1
|
Chen Y, Geng J, Xiao Y, Zhou X, Li M, Li W. A case of peeling skin syndrome type 1 with novel CDSN gene variation successfully treated with upadacitinib. J Dermatol 2025; 52:526-530. [PMID: 39377561 DOI: 10.1111/1346-8138.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/29/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024]
Abstract
Peeling skin syndrome type 1 (PSS1) is an autosomal recessive genodermatosis caused by the CDSN gene loss-of-function mutation and characterized by widespread superficial skin peeling and erythroderma with unbearable pruritus. Because of its ultra-rarity and unclear mechanism, this rare disease has no established treatment regimen. Herein, we reported a Chinese woman who presented with congenital generalized pruritic erythroderma and exfoliation, notable for significantly elevated IgE levels. The whole exome sequencing identified an unpublished homozygous variant (c.295C>T, p.Gln99*) in the CDSN gene, confirming the diagnosis of PSS1. Immunohistochemistry analysis of the affected skin confirmed the lack of corneodesmosin expression, revealed the overexpression of T helper 2 (Th2)-related cytokines harboring interleukin (IL) 4 and IL-13. After Janus kinase 1 (JAK1) inhibitor upadacitinib administration, both the patient's skin rashes and itching symptoms were significantly alleviated. Our work expanded the PSS1-related CDSN gene mutation spectrums, substantiated the hypothesis regarding the overexpression of Th2-related cytokines, and uncovered the important role of JAK1 underlying PSS1. JAK1 signaling may dominate the pathogenesis in PSS1 and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Yusha Chen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jia Geng
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Xiao
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xingli Zhou
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mengmeng Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
He L, Zhu G. Striate palmoplantar keratoderma: a novel DSG1 mutation, combined with an LDLR mutation. Genes Genomics 2025; 47:1-10. [PMID: 39503931 DOI: 10.1007/s13258-024-01587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/15/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Palmoplantar keratoderma (PPK) is a heterogeneous group of disorders characterized by abnormal thickening of the skin on the palms and soles. Striate palmoplantar keratoderma (SPPK) is commonly caused by heterozygous mutations in the desmoglein-1 (DSG1) gene. OBJECTIVE This study aimed to report a case of a 36-year-old Chinese female patient with SPPK caused by a novel DSG1 gene mutation, along with her family history, and explore its potential relationship with other genetic variants. METHODS Whole-exome sequencing was performed on the patient and their family members to identify the pathogenic mutation, which was validated by Sanger sequencing. Histological and electron microscopy analyses were conducted to examine the pathological characteristics of skin tissue.of skin tissue. RESULTS A frameshift mutation, c.1285del, in exon 10 of the DSG1 gene was identified, leading to a loss of protein function and resulting in SPPK. This mutation was also detected in two other family members with similar phenotypes. Additionally, a classical splicing variant, c.313+2dup, in the low-density lipoprotein receptor (LDLR) gene associated with hypercholesterolemia was identified in the patient; however, no direct association with SPPK was observed. CONCLUSION This study was the first to report a novel mutation in the DSG1 gene associated with SPPK and suggested a potential role of the LDLR gene variant in SPPK patients, providing new insights for further research into the genetic mechanisms underlying SPPK.
Collapse
Affiliation(s)
- Li He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi Province, China
| | - Guannan Zhu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, 127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi Province, China.
| |
Collapse
|
3
|
Ilarslan H, Lathrop WF, Dobkowski B, Hawkins SS, Scott J, Bajor J, Mayes AE. Effects of eczema calming lotion on the stratum corneum in atopic dermatitis: Corneodesmosin and intercellular lipid lamellae. Int J Cosmet Sci 2024; 46:516-525. [PMID: 39113306 DOI: 10.1111/ics.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 08/21/2024]
Abstract
OBJECTIVE Atopic dermatitis (AD) is characterized by compositional and structural changes to the skin at lesional sites. Alteration to the levels and organization of both protein and lipid components are associated with disease status and lead to impaired barrier and hydration. Corneodesmosin (CDSN) and the arrangement and length of the intercellular lipid lamellae (ICLL) are altered in disrupted skin states. The aim of this research was to profile the distribution of CDSN and the ICLL in the stratum corneum (SC) at lesional and non-lesional sites in AD-prone skin and to investigate the impact of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. METHODS An IRB-approved study was conducted with participants with active AD. From a small subset of participants, tape strips were collected from lesional and non-lesional sites on the arm, prior to and after twice daily application, over 4 weeks of an eczema calming lotion containing petroleum jelly, fatty acids, and colloidal oatmeal. Fluorescent antibody staining was used to investigate the distribution of CDSN. Transmission electron microscopy (TEM) was used to characterize the ICLL. RESULTS The distribution/coverage of CDSN was similar between lesional and non-lesional sites at baseline; application of the lotion resulted in a more defined honeycomb/peripheral distribution. Normalized ICLL (nICLL) was lower in baseline samples from lesional sites relative to non-lesional sites. Application of the lotion increased this parameter by the end of the study at all sites. CONCLUSION The eczema calming lotion containing petroleum jelly, fatty acids and colloidal oatmeal provided changes in corneodesmosomal proteins distribution and ICLL, consistent with improvements in corneocyte maturation and improved barrier function in the skin of individuals with atopic dermatitis.
Collapse
Affiliation(s)
- Hilal Ilarslan
- Unilever Research and Development, Trumbull, Connecticut, USA
| | | | - Brian Dobkowski
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Stacy S Hawkins
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Jane Scott
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - John Bajor
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Andrew E Mayes
- Unilever Research and Development, Colworth Science Park, Bedford, UK
| |
Collapse
|
4
|
Sato E, Imayoshi H, Tsutsui Y, Shimizu H, Imafuku S. Mature IL-36γ Induces Stratum Corneum Exfoliation in Generalized Pustular Psoriasis by Suppressing Corneodesmosin. J Invest Dermatol 2024; 144:764-773.e4. [PMID: 37827276 DOI: 10.1016/j.jid.2023.09.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Loss-of-function sequence variations in the IL36RN gene encoding IL-36 receptor antagonist cause familial generalized pustular psoriasis, which begins shortly after birth and is difficult to treat, and its effects on the epidermis are unclear. This study investigated the involvement of IL-36 receptor agonists in the epidermal formation of generalized pustular psoriasis. We found that the IL-36 receptor agonists, especially mature IL-36γ, stimulated IL-8 and pro-IL-36γ production in the epidermis while downregulating the genes encoding epidermal cornified envelope-related proteins, for example, corneodesmosin. IL-36 receptor antagonist and monoclonal anti-IL-36γ antibodies counteracted the effect of mature IL-36γ on corneodesmosin in keratinocytes in a dose-dependent manner. In the epidermis of patients with generalized pustular psoriasis with IL36RN loss-of-function sequence variations, pro-IL-36γ was overproduced in the epidermis, and corneodesmosin protein expression was markedly decreased in the region of giant subcorneal pustules (Kogoj's spongiform pustules), with high neutrophil infiltration. IL-8 induced by mature IL-36γ stimulated the infiltration of several neutrophils in the epidermis. The newly produced pro-IL-36γ is cleaved to the mature form by neutrophil proteases. This newly produced mature IL-36γ was predicted to further suppress the gene expression of corneodesmosin, leading to significant stratum corneum exfoliation and formation of the pustules. Overall, our results elucidate the mechanism underlying the formation of Kogoj's spongiform pustules in generalized pustular psoriasis.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Hiroko Imayoshi
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuki Tsutsui
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroki Shimizu
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
5
|
Harmon RM, Gottardi CJ. Endoplasmic reticulum tethering by desmosomes. Nat Cell Biol 2023; 25:796-797. [PMID: 37291268 DOI: 10.1038/s41556-023-01144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| | - Cara J Gottardi
- Pulmonary Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
- Cell & Developmental Biology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
6
|
Loricrin at the Boundary between Inside and Outside. Biomolecules 2022; 12:biom12050673. [PMID: 35625601 PMCID: PMC9138667 DOI: 10.3390/biom12050673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Cornification is a specialized mode of the cell-death program exclusively allowed for terrestrial amniotes. Recent investigations suggest that loricrin (LOR) is an important cornification effector. As the connotation of its name (“lorica” meaning an armor in Latin) suggests, the keratin-associated protein LOR promotes the maturation of the epidermal structure through organizing covalent cross-linkages, endowing the epidermis with the protection against oxidative injuries. By reviewing cornification mechanisms, we seek to classify ichthyosiform dermatoses based on their function, rather than clinical manifestations. We also reviewed recent mechanistic insights into the Kelch-like erythroid cell-derived protein with the cap “n” collar homology-associated protein 1/nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway in skin health and diseases, as LOR and NRF2 coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of cross-talking between keratinocytes and epidermal resident leukocytes, dissecting an LOR immunomodulatory function.
Collapse
|
7
|
Ishitsuka Y, Ogawa T, Nakamura Y, Kubota N, Fujisawa Y, Watanabe R, Okiyama N, Fujimoto M, Roop DR, Ishida-Yamamoto A. Loricrin and NRF2 Coordinate Cornification. JID INNOVATIONS 2022; 2:100065. [PMID: 35024686 PMCID: PMC8659797 DOI: 10.1016/j.xjidi.2021.100065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/08/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022] Open
Abstract
Cornification involves cytoskeletal cross-linkages in corneocytes (the brick) and the secretion of lipids/adhesion structures to the interstitial space (the mortar). Because the assembly of lipid envelopes precedes corneocyte maturation, loricrin is supposed to be dispensable for the protection against desiccation. Although the phenotypes of Lor knockout (LKO) mice are obscure, the antioxidative response on the KEAP1/NRF2 signaling pathway compensates for the structural defect in utero. In this study, we asked how the compensatory response is evoked after the defects are repaired. To this end, the postnatal phenotypes of LKO mice were analyzed with particular attention to the permeability barrier function primarily maintained by the mortar. Ultrastructural analysis revealed substantially thinner cornified cell envelopes and increased numbers of lamellar granules in LKO mice. Superficial epidermal damages triggered the adaptive repairing responses that evoke the NRF2-dependent upregulation of genes associated with lamellar granule secretion in LKO mice. We also found that corneodesmosomes are less degraded in LKO mice. The observation suggests that loricrin and NRF2 are important effectors of cornification, in which proteins need to be secreted, cross-linked, and degraded in a coordinated manner.
Collapse
Key Words
- CD, corneodesmosome
- CDSN, corneodesmosin
- CE, cornified envelope
- CEf, immature/fragile cornified envelope
- DKO, Lor–Nrf2 double knockout
- DMF, dimethyl fumarate
- K, keratin
- KC, keratinocyte
- LG, lamellar granule
- LKO, Lor knockout
- LOR, loricrin
- NKO, Nrf2 knockout
- SC, stratum corneum
- SG, stratum granulosum
- TEWL, transepidermal water loss
- TS, tape-stripping
- WT, wild type
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshiyuki Nakamura
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriko Kubota
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuhiro Fujisawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Rei Watanabe
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Naoko Okiyama
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Dennis R Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
8
|
Ishitsuka Y, Roop DR. The Epidermis: Redox Governor of Health and Diseases. Antioxidants (Basel) 2021; 11:47. [PMID: 35052551 PMCID: PMC8772843 DOI: 10.3390/antiox11010047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 12/25/2021] [Indexed: 12/13/2022] Open
Abstract
A functional epithelial barrier necessitates protection against dehydration, and ichthyoses are caused by defects in maintaining the permeability barrier in the stratum corneum (SC), the uppermost protective layer composed of dead cells and secretory materials from the living layer stratum granulosum (SG). We have found that loricrin (LOR) is an essential effector of cornification that occurs in the uppermost layer of SG (SG1). LOR promotes the maturation of corneocytes and extracellular adhesion structure through organizing disulfide cross-linkages, albeit being dispensable for the SC permeability barrier. This review takes psoriasis and AD as the prototype of impaired cornification. Despite exhibiting immunological traits that oppose each other, both conditions share the epidermal differentiation complex as a susceptible locus. We also review recent mechanistic insights on skin diseases, focusing on the Kelch-like erythroid cell-derived protein with the cap "n" collar homology-associated protein 1/NFE2-related factor 2 signaling pathway, as they coordinate the epidermis-intrinsic xenobiotic metabolism. Finally, we refine the theoretical framework of thiol-mediated crosstalk between keratinocytes and leukocytes in the epidermis that was put forward earlier.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Dennis R. Roop
- Charles C. Gates Center for Regenerative Medicine, Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
9
|
Kim J, Yeo H, Kim T, Jeong ET, Lim JM, Park SG. Relationship between lip skin biophysical and biochemical characteristics with corneocyte unevenness ratio as a new parameter to assess the severity of lip scaling. Int J Cosmet Sci 2021; 43:275-282. [PMID: 33544395 PMCID: PMC8251770 DOI: 10.1111/ics.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/27/2022]
Abstract
Objective Lip skin dryness and chapping are major concerns related to lip skin care in many populations. The distinctive features of lip skin, such as the low water‐holding capacity and weak skin barrier, are strongly associated with these problems; however, few studies have examined lip skin characteristics and the mechanisms underlying these issues. This study was conducted to identify the biophysical properties of dry lip skin and molecular targets affecting lip skin physiology. Methods Skin hydration, transepidermal water loss and lip skin scaling were evaluated in 40 female subjects. Skin scaling was assessed as a percentage area divided into five categories (G0, G1, G2, G3 and G4) according to the thickness level of tape‐stripped corneocytes. The activities and amounts of proteases, cathepsin D and bleomycin hydrolase were measured as markers for the desquamation process and skin hydration, respectively. Results Skin hydration showed a significantly positive correlation with the percentage area of evenly thin corneocytes (G0) and negative correlations with the percentage areas of slightly thick to severely thick corneocytes (G1‐G4). The corneocyte unevenness ratio (CUR) was calculated by dividing the sum of the G1, G2, G3 and G4 values with the G0 value. The CUR was significantly negatively correlated with skin hydration, suggesting that CUR is a new parameter representing the severity of lip scaling. Subjects with lower hydration and higher CUR had higher bleomycin hydrolase activity and lower cathepsin D activity, respectively, than subjects with higher hydration and lower CUR. Conclusion Our study revealed a correlation between lip skin hydration and severity of lip scaling and verified the association of protease activity with the hydration and chapping state of lip skin. These observations provide a basis for further studies of the persistent problem of lip skin dryness and chapping.
Collapse
Affiliation(s)
- Jongwook Kim
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Hyerin Yeo
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Taeyoon Kim
- LG Household & Health Care (LG H&H), Seoul, Korea
| | | | - Jun M Lim
- LG Household & Health Care (LG H&H), Seoul, Korea
| | | |
Collapse
|
10
|
Évora AS, Adams MJ, Johnson SA, Zhang Z. Corneocytes: Relationship between Structural and Biomechanical Properties. Skin Pharmacol Physiol 2021; 34:146-161. [PMID: 33780956 DOI: 10.1159/000513054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Skin is the interface between an organism and the external environment, and hence the stratum corneum (SC) is the first to withstand mechanical insults that, in certain conditions, may lead to integrity loss and the development of pressure ulcers. The SC comprises corneocytes, which are vital elements to its barrier function. These cells are differentiated dead keratinocytes, without organelles, composed of a cornified envelope and a keratin-filled interior, and connected by corneodesmosomes (CDs). SUMMARY The current review focusses on the relationship between the morphological, structural, and topographical features of corneocytes and their mechanical properties, to understand how they assist the SC in maintaining skin integrity and in responding to mechanical insults. Key Messages: Corneocytes create distinct regions in the SC: the inner SC is characterized by immature cells with a fragile cornified envelope and a uniform distribution of CDs; the upper SC has resilient cornified envelopes and a honeycomb distribution of CDs, with a greater surface area and a smaller thickness than cells from the inner layer. The literature indicates that this upward maturation process is one of the most important steps in the mechanical resistance and barrier function of the SC. The morphology of these cells is dependent on the body site: the surface area in non-exposed skin is about 1,000-1,200 μm2, while for exposed skin, for example, the cheek and forehead, is about 700-800 μm2. Corneocytes are stiff cells compared to other cellular types, for example, the Young's modulus of muscle and fibroblast cells is typically a few kPa, while that of corneocytes is reported to be about hundreds of MPa. Moreover, these skin cells have 2 distinct mechanical regions: the cornified envelope (100-250 MPa) and the keratin matrix (250-500 MPa).
Collapse
Affiliation(s)
- Ana S Évora
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Michael J Adams
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Simon A Johnson
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Zhibing Zhang
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Valentin F, Wiegmann H, Tarinski T, Nikolenko H, Traupe H, Liebau E, Dathe M, Oji V. Development of a pathogenesis-based therapy for peeling skin syndrome type 1. Br J Dermatol 2020; 184:1123-1131. [PMID: 32926582 DOI: 10.1111/bjd.19546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Peeling skin syndrome type 1 (PSS1) is a rare and severe autosomal recessive form of congenital ichthyosis. Patients are affected by pronounced erythroderma accompanied by pruritus and superficial generalized peeling of the skin. The disease is caused by nonsense mutations or complete deletion of the CDSN gene encoding for corneodesmosin (CDSN). PSS1 severely impairs quality of life and therapeutic approaches are totally unsatisfactory. OBJECTIVES The objective of this study was to develop the first steps towards a specific protein replacement therapy for CDSN deficiency. Using this approach, we aimed to restore the lack of CDSN and improve cell-cell cohesion in the transition area of the stratum granulosum (SG) to the stratum corneum. METHODS Human CDSN was recombinantly expressed in Escherichia coli. A liposome-based carrier system, prepared with a cationic lipopeptide to mediate the transport to the outer membrane of keratinocytes, was developed. This formulation was chosen for CDSN delivery into the skin. The liposomal carrier system was characterized with respect to size, stability and toxicity. Furthermore, the interaction with primary keratinocytes and human epidermal equivalents was investigated. RESULTS The liposomes showed an accumulation at the membranes of keratinocytes. CDSN-deficient epidermal equivalents that were treated with liposomal encapsulated CDSN demonstrated presence of CDSN in the SG. Finally, the penetration assay and histological examinations revealed an improved epidermal integrity for CDSN-deficient epidermal equivalents, if they were treated with liposomal encapsulated CDSN. CONCLUSIONS This study presents the first preclinical in vitro experiments for a future specific protein replacement therapy for patients affected by PSS1.
Collapse
Affiliation(s)
- F Valentin
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany.,Institute for Transfusion Medicine and Cell Therapy, University Hospital Münster, Münster, 48149, Germany
| | - H Wiegmann
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - T Tarinski
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - H Nikolenko
- Leibniz Research Institute of Molecular Pharmacology (FMP), Berlin, 13125, Germany
| | - H Traupe
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| | - E Liebau
- Institute of Animal Physiology, Department of Molecular Physiology, University of Münster, Münster, 48143, Germany
| | - M Dathe
- Leibniz Research Institute of Molecular Pharmacology (FMP), Berlin, 13125, Germany
| | - V Oji
- Department of Dermatology, University Hospital Münster, Münster, 48149, Germany
| |
Collapse
|
12
|
Mohamad J, Nanda A, Pavlovsky M, Peled A, Malchin N, Malovitski K, Pramanik R, Weissglas-Volkov D, Shomron N, McGrath J, Sprecher E, Sarig O. Phenotypic suppression of acral peeling skin syndrome in a patient with autosomal recessive congenital ichthyosis. Exp Dermatol 2020; 29:742-748. [PMID: 32618001 DOI: 10.1111/exd.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 12/01/2022]
Abstract
Autosomal recessive congenital ichthyosis (ARCI) manifests with generalized scaling often associated with generalized erythema. Mutations in at least 13 different genes have been reported to cause ARCI. Acral peeling skin syndrome (APSS) is a rare autosomal recessive disorder manifesting with peeling over the distal limbs and dorsal surfaces of hands and feet. APSS is mostly due to mutations in TGM5, encoding transglutaminase 5. Both ARCI and APSS are fully penetrant genetic traits. Here, we describe a consanguineous family in which one patient with mild ARCI was found to carry a homozygous mutation in ALOXE3 (c.1238G > A; p.Gly413Asp). The patient was also found to carry a known pathogenic homozygous mutation in TGM5 (c.1335G > C; p.Lys445Asn) but did not display acral peeling skin. Her uncle carried the same homozygous mutation in TGM5 but carried the ALOXE3 mutation in a heterozygous state and showed clinical features typical of APSS. Taken collectively, these observations suggested that the ALOXE3 mutation suppresses the clinical expression of the TGM5 variant. We hypothesized that ALOXE3 deficiency may affect the expression of a protein capable of compensating for the lack of TGM5 expression. Downregulation of ALOXE3 in primary human keratinocytes resulted in increased levels of corneodesmosin, which plays a critical role in the maintenance of cell-cell adhesion in the upper epidermal layers. Accordingly, ectopic corneodesmosin expression rescued the cell-cell adhesion defect caused by TGM5 deficiency in keratinocytes as ascertained by the dispase dissociation assay. The present data thus provide evidence for phenotypic suppression in a human hereditary skin disorder.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Arti Nanda
- As'ad Al-Hamad Dermatology Center, Kuwait City, Kuwait
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Natalia Malchin
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rashida Pramanik
- St John's Institute of Dermatology, King's College London, London, UK
| | - Daphna Weissglas-Volkov
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - John McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
13
|
Fukagawa S, Takahashi A, Sayama K, Mori S, Murase T. Carbon dioxide ameliorates reduced desquamation in dry scaly skin via protease activation. Int J Cosmet Sci 2020; 42:564-572. [PMID: 32542869 DOI: 10.1111/ics.12641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/07/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Scaling, a phenomenon showing an abnormal detachment of the stratum corneum (SC) owing to desquamation dysfunction, is commonly observed in various skin diseases or xerotic skin due to ageing and low humidity. Therefore, it is considered that ameliorating the disturbed desquamatory process of the SC leads to improvement in scaling. Carbon dioxide (CO2 ) is known to be good for some skin diseases; however, the effect of CO2 on scaling and its mechanism are not sufficiently clear. We aimed to elucidate the effect of transepidermal application of CO2 on scaling and its mechanism of action. METHODS Twenty healthy men with mild scaling on the cheeks were recruited for a double-blind, placebo-controlled, split-face study. They applied the formulation containing CO2 twice daily for 1 week. After the study, the SC was collected by tape stripping to analyse desquamatory protease activities and degradation of extracellular corneodesmosomes. Furthermore, the contribution of pH to proteolysis of the corneodesmosome by CO2 was evaluated using three-dimensional (3D) cultured epidermal models. RESULTS The spectroscopic absorbance of tape strips, used as scaling indicators, was decreased, concomitantly with the amelioration of incomplete degradation of desmoglein-1, one of the main corneodesmosomal proteins, and activation of trypsin-like protease in the SC by transepidermal application of CO2 . Experiments using 3D cultured epidermis showed that pH in the epidermal tissue was lowered by CO2 , whereas a pH change was not observed with the application of the formulation containing hydrochloric acid, which was added to equalize the pH to that of the CO2 formulation. CONCLUSION The transcutaneous application of CO2 ameliorates reduced desquamatory process in xerotic skin, with concomitant mild acidification of the SC, thereby leading to improvement in scaling. Thus, CO2 may have an advantage of efficiently and safely counteracting scaling of various skin disorders.
Collapse
Affiliation(s)
- Satoko Fukagawa
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Ayami Takahashi
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Keimon Sayama
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Shinobu Mori
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| | - Takatoshi Murase
- Biological Science Research, Kao Corporation, 2606, Akabane, Ichikai-machi, Haga-gun, 321-3497, Japan
| |
Collapse
|
14
|
Mohamad J, Sarig O, Malki L, Rabinowitz T, Assaf S, Malovitski K, Shkury E, Mayer T, Vodo D, Peled A, Daniely D, Pavlovsky M, Shomron N, Samuelov L, Sprecher E. Loss-of-Function Variants in SERPINA12 Underlie Autosomal Recessive Palmoplantar Keratoderma. J Invest Dermatol 2020; 140:2178-2187. [PMID: 32247861 DOI: 10.1016/j.jid.2020.02.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Inherited palmoplantar keratodermas refer to a large and heterogeneous group of conditions resulting from abnormal epidermal differentiation and featuring thickening of the skin of the palms and soles. Here, we aimed at delineating the genetic basis of an autosomal recessive form of palmoplantar keratodermas manifesting with erythematous hyperkeratotic plaques over the palms and soles, extending to non-palmoplantar areas. Whole-exome sequencing in affected individuals revealed homozygous nonsense variants in the SERPINA12 gene. SERPINA12 encodes the visceral adipose tissue-derived serpin A12, a serine protease inhibitor. The pathogenic variants were found to result in reduced visceral adipose tissue-derived serpin A12 expression in patients' skin biopsies in comparison to healthy controls. In addition, SERPINA12 downregulation in three-dimensional skin equivalents was associated with marked epidermal acanthosis and hyperkeratosis, replicating the human phenotype. Moreover, decreased SERPINA12 expression resulted in reduced visceral adipose tissue-derived serpin A12-mediated inhibition of kallikrein 7 activity as well as decreased levels of desmoglein-1 and corneodesmosin, two known kallikrein 7 substrates, which are required for normal epidermal differentiation. The present data, taken collectively, demarcate a unique type of autosomal recessive palmoplantar keratodermas, attribute to visceral adipose tissue-derived serpin A12 a role in skin biology, and emphasize the importance of mechanisms regulating proteolytic activity for normal epidermal differentiation.
Collapse
Affiliation(s)
- Janan Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Liron Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tom Rabinowitz
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Sari Assaf
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kiril Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eden Shkury
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Talia Mayer
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Alon Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Daniel Daniely
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Mor Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Goto H, Tada A, Ibe A, Kitajima Y. Basket-weave structure in the stratum corneum is an important factor for maintaining the physiological properties of human skin as studied using reconstructed human epidermis and tape stripping of human cheek skin. Br J Dermatol 2019; 182:364-372. [PMID: 31077338 DOI: 10.1111/bjd.18123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND The normal stratum corneum (SC) has an upper basket-weave (BW) pattern layer and a lower compact layer. The transition from compact to BW SC is well associated with a transition from diffuse to peripheral distributions of corneodesmosomes (CDs). The loss of transition from compact SC to BW SC appears to cause structural and barrier-function impairments. OBJECTIVES To show the involvement of the BW SC in maintaining the physiological properties of the skin. METHODS Reconstructed human epidermis (RHE) with a complete BW structure was created by treatment with prepared emulsion-A, an oil-in-water emulsion. The RHE tissues were subjected to histological analysis, and the distribution of CDs on the SC with or without BW SC was analysed by anti-desmoglein (Dsg)1 antibody immunofluorescence and ultrastructural and Western blotting analyses. Ultrastructural analysis of intercellular lipids was performed. The mechanical properties of the RHE were evaluated. RESULTS Emulsion-A successfully generated the BW SC in the RHE in which the degradation of CDs was promoted. The intercellular space of the BW SC generated by emulsion-A was filled with multilamellar lipid sheets. The softness of the SC with a BW structure formed with emulsion-A was higher than that of the compact SC in RHE. The outermost SC Dsg1 degradation (formation of the BW SC as determined with Dsg1 pixels) was correlated with water-barrier functions and the SC softness of healthy human cheek, which varied widely. CONCLUSIONS Emulsion-A successfully generated the BW SC in RHE for the first time. This method is suggested to be a useful tool for investigating the physiological significance of the BW SC in vitro. Determination of Dsg1 content in the SC obtained by tape stripping from human skin allows study of the effects of external stimulants, such as creams and ointments, including cosmetics, on the completeness of the BW SC in situ without biopsy. What's already known about this topic? The normal stratum corneum (SC) has two layers, an upper basket-weave (BW) pattern layer and a lower compact layer. Epidermal diseases such as ichthyosis vulgaris and X-linked ichthyosis have an incomplete or no BW SC and impaired SC barrier functions, in which corneodesmosome (CD) degradation in a peripheral distribution is impaired. The roles of the BW SC in the physiological properties of human skin have not been clearly elucidated. What does this study add? Reconstructed human epidermis (RHE) with a complete BW structure was generated for the first time by treatment with oil-in-water emulsion-A. The formation of the BW SC was associated with a decrease in Dsg1 content, which represents the CD number in the SC. The intercellular space of the BW SC generated by emulsion-A, but not compact SC, was filled with multilamellar lipid sheets. The softness of the SC with a BW structure formed by emulsion-A treatment was higher than that of the compact SC in RHE. What is the translational message? RHE with a complete BW SC generated by emulsion-A treatment is suggested to be a useful tool for investigating effects on the physiological functions of the BW SC, as in treatments with creams and ointments including cosmetics. Determination of desmoglein 1 content in the SC obtained by tape stripping from human skin can make it possible to study the effects of external stimulants, such as creams and ointments, including cosmetics, on the completeness of the BW SC in situ without biopsy.
Collapse
Affiliation(s)
- H Goto
- Product Development Department, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, 244-0812, Japan
| | - A Tada
- Product Development Department, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, 244-0812, Japan
| | - A Ibe
- Frontier Research Center, POLA Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, 244-0812, Japan
| | - Y Kitajima
- Department of Dermatology, Kizawa Memorial Hospital, 590 Shimokobi, Kobi, Minokamo, Gifu, 505-8503, Japan
| |
Collapse
|
16
|
Guo S, Domanov Y, Donovan M, Ducos B, Pomeau Y, Gourier C, Perez E, Luengo GS. Anisotropic cellular forces support mechanical integrity of the Stratum Corneum barrier. J Mech Behav Biomed Mater 2019; 92:11-23. [PMID: 30654216 DOI: 10.1016/j.jmbbm.2018.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/26/2018] [Accepted: 12/20/2018] [Indexed: 11/30/2022]
Abstract
The protective function of biological surfaces that are exposed to the exterior of living organisms is the result of a complex arrangement and interaction of cellular components. This is the case for the most external cornified layer of skin, the stratum corneum (SC). This layer is made of corneocytes, the elementary 'flat bricks' that are held together through adhesive junctions. Despite the well-known protective role of the SC under high mechanical stresses and rapid cell turnover, the subtleties regarding the adhesion and mechanical interaction among the individual corneocytes are still poorly known. Here, we explore the adhesion of single corneocytes at different depths of the SC, by pulling them using glass microcantilevers, and measuring their detachment forces. We measured their interplanar adhesion between SC layers, and their peripheral adhesion among cells within a SC layer. Both adhesions increased considerably with depth. At the SC surface, with respect to adhesion, the corneocyte population exhibited a strong heterogeneity, where detachment forces differed by more than one order of magnitude for corneocytes located side by side. The measured detachment forces indicated that in the upper-middle layers of SC, the peripheral adhesion was stronger than the interplanar one. We conclude that the stronger peripheral adhesion of corneocytes in the SC favors an efficient barrier which would be able to resist strong stresses.
Collapse
Affiliation(s)
- Shuo Guo
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Yegor Domanov
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Mark Donovan
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | - Bertrand Ducos
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Yves Pomeau
- University of Arizona, Department of Mathematics, Tucson, AZ, USA
| | - Christine Gourier
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France
| | - Eric Perez
- Laboratoire de Physique Statistique, Ecole Normale Supérieure, l'université de recherche Paris Sciences et Lettres, CNRS UMR 8550, Sorbonne Universités, Université Pierre-et-Marie-Curie (UPMC) University of Paris 06, Université Paris Diderot, 75005 Paris, France.
| | | |
Collapse
|
17
|
Sanyal RD, Pavel AB, Glickman J, Chan TC, Zheng X, Zhang N, Cueto I, Peng X, Estrada Y, Fuentes-Duculan J, Alexis AF, Krueger JG, Guttman-Yassky E. Atopic dermatitis in African American patients is T H2/T H22-skewed with T H1/T H17 attenuation. Ann Allergy Asthma Immunol 2019; 122:99-110.e6. [PMID: 30223113 DOI: 10.1016/j.anai.2018.08.024] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 01/22/2023]
Abstract
BACKGROUND African Americans (AA) are disproportionately impacted by atopic dermatitis (AD), with increased prevalence and therapeutic challenges unique to this population. Molecular profiling data informing development of targeted therapeutics for AD are derived primarily from European American (EA) patients. These studies are absent in AA, hindering development of effective treatments for this population. OBJECTIVE We sought to characterize the global molecular profile of AD in the skin of AA patients as compared with that of EA AD and healthy controls. METHODS We performed RNA-Seq with reverse transcription polymerase chain reaction validation and immunohistochemistry studies in lesional and nonlesional skin of AA and EA AD patients vs healthy controls. RESULTS African American AD lesions were characterized by greater infiltration of dendritic cells (DCs) marked by the high-affinity immunoglobulin E (IgE) receptor (FcεR1+) compared with EA AD (P < .05). Both AD cohorts showed similarly robust up-regulation of Th2-related (CCL17/18/26) and Th22-related markers (interleukin [IL]-22, S100A8/9/12), but AA AD featured decreased expression of innate immune (tumor necrosis factor [TNF], IL-1β), Th1-related (interferon gamma [IFN-γ], MX1, IL-12RB1), and Th17-related markers (IL-23p19, IL-36G, CXCL1) vs EA AD (P < .05). The Th2 (IL-13) and Th22-related products (IL-22, S100A8/9/12) and serum IgE were significantly correlated with clinical severity (Scoring of Atopic Dermatitis [SCORAD]) in AA. Fillagrin (FLG) was exclusively down-regulated in EA AD, whereas loricrin (LOR) was down-regulated in both AD cohorts and negatively correlated with SCORAD in AA. CONCLUSION The molecular phenotype of AA AD skin is characterized by attenuated Th1 and Th17 but similar Th2/Th22-skewing to EA AD. Our data encourages a personalized medicine approach accounting for phenotype-specific characteristics in future development of targeted therapeutics and clinical trial design for AD.
Collapse
Affiliation(s)
- Riana D Sanyal
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ana B Pavel
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jacob Glickman
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tom C Chan
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Dermatology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiuzhong Zheng
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Ning Zhang
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Inna Cueto
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Xiangyu Peng
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yeriel Estrada
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judilyn Fuentes-Duculan
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Andrew F Alexis
- Department of Dermatology, Mount Sinai St. Luke's and Mount Sinai West, New York, New York
| | - James G Krueger
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York
| | - Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
18
|
Osseiran S, Cruz JD, Jeong S, Wang H, Fthenakis C, Evans CL. Characterizing stratum corneum structure, barrier function, and chemical content of human skin with coherent Raman scattering imaging. BIOMEDICAL OPTICS EXPRESS 2018; 9:6425-6443. [PMID: 31065440 PMCID: PMC6490993 DOI: 10.1364/boe.9.006425] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/07/2018] [Accepted: 11/14/2018] [Indexed: 05/03/2023]
Abstract
The most superficial layer of the epidermis, the stratum corneum, plays a crucial role in retaining hydration; if its structure or composition is compromised, dry skin may result as a consequence of poor water retention. Dry skin is typically treated with topical application of humectant agents that attract water into the skin. Corneometry, the industry standard for measuring skin hydration, works by assessing the bulk electrical properties of skin. However, this technique samples a large volume of tissue and thus does not resolve the biochemical changes that occur at the cellular level that may underlie mechanisms of dry skin. These limitations can be addressed using coherent Raman scattering (CRS) microscopy to probe the intrinsic vibrational modes of chemical groups such as lipids and water. In the present study, ex vivo human skin explants undergoing dehydration and humectant-induced rehydration were measured via CRS imaging and corneometry. Corneometry data and chemically specific images were obtained from the stratum corneum of each patient sample at each timepoint. The resulting data was statistically analyzed using linear mixed effect model regression analysis. The cellular imaging data revealed water loss in the stratum corneum during dehydration that was correlated with corneometer readings. Interestingly, the imaging data and corneometer readings show differences under the experimental rehydration conditions. The rehydration results suggest that hydration restored by the humectant agents may not be retained by the corneocytes in the ex vivo model system. Given the complementary nature of corneometry, a bulk assessment tool, and CRS microscopy, a modality with subcellular resolution implemented here in an en-face tissue imaging setup, these techniques can be used to measure uptake and efficacy of topical compounds in order to better understand their mode of action and improve therapeutic applications.
Collapse
Affiliation(s)
- Sam Osseiran
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129,
USA
- Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue E25-518, Cambridge, MA 02139,
USA
| | - Jomer Dela Cruz
- Basic Science Research Division, The Estée Lauder Companies Inc., 155 Pinelawn Road, Melville, NY 11747,
USA
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129,
USA
| | - Hequn Wang
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129,
USA
| | - Christina Fthenakis
- Basic Science Research Division, The Estée Lauder Companies Inc., 155 Pinelawn Road, Melville, NY 11747,
USA
| | - Conor L. Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129,
USA
| |
Collapse
|
19
|
Brunner PM, Israel A, Zhang N, Leonard A, Wen HC, Huynh T, Tran G, Lyon S, Rodriguez G, Immaneni S, Wagner A, Zheng X, Estrada YD, Xu H, Krueger JG, Paller AS, Guttman-Yassky E. Early-onset pediatric atopic dermatitis is characterized by T H2/T H17/T H22-centered inflammation and lipid alterations. J Allergy Clin Immunol 2018; 141:2094-2106. [PMID: 29731129 DOI: 10.1016/j.jaci.2018.02.040] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/27/2018] [Accepted: 02/10/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although atopic dermatitis (AD) often starts in early childhood, detailed tissue profiling of early-onset AD in children is lacking, hindering therapeutic development for this patient population with a particularly high unmet need for better treatments. OBJECTIVE We sought to globally profile the skin of infants with AD compared with that of adults with AD and healthy control subjects. METHODS We performed microarray, RT-PCR, and fluorescence microscopy studies in infants and young children (<5 years old) with early-onset AD (<6 months disease duration) compared with age-matched control subjects and adults with longstanding AD. RESULTS Transcriptomic analyses revealed profound differences between pediatric patients with early-onset versus adult patients with longstanding AD in not only lesional but also nonlesional tissues. Although both patient populations harbored TH2-centered inflammation, pediatric AD also showed significant TH17/TH22 skewing but lacked the TH1 upregulation that characterizes adult AD. Pediatric AD exhibited relatively normal expression of epidermal differentiation and cornification products, which is downregulated in adults with AD. Defects in the lipid barrier (eg, ELOVL fatty acid elongase 3 [ELOVL3] and diacylglycerol o-acyltransferase 2 [DGAT2]) and tight junction regulation (eg, claudins 8 and 23) were evident in both groups. However, some lipid-associated mediators (eg, fatty acyl-CoA reductase 2 and fatty acid 2-hydroxylase) showed preferential downregulation in pediatric AD, and lipid barrier genes (FA2H and DGAT2) showed inverse correlations with transepidermal water loss, a functional measure of the epidermal barrier. CONCLUSIONS Skin samples from children and adult patients with AD share lipid metabolism and tight junction alterations, but epidermal differentiation complex defects are only present in adult AD, potentially resulting from chronic immune aberration that is not yet present in early-onset disease.
Collapse
Affiliation(s)
- Patrick M Brunner
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Ariel Israel
- Department of Family Medicine, Clalit Health Services, Jerusalem, Israel
| | - Ning Zhang
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alexandra Leonard
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Huei-Chi Wen
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Thy Huynh
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Gary Tran
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Sarah Lyon
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Giselle Rodriguez
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Supriya Immaneni
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Annette Wagner
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Xiuzhong Zheng
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Yeriel D Estrada
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Hui Xu
- Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY
| | - Amy S Paller
- Departments of Dermatology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Emma Guttman-Yassky
- Laboratory for Investigative Dermatology, Rockefeller University, New York, NY; Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
20
|
Masaki H, Yamashita Y, Kyotani D, Honda T, Takano K, Tamura T, Mizutani T, Okano Y. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions. J Cosmet Dermatol 2018; 18:308-314. [PMID: 29603859 DOI: 10.1111/jocd.12502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. AIMS The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. METHODS A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. RESULTS Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. CONCLUSION Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions.
Collapse
Affiliation(s)
- Hitoshi Masaki
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | | | | | | | | | | | - Taeko Mizutani
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| | - Yuri Okano
- School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Tokyo, Japan
| |
Collapse
|
21
|
Martini D, Angelino D, Cortelazzi C, Zavaroni I, Bedogni G, Musci M, Pruneti C, Passeri G, Ventura M, Galli D, Mirandola P, Vitale M, Dei Cas A, Bonadonna RC, Di Nuzzo S, De Felici MB, Del Rio D. Claimed Effects, Outcome Variables and Methods of Measurement for Health Claims Proposed Under European Community Regulation 1924/2006 in the Framework of Maintenance of Skin Function. Nutrients 2017; 10:nu10010007. [PMID: 29271939 PMCID: PMC5793235 DOI: 10.3390/nu10010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests a protective role for several nutrients and foods in the maintenance of skin function. Nevertheless, all the requests for authorization to use health claims under Article 13(5) in the framework of maintenance of skin function presented to the European Food Safety Authority (EFSA) have received a negative opinion. Reasons for such failures are mainly due to an insufficient substantiation of the claimed effects, including the choice of inappropriate outcome variables (OVs) and methods of measurement (MMs). The present paper reports the results of an investigation aimed at collecting, collating and critically analyzing the information with relation to claimed effects (CEs), OVs and MMs related to skin health compliance with Regulation 1924/2006. CEs, OVs and MMs were collected from both the EFSA Guidance document and from the authorization requests of health claims under Article 13(5). The critical analysis of OVs and MMs was based on a literature review, and was aimed at defining their appropriateness (alone or in combination with others) in the context of a specific CE. The results highlight the importance of an adequate choice of OVs and MMs for an effective substantiation of the claims.
Collapse
Affiliation(s)
- Daniela Martini
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
| | - Donato Angelino
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
| | - Chiara Cortelazzi
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Ivana Zavaroni
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Giorgio Bedogni
- Clinical Epidemiology Unit, Liver Research Center, Basovizza, 34149 Trieste, Italy;
| | - Marilena Musci
- Department of Food and Drug, University of Parma, 43125 Parma, Italy;
| | - Carlo Pruneti
- Department of Medicine and Surgery, Clinical Psychology Unit, University of Parma, 43125 Parma, Italy;
| | - Giovanni Passeri
- Department of Medicine and Surgery, University of Parma, Building Clinica Medica Generale, 43125 Parma, Italy;
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43125 Parma, Italy;
| | - Daniela Galli
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Prisco Mirandola
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM), University of Parma, 43125 Parma, Italy; (D.G.); (P.M.); (M.V.)
| | - Alessandra Dei Cas
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Riccardo C. Bonadonna
- Department of Medicine and Surgery, Division of Endocrinology, University of Parma, 43125 Parma, Italy; (I.Z.); (A.D.C.); (R.C.B.)
- The Azienda Ospedaliera Universitaria of Parma, Division of Endocrinology, 43125 Parma, Italy
| | - Sergio Di Nuzzo
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Maria Beatrice De Felici
- Department of Medicine and Surgery, Section of Dermatology, University of Parma, 43125 Parma, Italy; (C.C.); (S.D.N.); (M.B.D.F.)
| | - Daniele Del Rio
- The Laboratory of Phytochemicals in Physiology, Department of Food and Drug, University of Parma, 43125 Parma, Italy; (D.M.); (D.A.)
- Correspondence: ; Tel.: +39-0521-903830
| |
Collapse
|
22
|
Yu Y, Prassas I, Muytjens CM, Diamandis EP. Proteomic and peptidomic analysis of human sweat with emphasis on proteolysis. J Proteomics 2017; 155:40-48. [DOI: 10.1016/j.jprot.2017.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
23
|
Igawa S, Kishibe M, Minami-Hori M, Honma M, Tsujimura H, Ishikawa J, Fujimura T, Murakami M, Ishida-Yamamoto A. Incomplete KLK7 Secretion and Upregulated LEKTI Expression Underlie Hyperkeratotic Stratum Corneum in Atopic Dermatitis. J Invest Dermatol 2017; 137:449-456. [DOI: 10.1016/j.jid.2016.10.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 10/03/2016] [Accepted: 10/10/2016] [Indexed: 01/01/2023]
|
24
|
Abdayem R, Formanek F, Minondo AM, Potter A, Haftek M. Cell surface glycans in the human
stratum corneum
: distribution and depth‐related changes. Exp Dermatol 2016; 25:865-871. [DOI: 10.1111/exd.13070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Rawad Abdayem
- University of Lyon1 EA4169 “Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function” Lyon France
- L'Oréal Research and Innovation Aulnay sous Bois France
| | | | | | - Anne Potter
- L'Oréal Research and Innovation Aulnay sous Bois France
| | - Marek Haftek
- University of Lyon1 EA4169 “Fundamental, Clinical and Therapeutic Aspects of Skin Barrier Function” Lyon France
| |
Collapse
|
25
|
Effects of sphingolipid extracts on the morphological structure and lipid profile in an in vitro model of canine skin. Vet J 2016; 212:58-64. [PMID: 27256026 DOI: 10.1016/j.tvjl.2016.03.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 03/04/2016] [Accepted: 03/22/2016] [Indexed: 02/07/2023]
Abstract
Ceramides (CER) are essential sphingolipids of the stratum corneum (SC) that play an important role in maintaining cutaneous barrier function. Skin barrier defects occur in both human beings and dogs affected with atopic dermatitis, and have been associated with decreased CER concentrations and morphological alterations in the SC. The aim of the present study was to investigate the changes induced by three different sphingolipid extracts (SPE-1, SPE-2 and SPE-3) on the morphological structure and lipid composition of canine skin, using an in vitro model, whereby keratinocytes were seeded onto fibroblast-embedded collagen type I matrix at the air-liquid interface. Cell cultures were supplemented with SPE-1, SPE-2, SPE-3 or vehicle (control) for 14 days. The relative concentrations of lipids were determined by ultra-performance liquid chromatography coupled to mass spectrometry. The ultrastructural morphology of samples was examined by transmission electron microscopy. SPE-1 induced significant elevation in total CERs, CER[NS], CER[NDS], CER[NP], CER[AS], CER[AP], CER[EOS] and CER[EOP] subclasses, whereas SPE-2 induced a significant elevation in total CER, CER[AP] and CER[EOS] compared with control conditions. Ultrastructural analysis revealed an increase in lamellar-lipid structures in the SC of SPE-1-treated samples. The findings demonstrated that SPE-1 stimulates production of CERs, as shown by changes in lipid composition and ultrastructural morphology. Thus, SPE-1 contributes to the formation of a well-organised SC and represents a potential therapeutic target for improving skin barrier function in atopic dermatitis.
Collapse
|
26
|
Kitajima Y. Desmosomes and corneodesmosomes are enclosed by tight junctions at the periphery of granular cells and corneocytes, suggesting a role in generation of a peripheral distribution of corneodesmosomes in corneocytes. J Dermatol Sci 2016; 83:73-5. [PMID: 27032606 DOI: 10.1016/j.jdermsci.2016.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/15/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Yasuo Kitajima
- Department of Dermatology, Kizawa Memorial Hospital, 590 Shimokobi, Kobi, Minokamo, Gifu Prefecture 505-8503, Japan.
| |
Collapse
|
27
|
Hänel KH, Pfaff CM, Cornelissen C, Amann PM, Marquardt Y, Czaja K, Kim A, Lüscher B, Baron JM. Control of the Physical and Antimicrobial Skin Barrier by an IL-31-IL-1 Signaling Network. THE JOURNAL OF IMMUNOLOGY 2016; 196:3233-44. [PMID: 26944931 DOI: 10.4049/jimmunol.1402943] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/08/2016] [Indexed: 12/27/2022]
Abstract
Atopic dermatitis, a chronic inflammatory skin disease with increasing prevalence, is closely associated with skin barrier defects. A cytokine related to disease severity and inhibition of keratinocyte differentiation is IL-31. To identify its molecular targets, IL-31-dependent gene expression was determined in three-dimensional organotypic skin models. IL-31-regulated genes are involved in the formation of an intact physical skin barrier. Many of these genes were poorly induced during differentiation as a consequence of IL-31 treatment, resulting in increased penetrability to allergens and irritants. Furthermore, studies employing cell-sorted skin equivalents in SCID/NOD mice demonstrated enhanced transepidermal water loss following s.c. administration of IL-31. We identified the IL-1 cytokine network as a downstream effector of IL-31 signaling. Anakinra, an IL-1R antagonist, blocked the IL-31 effects on skin differentiation. In addition to the effects on the physical barrier, IL-31 stimulated the expression of antimicrobial peptides, thereby inhibiting bacterial growth on the three-dimensional organotypic skin models. This was evident already at low doses of IL-31, insufficient to interfere with the physical barrier. Together, these findings demonstrate that IL-31 affects keratinocyte differentiation in multiple ways and that the IL-1 cytokine network is a major downstream effector of IL-31 signaling in deregulating the physical skin barrier. Moreover, by interfering with IL-31, a currently evaluated drug target, we will have to consider that low doses of IL-31 promote the antimicrobial barrier, and thus a complete inhibition of IL-31 signaling may be undesirable.
Collapse
Affiliation(s)
- Kai H Hänel
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Carolina M Pfaff
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Christian Cornelissen
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Philipp M Amann
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Katharina Czaja
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany
| | - Arianna Kim
- Department of Dermatology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52074 Aachen, Germany; and
| | - Jens M Baron
- Department of Dermatology and Allergology, Medical School, RWTH Aachen University, 52074 Aachen, Germany;
| |
Collapse
|
28
|
Fu SL, Li JL, Chen J, Wang QT, Li JJ, Wang XC. Extraction and identification of membrane proteins from black widow spider eggs. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 36:248-54. [PMID: 26228476 DOI: 10.13918/j.issn.2095-8137.2015.4.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The eggs of oviparous animals are storehouses of maternal proteins required for embryonic development. Identification and molecular characterization of such proteins will provide much insight into the regulation of embryonic development. We previously analyzed soluble proteins in the eggs of the black widow spider (Latrodectus tredecimguttatus), and report here on the extraction and mass spectrometric identification of the egg membrane proteins. Comparison of different lysis solutions indicated that the highest extraction of the membrane proteins was achieved with 3%-4% sodium laurate in 40 mmol/L Tris-HCl buffer containing 4% CHAPS and 2% DTT (pH 7.4). SDS-PAGE combined with nLC-MS/MS identified 39 proteins with membrane-localization annotation, including those with structural, catalytic, and regulatory activities. Nearly half of the identified membrane proteins were metabolic enzymes involved in various cellular processes, particularly energy metabolism and biosynthesis, suggesting that relevant metabolic processes were active during the embryonic development of the eggs. Several identified cell membrane proteins were involved in the special structure formation and function of the egg cell membranes. The present proteomic analysis of the egg membrane proteins provides new insight into the molecular mechanisms of spider embryonic development.
Collapse
Affiliation(s)
- Si-Ling Fu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, Hunan Normal University, Changsha 410081, China
| | - Jiang-Lin Li
- Molecular Sciences and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, Hunan Normal University, Changsha 410081, China
| | - Qiu-Ting Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, Hunan Normal University, Changsha 410081, China
| | - Jian-Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, Hunan Normal University, Changsha 410081, China
| | - Xian-Chun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, Hunan Normal University, Changsha 410081,
| |
Collapse
|
29
|
Kitajima Y. Implications of normal and disordered remodeling dynamics of corneodesmosomes in stratum corneum. DERMATOL SIN 2015. [DOI: 10.1016/j.dsi.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
30
|
Shrestha M, Eriksson S, Schurink A, Andersson LS, Sundquist M, Frey R, Broström H, Bergström T, Ducro B, Lindgren G. Genome-Wide Association Study of Insect Bite Hypersensitivity in Swedish-Born Icelandic Horses. J Hered 2015; 106:366-74. [PMID: 26026046 DOI: 10.1093/jhered/esv033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 05/08/2015] [Indexed: 12/18/2022] Open
Abstract
Insect bite hypersensitivity (IBH) is the most common allergic skin disease in horses and is caused by biting midges, mainly of the genus Culicoides. The disease predominantly comprises a type I hypersensitivity reaction, causing severe itching and discomfort that reduce the welfare and commercial value of the horse. It is a multifactorial disorder influenced by both genetic and environmental factors, with heritability ranging from 0.16 to 0.27 in various horse breeds. The worldwide prevalence in different horse breeds ranges from 3% to 60%; it is more than 50% in Icelandic horses exported to the European continent and approximately 8% in Swedish-born Icelandic horses. To minimize the influence of environmental effects, we analyzed Swedish-born Icelandic horses to identify genomic regions that regulate susceptibility to IBH. We performed a genome-wide association (GWA) study on 104 affected and 105 unaffected Icelandic horses genotyped using Illumina® EquineSNP50 Genotyping BeadChip. Quality control and population stratification analyses were performed with the GenABEL package in R (λ = 0.81). The association analysis was performed using the Bayesian variable selection method, Bayes C, implemented in GenSel software. The highest percentage of genetic variance was explained by the windows on X chromosomes (0.51% and 0.36% by 73 and 74 mb), 17 (0.34% by 77 mb), and 18 (0.34% by 26 mb). Overlapping regions with previous GWA studies were observed on chromosomes 7, 9, and 17. The windows identified in our study on chromosomes 7, 10, and 17 harbored immune system genes and are priorities for further investigation.
Collapse
Affiliation(s)
- Merina Shrestha
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Susanne Eriksson
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Anouk Schurink
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Lisa S Andersson
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Marie Sundquist
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Rebecka Frey
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Hans Broström
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Tomas Bergström
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Bart Ducro
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström)
| | - Gabriella Lindgren
- From the Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Shrestha, Eriksson, Bergström, and Lindgren); Animal Breeding and Genomic Centre, Wageningen University, 6700 AH Wageningen, The Netherlands (Shrestha, Schurink, and Ducro); Capilet Genetics AB, SE-725 93 Västerås, Sweden (Andersson); Östra Greda Research Group, SE-387 91 Borgholm, Sweden (Sundquist); Norsholms Animal Hospital, SE-602 37 Norrköping, Sweden (Frey); and Department of Clinical Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden (Broström).
| |
Collapse
|
31
|
van Logtestijn MDA, Domínguez-Hüttinger E, Stamatas GN, Tanaka RJ. Resistance to water diffusion in the stratum corneum is depth-dependent. PLoS One 2015; 10:e0117292. [PMID: 25671323 PMCID: PMC4324936 DOI: 10.1371/journal.pone.0117292] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/22/2014] [Indexed: 11/23/2022] Open
Abstract
The stratum corneum (SC) provides a permeability barrier that limits the inflow and outflow of water. The permeability barrier is continuously and dynamically formed, maintained, and degraded along the depth, from the bottom to the top, of the SC. Naturally, its functioning and structure also change dynamically in a depth-dependent manner. While transepidermal water loss is typically used to assess the function of the SC barrier, it fails to provide any information about the dynamic mechanisms that are responsible for the depth-dependent characteristics of the permeability barrier. This paper aims to quantitatively characterize the depth-dependency of the permeability barrier using in vivo non-invasive measurement data for understanding the underlying mechanisms for barrier formation, maintenance, and degradation. As a framework to combine existing experimental data, we propose a mathematical model of the SC, consisting of multiple compartments, to explicitly address and investigate the depth-dependency of the SC permeability barrier. Using this mathematical model, we derive a measure of the water permeability barrier, i.e. resistance to water diffusion in the SC, from the measurement data on transepidermal water loss and water concentration profiles measured non-invasively by Raman spectroscopy. The derived resistance profiles effectively characterize the depth-dependency of the permeability barrier, with three distinct regions corresponding to formation, maintenance, and degradation of the barrier. Quantitative characterization of the obtained resistance profiles allows us to compare and evaluate the permeability barrier of skin with different morphology and physiology (infants vs adults, different skin sites, before and after application of oils) and elucidates differences in underlying mechanisms of processing barriers. The resistance profiles were further used to predict the spatial-temporal effects of skin treatments by in silico experiments, in terms of spatial-temporal dynamics of percutaneous water penetration.
Collapse
Affiliation(s)
| | | | | | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
32
|
Abstract
Desmosomes serve as intercellular junctions in various tissues including the skin and the heart where they play a crucial role in cell-cell adhesion, signalling and differentiation. The desmosomes connect the cell surface to the keratin cytoskeleton and are composed of a transmembranal part consisting mainly of desmosomal cadherins, armadillo proteins and desmoplakin, which form the intracytoplasmic desmosomal plaque. Desmosomal genodermatoses are caused by mutations in genes encoding the various desmosomal components. They are characterized by skin, hair and cardiac manifestations occurring in diverse combinations. Their classification into a separate and distinct clinical group not only recognizes their common pathogenesis and facilitates their diagnosis but might also in the future form the basis for the design of novel and targeted therapies for these occasionally life-threatening diseases.
Collapse
|
33
|
Ishida-Yamamoto A, Igawa S. The biology and regulation of corneodesmosomes. Cell Tissue Res 2014; 360:477-82. [DOI: 10.1007/s00441-014-2037-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/09/2014] [Indexed: 11/30/2022]
|
34
|
Peeling off the genetics of atopic dermatitis–like congenital disorders. J Allergy Clin Immunol 2014; 134:808-15. [DOI: 10.1016/j.jaci.2014.07.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 12/14/2022]
|
35
|
Singh B, Haftek M, Harding CR. Retention of corneodesmosomes and increased expression of protease inhibitors in dandruff. Br J Dermatol 2014; 171:760-70. [PMID: 24815089 DOI: 10.1111/bjd.13111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dandruff is a common, relapsing and uncomfortable scalp condition affecting a large proportion of the global population. The appearance of flakes on the scalp and in the hair line, and associated itch are thought to be consequences of a damaged skin barrier, altered corneocyte cohesion and abnormal desquamation in dandruff. The balance between skin proteases and protease inhibitors is essential for driving the key events, including corneodesmosome degradation, in the desquamation process and to maintain stratum corneum (SC) barrier integrity. OBJECTIVES To investigate the distribution of corneodesmosomes, the key component of the SC cohesivity and barrier function, and the protease inhibitors lympho-epithelial Kazal-type-related inhibitor (LEKTI-1) and squamous cell carcinoma antigen (SCCA1) in the scalp of dandruff-affected participants. METHODS The methods utilized were immunohistochemistry, scanning immunoelectron microscopy, phase-contrast microscopy, Western blotting and serine protease activity assay on tape-stripped SC or scalp skin biopsies. RESULTS In SC samples from healthy subjects, corneodesmosomes were peripherally located in the corneocytes. In samples of dandruff lesions, corneodesmosomes were located both peripherally and on the entire surface area of the corneocytes. LEKTI-1 and SCCA1 protein levels and parakeratosis were found to be highly elevated in the lesional samples. CONCLUSIONS The persistence of nonperipheral corneodesmosomes is a characteristic feature of the perturbed desquamation seen in dandruff. The increased expression levels of LEKTI-1 and SCCA1 are consistent with the view that the dandruff condition is characterized by an imbalance in protease-protease inhibitor interaction in the SC.
Collapse
Affiliation(s)
- B Singh
- Unilever Research & Development, Port Sunlight, Bebington, U.K
| | | | | |
Collapse
|
36
|
Lorencini M, Brohem CA, Dieamant GC, Zanchin NI, Maibach HI. Active ingredients against human epidermal aging. Ageing Res Rev 2014; 15:100-15. [PMID: 24675046 DOI: 10.1016/j.arr.2014.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
The decisive role of the epidermis in maintaining body homeostasis prompted studies to evaluate the changes in epidermal structure and functionality over the lifetime. This development, along with the identification of molecular mechanisms of epidermal signaling, maintenance, and differentiation, points to a need for new therapeutic alternatives to treat and prevent skin aging. In addition to recovering age- and sun-compromised functions, proper treatment of the epidermis has important esthetic implications. This study reviews active ingredients capable of counteracting symptoms of epidermal aging, organized according to the regulation of specific age-affected epidermal functions: (1) several compounds, other than retinoids and derivatives, act on the proliferation and differentiation of keratinocytes, supporting the protective barrier against mechanical and chemical insults; (2) natural lipidic compounds, as well as glycerol and urea, are described as agents for maintaining water-ion balance; (3) regulation of immunological pathogen defense can be reinforced by natural extracts and compounds, such as resveratrol; and (4) antioxidant exogenous sources enriched with flavonoids and vitamin C, for example, improve solar radiation protection and epidermal antioxidant activity. The main objective is to provide a functional classification of active ingredients as regulatory elements of epidermal homeostasis, with potential cosmetic and/or dermatological applications.
Collapse
|
37
|
Sprecher E, Leung DYM. Atopic dermatitis: scratching through the complexity of barrier dysfunction. J Allergy Clin Immunol 2014; 132:1130-1. [PMID: 24176684 DOI: 10.1016/j.jaci.2013.09.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 09/19/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tela Aviv, Israel; Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | |
Collapse
|
38
|
Miyai M, Matsumoto Y, Yamanishi H, Yamamoto-Tanaka M, Tsuboi R, Hibino T. Keratinocyte-specific mesotrypsin contributes to the desquamation process via kallikrein activation and LEKTI degradation. J Invest Dermatol 2014; 134:1665-1674. [PMID: 24390132 DOI: 10.1038/jid.2014.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/09/2022]
Abstract
Kallikrein-related peptidases (KLKs) have critical roles in corneocyte desquamation and are regulated by lymphoepithelial Kazal-type inhibitor (LEKTI). However, it is unclear how these proteases are activated and how activated KLKs are released from LEKTI in the upper cornified layer. Recently, we reported cloning of a PRSS3 gene product, keratinocyte-specific mesotrypsin, from a cDNA library. We hypothesized that mesotrypsin is involved in the desquamation process, and the aim of the present study was to test this idea by examining the effects of mesotrypsin on representative desquamation-related enzymes pro-KLK5 and pro-KLK7. Incubation of mesotrypsin and these zymogens resulted in generation of the active forms. KLK activities were effectively inhibited by recombinant LEKTI domains D2, D2-5, D2-6, D2-7, D5, D6, D6-9, D7, D7-9, and D10-15, whereas mesotrypsin activity was not susceptible to these domains, and in fact degraded them. Immunoelectron microscopy demonstrated that mesotrypsin was localized in the cytoplasm of granular cells and intercellular spaces of the cornified layer. Proximity ligation assay showed close association between mesotrypsin and KLKs in the granular to cornified layers. Age-dependency analysis revealed that mesotrypsin was markedly downregulated in corneocyte extract from donors in their sixties, compared with younger donors. Collectively, our findings suggest that mesotrypsin contributes to the desquamation process by activating KLKs and degrading the intrinsic KLKs' inhibitor LEKTI.
Collapse
Affiliation(s)
- Masashi Miyai
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan
| | | | | | - Mami Yamamoto-Tanaka
- Shiseido Research Center, Kanazawa-ku, Yokohama, Japan; Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | | |
Collapse
|
39
|
Cerrato S, Ramió-Lluch L, Fondevila D, Rodes D, Brazis P, Puigdemont A. Effects of Essential Oils and Polyunsaturated Fatty Acids on Canine Skin Equivalents: Skin Lipid Assessment and Morphological Evaluation. J Vet Med 2013; 2013:231526. [PMID: 26464904 PMCID: PMC4590884 DOI: 10.1155/2013/231526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 01/01/2023] Open
Abstract
A canine skin equivalent model has been validated for the assessment of a topical formulation effects. Skin equivalents were developed from freshly isolated cutaneous canine fibroblasts and keratinocytes, after enzymatic digestion of skin samples (n = 8) from different breeds. Fibroblasts were embedded into a collagen type I matrix, and keratinocytes were seeded onto its surface at air-liquid interface. Skin equivalents were supplemented with essential oils and polyunsaturated fatty acid formulation or with vehicle. Skin equivalents were histopathologically and ultrastructurally studied, and the three main lipid groups (free fatty acids, cholesterol, and ceramides) were analyzed. Results showed that the culture method developed resulted in significant improvements in cell retrieval and confluence. Treated samples presented a thicker epidermis with increased number of viable cell layers, a denser and compact stratum corneum, and a more continuous basal membrane. Regarding lipid profile, treated skin equivalents showed a significant increase in ceramide content (51.7 ± 1.3) when compared to untreated (41.6 ± 1.4) samples. Ultrastructural study evidenced a compact and well-organized stratum corneum in both treated and control skin equivalents. In conclusion, cell viability and ceramides increase, after lipid supplementation, are especially relevant for the treatment of skin barrier disruptions occurring in canine atopic dermatitis.
Collapse
Affiliation(s)
- S. Cerrato
- UNIVET S.L., Edificio Astrolabio, Avenue Cerdanyola 92, 08172 Sant Cugat del Vallés, Barcelona, Spain
| | - L. Ramió-Lluch
- UNIVET S.L., Edificio Astrolabio, Avenue Cerdanyola 92, 08172 Sant Cugat del Vallés, Barcelona, Spain
| | - D. Fondevila
- Department of Medicine and Animal Surgery, Veterinary Faculty, Autonomous University of Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain
| | - D. Rodes
- MERIAL, Avenue Tony Garnier 29, 69007 Lyon, France
| | - P. Brazis
- UNIVET S.L., Edificio Astrolabio, Avenue Cerdanyola 92, 08172 Sant Cugat del Vallés, Barcelona, Spain
| | - A. Puigdemont
- Department of Pharmacology, Therapeutics and Toxicology, Veterinary Faculty, Autonomous University of Barcelona, 08913 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
40
|
Li X, Upadhyay AK, Bullock AJ, Dicolandrea T, Xu J, Binder RL, Robinson MK, Finlay DR, Mills KJ, Bascom CC, Kelling CK, Isfort RJ, Haycock JW, MacNeil S, Smallwood RH. Skin stem cell hypotheses and long term clone survival--explored using agent-based modelling. Sci Rep 2013; 3:1904. [PMID: 23712735 PMCID: PMC3664904 DOI: 10.1038/srep01904] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/07/2013] [Indexed: 12/20/2022] Open
Abstract
Epithelial renewal in skin is achieved by the constant turnover and differentiation of keratinocytes. Three popular hypotheses have been proposed to explain basal keratinocyte regeneration and epidermal homeostasis: 1) asymmetric division (stem-transit amplifying cell); 2) populational asymmetry (progenitor cell with stochastic fate); and 3) populational asymmetry with stem cells. In this study, we investigated lineage dynamics using these hypotheses with a 3D agent-based model of the epidermis. The model simulated the growth and maintenance of the epidermis over three years. The offspring of each proliferative cell was traced. While all lineages were preserved in asymmetric division, the vast majority were lost when assuming populational asymmetry. The third hypothesis provided the most reliable mechanism for self-renewal by preserving genetic heterogeneity in quiescent stem cells, and also inherent mechanisms for skin ageing and the accumulation of genetic mutation.
Collapse
Affiliation(s)
- X Li
- Department of Computer Science, University of Sheffield, Sheffield, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Samuelov L, Sarig O, Harmon RM, Rapaport D, Ishida-Yamamoto A, Isakov O, Koetsier JL, Gat A, Goldberg I, Bergman R, Spiegel R, Eytan O, Geller S, Peleg S, Shomron N, Goh CSM, Wilson NJ, Smith FJD, Pohler E, Simpson MA, McLean WHI, Irvine AD, Horowitz M, McGrath JA, Green KJ, Sprecher E. Desmoglein 1 deficiency results in severe dermatitis, multiple allergies and metabolic wasting. Nat Genet 2013; 45:1244-1248. [PMID: 23974871 PMCID: PMC3791825 DOI: 10.1038/ng.2739] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/31/2013] [Indexed: 12/17/2022]
Abstract
The relative contribution of immunological dysregulation and impaired epithelial barrier function to allergic diseases is still a matter of debate. Here we describe a new syndrome featuring severe dermatitis, multiple allergies and metabolic wasting (SAM syndrome) caused by homozygous mutations in DSG1. DSG1 encodes desmoglein 1, a major constituent of desmosomes, which connect the cell surface to the keratin cytoskeleton and have a crucial role in maintaining epidermal integrity and barrier function. Mutations causing SAM syndrome resulted in lack of membrane expression of DSG1, leading to loss of cell-cell adhesion. In addition, DSG1 deficiency was associated with increased expression of a number of genes encoding allergy-related cytokines. Our deciphering of the pathogenesis of SAM syndrome substantiates the notion that allergy may result from a primary structural epidermal defect.
Collapse
Affiliation(s)
- Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Debora Rapaport
- Department of Cell Research and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | | | - Ofer Isakov
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Gat
- Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilan Goldberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Reuven Bergman
- Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Spiegel
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Human Genetics, Haemek Medical Center, Afula, Israel
| | - Ori Eytan
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Shamir Geller
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sarit Peleg
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Pediatric Department B, Haemek Medical Center, Afula, Israel
- Pediatric Gastroenterology Unit, Haemek Medical Center, Afula, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Faculty of Medicine, Tel-Aviv University, Ramat-Aviv, Israel
| | | | - Neil J Wilson
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Frances J D Smith
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Elizabeth Pohler
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Michael A Simpson
- Division of Genetics and Molecular Medicine, King's College London (Guy's Campus), London, UK
| | - W H Irwin McLean
- Centre for Dermatology and Genetic Medicine, University of Dundee, Dundee, UK
| | - Alan D Irvine
- Paediatric Dermatology, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- National Children's Research Centre, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
- Clinical Medicine, Trinity College Dublin, Dublin, Ireland
| | - Mia Horowitz
- Department of Cell Research and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - John A McGrath
- St John's Institute of Dermatology, King's College London (Guy's Campus), London, UK
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
42
|
Igawa S, Kishibe M, Honma M, Murakami M, Mizuno Y, Suga Y, Seishima M, Ohguchi Y, Akiyama M, Hirose K, Ishida-Yamamoto A, Iizuka H. Aberrant distribution patterns of corneodesmosomal components of tape-stripped corneocytes in atopic dermatitis and related skin conditions (ichthyosis vulgaris, Netherton syndrome and peeling skin syndrome type B). J Dermatol Sci 2013; 72:54-60. [PMID: 23810772 DOI: 10.1016/j.jdermsci.2013.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 05/02/2013] [Accepted: 05/22/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Atopic dermatitis (AD), Netherton syndrome (NS) and peeling skin syndrome type B (PSS) may show some clinical phenotypic overlap. Corneodesmosomes are crucial for maintaining stratum corneum integrity and the components' localization can be visualized by immunostaining tape-stripped corneocytes. In normal skin, they are detected at the cell periphery. OBJECTIVE To determine whether AD, NS, PSS and ichthyosis vulgaris (IV) have differences in the corneodesmosomal components' distribution and corneocytes surface areas. METHODS Corneocytes were tape-stripped from a control group (n=12) and a disease group (37 AD cases, 3 IV cases, 4 NS cases, and 3 PSS cases), and analyzed with immunofluorescent microscopy. The distribution patterns of corneodesmosomal components: desmoglein 1, corneodesmosin, and desmocollin 1 were classified into four types: peripheral, sparse diffuse, dense diffuse and partial diffuse. Corneocyte surface areas were also measured. RESULTS The corneodesmosome staining patterns were abnormal in the disease group. Other than in the 3 PSS cases, all three components showed similar patterns in each category. In lesional AD skin, the dense diffuse pattern was prominent. A high rate of the partial diffuse pattern, loss of linear cell-cell contacts, and irregular stripping manners were unique to NS. Only in PSS was corneodesmosin staining virtually absent. The corneocyte surface areas correlated significantly with the rate of combined sparse and dense diffuse patterns of desmoglein 1. CONCLUSION This method may be used to assess abnormally differentiated corneocytes in AD and other diseases tested. In PSS samples, tape stripping analysis may serve as a non-invasive diagnostic test.
Collapse
Affiliation(s)
- Satomi Igawa
- Department of Dermatology, Asahikawa Medical University, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tengvall K, Kierczak M, Bergvall K, Olsson M, Frankowiack M, Farias FHG, Pielberg G, Carlborg Ö, Leeb T, Andersson G, Hammarström L, Hedhammar Å, Lindblad-Toh K. Genome-wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic dermatitis. PLoS Genet 2013; 9:e1003475. [PMID: 23671420 PMCID: PMC3649999 DOI: 10.1371/journal.pgen.1003475] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 03/04/2013] [Indexed: 12/22/2022] Open
Abstract
Humans and dogs are both affected by the allergic skin disease atopic dermatitis (AD), caused by an interaction between genetic and environmental factors. The German shepherd dog (GSD) is a high-risk breed for canine AD (CAD). In this study, we used a Swedish cohort of GSDs as a model for human AD. Serum IgA levels are known to be lower in GSDs compared to other breeds. We detected significantly lower IgA levels in the CAD cases compared to controls (p = 1.1 × 10(-5)) in our study population. We also detected a separation within the GSD cohort, where dogs could be grouped into two different subpopulations. Disease prevalence differed significantly between the subpopulations contributing to population stratification (λ = 1.3), which was successfully corrected for using a mixed model approach. A genome-wide association analysis of CAD was performed (n cases = 91, n controls = 88). IgA levels were included in the model, due to the high correlation between CAD and low IgA levels. In addition, we detected a correlation between IgA levels and the age at the time of sampling (corr = 0.42, p = 3.0 × 10(-9)), thus age was included in the model. A genome-wide significant association was detected on chromosome 27 (praw = 3.1 × 10(-7), pgenome = 0.03). The total associated region was defined as a ~1.5-Mb-long haplotype including eight genes. Through targeted re-sequencing and additional genotyping of a subset of identified SNPs, we defined 11 smaller haplotype blocks within the associated region. Two blocks showed the strongest association to CAD. The ~209-kb region, defined by the two blocks, harbors only the PKP2 gene, encoding Plakophilin 2 expressed in the desmosomes and important for skin structure. Our results may yield further insight into the genetics behind both canine and human AD.
Collapse
Affiliation(s)
- Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marcin Kierczak
- Department of Clinical Sciences, Computational Genetics Section, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mia Olsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marcel Frankowiack
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Fabiana H. G. Farias
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Gerli Pielberg
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Örjan Carlborg
- Department of Clinical Sciences, Computational Genetics Section, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tosso Leeb
- Institute of Genetics, University of Bern, Bern, Switzerland
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
44
|
Hamada T, Tsuruta D, Fukuda S, Ishii N, Teye K, Numata S, Dainichi T, Karashima T, Ohata C, Furumura M, Hashimoto T. How do keratinizing disorders and blistering disorders overlap? Exp Dermatol 2012; 22:83-7. [DOI: 10.1111/exd.12021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 01/04/2023]
|
45
|
Chang Y, van der Velden J, van der Wier G, Kramer D, Diercks G, van Geel M, Coenraads P, Zeeuwen P, Jonkman M. Keratolysis exfoliativa (dyshidrosis lamellosa sicca): a distinct peeling entity. Br J Dermatol 2012; 167:1076-84. [DOI: 10.1111/j.1365-2133.2012.11175.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
46
|
Li M, Cheng R, Zhuang Y, Yao Z. A recurrent mutation in theAPCDD1gene responsible for hereditary hypotrichosis simplex in a large Chinese family. Br J Dermatol 2012; 167:952-4. [DOI: 10.1111/j.1365-2133.2012.11001.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Lin TK, Crumrine D, Ackerman LD, Santiago JL, Roelandt T, Uchida Y, Hupe M, Fabriàs G, Abad JL, Rice RH, Elias PM. Cellular changes that accompany shedding of human corneocytes. J Invest Dermatol 2012; 132:2430-2439. [PMID: 22739796 PMCID: PMC3447115 DOI: 10.1038/jid.2012.173] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Corneocyte desquamation has been ascribed to either: 1) proteolytic degradation of corneodesmosomes (CD); 2) disorganization of extracellular lamellar bilayers; and/or 3) ‘swell-shrinkage-slough’ (SSS) from hydration/dehydration. To address the cellular basis for normal exfoliation, we compared changes in lamellar bilayer architecture and CD structure in DSquame® strips from the 1st vs. 5th stripping (‘outer’ vs. ‘mid’-stratum corneum [SC], respectively) from 9 normal adult forearms. Strippings were either processed for standard EM or for ruthenium (Ru-V)- or osmium-tetroxide (Os-V) vapor fixation, followed by immediate epoxy embedment, an artifact-free protocol that to our knowledge is previously unreported. CDs are largely intact in the mid-SC, but replaced by electron-dense (hydrophilic) clefts (lacunae) that expand laterally, splitting lamellar arrays in the outer SC. Some undegraded DSG1/DSC1 redistribute uniformly into corneocyte envelopes (CEs) in the outer SC (shown by proteomics, Z-stack confocal imaging and immunoEM). CEs then thicken, likely facilitating exfoliation by increasing corneocyte rigidity. In vapor-fixed images, hydration only altered the volume of the extracellular compartment, expanding lacunae further separating membrane arrays. During dehydration, air replaced water, maintaining the expanded extracellular compartment. Hydration also provoked degradation of membranes by activating contiguous acidic ceramidase activity. Together, these studies identify several parallel mechanisms that orchestrate exfoliation from the surface of normal human skin.
Collapse
Affiliation(s)
- Tzu-Kai Lin
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, National Cheng Kung University Hospital, and Graduate Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Debra Crumrine
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Larry D Ackerman
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Juan-Luis Santiago
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, Hospital General de Ciudad Real, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | - Truus Roelandt
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA; Department of Dermatology, Universitair Ziekenhuis Brussel-Vrije Universiteit Brussel, Brussels, Belgium
| | - Yoshikazu Uchida
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Melanie Hupe
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA
| | - Gemma Fabriàs
- Department of Biomedicinal Chemistry, Institut de Química Avançada de Catalunya, CSIC, Barcelona, Spain
| | - Jose L Abad
- Department of Biomedicinal Chemistry, Institut de Química Avançada de Catalunya, CSIC, Barcelona, Spain
| | - Robert H Rice
- Department of Environmental Toxicology, University of California, Davis, Davis, California, USA
| | - Peter M Elias
- Department of Veterans Affairs Medical Center and Department of Dermatology, Dermatology Service, University of California, San Francisco, San Francisco, California, USA.
| |
Collapse
|
48
|
Donetti E, Gualerzi A, Ricceri F, Pescitelli L, Bedoni M, Prignano F. Etanercept restores a differentiated keratinocyte phenotype in psoriatic human skin: a morphological study. Exp Dermatol 2012; 21:549-51. [DOI: 10.1111/j.1600-0625.2012.01518.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Donetti
- Dipartimento di Morfologia Umana e Scienze Biomediche - Città Studi; Università degli Studi di Milano; Milano; Italy
| | - Alice Gualerzi
- Dipartimento di Morfologia Umana e Scienze Biomediche - Città Studi; Università degli Studi di Milano; Milano; Italy
| | - Federica Ricceri
- Dipartimento di Area Critica Medico-Chirurgica Sezione Dermatologia Clinica, Preventiva e Oncologica; Università degli Studi di Firenze; Firenze; Italy
| | - Leonardo Pescitelli
- Dipartimento di Area Critica Medico-Chirurgica Sezione Dermatologia Clinica, Preventiva e Oncologica; Università degli Studi di Firenze; Firenze; Italy
| | - Marzia Bedoni
- Polo Tecnologico; Fondazione Don Carlo Gnocchi; Milano; Italy
| | - Francesca Prignano
- Dipartimento di Area Critica Medico-Chirurgica Sezione Dermatologia Clinica, Preventiva e Oncologica; Università degli Studi di Firenze; Firenze; Italy
| |
Collapse
|
49
|
Cabral RM, Kurban M, Wajid M, Shimomura Y, Petukhova L, Christiano AM. Whole-exome sequencing in a single proband reveals a mutation in the CHST8 gene in autosomal recessive peeling skin syndrome. Genomics 2012; 99:202-8. [PMID: 22289416 DOI: 10.1016/j.ygeno.2012.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/03/2012] [Accepted: 01/15/2012] [Indexed: 12/18/2022]
Abstract
Generalized peeling skin syndrome (PSS) is an autosomal recessive genodermatosis characterized by lifelong, continuous shedding of the upper epidermis. Using whole-genome homozygozity mapping and whole-exome sequencing, we identified a novel homozygous missense mutation (c.229C>T, R77W) within the CHST8 gene, in a large consanguineous family with non-inflammatory PSS type A. CHST8 encodes a Golgi transmembrane N-acetylgalactosamine-4-O-sulfotransferase (GalNAc4-ST1), which we show by immunofluorescence staining to be expressed throughout normal epidermis. A colorimetric assay for total sulfated glycosaminoglycan (GAG) quantification, comparing human keratinocytes (CCD1106 KERTr) expressing wild type and mutant recombinant GalNAc4-ST1, revealed decreased levels of total sulfated GAGs in cells expressing mutant GalNAc4-ST1, suggesting loss of function. Western blotting revealed lower expression levels of mutant recombinant GalNAc4-ST1 compared to wild type, suggesting that accelerated degradation may result in loss of function, leading to PSS type A. This is the first report describing a mutation as the cause of PSS type A.
Collapse
Affiliation(s)
- Rita M Cabral
- Department of Dermatology, Columbia University, Russ Berrie Medical Science Pavilion, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
50
|
Brooke MA, Nitoiu D, Kelsell DP. Cell-cell connectivity: desmosomes and disease. J Pathol 2011; 226:158-71. [PMID: 21989576 DOI: 10.1002/path.3027] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/03/2011] [Accepted: 10/03/2011] [Indexed: 01/12/2023]
Abstract
Cell-cell connectivity is an absolute requirement for the correct functioning of cells, tissues and entire organisms. At the level of the individual cell, direct cell-cell adherence and communication is mediated by the intercellular junction complexes: desmosomes, adherens, tight and gap junctions. A broad spectrum of inherited, infectious and auto-immune diseases can affect the proper function of intercellular junctions and result in either diseases affecting specific individual tissues or widespread syndromic conditions. A particularly diverse group of diseases result from direct or indirect disruption of desmosomes--a consequence of their importance in tissue integrity, their extensive distribution, complex structure, and the wide variety of functions their components accomplish. As a consequence, disruption of desmosomal assembly, structure or integrity disrupts not only their intercellular adhesive function but also their functions in cell communication and regulation, leading to such diverse pathologies as cardiomyopathy, epidermal and mucosal blistering, palmoplantar keratoderma, woolly hair, keratosis, epidermolysis bullosa, ectodermal dysplasia and alopecia. Here, as well as describing the importance of the other intercellular junctions, we focus primarily on the desmosome, its structure and its role in disease. We will examine the various pathologies that result from impairment of desmosome function and thereby demonstrate the importance of desmosomes to tissues and to the organism as a whole.
Collapse
Affiliation(s)
- Matthew A Brooke
- Centre for Cutaneous Research, Blizard Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | | | |
Collapse
|