groups: TAB-positive GCA, TAB-negative GCA and age- and sex-matched controls. TABs were stained for phosphorylated ezrin/radixin/moesin (pERM), a surrogate of ROCK activity, and reviewed by a pathologist blinded to clinical status. Three areas were scored for staining intensity on a scale of 0-2, with a maximum possible score of 6. RESULTS Nineteen subjects with TAB-positive GCA, 17 with TAB-negative GCA and 18 controls were analysed. Compared with controls, GCA subjects with either positive or negative TABs had significantly higher pERM intensity scores (P = 0.0109). Adjusting for diabetes, hypertension, prednisone and statin use, GCA subjects still had higher pERM scores [odds ratio 7.3 (95% CI 1.9, 25.9), P = 0.0046]. The high pERM score had a sensitivity of 90% and a negative predictive value of 91% for the diagnosis of GCA in those with a negative TAB, compared with 51% sensitivity for histopathology alone. CONCLUSION Subjects with GCA had more intense pERM staining in TAB specimens compared with age- and sex-matched controls, regardless of whether TAB was positive or negative by routine histopathology, suggesting increased ROCK activity in GCA. The ROCK pathway warrants further investigation in GCA, as it may have diagnostic significance in enhancing the sensitivity of TAB.
Collapse
Affiliation(s)
- Lindsay Lally
- Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA. Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA.
| | - Alessandra Pernis
- Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA. Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA
| | - Navneet Narula
- Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA
| | - Wei-Ti Huang
- Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA
| | - Robert Spiera
- Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA. Department of Rheumatology, Hospital for Special Surgery, Department of Medicine, Weill-Cornell Medical College, Autoimmunity and Inflammation Program, Hospital for Special Surgery and Department of Clinical Pathology and Laboratory Medicine, Weill-Cornell Medical College, New York, NY, USA
| |
Collapse
|
46
|
Parish IA, Marshall HD, Staron MM, Lang PA, Brüstle A, Chen JH, Cui W, Tsui YC, Perry C, Laidlaw BJ, Ohashi PS, Weaver CT, Kaech SM. Chronic viral infection promotes sustained Th1-derived immunoregulatory IL-10 via BLIMP-1. J Clin Invest 2014; 124:3455-68. [PMID: 25003188 DOI: 10.1172/jci66108] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/22/2014] [Indexed: 01/19/2023] Open
Abstract
During the course of many chronic viral infections, the antiviral T cell response becomes attenuated through a process that is regulated in part by the host. While elevated expression of the immunosuppressive cytokine IL-10 is involved in the suppression of viral-specific T cell responses, the relevant cellular sources of IL-10, as well as the pathways responsible for IL-10 induction, remain unclear. In this study, we traced IL-10 production over the course of chronic lymphocytic choriomeningitis virus (LCMV) infection in an IL-10 reporter mouse line. Using this model, we demonstrated that virus-specific T cells with reduced inflammatory function, particularly Th1 cells, display elevated and sustained IL-10 expression during chronic LCMV infection. Furthermore, ablation of IL-10 from the T cell compartment partially restored T cell function and reduced viral loads in LCMV-infected animals. We found that viral persistence is needed for sustained IL-10 production by Th1 cells and that the transcription factor BLIMP-1 is required for IL-10 expression by Th1 cells. Restimulation of Th1 cells from LCMV-infected mice promoted BLIMP-1 and subsequent IL-10 expression, suggesting that constant antigen exposure likely induces the BLIMP-1/IL-10 pathway during chronic viral infection. Together, these data indicate that effector T cells self-limit their responsiveness during persistent viral infection via an IL-10-dependent negative feedback loop.
Collapse
|
47
|
Huber M, Lohoff M. IRF4 at the crossroads of effector T-cell fate decision. Eur J Immunol 2014; 44:1886-95. [PMID: 24782159 DOI: 10.1002/eji.201344279] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/21/2014] [Accepted: 04/25/2014] [Indexed: 12/25/2022]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcription factor that is expressed in hematopoietic cells and plays pivotal roles in the immune response. Originally described as a lymphocyte-specific nuclear factor, IRF4 promotes differentiation of naïve CD4(+) T cells into T helper 2 (Th2), Th9, Th17, or T follicular helper (Tfh) cells and is required for the function of effector regulatory T (eTreg) cells. Moreover, IRF4 is essential for the sustained differentiation of cytotoxic effector CD8(+) T cells, for CD8(+) T-cell memory formation, and for differentiation of naïve CD8(+) T cells into IL-9-producing (Tc9) and IL-17-producing (Tc17) CD8(+) T-cell subsets. In this review, we focus on recent findings on the role of IRF4 during the development of CD4(+) and CD8(+) T-cell subsets and the impact of IRF4 on T-cell-mediated immune responses in vivo.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg, Germany
| | | |
Collapse
|
48
|
Tan C, Wei L, Vistica BP, Shi G, Wawrousek EF, Gery I. Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen. Cell Mol Immunol 2014; 11:305-13. [PMID: 24583715 DOI: 10.1038/cmi.2014.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 01/02/2014] [Accepted: 01/20/2014] [Indexed: 12/29/2022] Open
Abstract
T-helper (Th) lineages have been generated in vitro by activating CD4 cells with anti-CD3/CD28 antibodies during polarization. Physiologically, however, the generation of Th lineages is by activation with the specific antigen presented by antigen-presenting cells (APC). Here, we used T-cell receptor (TCR)-transgenic mice to compare the phenotypes of Th1, Th9 and Th17 lineages when generated by either one of the two activation modes. Lineage Th cells specific against hen egg lysozyme (HEL), were adoptively transferred into recipient mice transgenically expressing HEL in their lens. Remarkable differences were found between lineages of Th1, Th9 or Th17, generated by either one of the two modes in their capacities to migrate to and proliferate in the recipient spleen and, importantly, to induce inflammation in the recipient mouse eyes. Substantial differences were also observed between the lineage pairs in their transcript expression profiles of certain chemokines and chemokine receptors. Surprisingly, however, close similarities were observed between the transcript expression profiles of lineages of the three phenotypes, activated by the same mode. Furthermore, Th cell lineages generated by the two activation modes differed considerably in their pattern of gene expression, as monitored by microarray analysis, but exhibited commonality with lineages of other phenotypes generated by the same activation mode. This study thus shows that (i) Th lineages generated by activation with anti-CD3/CD28 antibodies differ from lineages generated by antigen/APC; and (ii) the mode of activation determines to a large extent the expression profile of major transcripts.
Collapse
Affiliation(s)
- Cuiyan Tan
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lai Wei
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Barbara P Vistica
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Guangpu Shi
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eric F Wawrousek
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Igal Gery
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
49
|
Abstract
The transcription factor IRF4 is known to be essential for differentiation of effector CD4(+) T cell subsets. In this issue, Yao et al. (2013) identify IRF4 as a regulator of checkpoints in the final steps and maintenance of CD8(+) T cell effector differentiation.
Collapse
Affiliation(s)
- Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, 35043 Marburg, Germany
| | | |
Collapse
|
50
|
Rogatsky I, Chandrasekaran U, Manni M, Yi W, Pernis AB. Epigenetics and the IRFs: A complex interplay in the control of immunity and autoimmunity. Autoimmunity 2013; 47:242-55. [DOI: 10.3109/08916934.2013.853050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|