1
|
McClelland SC, Attard MRG, Bowen J, Horrocks NPC, Jamie GA, Dixit T, Spottiswoode CN, Portugal SJ. Eggshell composition and surface properties of avian brood-parasitic species compared with non-parasitic species. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221023. [PMID: 37234505 PMCID: PMC10206472 DOI: 10.1098/rsos.221023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The eggs of avian obligate brood-parasitic species have multiple adaptations to deceive hosts and optimize development in host nests. While the structure and composition of the eggshell in all birds is essential for embryo growth and protection from external threats, parasitic eggs may face specific challenges such as high microbial loads, rapid laying and ejection by the host parents. We set out to assess whether eggshells of avian brood-parasitic species have either (i) specialized structural properties, to meet the demands of a brood-parasitic strategy or (ii) similar structural properties to eggs of their hosts, due to the similar nest environment. We measured the surface topography (roughness), wettability (how well surfaces repel water) and calcium content of eggshells of a phylogenetically and geographically diverse range of brood-parasitic species (representing four of the seven independent lineages of avian brood-parasitic species), their hosts and close relatives of the parasites. These components of the eggshell structure have been demonstrated previously to influence such factors as the risk of microbial infection and overall shell strength. Within a phylogenetically controlled framework, we found no overall significant differences in eggshell roughness, wettability and calcium content between (i) parasitic and non-parasitic species, or (ii) parasitic species and their hosts. Both the wettability and calcium content of the eggs from brood-parasitic species were not more similar to those of their hosts' eggs than expected by chance. By contrast, the mean surface roughness of the eggs of brood-parasitic species was more similar to that of their hosts' eggs than expected by chance, suggesting brood-parasitic species may have evolved to lay eggs that match the host nest environment for this trait. The lack of significant overall differences between parasitic and non-parasitic species, including hosts, in the traits we measured, suggests that phylogenetic signal, as well as general adaptations to the nest environment and for embryo development, outweigh any influence of a parasitic lifestyle on these eggshell properties.
Collapse
Affiliation(s)
- Stephanie C. McClelland
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Marie R. G. Attard
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- School of Engineering and Innovation, Open University, Milton Keynes MK7 6AA, UK
| | - James Bowen
- School of Engineering and Innovation, Open University, Milton Keynes MK7 6AA, UK
| | - Nicholas P. C. Horrocks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge University, Cambridge CB2 0AW, UK
| | - Gabriel A. Jamie
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Tanmay Dixit
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Claire N. Spottiswoode
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, Cape Town, South Africa
| | - Steven J. Portugal
- Department of Biological Sciences, School of Life and Environmental Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
- The Natural History Museum, Tring, Herts HP23 6AP, UK
| |
Collapse
|
2
|
Ruiz-Raya F. Ecophysiology of egg rejection in hosts of avian brood parasites: new insights and perspectives. Curr Zool 2021; 67:631-638. [PMID: 34805540 PMCID: PMC8599070 DOI: 10.1093/cz/zoab042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/09/2021] [Indexed: 12/11/2022] Open
Abstract
Egg rejection is the most effective and widespread defense used by host species to counteract the extreme fitness costs frequently imposed by obligate avian brood parasites. Yet, the proximate mechanisms underlying between- and within-individual variation in host responses remain poorly explored. Emerging evidence suggests that egg rejection is dependent on individual physiological states, and draws attention to the role of hormones as mediators of flexible antiparasitic responses. In this perspective article, I outline recent advances in our understanding of the proximate factors that mediate egg rejection. I also point out some areas where knowledge remains still lacking, especially those related to the development and maintenance of effective cognitive functions, the potential role of oxidative stress, immunological state, and developmental stressors. I propose new hypotheses that stimulate future research on behavioral host responses toward brood parasitism.
Collapse
Affiliation(s)
- Francisco Ruiz-Raya
- Centro de Investigación Mariña, Universidade de Vigo, GEA, Vigo 36310, Spain
| |
Collapse
|
3
|
Ruiz-Castellano C, Ruiz-Rodríguez M, Tomás G, Soler JJ. Antimicrobial activity of nest-lining feathers is enhanced by breeding activity in avian nests. FEMS Microbiol Ecol 2019; 95:5462650. [PMID: 30985888 DOI: 10.1093/femsec/fiz052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 04/13/2019] [Indexed: 11/15/2022] Open
Abstract
The use of feathers as nest material has been proposed as a kind of self-medication strategy because antimicrobial-producing microorganisms living on feathers may defend offspring against pathogenic infections. In this case, it is expected that density of antimicrobial-producing bacteria, and their antimicrobial effects, are higher in feathers that line the nests than in eggshells. Moreover, we know that feather pigmentation and breeding activity may influence density and antimicrobial production of bacteria. To test these predictions, we analyzed bacterial densities and antimicrobial activity of bacterial colonies isolated from bird eggshells and nest-lining feathers against bacterial strains comprising potential pathogens. Samples were collected from spotless starling (Sturnus unicolor) nests, and from artificial nests to isolate the effects of breeding activity on bacterial communities. The composition of feathers lining the nests was experimentally manipulated to create groups of nests with pigmented feathers, with unpigmented feathers, with both types of feathers or without feathers. Although we did not detect an effect of experimental feather treatments, we found that bacterial colonies isolated from feathers were more active against the tested bacterial strains than those isolated from eggshells. Moreover, bacterial density on feathers, keratinolytic bacteria on eggshells and antimicrobial activity of colonies isolated were higher in starling nests than in artificial nests. These results suggest that antimicrobial activity of bacteria growing on nest-lining feathers would be one of the mechanisms explaining the previously detected antimicrobial effects of this material in avian nests, and that breeding activity results in nest bacterial communities with higher antimicrobial activity.
Collapse
Affiliation(s)
- Cristina Ruiz-Castellano
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Magdalena Ruiz-Rodríguez
- Biologie Integrative des Organismes Marins, Observatoire Océanologique, Sorbonne Universités, Avenue du Fontaulé, 66650 Banyuls-Sur-Mer, France
| | - Gustavo Tomás
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| |
Collapse
|
4
|
Peralta-Sánchez JM, Martín-Platero AM, Wegener-Parfrey L, Martínez-Bueno M, Rodríguez-Ruano S, Navas-Molina JA, Vázquez-Baeza Y, Martín-Gálvez D, Martín-Vivaldi M, Ibáñez-Álamo JD, Knight R, Soler JJ. Bacterial density rather than diversity correlates with hatching success across different avian species. FEMS Microbiol Ecol 2019; 94:4847879. [PMID: 29438507 DOI: 10.1093/femsec/fiy022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 01/09/2023] Open
Abstract
Bacterial communities within avian nests are considered an important determinant of egg viability, potentially selecting for traits that confer embryos with protection against trans-shell infection. A high bacterial density on the eggshell increases hatching failure, whether this effect could be due to changes in bacterial community or just a general increase in bacterial density. We explored this idea using intra- and interspecific comparisons of the relationship between hatching success and eggshell bacteria characterized by culture and molecular techniques (fingerprinting and high-throughput sequencing). We collected information for 152 nests belonging to 17 bird species. Hatching failures occurred more frequently in nests with higher density of aerobic mesophilic bacteria on their eggshells. Bacterial community was also related to hatching success, but only when minority bacterial operational taxonomic units were considered. These findings support the hypothesis that bacterial density is a selective agent of embryo viability, and hence a proxy of hatching failure only within species. Although different avian species hold different bacterial densities or assemblages on their eggs, the association between bacteria and hatching success was similar for different species. This result suggests that interspecific differences in antibacterial defenses are responsible for keeping the hatching success at similar levels in different species.
Collapse
Affiliation(s)
- Juan Manuel Peralta-Sánchez
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain.,Department of Integrative Ecology, Estación Biológica de Doñana, C.S.I.C. Avda. Américo Vespucio s/n, E-41092 Seville, Spain
| | | | | | - Manuel Martínez-Bueno
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain
| | - Sonia Rodríguez-Ruano
- Departamento de Microbiología, Universidad de Granada, Calle Fuentenueva, s/n, E-18071 Granada, Spain.,Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic
| | - José Antonio Navas-Molina
- Department of Computer Science & Engineering University of California San Diego, La Jolla, CA 92093, USA
| | - Yoshiki Vázquez-Baeza
- Department of Computer Science & Engineering University of California San Diego, La Jolla, CA 92093, USA
| | - David Martín-Gálvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, CB10 1SD, UK
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Campus de Fuentenueva, s/n, E-18071 Granada, Spain
| | - Juan Diego Ibáñez-Álamo
- Groningen Institute for Evolutionary Life Sciences, University of Groningen. 9700 CC Groningen, The Netherlands
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.,Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Juan José Soler
- Departamento de Ecología Funcional y Evolutiva. Estación Experimental de Zonas Áridas, C.S.I.C., E-04120 Almería, Spain
| |
Collapse
|
5
|
Mitigating the impact of microbial pressure on great (Parus major) and blue (Cyanistes caeruleus) tit hatching success through maternal immune investment. PLoS One 2018; 13:e0204022. [PMID: 30286089 PMCID: PMC6171831 DOI: 10.1371/journal.pone.0204022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023] Open
Abstract
The hatching success of a bird’s egg is one of the key determinants of avian reproductive success, which may be compromised by microbial infections causing embryonic death. During incubation, outer eggshell bacterial communities pose a constant threat of pathogen translocation and embryo infection. One of the parental strategies to mitigate this threat is the incorporation of maternal immune factors into the egg albumen and yolk. It has been suggested that habitat changes like forest fragmentation can affect environmental factors and life-history traits that are linked to egg contamination. This study aims at investigating relationships between microbial pressure, immune investment and hatching success in two abundant forest bird species and analyzing to what extent these are driven by extrinsic (environmental) factors. We here compared (1) the bacterial load and composition on eggshells, (2) the level of immune defenses in eggs, and (3) the reproductive success between great (Parus major) and blue (Cyanistes caeruleus) tits in Belgium and examined if forest fragmentation affects these parameters. Analysis of 70 great tit and 34 blue tit eggshells revealed a similar microbiota composition (Enterobacteriaceae, Lactobacillus spp., Firmicutes and Bacteroidetes), but higher bacterial loads in great tits. Forest fragmentation was not identified as an important explanatory variable. Although a significant negative correlation between hatching success and bacterial load on the eggshells in great tits corroborates microbial pressure to be a driver of embryonic mortality, the overall hatching success was only marginally lower than in blue tits. This may be explained by the significantly higher levels of lysozyme and IgY in the eggs of great tits, protecting the embryo from increased infection pressure. Our results show that immune investment in eggs is suggested to be a species-specific adaptive trait that serves to protect hatchlings from pathogen pressure, which is not directly linked to habitat fragmentation.
Collapse
|
6
|
Tomás G, Martín-Gálvez D, Ruiz-Castellano C, Ruiz-Rodríguez M, Peralta-Sánchez JM, Martín-Vivaldi M, Soler JJ. Ectoparasite Activity During Incubation Increases Microbial Growth on Avian Eggs. MICROBIAL ECOLOGY 2018; 76:555-564. [PMID: 29332150 DOI: 10.1007/s00248-017-1140-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
While direct detrimental effects of parasites on hosts are relatively well documented, other more subtle but potentially important effects of parasitism are yet unexplored. Biological activity of ectoparasites, apart from skin injuries and blood-feeding, often results in blood remains, or parasite faeces that accumulate and modify the host environment. In this way, ectoparasite activities and remains may increase nutrient availability that may favour colonization and growth of microorganisms including potential pathogens. Here, by the experimental addition of hematophagous flies (Carnus hemapterus, a common ectoparasite of birds) to nests of spotless starlings Sturnus unicolor during incubation, we explore this possible side effect of parasitism which has rarely, if ever, been investigated. Results show that faeces and blood remains from parasitic flies on spotless starling eggshells at the end of incubation were more abundant in experimental than in control nests. Moreover, eggshell bacterial loads of different groups of cultivable bacteria including potential pathogens, as well as species richness of bacteria in terms of Operational Taxonomic Units (OTUs), were also higher in experimental nests. Finally, we also found evidence of a link between eggshell bacterial loads and increased embryo mortality, which provides indirect support for a bacterial-mediated negative effect of ectoparasitism on host offspring. Trans-shell bacterial infection might be one of the main causes of embryo death and, consequently, this hitherto unnoticed indirect effect of ectoparasitism might be widespread in nature and could affect our understanding of ecology and evolution of host-parasite interactions.
Collapse
Affiliation(s)
- G Tomás
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | - D Martín-Gálvez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | - M Ruiz-Rodríguez
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| | | | | | - J J Soler
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain
| |
Collapse
|
7
|
Ruiz-Rodríguez M, Martín-Vivaldi M, Martínez-Bueno M, Soler JJ. Gut Microbiota of Great Spotted Cuckoo Nestlings is a Mixture of Those of Their Foster Magpie Siblings and of Cuckoo Adults. Genes (Basel) 2018; 9:genes9080381. [PMID: 30060541 PMCID: PMC6115760 DOI: 10.3390/genes9080381] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/19/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023] Open
Abstract
Diet and host genetic or evolutionary history are considered the two main factors determining gut microbiota of animals, although studies are scarce in natural populations. The system of great spotted cuckoos (Clamator glandarius) parasitizing magpies (Pica pica) is ideal to study both effects since magpie adults feed cuckoo and magpie nestlings with the same diet and, consequently, differences in gut microbiota of nestlings of these two species will mainly reflect the importance of genetic components. Moreover, the diet of adults and of nestling cuckoos drastically differ from each other and, thus, differences and similarities in their microbiotas would respectively reflect the effect of environmental and genetic factors. We used next-generation sequencing technologies to analyze the gut microbiota of cuckoo adults and nestlings and of magpie nestlings. The highest α-diversity estimates appeared in nestling cuckoos and the lowest in nestling magpies. Moreover, despite the greatest differences in the microbiome composition of magpies and cuckoos of both ages, cuckoo nestlings harbored a mixture of the Operational Taxonomic Units (OTUs) present in adult cuckoos and nestling magpies. We identified the bacterial taxa responsible for such results. These results suggest important phylogenetic components determining gut microbiome of nestlings, and that diet might be responsible for similarities between gut microbiome of cuckoo and magpie nestlings that allow cuckoos to digest food provided by magpie adults.
Collapse
Affiliation(s)
- Magdalena Ruiz-Rodríguez
- Biologie Integrative des Organismes Marins, Observatoire Océanologique, Sorbonne Universités, Avenue du Fontaulé, 66650 Banyuls-Sur-Mer, France.
| | - Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, E-18071 Granada, Spain.
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
| | - Manuel Martínez-Bueno
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
- Departamento de Microbiología, Universidad de Granada, E-18071 Granada, Spain.
| | - Juan José Soler
- Unidad Asociada Coevolución: Cucos, Hospedadores y Bacterias Simbiontes, Universidad de Granada, E-18071 Granada, Spain.
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra. Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain.
| |
Collapse
|
8
|
Geltsch N, Elek Z, Manczinger L, Vágvölgyi C, Moskát C. Common cuckoos (Cuculus canorus) affect the bacterial diversity of the eggshells of their great reed warbler (Acrocephalus arundinaceus) hosts. PLoS One 2018; 13:e0191364. [PMID: 29351548 PMCID: PMC5774785 DOI: 10.1371/journal.pone.0191364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/03/2018] [Indexed: 11/20/2022] Open
Abstract
The common cuckoo (Cuculus canorus) is an avian brood parasite, laying its eggs in the nests of other bird species, where these hosts incubate the parasitic eggs, feed and rear the nestlings. The appearance of a cuckoo egg in a host nest may change the bacterial community in the nest. This may have consequences on the hatchability of host eggs, even when hosts reject the parasitic egg, typically within six days after parasitism. The present study revealed the bacterial community of cuckoo eggshells and those of the great reed warbler (Acrocephalus arundinaceus), one of the main hosts of cuckoos. We compared host eggs from non-parasitized clutches, as well as host and cuckoo eggs from parasitized clutches. As incubation may change bacterial assemblages on eggshells, we compared these egg types in two stages: the egg-laying stage, when incubation has not been started, and the mid-incubation stage (ca. on days 5–7 in incubation), where heat from the incubating female dries eggshells. Our results obtained by the 16S rRNA gene sequencing technique showed that fresh host and cuckoo eggs had partially different bacterial communities, but they became more similar during incubation in parasitized nests. Cluster analysis revealed that fresh cuckoo eggs and incubated host eggs in unparasitized nests (where no cuckoo effect could have happened) were the most dissimilar from the other groups of eggs. Cuckoo eggs did not reduce the hatchability of great reed warbler eggs. Our results on the cuckoo-great reed warbler relationship supported the idea that brood parasites may change bacterial microbiota in the host nest. Further studies should reveal how bacterial communities of cuckoo eggshells may vary by host-specific races (gentes) of cuckoos.
Collapse
Affiliation(s)
- Nikoletta Geltsch
- MTA-ELTE-MTM Ecology Research Group, a joint research group of the Hungarian Academy of Sciences, the Biological Institute of the Eötvös Loránd University and the Hungarian Natural History Museum, Budapest, Hungary
- Department of Ecology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Zoltán Elek
- MTA-ELTE-MTM Ecology Research Group, a joint research group of the Hungarian Academy of Sciences, the Biological Institute of the Eötvös Loránd University and the Hungarian Natural History Museum, Budapest, Hungary
| | - László Manczinger
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Moskát
- MTA-ELTE-MTM Ecology Research Group, a joint research group of the Hungarian Academy of Sciences, the Biological Institute of the Eötvös Loránd University and the Hungarian Natural History Museum, Budapest, Hungary
- * E-mail:
| |
Collapse
|
9
|
Keeping eggs warm: thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Naturwissenschaften 2018; 105:10. [PMID: 29294204 DOI: 10.1007/s00114-017-1532-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 02/02/2023]
Abstract
Obligate brood parasites have evolved unusually thick-shelled eggs, which are hypothesized to possess a variety of functions such as resistance to puncture ejection by their hosts. In this study, we tested the hypothesis that obligate brood parasites lay unusually thick-shelled eggs to retain more heat for the developing embryo and thus contribute to early hatching of parasite eggs. By doing so, we used an infrared thermal imaging system as a non-invasive method to quantify the temperature of eggshells of common cuckoos (Cuculus canorus) and their Oriental reed warbler (Acrocephalus orientalis) hosts in an experiment that artificially altered the duration of incubation. Our results showed that cuckoo eggshells had higher temperature than host eggs during incubation, but also less fluctuations in temperature during incubation disturbance. Therefore, there was a thermal and hence a developmental advantage for brood parasitic cuckoos of laying thick-shelled eggs, providing another possible explanation for the unusually thick-shelled eggs of obligate brood parasites and earlier hatching of cuckoo eggs compared to those of the host.
Collapse
|
10
|
Lee SI, Lee H, Jablonski PG, Choe JC, Husby M. Microbial abundance on the eggs of a passerine bird and related fitness consequences between urban and rural habitats. PLoS One 2017; 12:e0185411. [PMID: 28953940 PMCID: PMC5617198 DOI: 10.1371/journal.pone.0185411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 09/12/2017] [Indexed: 11/18/2022] Open
Abstract
Urban environments present novel and challenging habitats to wildlife. In addition to well-known difference in abiotic factors between rural and urban environments, the biotic environment, including microbial fauna, may also differ significantly. In this study, we aimed to compare the change in microbial abundance on eggshells during incubation between urban and rural populations of a passerine bird, the Eurasian Magpie (Pica pica), and examine the consequences of any differences in microbial abundances in terms of hatching success and nestling survival. Using real-time PCR, we quantified the abundances of total bacteria, Escherichia coli/Shigella spp., surfactin-producing Bacillus spp. and Candida albicans on the eggshells of magpies. We found that urban magpie eggs harboured greater abundances of E. coli/Shigella spp. and C. albicans before incubation than rural magpie eggs. During incubation, there was an increase in the total bacterial load, but a decrease in C. albicans on urban eggs relative to rural eggs. Rural eggs showed a greater increase in E. coli/Shigella spp. relative to their urban counterpart. Hatching success of the brood was generally lower in urban than rural population. Nestling survival was differentially related with the eggshell microbial abundance between urban and rural populations, which was speculated to be the result of the difference in the strength of the interaction among the microbes. This is the first demonstration that avian clutches in urban and rural populations differ in eggshell microbial abundance, which can be further related to the difference in hatching success and nestling survival in these two types of environments. We suggest that future studies on the eggshell microbes should investigate the interaction among the microbes, because the incubation and/or environmental factors such as urbanization or climate condition can influence the dynamic interactions among the microbes on the eggshells which can further determine the breeding success of the parents.
Collapse
Affiliation(s)
- Sang-im Lee
- School of Undergraduate Studies, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Korea
| | - Hyunna Lee
- Laboratory of Behavior and Ecology, EcoCreative Program, Ewha Womans University, Seoul, Korea
| | - Piotr G. Jablonski
- Laboratory of Behavioral Ecology and Evolution, School of Biological Sciences, Seoul National University, Seoul, Korea
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Jae Chun Choe
- Laboratory of Behavior and Ecology, EcoCreative Program, Ewha Womans University, Seoul, Korea
| | - Magne Husby
- Department of Science, Nord University, Levanger, Norway
- * E-mail:
| |
Collapse
|
11
|
|
12
|
Martínez-García Á, Martín-Vivaldi M, Rodríguez-Ruano SM, Peralta-Sánchez JM, Valdivia E, Soler JJ. Nest Bacterial Environment Affects Microbiome of Hoopoe Eggshells, but Not That of the Uropygial Secretion. PLoS One 2016; 11:e0158158. [PMID: 27409772 PMCID: PMC4943718 DOI: 10.1371/journal.pone.0158158] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/10/2016] [Indexed: 11/18/2022] Open
Abstract
The study of associations between symbiotic bacterial communities of hosts and those of surrounding environments would help to understand how bacterial assemblages are acquired, and how they are transmitted from one to another location (i.e. symbiotic bacteria acquisition by hosts). Hoopoes (Upupa epops) smear their eggshells with uropygial secretion (oily secretion produced in their uropygial gland) that harbors antibiotic producing bacteria. Trying to elucidate a possible role of nest material and cloaca microbiota in determining the bacterial community of the uropygial gland and the eggshells of hoopoes, we characterized bacterial communities of nest material, cloaca, uropygial gland and eggshells by the ARISA fingerprinting. Further, by adding material with scarce bacteria and antimicrobial properties, we manipulated the bacterial community of nest material and thus tested experimentally its effects on the microbiomes of the uropygial secretion and of the eggshells. The experiment did not influence the microbiome of the uropygial secretion of females, but affected the community established on eggshells. This is the first experimental evidence indicating that nest material influences the bacterial community of the eggshells and, therefore, probability of embryo infection. Some of the bacterial strains detected in the secretion were also in the bacterial communities of the nest material and of cloaca, but their occurrence within nests was not associated, which suggests that bacterial environments of nest material and cloaca are not sources of symbiotic bacteria for the gland. These results do not support a role of nest environments of hoopoes as reservoirs of symbiotic bacteria. We discuss possible scenarios explaining bacterial acquisition by hoopoes that should be further explored.
Collapse
Affiliation(s)
| | | | | | | | - Eva Valdivia
- Departamento de Microbiología Universidad de Granada, E-18071 Granada, Spain
| | - Juan J. Soler
- Estación Experimental de Zonas Áridas (CSIC) E-04120 Almería, Spain
| |
Collapse
|
13
|
Møller AP, Soler JJ, Nielsen JT, Galván I. Pathogenic bacteria and timing of laying. Ecol Evol 2015; 5:1676-85. [PMID: 25937910 PMCID: PMC4409415 DOI: 10.1002/ece3.1473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 02/18/2015] [Accepted: 02/24/2015] [Indexed: 11/07/2022] Open
Abstract
Pathogenic bacteria constitute a serious threat to viability of many organisms. Because growth of most bacteria is favored by humid and warm environmental conditions, earlier reproducers in seasonal environments should suffer less from the negative consequences of pathogenic bacteria. These relationships, and the effects on reproductive success, should be particularly prominent in predators because they are frequently exposed to pathogenic microorganisms from sick prey. Here, we presented and tested this hypothesis by sampling bacteria on adult and nestling goshawks Accipiter gentilis. We predicted that early breeders and their offspring should have fewer bacteria than those reproducing later during the breeding season. Adult goshawks with a high abundance of Staphylococcus on their beak and claws were easier to capture and their laying date was delayed. Moreover, goshawks that laid their eggs later had offspring with more Staphylococcus on their beaks and claws. The strength of the association between laying date and bacterial density of nestlings was stronger during the warm spring of 2013, when nestlings suffered from a higher abundance of pathogenic bacteria. Hatching failure and fledging failure were more common in nests with a higher abundance of Staphylococcus independently of the number of years occupied, laying date, and age of the female nest owner. These findings imply that timing of reproduction may be under the influence of pathogenic bacteria. Because early breeding goshawks produce more recruits than later breeders, our results suggest a role for pathogenic bacteria in the optimal timing of reproduction.
Collapse
Affiliation(s)
- Anders Pape Møller
- Laboratoire Ecologie, Systematique et Evolution, UMR 8079 CNRS-Université Paris-Sud XI-AgroParisTech Batiment 362, Université Paris-Sud XI, F-91405, Orsay Cedex, France
| | - Juan J Soler
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Carretera de Sacramento s/n E-04120, Almería, Spain
| | | | - Ismael Galván
- Laboratoire Ecologie, Systematique et Evolution, UMR 8079 CNRS-Université Paris-Sud XI-AgroParisTech Batiment 362, Université Paris-Sud XI, F-91405, Orsay Cedex, France ; Departamento de Ecología Evolutiva, Estación Biológica de Doñana - CSIC, c/ Américo Vespucio s/n 41092, Sevilla, Spain
| |
Collapse
|
14
|
Laying date, incubation and egg breakage as determinants of bacterial load on bird eggshells: experimental evidence. Oecologia 2015; 179:63-74. [PMID: 25912895 DOI: 10.1007/s00442-015-3322-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Exploring factors guiding interactions of bacterial communities with animals has become of primary importance for ecologists and evolutionary biologists during the last years because of their likely central role in the evolution of animal life history traits. We explored the association between laying date and eggshell bacterial load (mesophilic bacteria, Enterobacteriaceae, Staphylococci, and Enterococci) in natural and artificial magpie (Pica pica) nests containing fresh commercial quail (Coturnix coturnix) eggs. We manipulated hygiene conditions by spilling egg contents on magpie and artificial nests and explored experimental effects during the breeding season. Egg breakage is a common outcome of brood parasitism by great spotted cuckoos (Clamator glandarius) on the nests of magpie, one of its main hosts. We found that the treatment increased eggshell bacterial load in artificial nests, but not in magpie nests with incubating females, which suggests that parental activity prevents the proliferation of bacteria on the eggshells in relation to egg breakage. Moreover, laying date was positively related to eggshell bacterial load in active magpie nests, but negatively in artificial nests. The results suggest that variation in parental characteristics of magpies rather than climatic variation during the breeding season explained the detected positive association. Because the eggshell bacterial load is a proxy of hatching success, the detected positive association between eggshell bacterial loads and laying date in natural, but not in artificial nests, suggests that the generalized negative association between laying date and avian breeding success can be, at least partially, explained by differential bacterial effects.
Collapse
|
15
|
Huang HL, Cheng YS. A novel minisequencing single-nucleotide polymorphism marker of the lysozyme gene detects high hatchability of Tsaiya ducks (Anas platyrhynchos). Theriogenology 2014; 82:1113-20. [DOI: 10.1016/j.theriogenology.2014.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/16/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
|
16
|
Lee WY, Kim M, Jablonski PG, Choe JC, Lee SI. Effect of incubation on bacterial communities of eggshells in a temperate bird, the Eurasian Magpie (Pica pica). PLoS One 2014; 9:e103959. [PMID: 25089821 PMCID: PMC4121233 DOI: 10.1371/journal.pone.0103959] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
Abstract
Inhibitory effect of incubation on microbial growth has extensively been studied in wild bird populations using culture-based methods and conflicting results exist on whether incubation selectively affects the growth of microbes on the egg surface. In this study, we employed culture-independent methods, quantitative PCR and 16S rRNA gene pyrosequencing, to elucidate the effect of incubation on the bacterial abundance and bacterial community composition on the eggshells of the Eurasian Magpie (Pica pica). We found that total bacterial abundance increased and diversity decreased on incubated eggs while there were no changes on non-incubated eggs. Interestingly, Gram-positive Bacillus, which include mostly harmless species, became dominant and genus Pseudomonas, which include opportunistic avian egg pathogens, were significantly reduced after incubation. These results suggest that avian incubation in temperate regions may promote the growth of harmless (or benevolent) bacteria and suppress the growth of pathogenic bacterial taxa and consequently reduce the diversity of microbes on the egg surface. We hypothesize that this may occur due to difference in sensitivity to dehydration on the egg surface among microbes, combined with the introduction of Bacillus from bird feathers and due to the presence of antibiotics that certain bacteria produce.
Collapse
Affiliation(s)
- Won Young Lee
- Laboratory of Behavioral Ecology and Evolution, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Mincheol Kim
- Laboratory of Prokaryotic Biology and Bioinformatics, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Piotr G Jablonski
- Laboratory of Behavioral Ecology and Evolution, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Jae Chun Choe
- Division of EcoScience, Ewha Womans University, Seoul, Republic of Korea
| | - Sang-im Lee
- Laboratory of Behavioral Ecology and Evolution, Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Advanced Machinery and Design, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
17
|
Martín-Vivaldi M, Soler JJ, Peralta-Sánchez JM, Arco L, Martín-Platero AM, Martínez-Bueno M, Ruiz-Rodríguez M, Valdivia E. Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. J Anim Ecol 2014; 83:1289-301. [PMID: 24786478 DOI: 10.1111/1365-2656.12243] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 04/21/2014] [Indexed: 01/07/2023]
Abstract
Animals live in a bacterial world, and detecting and exploring adaptations favouring mutualistic relationships with antibiotic-producing bacteria as a strategy to fight pathogens are of prime importance for evolutionary ecologists. Uropygial secretion of European hoopoes (Upupa epops, Linnaeus) contains antimicrobials from mutualistic bacteria that may be used to prevent embryo infection. Here, we investigated the microscopic structure of hoopoe eggshells looking for special features favouring the adhesion of antimicrobial uropygial secretions. We impeded female access to the uropygial gland and compared microscopic characteristics of eggshells, bacterial loads of eggs and of uropygial secretion, and hatching success of experimental and control females. Then, we explored the link between microbiological characteristics of uropygial secretion and these of eggs of hoopoes, as well as possible fitness benefits. The microscopic study revealed special structures in hoopoes' eggshells (crypts). The experimental prevention of females' gland access demonstrated that crypts are filled with uropygial secretion and that symbiotic enterococci bacteria on the eggshells come, at least partially, from those in the female's uropygial gland. Moreover, the experiment resulted in a higher permeability of eggshells by several groups of bacteria and in elimination of the positive relationships detected for control nests between hatching success and density of symbiotic bacteria, either in the uropygial secretion of females or on the eggshell. The findings of specialized crypts on the eggshells of hoopoes, and of video-recorded females smearing secretion containing symbiotic bacteria at a high density onto the eggshells strongly support a link between secretion and bacteria on eggs. Moreover, the detected associations between bacteria and hatching success suggest that crypts enhancing the adhesion of symbiont-carrying uropygial secretion likely protect embryos against infections.
Collapse
Affiliation(s)
- Manuel Martín-Vivaldi
- Departamento de Zoología, Universidad de Granada, Granada, E-18071, Spain.,Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain
| | - Juan J Soler
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Estación Experimental de Zonas Aridas (CSIC), Almería, E-04120, Spain
| | - Juan M Peralta-Sánchez
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Departamento de Microbiogía, Universidad de Granada, Granada, E-18071, Spain
| | - Laura Arco
- Departamento de Zoología, Universidad de Granada, Granada, E-18071, Spain.,Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain
| | - Antonio M Martín-Platero
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Departamento de Microbiogía, Universidad de Granada, Granada, E-18071, Spain
| | - Manuel Martínez-Bueno
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Departamento de Microbiogía, Universidad de Granada, Granada, E-18071, Spain
| | - Magdalena Ruiz-Rodríguez
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Estación Experimental de Zonas Aridas (CSIC), Almería, E-04120, Spain
| | - Eva Valdivia
- Grupo Coevolución, Unidad Asociada al CSIC, Universidad de Granada, Granada, E-18071, Spain.,Departamento de Microbiogía, Universidad de Granada, Granada, E-18071, Spain
| |
Collapse
|
18
|
Møller AP, Flensted-Jensen E, Mardal W, Soler JJ. Host-parasite relationship between colonial terns and bacteria is modified by a mutualism with a plant with antibacterial defenses. Oecologia 2013; 173:169-78. [PMID: 23404068 DOI: 10.1007/s00442-013-2600-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/18/2013] [Indexed: 01/14/2023]
Abstract
Predator-prey and host-parasite interactions and mutualisms are common and may have profound effects on ecosystems. Here we analyze the parasitic and mutualistic associations between three groups of organisms: the plant Artemisia maritima, bacteria, and a colonial seabird (the sandwich tern Sterna sandvicensis) that breeds in dense colonies covered in feces produced by both adults and chicks. A disproportionately large fraction of colonies of the sandwich tern in Denmark were located in patches covered by A. maritima. This association was specific for the densely colonial sandwich tern, but was not present for four other sympatric species of terns that breed in much less dense colonies. A. maritima reduced the abundance of pathogenic Staphylococcus on chicken eggshells in a field experiment. Recruitment by sandwich terns breeding in patches of A. maritima was 18 % higher than for sandwich terns breeding in the absence of A. maritima. A. maritima benefitted from the association with sandwich terns due to the supply of nutrients from feces and uneaten food lost by young. These findings are consistent with sandwich terns exploiting the association with A. maritima and its antimicrobial properties to improve their reproductive success, while sandwich terns and A. maritima are involved in a mutualistic interaction.
Collapse
|
19
|
Soler JJ, Peralta-Sánchez JM, Martín-Platero AM, Martín-Vivaldi M, Martínez-Bueno M, Møller AP. The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. J Evol Biol 2012; 25:1779-91. [DOI: 10.1111/j.1420-9101.2012.02561.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Soler JJ, Peralta-Sánchez JM, Martín-Vivaldi M, Martín-Platero AM, Flensted-Jensen E, Møller AP. Cognitive skills and bacterial load: comparative evidence of costs of cognitive proficiency in birds. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2011; 99:111-22. [PMID: 22170352 DOI: 10.1007/s00114-011-0875-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 11/29/2011] [Accepted: 12/02/2011] [Indexed: 10/14/2022]
Abstract
Parasite-mediated selection may affect the evolution of cognitive abilities because parasites may influence development of the brain, but also learning capacity. Here, we tested some predictions of this hypothesis by analyzing the relationship between complex behaviours (feeding innovations (as a measure of behavioural flexibility) and ability to detect foreign eggs in their nests (i.e. a measure of discriminatory ability)) and abundance of microorganisms in different species of birds. A positive relationship would be predicted if these cognitive abilities implied a larger number of visited environments, while if these skills favoured detection and avoidance of risky environments, a negative relationship would be the prediction. Bacterial loads of eggshells, estimated for mesophilic and potentially pathogenic bacteria (i.e. Enterococcus, Staphylococcus and Enterobacteriaceae), were used as a surrogate of probability of contact with pathogenic bacteria. We found that bird species with higher feeding innovation rates and rejection rates of experimental brood parasitic eggs had higher density of bacteria on their eggshells than the average species. Since the analysed groups of microorganisms include pathogenic bacteria, these results suggest that both feeding innovation and ability to recognize foreign eggs are costly and highlight the importance of parasite-mediated selection in explaining the evolution of cognitive abilities in animals.
Collapse
Affiliation(s)
- Juan José Soler
- Estación Experimental de Zonas Áridas (EEZA-CSIC), Almería, Spain.
| | | | | | | | | | | |
Collapse
|