1
|
Segui-Perez C, Huang LZX, Paganelli FL, Lievens E, Strijbis K. Probiotic Bifidobacterium bifidum strains desialylate MUC13 and increase intestinal epithelial barrier function. Sci Rep 2025; 15:8778. [PMID: 40082523 PMCID: PMC11906825 DOI: 10.1038/s41598-025-92125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/25/2025] [Indexed: 03/16/2025] Open
Abstract
Probiotic bacteria including Bifidobacterial species have the capacity to improve intestinal health, but the underlying molecular mechanisms are often not understood. Bifidobacteria are considered keystone species but have a relatively low abundance in the adult intestinal tract. Bifidobacterium colonization depends on degradation of host-derived carbohydrates, including human milk oligosaccharides and mucin-associated oligosaccharides. Specific Bifidobacterium strains can enhance intestinal barrier integrity and improve symptoms of gastrointestinal disorders. We previously reported that the transmembrane mucin MUC13 localizes to the apical and lateral membrane and regulates epithelial tight junction strength. Here, we screened probiotic bacterial strains for their capacity to modulate MUC13 and enhance intestinal barrier function. Of these probiotic bacteria, a Bifidobacterium bifidum strain uniquely degraded the MUC13 O-glycosylated extracellular domain. Further characterization of two probiotic B. bifidum strains (W23 and W28) and the type strain 20456 demonstrated that the W23 and W28 strains adhered strongly to the apical surface, had high sialidase activity, penetrated the mucus layer, and enhanced epithelial barrier integrity. These results underscore the strain-specific properties of these specific B. bifidum strains that most likely contribute to their probiotic effects in the intestinal tract.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Liane Z X Huang
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Elke Lievens
- Winclove Probiotics B.V., Amsterdam, The Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Ghimire S, Lehman PC, Aguilar Meza LS, Shahi SK, Hoang J, Olalde H, Paullus M, Cherwin C, Wang K, Gill C, Cho T, Mangalam AK. Specific microbial ratio in the gut microbiome is associated with multiple sclerosis. Proc Natl Acad Sci U S A 2025; 122:e2413953122. [PMID: 40030030 PMCID: PMC11912405 DOI: 10.1073/pnas.2413953122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Gut microbiota dysbiosis is associated with multiple sclerosis (MS), but the causal relationship between specific gut bacteria and MS pathogenesis remains poorly understood. Therefore, we profiled the stool microbiome of people with MS (PwMS) and healthy controls (HC) using shotgun metagenomic sequencing. PwMS showed a distinct microbiome compared to HC, with Prevotella copri (PC) and Blautia species as drivers of microbial communities in HC and PwMS, respectively. Administration of MS-driving Blautia species (Blautia wexlerae; BW) to mice resulted in increased levels of gut inflammatory markers and altered microbiota with increased capacity to induce proinflammatory cytokines. Utilizing experimental autoimmune encephalomyelitis (EAE), an animal model of MS, we identified a lower gut Bifidobacterium to Akkermansia ratio as a hallmark of the disease. BW-administered mice also showed a lower Bifidobacterium to Akkermansia ratio pre-EAE induction which correlated with increased disease severity post-EAE induction. The importance of the Bifidobacterium to Akkermansia ratio at the species level, lower Bifidobacterium adolescentis to Akkermansia muciniphila (BA:AM), was validated in our MS cohort and a large International Multiple Sclerosis Microbiome Study. Thus, our findings highlight the BA:AM ratio as a potential gut microbial marker in PwMS, opening avenues for microbiome-based diagnosis, prognosis, and therapy in MS.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
| | - Peter C. Lehman
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Graduate Program in Experimental Pathology, University of Iowa, Iowa City, IA52242
| | | | - Shailesh K. Shahi
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
| | - Jemmie Hoang
- College of Nursing, University of Iowa, Iowa City, IA52242
| | - Heena Olalde
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Mishelle Paullus
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | | | - Kai Wang
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA52242
| | - Christine Gill
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Tracey Cho
- Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, IA52242
| | - Ashutosh K. Mangalam
- Department of Pathology, University of Iowa, Iowa City, IA52242
- Clinician Scientist, Iowa City Veterans Affairs Health Care System, Iowa City, IA52242
- Graduate Program in Experimental Pathology, University of Iowa, Iowa City, IA52242
- Microbiome Core, University of Iowa, Iowa City, IA52242
| |
Collapse
|
3
|
Chen X, Zhao H, Meng F, Zhou L, Lu Z, Lu Y. Surfactin alleviated hyperglycaemia in mice with type 2 diabetes induced by a high-fat diet and streptozotocin. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Lei C, Sun R, Xu G, Tan Y, Feng W, McClain CJ, Deng Z. Enteric VIP-producing neurons maintain gut microbiota homeostasis through regulating epithelium fucosylation. Cell Host Microbe 2022; 30:1417-1434.e8. [PMID: 36150396 PMCID: PMC9588764 DOI: 10.1016/j.chom.2022.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022]
Abstract
Interactions between the enteric nervous system (ENS) and intestinal epithelium are thought to play a vital role in intestinal homeostasis. How the ENS monitors the frontier with commensal and pathogenic microbes while maintaining epithelial function remains unclear. Here, by combining subdiaphragmatic vagotomy with transcriptomics, chemogenetic strategy, and coculture of enteric neuron-intestinal organoid, we show that enteric neurons expressing VIP shape the α1,2-fucosylation of intestinal epithelial cells (IECs). Mechanistically, neuropeptide VIP activates fut2 expression via the Erk1/2-c-Fos pathway through the VIPR1 receptor on IECs. We further demonstrate that perturbation of enteric neurons leads to gut dysbiosis through α1,2-fucosylation in the steady state and results in increased susceptibility to alcohol-associated liver disease (ALD). This was attributed to an imbalance between beneficial Bifidobacterium and opportunistic pathogenic Enterococcus faecalis in ALD. In addition, Bifidobacterium α1,2-fucosidase may promote Bifidobacterium adhesion to the mucosal surface, which restricts Enterococcus faecalis overgrowth and prevents ALD progression.
Collapse
Affiliation(s)
- Chao Lei
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Rui Sun
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Brown Cancer Center, University of Louisville, Louisville, KY, USA; Central Laboratory and Department of Oncology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430033, China
| | - Guangzhong Xu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yi Tan
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA; Robley Rex VA Medical Center, Louisville, KY, USA
| | - Zhongbin Deng
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, USA; Brown Cancer Center, University of Louisville, Louisville, KY, USA; Alcohol Research Center, University of Louisville, Louisville, KY, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
6
|
Ma Y, Fei Y, Han X, Liu G, Fang J. Lactobacillus plantarum Alleviates Obesity by Altering the Composition of the Gut Microbiota in High-Fat Diet-Fed Mice. Front Nutr 2022; 9:947367. [PMID: 35845812 PMCID: PMC9280677 DOI: 10.3389/fnut.2022.947367] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/10/2022] [Indexed: 01/02/2023] Open
Abstract
Metabolic disorders and intestinal flora imbalance usually accompany obesity. Due to its diverse biological activities, Lactobacillus plantarum is widely used to alleviate various diseases as a probiotic. Here, we show that L. plantarum can reduce the body weight of mice fed high-fat diets, reduce fat accumulation, and enhance mice glucose tolerance. Our results show that L. plantarum can significantly reduce the expression of DGAT1 and DGAT2, increase the expression of Cpt1a, and promote the process of lipid metabolism. Further data show that L. plantarum can increase the SCFA content in the colon and reverse the intestinal flora disorder caused by HFD, increase the abundance of Bacteroides, and Bifidobacteriales, and reduce the abundance of Firmicutes and Clostridiales. Finally, through Pearson correlation analysis, we found that Bacteroides and SCFAs are positively correlated, while Clostridiales are negatively correlated with SCFAs. Therefore, we believe that L. plantarum can regulate the structure of the intestinal microbial community, increase the production of SCFAs and thus regulate lipid metabolism.
Collapse
|
7
|
Higher levels of Bifidobacteria and tumor necrosis factor in children with drug-resistant epilepsy are associated with anti-seizure response to the ketogenic diet. EBioMedicine 2022; 80:104061. [PMID: 35598439 PMCID: PMC9126955 DOI: 10.1016/j.ebiom.2022.104061] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 12/02/2022] Open
Abstract
Background Recently, studies have suggested a role for the gut microbiota in epilepsy. Gut microbial changes during ketogenic diet (KD) treatment of drug-resistant epilepsy have been described. Inflammation is associated with certain types of epilepsy and specific inflammation markers decrease during KD. The gut microbiota plays an important role in the regulation of the immune system and inflammation. Methods 28 children with drug-resistant epilepsy treated with the ketogenic diet were followed in this observational study. Fecal and serum samples were collected at baseline and three months after dietary intervention. Findings We identified both gut microbial and inflammatory changes during treatment. KD had a general anti-inflammatory effect. Novel bioinformatics and machine learning approaches identified signatures of specific Bifidobacteria and TNF (tumor necrosis factor) associated with responders before starting KD. During KD, taxonomic and inflammatory profiles between responders and non-responders were more similar than at baseline. Interpretation Our results suggest that children with drug-resistant epilepsy are more likely to benefit from KD treatment when specific Bifidobacteria and TNF are elevated. We here present a novel signature of interaction of the gut microbiota and the immune system associated with anti-epileptic response to KD treatment. This signature could be used as a prognostic biomarker to identify potential responders to KD before starting treatment. Our findings may also contribute to the development of new anti-seizure therapies by targeting specific components of the gut microbiota. Funding This study was supported by the Swedish Brain Foundation, Margarethahemmet Society, Stiftelsen Sunnerdahls Handikappfond, Linnea & Josef Carlssons Foundation, and The McCormick Genomic & Proteomic Center.
Collapse
|
8
|
Breugelmans T, Oosterlinck B, Arras W, Ceuleers H, De Man J, Hold GL, De Winter BY, Smet A. The role of mucins in gastrointestinal barrier function during health and disease. Lancet Gastroenterol Hepatol 2022; 7:455-471. [PMID: 35397245 DOI: 10.1016/s2468-1253(21)00431-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
Mucins are the gatekeepers of the mucosal barrier of the gastrointestinal tract and are aberrantly expressed in various gastrointestinal pathologies, including pathogen infection, inflammation, and uncontrolled growth and spread of abnormal cells. Although several studies have emphasised the role of mucins in dysfunction of the gastrointestinal mucosal barrier, they are often still considered to be passive mediators of this barrier instead of regulators or modulators. In this Review, we discuss the interactions between mucins and gastrointestinal barrier function during health and disease. We will focus on the bidirectional relationship between mucins and the gut microbiota and will also address the molecular mechanisms involved in key cell signalling pathways, such as inflammation, cell interactions, and cell differentiation, proliferation, and survival. Additionally, we highlight the potential use of mucins in the diagnosis, follow-up, and treatment of gastrointestinal diseases, such as chronic inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Tom Breugelmans
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Baptiste Oosterlinck
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Wout Arras
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Hannah Ceuleers
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgina L Hold
- Microbiome Research Centre, St George and Sutherland Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Benedicte Y De Winter
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium; Department of Gastroenterology and Hepatology, University Hospital of Antwerp, Antwerp, Belgium
| | - Annemieke Smet
- Laboratory of Experimental Medicine and Pediatrics, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; Infla-Med Research Consortium of Excellence, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
9
|
Mabwi HA, Hitayezu E, Mauliasari IR, Mwaikono KS, Yoon HS, Komba EVG, Pan CH, Cha KH. Simulation of the mucosal environment in the re-construction of the synthetic gut microbial ecosystem. J Microbiol Methods 2021; 191:106351. [PMID: 34710513 DOI: 10.1016/j.mimet.2021.106351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022]
Abstract
Human gut surface-attached mucosal microbiota plays significant roles in human health and diseases. This study sought to simulate the mucosal environment using mucin-agar gel and synthetic mucosal microbial community in vitro. To select suitable culture media, microbial communities were assembled and cultured in seven different media at 37 °C for 36 h. Among the seven media, Bryant & Burkey (BB) and Gifu Anaerobic Media (GAM) were selected considering their microbial biomass and bacterial composition. The communities were again assembled and cultured in these two media with mucin-agar. The results showed that some bacterial genus such as Bifidobacterium, Collinsella, and Roseburia could efficiently colonize in the solid mucin-agar part while Enterococcus, Clostridium, and Veilonella dominated in the liquid part. Metabolic functional prediction for the microbial community in each medium part showed that the gene expression involved in metabolism and cell motility pathways were distinctively differentiated between the liquid and solid medium part, and the functional potential was highly related to the microbial composition. The current results demonstrate that the simulation of the gut microbial ecosystem in vitro can be beneficial to the mucosal environment mimicking and the study on the mechanistic potential of the human gut microbiota for easy translation of microbiome research to therapies.
Collapse
Affiliation(s)
- Humphrey A Mabwi
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea; SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania; Department of Veterinary Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, P.O. Box 3019, Tanzania.
| | - Emmanuel Hitayezu
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Intan Rizki Mauliasari
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kilaza Samson Mwaikono
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dar es Salaam 11000, Tanzania.
| | - Hyo Shin Yoon
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Erick V G Komba
- SACIDS Foundation for One Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro 25523, Tanzania.
| | - Cheol-Ho Pan
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| | - Kwang Hyun Cha
- Natural Product Informatics Research Center, Korea Institute of Science and Technology, Gangneung 25451, South Korea.
| |
Collapse
|
10
|
Polysaccharides Obtained from Cordyceps militaris Alleviate Hyperglycemia by Regulating Gut Microbiota in Mice Fed a High-Fat/Sucrose Diet. Foods 2021; 10:foods10081870. [PMID: 34441649 PMCID: PMC8391476 DOI: 10.3390/foods10081870] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/13/2023] Open
Abstract
Polysaccharides isolated from fungus Cordyceps militaris display multi-biofunctions, such as immunostimulation, down-regulation of hyperlipidemia, and anti-cancer function. The occurrence of obesity and metabolic syndrome is related to the imbalance of gut microbiota. In this study, the effects of C. militaris and its fractions on modifying metabolic syndrome in mice were evaluated. Mice were fed a high-fat/high-sucrose diet (HFSD) for 14 weeks to induce body weight increase and hyperlipidemia symptoms in mice, and then the mice were simultaneously given a HFSD and C. militaris samples for a further 8 weeks. The results indicated that the fruit body, polysaccharides, and cordycepin obtained from C. militaris had different efficacies on regulating metabolic syndrome and gut microbiota in HFSD-treated mice. Polysaccharides derived from C. militaris decreased the levels of blood sugar and serum lipids in mice fed HFSD. In addition, C. militaris-polysaccharide treatment obviously improved intestinal dysbiosis through promoting the population of next generation probiotic Akkermansia muciniphila in the gut of mice fed HFSD. In conclusion, polysaccharides derived from C. militaris have the potential to act as dietary supplements and health food products for modifying the gut microbiota to improve the metabolic syndrome.
Collapse
|
11
|
Zhang N, Li C, Niu Z, Kang H, Wang M, Zhang B, Tian H. Colonization and immunoregulation of Lactobacillus plantarum BF_15, a novel probiotic strain from the feces of breast-fed infants. Food Funct 2021; 11:3156-3166. [PMID: 32207765 DOI: 10.1039/c9fo02745a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Immunosuppression is a manifestation imbalance in the immune system, often during unhealthy states. In recent years, lactic acid bacteria (LAB) have been found to be important components of the body's innate immune system, and indispensable to maintaining normal immune function. Lactobacillus plantarum BF_15, a novel strain isolated from the feces of breast-fed infants, which has shown potential as an immunomodulator in vitro. In the present study, with the Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) based on RNA-polymerase beta subunit encoding gene (rpoB) to analyze the colonization of L. plantarum BF_15 in the intestine of mice. In addition, Lactobacillus rhamnosus GG (LGG) as a positive control strain, by measuring immune-related indexes and the diversity of intestinal microbiota, the effects of BF_15 on immunoregulation and intestinal microbiota dysbiosis were investigated to elucidate whether the attenuation of immunosuppression is related to the modulation of intestinal microbiota. Results did indeed support this notion that BF_15 did colonize murine intestines well, in which it could still be detected in mice feces 14 days after stopping the probiotic administration. Moreover, BF_15 found to protect mice against reduction in the levels of several immune-related indicators, including the thymus and spleen indexes, splenic lymphocyte proliferation, toe swelling degree, serum hemolysin-antibody level, and macrophage phagocytosis index, triggered by high-dose (200 mg kg-1) intraperitoneal administration of cyclophosphamide (CTX). In addition, the strain was also found to effectively balance intestinal microbiota dysbiosis in the mice. Collectively, these results indicated that L. plantarum BF_15 can not only successfully colonize murine intestines, but also can effectively alleviate CTX-induced immunosuppression, once established, by rebalancing the intestinal microbiota. This, therefore, provides strong evidence for the view that BF_15 has the potential to become a highly effective immunomodulating probiotic in human microbiota as well.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China. and College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei 071000, China
| | - Chen Li
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Zhihua Niu
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Hongyan Kang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co., Ltd, Baoding, Hebei 071000, China
| | - Bo Zhang
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China.
| | - Hongtao Tian
- College of Food Science and Technology, Agricultural University of Hebei, Baoding, Hebei 071000, China. and National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei 071000, China
| |
Collapse
|
12
|
The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms 2020; 8:microorganisms8091313. [PMID: 32872165 PMCID: PMC7565306 DOI: 10.3390/microorganisms8091313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bifidobacteria are among the first colonisers of the gastrointestinal tract of breast-fed newborns due to, among other things, their ability to metabolise oligosaccharides naturally occurring in human milk. The presence of bifidobacteria in the infant gut has been shown to promote intestinal health and homeostasis as well as to preserve a functional gut barrier, thus positively influencing host health and well-being. Among human-associated gut commensals, Bifidobacterium bifidum has been described as the only species capable of the extracellular degradation of both mucin-type glycans and HMOs, thereby giving this species a special role as a commensal gut forager of both host and diet-derived glycans. In the present study, we assess the possible beneficial properties and probiotic potential of B. bifidum strain CNCM I-4319. In silico genome analysis and growth experiments confirmed the expected ability of this strain to consume HMOs and mucin. By employing various animal models, we were also able to assess the ability of B. bifidum CNCM I-4319 to preserve gut integrity and functionality from stress-induced and inflammatory damage, thereby enforcing its potential as an effective probiotic strain.
Collapse
|
13
|
Herath M, Hosie S, Bornstein JC, Franks AE, Hill-Yardin EL. The Role of the Gastrointestinal Mucus System in Intestinal Homeostasis: Implications for Neurological Disorders. Front Cell Infect Microbiol 2020; 10:248. [PMID: 32547962 PMCID: PMC7270209 DOI: 10.3389/fcimb.2020.00248] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/29/2020] [Indexed: 12/19/2022] Open
Abstract
Mucus is integral to gut health and its properties may be affected in neurological disease. Mucus comprises a hydrated network of polymers including glycosylated mucin proteins. We propose that factors that influence the nervous system may also affect the volume, viscosity, porosity of mucus composition and subsequently, gastrointestinal (GI) microbial populations. The gut has its own intrinsic neuronal network, the enteric nervous system, which extends the length of the GI tract and innervates the mucosal epithelium. The ENS regulates gut function including mucus secretion and renewal. Both dysbiosis and gut dysfunction are commonly reported in several neurological disorders such as Parkinson's and Alzheimer's disease as well in patients with neurodevelopmental disorders including autism. Since some microbes use mucus as a prominent energy source, changes in mucus properties could alter, and even exacerbate, dysbiosis-related gut symptoms in neurological disorders. This review summarizes existing knowledge of the structure and function of the mucus of the GI tract and highlights areas to be addressed in future research to better understand how intestinal homeostasis is impacted in neurological disorders.
Collapse
Affiliation(s)
- Madushani Herath
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
14
|
Richards P, Fothergill J, Bernardeau M, Wigley P. Development of the Caecal Microbiota in Three Broiler Breeds. Front Vet Sci 2019; 6:201. [PMID: 31294039 PMCID: PMC6603203 DOI: 10.3389/fvets.2019.00201] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/05/2019] [Indexed: 12/16/2022] Open
Abstract
The development of the caecal microbiota plays a role in the metabolism and immune competence of chickens. A detailed understanding of normal succession in the caecal microbiota can inform the use of probiotics and other interventions to optimize the caecal microbiota. The development of the microbiota in caecal mucus and lumen samples from three breeds of broiler chicken (Cobb 500, n = 36; Hubbard JA87, n = 38; and Ross 308, n = 36) was observed between 0 and 42 days post hatch. Chicks were housed in the same room of a climate-controlled, biosecure chicken housing unit. Between 0 and 14 days post hatch, chicks were kept in brooder pens ensuring a mixture of breeds in each brooder. From 22 days post hatch, chicks were removed from the brooders and kept in the same room. DNA was extracted from a pooled sample of caecal mucus and luminal contents from five birds of each breed at 0, 3, 7, 14, 21, 28, and 42 days post hatch. High-throughput Illumina sequencing was performed for the V4 hypervariable region of the 16S rRNA gene. The early caecal microbiota was characterized by poor diversity and dominance by one or two bacterial species. Early colonizers of the caecum included Bifidobacteriaceae, Lachnospiraceae, Bacteroidaceae and Burkholderiaceae with some amplicon sequence variants (ASVs) assigned to Ruminococcaceae. Later colonizers of the caecal microbiota were most apparent from 14 d.p.h and included Ruminococcaceae, Clostridiales vadin BB60 group, Christensenellaceae and Bacillaceae. The caecal microbiota continued to change until 42 d.p.h when the microbiota was characterized by a high abundance of Bacteroidaceae, Lachnospiraceae and Ruminococcaceae. The lumen microbiota was significantly different to the mucus with some ASVs assigned to Lachnospiraceae, Ruminococcaceae, Christensenellaceae and Bacillaceae showing increased abundance in the mucus. ASVs assigned to Bacteroidaceae, Lactobacillaceae and Burkholderiaceae showed a preference for the lumen. Analysis of five caecal mucus samples from each breed at 42 days post hatch showed differences in microbiota composition between Ross and Cobb as well as between Ross and Hubbard. Since performance data was not collected no functional inferences as to the significance of this finding can be made.
Collapse
Affiliation(s)
- Peter Richards
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Jo Fothergill
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Marion Bernardeau
- DuPont Industrial Biosciences, Genencor International BV, Leiden, Netherlands
| | - Paul Wigley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, Endres BT, Shi Z, Garey KW, Hyser JM, Versalovic J. Bifidobacterium dentium Fortifies the Intestinal Mucus Layer via Autophagy and Calcium Signaling Pathways. mBio 2019; 10:e01087-19. [PMID: 31213556 PMCID: PMC6581858 DOI: 10.1128/mbio.01087-19] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/11/2019] [Indexed: 02/07/2023] Open
Abstract
Much remains unknown about how the intestinal microbiome interfaces with the protective intestinal mucus layer. Bifidobacterium species colonize the intestinal mucus layer and can modulate mucus production by goblet cells. However, select Bifidobacterium strains can also degrade protective glycans on mucin proteins. We hypothesized that the human-derived species Bifidobacterium dentium would increase intestinal mucus synthesis and expulsion, without extensive degradation of mucin glycans. In silico data revealed that B. dentium lacked the enzymes necessary to extensively degrade mucin glycans. This finding was confirmed by demonstrating that B. dentium could not use naive mucin glycans as primary carbon sources in vitro To examine B. dentium mucus modulation in vivo, Swiss Webster germfree mice were monoassociated with live or heat-killed B. dentium Live B. dentium-monoassociated mice exhibited increased colonic expression of goblet cell markers Krüppel-like factor 4 (Klf4), Trefoil factor 3 (Tff3), Relm-β, Muc2, and several glycosyltransferases compared to both heat-killed B. dentium and germfree counterparts. Likewise, live B. dentium-monoassociated colon had increased acidic mucin-filled goblet cells, as denoted by Periodic Acid-Schiff-Alcian Blue (PAS-AB) staining and MUC2 immunostaining. In vitro, B. dentium-secreted products, including acetate, were able to increase MUC2 levels in T84 cells. We also identified that B. dentium-secreted products, such as γ-aminobutyric acid (GABA), stimulated autophagy-mediated calcium signaling and MUC2 release. This work illustrates that B. dentium is capable of enhancing the intestinal mucus layer and goblet cell function via upregulation of gene expression and autophagy signaling pathways, with a net increase in mucin production.IMPORTANCE Microbe-host interactions in the intestine occur along the mucus-covered epithelium. In the gastrointestinal tract, mucus is composed of glycan-covered proteins, or mucins, which are secreted by goblet cells to form a protective gel-like structure above the epithelium. Low levels of mucin or alterations in mucin glycans are associated with inflammation and colitis in mice and humans. Although current literature links microbes to the modulation of goblet cells and mucins, the molecular pathways involved are not yet fully understood. Using a combination of gnotobiotic mice and mucus-secreting cell lines, we have identified a human-derived microbe, Bifidobacterium dentium, which adheres to intestinal mucus and secretes metabolites that upregulate the major mucin MUC2 and modulate goblet cell function. Unlike other Bifidobacterium species, B. dentium does not extensively degrade mucin glycans and cannot grow on mucin alone. This work points to the potential of using B. dentium and similar mucin-friendly microbes as therapeutic agents for intestinal disorders with disruptions in the mucus barrier.
Collapse
Affiliation(s)
- Melinda A Engevik
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Berkley Luk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Alexandra L Chang-Graham
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anne Hall
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Beatrice Herrmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Wenly Ruan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Bradley T Endres
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Zhongcheng Shi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| | - Kevin W Garey
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, Texas, USA
| | - Joseph M Hyser
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - James Versalovic
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pathology, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Effects of Synbiotics among Constipated Adults in Serdang, Selangor, Malaysia-A Randomised, Double-Blind, Placebo-Controlled Trial. Nutrients 2018; 10:nu10070824. [PMID: 29949873 PMCID: PMC6073678 DOI: 10.3390/nu10070824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/17/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Synbiotics approach complementarily and synergistically toward the balance of gastrointestinal microbiota and improvement in bowel functions. A randomised, double-blind, placebo-controlled study was conducted to examine the effects of a synbiotics supplement among constipated adults. A total of 85 constipated adults, diagnosed by Rome III criteria for functional constipation were randomised to receive either synbiotics (n = 43) or placebo (n = 42) once daily (2.5 g) in the morning for 12 weeks. Eight times of follow-up was conducted every fortnightly with treatment response based on a questionnaire that included a record of evacuation (stool frequency, stool type according to Bristol Stool Form Scale), Patients Assessment on Constipation Symptoms (PAC-SYM), and Patients Assessment on Constipation Quality of Life (PAC-QOL). There were no significant differences in stool evacuation, but defecation frequency and stool type in treatment group were improved tremendously than in placebo group. While the treatment group was reported to have higher reduction in severity of functional constipation symptoms, the differences were not statistically significant. Dietary supplementation of synbiotics in this study suggested that the combination of probiotics and prebiotics improved the functional constipation symptoms and quality of life although not significant. This was due to the high placebo effect which synbiotics failed to demonstrate benefit over the controls.
Collapse
|
17
|
Schroeder BO, Birchenough GMH, Ståhlman M, Arike L, Johansson MEV, Hansson GC, Bäckhed F. Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host Microbe 2017; 23:27-40.e7. [PMID: 29276171 DOI: 10.1016/j.chom.2017.11.004] [Citation(s) in RCA: 507] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022]
Abstract
Diet strongly affects gut microbiota composition, and gut bacteria can influence the colonic mucus layer, a physical barrier that separates trillions of gut bacteria from the host. However, the interplay between a Western style diet (WSD), gut microbiota composition, and the intestinal mucus layer is less clear. Here we show that mice fed a WSD have an altered colonic microbiota composition that causes increased penetrability and a reduced growth rate of the inner mucus layer. Both barrier defects can be prevented by transplanting microbiota from chow-fed mice. In addition, we found that administration of Bifidobacterium longum was sufficient to restore mucus growth, whereas administration of the fiber inulin prevented increased mucus penetrability in WSD-fed mice. We hypothesize that the presence of distinct bacteria is crucial for proper mucus function. If confirmed in humans, these findings may help to better understand diseases with an affected mucus layer, such as ulcerative colitis.
Collapse
Affiliation(s)
- Bjoern O Schroeder
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
18
|
Westermann C, Gleinser M, Corr SC, Riedel CU. A Critical Evaluation of Bifidobacterial Adhesion to the Host Tissue. Front Microbiol 2016; 7:1220. [PMID: 27547201 PMCID: PMC4974247 DOI: 10.3389/fmicb.2016.01220] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/22/2016] [Indexed: 01/15/2023] Open
Abstract
Bifidobacteria are common inhabitants of the human gastrointestinal tract that, despite a long history of research, have not shown any pathogenic potential whatsoever. By contrast, some bifidobacteria are associated with a number of health-related benefits for the host. The reported beneficial effects of bifidobacteria include competitive exclusion of pathogens, alleviation of symptoms of irritable bowel syndrome and inflammatory bowel disease, and modulation of intestinal and systemic immune responses. Based on these effects, bifidobacteria are widely used as probiotics by pharmaceutical and dairy industries. In order to exert a beneficial effect bifidobacteria have to, at least transiently, colonize the host in a sufficient population size. Besides other criteria such as resistance to manufacturing processes and intestinal transit, potential probiotic bacteria are tested for adhesion to the host structures including intestinal epithelial cells, mucus, and extracellular matrix components. In the present review article, we summarize the current knowledge on bifidobacterial structures that mediate adhesion to host tissue and compare these to similar structures of pathogenic bacteria. This reveals that most of the adhesive structures and mechanisms involved in adhesion of bifidobacteria to host tissue are similar or even identical to those employed by pathogens to cause disease. It is thus reasonable to assume that these structures and mechanisms are equally important for commensal or probiotic bacteria and play a similar role in the beneficial effects exerted by bifidobacteria.
Collapse
Affiliation(s)
| | - Marita Gleinser
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| | - Sinéad C Corr
- Department of Microbiology, Moyne Institute of Preventative Medicine, School of Genetics and Microbiology, Trinity College Dublin Dublin, Ireland
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm Ulm, Germany
| |
Collapse
|
19
|
Martín R, Laval L, Chain F, Miquel S, Natividad J, Cherbuy C, Sokol H, Verdu EF, van Hylckama Vlieg J, Bermudez-Humaran LG, Smokvina T, Langella P. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front Microbiol 2016; 7:608. [PMID: 27199937 PMCID: PMC4858658 DOI: 10.3389/fmicb.2016.00608] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/12/2016] [Indexed: 01/15/2023] Open
Abstract
Growing evidence supports the efficacy of many probiotic strains in the management of gastrointestinal disorders associated with deregulated intestinal barrier function and/or structure. In particular, bifidobacteria have been studied for their efficacy to both prevent and treat a broad spectrum of animal and/or human gut disorders. The aim of the current work was thus to evaluate effects on intestinal barrier function of Bifidobacterium animalis ssp. lactis CNCM-I2494, a strain used in fermented dairy products. A chronic dinitrobenzene sulfonic acid (DNBS)-induced low-grade inflammation model causing gut dysfunction in mice was used in order to study markers of inflammation, intestinal permeability, and immune function in the presence of the bacterial strain. In this chronic low-grade inflammation mice model several parameters pointed out the absence of an over active inflammation process. However, gut permeability, lymphocyte populations, and colonic cytokines were found to be altered. B. animalis ssp. lactis CNCM-I2494 was able to protect barrier functions by restoring intestinal permeability, colonic goblet cell populations, and cytokine levels. Furthermore, tight junction (TJ) proteins levels were also measured by qRT-PCR showing the ability of this strain to specifically normalize the level of several TJ proteins, in particular for claudin-4. Finally, B. lactis strain counterbalanced CD4+ lymphocyte alterations in both spleen and mesenteric lymphoid nodes. It restores the Th1/Th2 ratio altered by the DNBS challenge (which locally augments CD4+ Th1 cells) by increasing the Th2 response as measured by the increase in the production of major representative Th2 cytokines (IL-4, IL-5, and IL-10). Altogether, these data suggest that B. animalis ssp. lactis CNCM-I2494 may efficiently prevent disorders associated with increased barrier permeability.
Collapse
Affiliation(s)
- Rebeca Martín
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Laure Laval
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; Danone Nutricia ResearchPalaiseau, France
| | - Florian Chain
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Sylvie Miquel
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Jane Natividad
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | - Claire Cherbuy
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | - Harry Sokol
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-SaclayJouy-en-Josas, France; ERL INSERM U 1057/UMR7203, Faculté de Médecine Saint-Antoine, Université Pierre et Marie CurieParis, France; Service de Gastroentérologie, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de ParisParis, France
| | - Elena F Verdu
- Farncombe Family Digestive Health Research Institute, McMaster University Hamilton, ON, Canada
| | | | - Luis G Bermudez-Humaran
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| | | | - Philippe Langella
- Commensal and Probiotics-Host Interactions Laboratory, Micalis Institute, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay Jouy-en-Josas, France
| |
Collapse
|
20
|
Characterization and in vitro properties of potential probiotic Bifidobacterium strains isolated from breast-fed infant feces. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1187-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
21
|
Meng H, Ba Z, Lee Y, Peng J, Lin J, Fleming JA, Furumoto EJ, Roberts RF, Kris-Etherton PM, Rogers CJ. Consumption of Bifidobacterium animalis subsp. lactis BB-12 in yogurt reduced expression of TLR-2 on peripheral blood-derived monocytes and pro-inflammatory cytokine secretion in young adults. Eur J Nutr 2015; 56:649-661. [PMID: 26621631 DOI: 10.1007/s00394-015-1109-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/16/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Probiotic bacteria modulate immune parameters and inflammatory outcomes. Emerging evidence demonstrates that the matrix used to deliver probiotics may influence the efficacy of probiotic interventions in vivo. The aims of the current study were to evaluate (1) the effect of one species, Bifidobacterium animalis subsp. lactis BB-12 at a dose of log10 ± 0.5 CFUs/day on immune responses in a randomized, partially blinded, 4-period crossover, free-living study, and (2) whether the immune response to BB-12 differed depending on the delivery matrix. METHODS Healthy adults (n = 30) aged 18-40 years were recruited and received four treatments in a random order: (A) yogurt smoothie alone; smoothie with BB-12 added (B) before or (C) after yogurt fermentation, or (D) BB-12 given in capsule form. At baseline and after each 4-week treatment, peripheral blood mononuclear cells (PBMCs) were isolated, and functional and phenotypic marker expression was assessed. RESULTS BB-12 interacted with peripheral myeloid cells via Toll-like receptor 2 (TLR-2). The percentage of CD14+HLA-DR+ cells in peripheral blood was increased in male participants by all yogurt-containing treatments compared to baseline (p = 0.0356). Participants who consumed yogurt smoothie with BB-12 added post-fermentation had significantly lower expression of TLR-2 on CD14+HLA-DR+ cells (p = 0.0186) and reduction in TNF-α secretion from BB-12- (p = 0.0490) or LPS-stimulated (p = 0.0387) PBMCs compared to baseline. CONCLUSIONS These findings not only demonstrate a potential anti-inflammatory effect of BB-12 in healthy adults, but also indicate that the delivery matrix influences the immunomodulatory properties of BB-12.
Collapse
Affiliation(s)
- Huicui Meng
- 224 Chandlee Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhaoyong Ba
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Yujin Lee
- 224 Chandlee Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jiayu Peng
- Department of Statistics, Pennsylvania State University, University Park, PA, USA
| | - Junli Lin
- Department of Statistics, Pennsylvania State University, University Park, PA, USA
| | - Jennifer A Fleming
- 224 Chandlee Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Emily J Furumoto
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Robert F Roberts
- Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Penny M Kris-Etherton
- 224 Chandlee Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA
| | - Connie J Rogers
- 224 Chandlee Laboratory, Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
22
|
Yoon MY, Yoon MY, Lee K, Yoon SS. Protective role of gut commensal microbes against intestinal infections. J Microbiol 2014; 52:983-9. [PMID: 25467115 DOI: 10.1007/s12275-014-4655-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023]
Abstract
The human gastrointestinal tract is colonized by multitudes of microorganisms that exert beneficial effects on human health. Mounting evidence suggests that intestinal microbiota contributes to host resistance against enteropathogenic bacterial infection. However, molecular details that account for such an important role has just begun to be understood. The commensal microbes in the intestine regulate gut homeostasis through activating the development of host innate immunity and producing molecules with antimicrobial activities that directly inhibit propagation of pathogenic bacteria. Understanding the protective roles of gut microbiota will provide a better insight into the molecular basis that underlies complicated interaction among host-pathogen-symbiont. In this review, we highlighted recent findings that help us broaden our knowledge of the intestinal ecosystem and thereby come up with a better strategy for combating enteropathogenic infection.
Collapse
Affiliation(s)
- Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | - My Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, 120-752, Republic of Korea
| | | | | |
Collapse
|
23
|
Johnson BR, Klaenhammer TR. Impact of genomics on the field of probiotic research: historical perspectives to modern paradigms. Antonie Van Leeuwenhoek 2014; 106:141-56. [PMID: 24748373 PMCID: PMC4064118 DOI: 10.1007/s10482-014-0171-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/04/2014] [Indexed: 02/07/2023]
Abstract
For thousands of years, humans have safely consumed microorganisms through fermented foods. Many of these bacteria are considered probiotics, which act through diverse mechanisms to confer a health benefit to the host. However, it was not until the availability of whole-genome sequencing and the era of genomics that mechanisms of probiotic efficacy could be discovered. In this review, we explore the history of the probiotic concept and the current standard of integrated genomic techniques to discern the complex, beneficial relationships between probiotic microbes and their hosts.
Collapse
Affiliation(s)
- Brant R. Johnson
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
| | - Todd R. Klaenhammer
- Department of Microbiology, North Carolina State University, Raleigh, NC USA
- Department of Food, Bioprocessing, and Nutrition Science, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
24
|
The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms 2014; 2:92-110. [PMID: 27682233 PMCID: PMC5029483 DOI: 10.3390/microorganisms2020092] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/08/2014] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
This review presents selected data on the probiotic strain Bifidobacterium animalis subsp. lactis BB-12® (BB-12®), which is the world’s most documented probiotic Bifidobacterium. It is described in more than 300 scientific publications out of which more than 130 are publications of human clinical studies. The complete genome sequence of BB-12® has been determined and published. BB-12® originates from Chr. Hansen’s collection of dairy cultures and has high stability in foods and as freeze dried powders. Strain characteristics and mechanisms of BB-12® have been established through extensive in vitro testing. BB-12® exhibits excellent gastric acid and bile tolerance; it contains bile salt hydrolase, and has strong mucus adherence properties, all valuable probiotic characteristics. Pathogen inhibition, barrier function enhancement, and immune interactions are mechanisms that all have been demonstrated for BB-12®. BB-12® has proven its beneficial health effect in numerous clinical studies within gastrointestinal health and immune function. Clinical studies have demonstrated survival of BB-12® through the gastrointestinal tract and BB-12® has been shown to support a healthy gastrointestinal microbiota. Furthermore, BB-12® has been shown to improve bowel function, to have a protective effect against diarrhea, and to reduce side effects of antibiotic treatment, such as antibiotic-associated diarrhea. In terms of immune function, clinical studies have shown that BB-12® increases the body’s resistance to common respiratory infections as well as reduces the incidence of acute respiratory tract infections.
Collapse
|
25
|
Prasanna P, Grandison A, Charalampopoulos D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Development of antimicrobial synbiotics using potentially-probiotic faecal isolates of Lactobacillus fermentum and Bifidobacterium longum. Anaerobe 2013; 20:5-13. [DOI: 10.1016/j.anaerobe.2013.01.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/13/2013] [Indexed: 01/16/2023]
|
27
|
Functional cell models of the gut and their applications in food microbiology--a review. Int J Food Microbiol 2010; 141 Suppl 1:S4-14. [PMID: 20444515 PMCID: PMC7173225 DOI: 10.1016/j.ijfoodmicro.2010.03.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 03/17/2010] [Accepted: 03/18/2010] [Indexed: 02/08/2023]
Abstract
Animal experimentation has a long tradition for risk assessment of new drugs before they reach the clinic. To reduce expensive animal experimentation, attempts have been made to build inexpensive and convenient intestinal functional cell models to study toxicity and bioavailability of new substances along with providing relevant models to study interactions between the host, pathogens and intestinal microflora. We review the available cell lines and models of the intestine and their potential uses. Tumor derived cell lines such as Caco-2, T84 and HT-29 are widely used despite many drawbacks, which are discussed with respect to complexity of the gut, where various cell types interact with commensal microbiota and gut-associated lymphoid tissue. To address this complexity, 3D models of human and animal gut represent a promising in vitro system to mimic in vivo situation without the use of transformed cell lines.
Collapse
|
28
|
Lee HJ, Orlovich DA, Tagg JR, Fawcett JP. Detection and Specific Enumeration of Multi-Strain Probiotics in the Lumen Contents and Mucus Layers of the Rat Intestine After Oral Administration. Probiotics Antimicrob Proteins 2009; 1:113-20. [PMID: 26783165 DOI: 10.1007/s12602-009-9019-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 09/02/2009] [Indexed: 01/23/2023]
Abstract
Although the detection of viable probiotic bacteria following their ingestion and passage through the gastrointestinal tract (GIT) has been well documented, their mucosal attachment in vivo is more difficult to assess. In this study, we investigated the survival and mucosal attachment of multi-strain probiotics transiting the rat GIT. Rats were administered a commercial mixture of the intestinal probiotics Lactobacillus acidophilus LA742, Lactobacillus rhamnosus L2H and Bifidobacterium lactis HN019 and the oral probiotic Streptococcus salivarius K12 every 12 h for 3 days. Intestinal contents, mucus and faeces were tested 6 h, 3 days and 7 days after the last dose by strain-specific enumeration on selective media and by denaturing gradient gel electrophoresis. At 6 h, viable cells and DNA corresponding to all four probiotics were detected in the faeces and in both the lumen contents and mucus layers of the ileum and colon. Viable probiotic cells of B. lactis and L. rhamnosus were detected for 7 days and L. acidophilus for 3 days after the last dose. B. lactis and L. rhamnosus persisted in the ileal mucus and colon contents, whereas the retention of L. acidophilus appeared to be relatively higher in colonic mucus. No viable cells of S. salivarius K12 were detected in any of the samples at either day 3 or 7. The study demonstrates that probiotic strains of intestinal origin but not of oral origin exhibit temporary colonisation of the rat GIT and that these strains may have differing relative affinities for colonic and ileal mucosa.
Collapse
Affiliation(s)
- Hee Ji Lee
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.
| | - David A Orlovich
- Department of Botany, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - John R Tagg
- Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand.,BLIS Technologies Ltd., Centre For Innovation, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| | - J Paul Fawcett
- School of Pharmacy, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
29
|
Collado MC, Meriluoto J, Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 2007; 45:454-60. [PMID: 17897389 DOI: 10.1111/j.1472-765x.2007.02212.x] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIMS The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. METHODS AND RESULTS The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. CONCLUSIONS Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. SIGNIFICANCE AND IMPACT OF THE STUDY The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.
Collapse
Affiliation(s)
- M C Collado
- Functional Foods Forum, University of Turku, Turku, Finland.
| | | | | |
Collapse
|
30
|
Wang Z, Xiao G, Yao Y, Guo S, Lu K, Sheng Z. The role of bifidobacteria in gut barrier function after thermal injury in rats. ACTA ACUST UNITED AC 2006; 61:650-7. [PMID: 16967002 DOI: 10.1097/01.ta.0000196574.70614.27] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Early multiple organ dysfunction syndrome appears to be facilitated with bacterial translocation in severe burn injury, yet the mechanisms of bacterial translocation remain in dispute. The aim of this study was to characterize the potential role of intestinal bifidobacteria in the pathogenesis of gut-derived bacterial translocation after burns and to analyze the effects of bifidobacterial supplement on gut barrier function. METHODS Wistar rats were randomly divided into burn group (Burn, n = 60), sham burn group (SB, n = 10) in experiment 1, and burn + saline group (BS, n = 30), burn + bifidobacteria group (BB, n = 30), and sham-burn + saline group (SS, n = 30) in experiment 2. Animals in BB group were fed bifidobacterial preparation (5 x 10(9) CFU/mL) after burns, 1.5 mL, twice daily. Animals in BS and SS were fed saline. Samples were taken on postburn days 1, 3, and 5. The incidence of bacterial translocation and counts of Bifidobacterium, fungi and Escherichia coli in gut mucosa, as well as the sIgA levels in mucus of the small intestine were determined. The positive sIgA expression in lamina propria and ileum mucosal injury were evaluated light microscopically by blinded examiners. RESULTS The incidence of bacterial translocation was increased after burns, which was accompanied by significant decrease in number of bifidobacteria but significant increase in E. coli and fungi in gut mucosa, and elevation of levels of plasma endotoxin and IL-6 (p < 0.001). The incidence of bacterial translocation was markedly reduced after 3- and 5-day supplementation of bifidobacteria compared with control group (p < 0.05). The counts of mucosal bifidobacteria were increased by 4- to 40-fold, whereas E. coli and fungi were decreased by 2- to 30-fold and 10- to 150-fold, respectively, after bifidobacterial supplementation. The damage of mucosa tended to be less pronounced after 3-day bifidobacteria-supplemented formula compared with control group (grade 2 [0-6] versus grade 4 [3-6], p < 0.05). Moreover, the expression and release of sIgA was markedly augmented after 3-days of bifidobacteria-supplementation formula and it returned to normal range on postburn day 5. CONCLUSIONS The decrease in counts and proportion of bifidobacteria to other flora in gut may play an important role in the development of bacterial translocation after thermal injury. Supplementation of exogenous bifidobacteria could improve gut barrier function, and attenuate bacterial/endotoxin translocation secondary to major burns.
Collapse
Affiliation(s)
- Zhongtang Wang
- Center of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | |
Collapse
|
31
|
Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S. Competitive exclusion of enteropathogens from human intestinal mucus by Bifidobacterium strains with acquired resistance to bile--a preliminary study. Int J Food Microbiol 2006; 113:228-32. [PMID: 16842877 DOI: 10.1016/j.ijfoodmicro.2006.05.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 04/06/2006] [Accepted: 05/14/2006] [Indexed: 11/27/2022]
Abstract
The ability to inhibit the adhesion and to displace selected pathogens from human intestinal mucus of two Bifidobacterium strains with acquired resistance to bile, were assessed and compared with those of their bile sensitive original strains. A preliminary characterization of the macromolecules involved in the adhesion was also carried out. The inhibition of adhesion and the displacement of enteropathogens previously adhered were found to be specific, depending on the strains used. The cholate-resistant strain Bifidobacterium bifidum M6dCo, that adhered more to mucus than its original, was able to inhibit the adhesion and to displace pathogens from mucus significantly more than its original cholate-sensitive strain B. bifidum M6. Contrary to this, two strains showing similar adhesion levels, B. bifidum A1 and its bile resistant derivative B. bifidum A1dOx, did not display any differences. Different molecules appear to be involved in the adhesion of the strains B. bifidum M6 and B. bifidum M6dCo. These differences in the cellular surface may explain the differences in competitive exclusion observed between both strains.
Collapse
|
32
|
Collado MC, Gueimonde M, Sanz Y, Salminen S. Adhesion properties and competitive pathogen exclusion ability of bifidobacteria with acquired acid resistance. J Food Prot 2006; 69:1675-9. [PMID: 16865903 DOI: 10.4315/0362-028x-69.7.1675] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The adhesion properties of Bifidobacterium longum and Bifidobacterium catenulatum strains with an acquired resistance to acid and their ability to competitively exclude Salmonella enterica serovar Typhimurium, Escherichia coli, Listeria monocytogenes, Enterobacter sakazakii, and Clostridium difficile from adhering to human intestinal mucus were evaluated and compared with the results when the same experiments were run with the original acid-sensitive strains. In half of the four studied cases, the acid-resistant derivative showed a greater ability to adhere to human intestinal mucus than the original strain. The ability of bifidobacteria to inhibit pathogen adhesion to mucus was not generally improved by the acquisition of acid resistance. In contrast, three of the four acid-resistant strains showed a greater ability to displace preadhered pathogens than the original strains, especially preadhered Salmonella Typhimurium and C. difficile. Overall, the induction of acid resistance in bifidobacteria could be a strategy when selecting strains with enhanced stability and improved surface properties that favor their potential functionality as probiotics against specific pathogens.
Collapse
Affiliation(s)
- M Carmen Collado
- Functional Foods Forum, University of Turku, Itäinen Pitkäkatu 4A 5th Floor, FIN 20520, Turku, Finland
| | | | | | | |
Collapse
|
33
|
Collado MC, Gueimonde M, Hernández M, Sanz Y, Salminen S. Adhesion of selected Bifidobacterium strains to human intestinal mucus and the role of adhesion in enteropathogen exclusion. J Food Prot 2005; 68:2672-8. [PMID: 16355841 DOI: 10.4315/0362-028x-68.12.2672] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The ability of potential probiotic strains to adhere to the intestinal mucosa and exclude and displace pathogens is of utmost importance for therapeutic manipulation of the enteric microbiota. The ability of seven selected human bifidobacterial strains and five human enteropathogenic strains to adhere to human intestinal mucus was analyzed and compared with that of four strains isolated from chicken intestines. The adhesion of the bifidobacterial strains ranged from 3 to 16% depending on the strain. Bifidobacterium strains of animal origin adhered significantly better than did strains of human origin. Of the pathogenic bacteria, Escherichia coli NCTC 8603 had the highest adhesion value (20%), Salmonella Typhimurium ATCC 29631, Enterobacter sakazakii ATCC 29544, and Clostridium difficile ATCC 9689 had adhesion values ranging from 10 to 15%, and Listeria monocytogenes ATCC 15313 had the lowest adhesive value (3%). The ability of these bifidobacteria to inhibit pathogen adhesion and to displace pathogens previously adhering to mucus was also tested. The inhibition of pathogens adhesion by these bifidobacterial strains was variable and clearly strain dependent. In general, bifidobacterial strains of animal origin were better able to inhibit and displace pathogens than were human strains. Preliminary characterization of bacterial adhesion was accomplished using different pretreatments to explore adhesion mechanisms. The results indicate that different molecules are implicated in the adhesion of bifidobacteria to the human intestinal mucus, constituting a multifactorial process.
Collapse
Affiliation(s)
- M Carmen Collado
- Functional Food Forum, University of Turku, Itäinen Pitkäkatu 4A, FIN 20014, Turku, Finland
| | | | | | | | | |
Collapse
|
34
|
Bartosch S, Woodmansey EJ, Paterson JCM, McMurdo MET, Macfarlane GT. Microbiological Effects of Consuming a Synbiotic Containing Bifidobacterium bifidum, Bifidobacterium lactis, and Oligofructose in Elderly Persons, Determined by Real-Time Polymerase Chain Reaction and Counting of Viable Bacteria. Clin Infect Dis 2005; 40:28-37. [PMID: 15614689 DOI: 10.1086/426027] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 08/19/2004] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Because of changes in gut physiology, immune system reactivity, and diet, elderly people are more susceptible to gastrointestinal infections than are younger adults. The gut microflora, which provides a natural defense against invading microorganisms, changes in elderly people with the development of potentially damaging bacterial populations, which may lead to alterations in bacterial metabolism and higher levels of infection. METHODS A randomized, double-blind, controlled feeding trial was done with 18 healthy elderly volunteers (age, >62 years) using a synbiotic comprising Bifidobacterium bifidum BB-02 and Bifidobacterium lactis BL-01 (probiotics) together with an inulin-based prebiotic (Synergy 1; Orafti). Real-time PCR was employed to quantitate total bifidobacteria, B. bifidum, and B. lactis in fecal DNA before, during, and after synbiotic consumption. Counting all viable anaerobes, bifidobacteria, and lactobacilli and identification of bacterial isolates to species level was also done. RESULTS Throughout feeding, both bifidobacteria species were detected in fecal samples obtained from all subjects receiving the synbiotic, with significant increases in the number of copies of the 16S rRNA genes of B. bifidum, B. lactis, and total bifidobacteria, compared with the control week and the placebo group. At least 1 of these species remained detectable in fecal samples 3 weeks after feeding in individuals that had no fecal B. bifidum and/or B. lactis in the control week, indicating that the probiotics persisted in the volunteers. Counting of viable organisms showed significantly higher total numbers of fecal bifidobacteria, total numbers of lactobacilli, and numbers of B. bifidum during synbiotic feeding. CONCLUSION Synbiotic consumption increased the size and diversity of protective fecal bifidobacterial populations, which are often very much reduced in older people.
Collapse
Affiliation(s)
- Sabine Bartosch
- Microbiology and Gut Biology Group, University of Dundee, Dundee, United Kingdom.
| | | | | | | | | |
Collapse
|
35
|
Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev 2004; 28:405-40. [PMID: 15374659 DOI: 10.1016/j.femsre.2004.01.003] [Citation(s) in RCA: 763] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/19/2003] [Accepted: 01/28/2004] [Indexed: 12/16/2022] Open
Abstract
The gastrointestinal tract is a complex ecosystem that associates a resident microbiota and cells of various phenotypes lining the epithelial wall expressing complex metabolic activities. The resident microbiota in the digestive tract is a heterogeneous microbial ecosystem containing up to 1 x 10(14) colony-forming units (CFUs) of bacteria. The intestinal microbiota plays an important role in normal gut function and maintaining host health. The host is protected from attack by potentially harmful microbial microorganisms by the physical and chemical barriers created by the gastrointestinal epithelium. The cells lining the gastrointestinal epithelium and the resident microbiota are two partners that properly and/or synergistically function to promote an efficient host system of defence. The gastrointestinal cells that make up the epithelium, provide a physical barrier that protects the host against the unwanted intrusion of microorganisms into the gastrointestinal microbiota, and against the penetration of harmful microorganisms which usurp the cellular molecules and signalling pathways of the host to become pathogenic. One of the basic physiological functions of the resident microbiota is that it functions as a microbial barrier against microbial pathogens. The mechanisms by which the species of the microbiota exert this barrier effect remain largely to be determined. There is increasing evidence that lactobacilli and bifidobacteria, which inhabit the gastrointestinal microbiota, develop antimicrobial activities that participate in the host's gastrointestinal system of defence. The objective of this review is to analyze the in vitro and in vivo experimental and clinical studies in which the antimicrobial activities of selected lactobacilli and bifidobacteria strains have been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Unité 510, Pathogénes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, F-92296 Châtenay-Malabry, France.
| |
Collapse
|
36
|
Del Piano M, Ballarè M, Montino F, Orsello M, Garello E, Ferrari P, Masini C, Strozzi GP, Sforza F. Clinical experience with probiotics in the elderly on total enteral nutrition. J Clin Gastroenterol 2004; 38:S111-4. [PMID: 15220673 DOI: 10.1097/01.mcg.0000128937.32835.7c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Recent data support that after 2 years of age, intestinal microflora remains relatively constant over time, except in elderly people, who harbor fewer bifidobacteria and a higher population of fungi and enterobacteria than young adults. Diet supplementation with probiotics may improve the nutritional status and reduce the impaired immunity associated with aging. The goal of this study was to establish the effect on bifidobacteria fecal counts, and some clinical parameters, of bifidobacteria supplementation to elderly patients in total parenteral nutrition. METHODS Thirteen patients (6 men and 7 women; mean age, 69 years; range, 65-76 years) affected by permanent vegetative status (PVS) and fed by total enteral nutrition (TEN) were studied. Bifidobacteria and clostridia were investigated by microbiologic and molecular biology methods in stool specimens collected twice at basal time (T-2 and T0) and after 12 and 15 days (T12 and T15, respectively). Seven patients with basal bifidobacteria counts less than 10 were supplemented with Bifidobacterium longum W 11 for 12 days. The remaining 6 patients were used as control subjects. For 1 month diarrhea and fever episodes, use of antibiotics, and nutritional status (BMI) were assessed. RESULTS In the 7 patients with bifidobacteria counts less than 10, the administration of B. longum W 11 resulted in a 1 log increase in 6 of 7 patients at T12. No statistically significant difference in episodes of fever or diarrhea, use of antibiotics, or BMI was observed between the treatment and control groups. CONCLUSION The administration of B. longum W11 in PVS patients fed by TEN is effective in increasing the population of bifidobacteria. Larger studies with longer follow-up could demonstrate the influence of these microbiologic changes in a clinical setting.
Collapse
Affiliation(s)
- Mario Del Piano
- Gastroenterology Unit, Azienda Ospedaliera Maggiore della Carità, Novara, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang ZT, Yao YM, Xiao GX, Sheng ZY. Risk factors of development of gut-derived bacterial translocation in thermally injured rats. World J Gastroenterol 2004; 10:1619-24. [PMID: 15162536 PMCID: PMC4572765 DOI: 10.3748/wjg.v10.i11.1619] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM: Studies have demonstrated that gut-derived bacterial translocation (BT) might play a role in the occurrence of sepsis and multiple organ dysfunction syndrome (MODS). Yet, no convincing overall analysis of risk factors for BT has been reported. The purpose of this study was to evaluate the related factors for the development of BT in burned rats.
METHODS: Wistar rats were subjected to 30% third-degree burns. Then samples were taken on postburn d 1, 3, and 5. Incidence of BT and counts of mucosal bifidobacteria, fungi and E. coli, mucus sIgA, degree of injury to ileal mucosa, and plasma interleukin-6 were observed. Univariate analysis and multivariate logistic regression analysis were performed.
RESULTS: The overall BT rate was 53.9% (69 in 128). The result of univariate analysis showed that the levels of plasma endotoxin and interleukin-6, the counts of mucosal fungi and E. coli, and the scores of ileum lesion were markedly increased in animals with BT compared with those without (P = 0.000-0.005), while the levels of mucus sIgA and the counts of mucosal bifidobacteria were significantly reduced in animals with translocation compared with those without (P = 0.000). There was a significant positive correlation between mucus sIgA and the counts of mucosal bifidobacteria (r = 0.74, P = 0.001). Moreover, there were strong negative correlations between scores of ileum-lesion and counts of bifidobacteria (r = -0.67, P = 0.001). Multivariate logistic regression revealed that ileum lesion score (odds ratio [OR] 45.52, 95% confidence interval [CI] 5.25-394.80), and counts of mucosal bifidobacteria (OR 0.039, 95% CI 0.0032-0.48) were independent predictors of BT secondary to severe burns.
CONCLUSION: Ileal lesion score and counts of mucosal bifidobacteria can be chosen as independent prognosis factors of the development of BT. Specific interventions targeting these high-risk factors might be implemented to attenuate BT, including strategies for repair of damaged intestinal mucosae and restoration of the balance of gastrointestinal flora.
Collapse
Affiliation(s)
- Zhong-Tang Wang
- Department of Microbiology and Immunology, Burns Institute, 304th Hospital of PLA, Beijing 100037, China
| | | | | | | |
Collapse
|
38
|
Biesebeke RT, Boesten R, Klaassen ES, Booijink CC, de Vries MC, Derrien M, Cohen DP, Schuren F, Vaughan EE, Kleerebezem M, de Vos WM. Microbial Functionality in the Human Gastrointestinal Tract. Microbes Environ 2004. [DOI: 10.1264/jsme2.19.276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Rob te Biesebeke
- Wageningen Centre for Food Science (WCFS)
- TNO Nutrition and Food Research Institute
| | - Rolf Boesten
- TNO Nutrition and Food Research Institute
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | - Eline S. Klaassen
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | - Carien C.G.M. Booijink
- Wageningen Centre for Food Science (WCFS)
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | - Maaike C. de Vries
- Wageningen Centre for Food Science (WCFS)
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | - Muriel Derrien
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | - David P.A. Cohen
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | | | - Elaine E. Vaughan
- Wageningen Centre for Food Science (WCFS)
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| | | | - Willem M. de Vos
- Wageningen Centre for Food Science (WCFS)
- Wageningen University and Research Centre (WUR), Laboratory for Microbiology
| |
Collapse
|
39
|
Servin AL, Coconnier MH. Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Pract Res Clin Gastroenterol 2003; 17:741-54. [PMID: 14507585 DOI: 10.1016/s1521-6918(03)00052-0] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Probiotic lactic acid strains are live micro-organisms that, when consumed in adequate amounts as part of food, confer a health benefit on the host. The scientific basis for the use of selected probiotic strains has only recently been firmly established, and appropriate and well-conducted experimental in vitro and in vivo studies, as well as clinical studies, are now beginning to be published, especially with regard to the effectiveness of probiotic strains in antagonizing pathogens. In particular, experimental data have allowed new insights into selected probiotic strains that express strain-specific probiotic properties and into the mechanism of action of these strains. The objective of this review is to analyse the in vitro or in vivo experimental studies in which the antimicrobial activity of selected Lactobacillus and Bifidobacterium strains has been documented.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Pathogènes et Fonctions des Cellules Epithéliales Polarisées, Faculté de Pharmacie Paris XI, Châtenay-Malabry 92296, France.
| | | |
Collapse
|
40
|
Kleessen B, Hartmann L, Blaut M. Fructans in the diet cause alterations of intestinal mucosal architecture, released mucins and mucosa-associated bifidobacteria in gnotobiotic rats. Br J Nutr 2003; 89:597-606. [PMID: 12720580 DOI: 10.1079/bjn2002827] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The effects of fructans in the diet on the mucosal morphometry (height of villi, depth of the crypts, number of goblet cells), the thickness of the epithelial mucus layer and the histochemical composition of intestinal mucosubstances in the distal jejunum and the distal colon were investigated by comparing germ-free (GF) rats, rats harbouring Bacteroides vulgatus and Bifidobacterium longum (diassociated (DA) rats), and rats with a human faecal flora (HFA). The rats were fed either a commercial standard diet (ST) or ST + (50 g oligofructose (OF)-long-chain inulin (lcIN))/kg. Changes in total bacteria, bifidobacteria and Bacteroides-Prevotella in response to feeding these diets were investigated by fluorescent in situ hybridization with 16S rRNA-targeted probes both in intestinal contents (lumen bacteria) and tissue sections (mucosa-associated bacteria). The OF-lcIN-containing diet resulted in higher villi and deeper crypts in bacteria-associated, but not in GF rats. In DA and HFA rats, the colonic epithelial mucus layer was thicker and the numbers of the goblet cells were greater than in GF rats. These effects were enhanced by the OF-lcIN-containing diet. In both dietary groups, bacterial colonization of GF rats caused an increase in neutral mucins in the distal jejunum and colon. Bacteria-associated rats had more acidic mucins in the colon than GF rats, and the OF-lcIN-containing diet stimulated sulfomucins as the predominant type of acidic mucins, while sialomucins dominated in the ST-fed groups. The number of mucosa-associated bifidobacteria detected in the colon of DA and HFA rats was greater with OF-lcIN than ST (4.9 and 5.4 v. 3.5 and 4.0 log10/mm2 mucosal surface respectively), whereas the number of luminal bifidobacteria was only affected by fructans in DA rats. Bacteroides did not differ between the groups. The stabilisation of the gut mucosal barrier, either by changes in the mucosal architecture itself, in released mucins or by stimulation of mucosal bifidobacteria with fructans, could become an important topic in the treatment and prophylaxis of gastrointestinal disorders and health maintenance.
Collapse
Affiliation(s)
- Brigitta Kleessen
- German Institute of Human Nutrition (DIFE) Potsdam-Rehbrücke, D-14558 Bergholz-Rehbrücke, Germany.
| | | | | |
Collapse
|
41
|
Saunier K, Doré J. Gastrointestinal tract and the elderly: functional foods, gut microflora and healthy ageing. Dig Liver Dis 2002; 34 Suppl 2:S19-24. [PMID: 12408434 DOI: 10.1016/s1590-8658(02)80158-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Advances in science and medicine as well as improved living standards have led to a steady increase in life expectancy. Yet ageing is associated with increased susceptibility to degenerative or infectious diseases, which may be exacerbated by a poor nutritional status. The intestinal microflora will mediate crucial events towards the protection or degradation of health. It is hence essential and timely that strategies of preventive nutrition aimed at maintaining or improving the quality of life of the ageing population be developed. "CROWNALIFE" is a newly funded EuropeanUnion project, so called because of its emphasis on the preservation of the period of independence of the elderly, recognised as the "crown of life". The project aims at assessing age-related alterations and exploring strategies to restore and maintain a balanced healthy intestinal environment. Current knowledge on the composition and function of the human intestinal microflora is still improving with the use of better methodologies and yet their evolution with ageing has not been investigated in detail. There have been a few reports that putatively protective lactic acid bacteria, in general, and bifidobacteria, in particular, seem less represented in the elderly faecal flora. We have also observed an increase in species diversity of the dominant faecal microflora with ageing. This certainly warrants confirmation and is being addressed by the investigation of age-related changes in the structure and function of the intestinal flora of the elderly in countries across Europe. Ensuing results will constitute a baseline for functional-food based strategies aimed at providing health benefits for the elderly.
Collapse
Affiliation(s)
- K Saunier
- Ecology and Digestive Tract Physiology, UR910, National Institute of Agronomic Research, Jouy-en-Josas, France
| | | |
Collapse
|