1
|
Ogasawara M. Wilms' tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Hum Vaccin Immunother 2024; 20:2296735. [PMID: 38148629 PMCID: PMC10760787 DOI: 10.1080/21645515.2023.2296735] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023] Open
Abstract
This mini-review explores recent advancements in cancer vaccines that target Wilms' tumor (WT1). Phase I/II trials of WT1 peptide vaccines have demonstrated their safety and efficacy against various cancers. Early trials employing HLA class I peptides evolved through their combination with HLA class II peptides, resulting in improved clinical outcomes. Additionally, WT1-targeted dendritic cell vaccines have exhibited favorable results. Studies focusing on hematological malignancies have revealed promising outcomes, including long-term remission and extended survival times. The combination of vaccines with immune checkpoint inhibitors has shown synergistic effects. Current preclinical developments are focused on enhancing the effectiveness of WT1 vaccines, underscoring the necessity for future large-scale Phase III trials to further elucidate their efficacy.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Latcu SC, Bardan R, Cumpanas AA, Barbos V, Baderca F, Gaje PN, Ceausu RA, Comsa S, Dumitru CS, Dumache R, Cut TG, Lazureanu VE, Petrica L. Immunotherapy Applications for Thymine Dimers and WT1 Antigen in Renal Cancers: A Comparative Statistical Analysis. J Pers Med 2024; 14:557. [PMID: 38929778 PMCID: PMC11205122 DOI: 10.3390/jpm14060557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Renal cell carcinoma (RCC) remains incurable in advanced stages. Biomarkers have proven to be quite useful in cancer therapeutics. Herein, we provide a comparative/integrative statistical analysis of seminal immunohistochemistry (IHC) findings for Wilms' Tumor 1 antigen (WT1) and thymine dimers (TDs), emerging as atypical, yet promising, potential biomarkers for RCCs. We assessed WT1/TD reactivity in adult RCC tumor cells, tumor microenvironment (TME), and tumor-adjacent healthy renal tissue (HRT). WT1 positivity was scarce and strictly nuclear in tumor cells, whereas TD-reactive tumor tissues were prevalent. We report statistically significant positive correlations between the density of reactive RCC cellularity and the intensity of nuclear staining for both biomarkers (WT1 - rho = 0.341, p-value = 0.036; TDs - rho = 0.379, p-value = 0.002). RCC stromal TME TD-positivity was much more frequent than WT1 reactivity, apparently proportional to that of the proper RCC cellularity and facilitated by extensive RCC inflammatory infiltration. TDs exhibited nuclear reactivity for most TME cell lines, while RCC TME WT1 expression was rare and inconsistent. In HRTs, TDs were entirely restricted to renal tubular cells, the likely cellular progenitor of most conventional RCC subtypes. In lieu of proper validation, these early findings have significant implications regarding the origins/biology of RCCs and may inform RCC therapeutics, both accounting for the high frequency of immunotherapy-permissive frameshift indels in RCCs, but also hinting at novel predictive clinical tools for WT1-targeted immunotherapy. Overall, the current study represents a meek yet hopefully significant step towards understanding the molecular biology and potential therapeutic targets of RCCs.
Collapse
Affiliation(s)
- Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Razvan Bardan
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vlad Barbos
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (S.C.L.); (V.B.)
| | - Flavia Baderca
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Serban Comsa
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (F.B.); (P.N.G.); (R.A.C.); (S.C.); (C.-S.D.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Dumache
- Department VIII, Discipline of Forensic Medicine, Bioethics, Deontology and Medical Law, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Talida Georgiana Cut
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Voichita Elena Lazureanu
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Ligia Petrica
- Department of Internal Medicine II, Division of Nephrology, Victor Babes University of Medicine and Pharmacy Timisoara, County Emergency Hospital Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Centre for Molecular Research in Nephrology and Vascular Disease, Faculty of Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
3
|
Namdari H, Rezaei F, Heidarnejad F, Yaghoubzad-Maleki M, Karamigolbaghi M. Immunoinformatics Approach to Design a Chimeric CD70-Peptide Vaccine against Renal Cell Carcinoma. J Immunol Res 2024; 2024:2875635. [PMID: 38314087 PMCID: PMC10838208 DOI: 10.1155/2024/2875635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Renal cell carcinoma (RCC) accounts for the majority of cancer-related deaths worldwide. Overexpression of CD70 has been linked to advanced stages of RCC. Therefore, this study aims to develop a multiepitope vaccine targeting the overexpressed CD70 using immunoinformatics techniques. In this investigation, in silico multiepitope vaccines were constructed by linking specific CD70 protein epitopes for helper T lymphocytes and CD8+ T lymphocytes. To enhance immunogenicity, sequences of cell-penetrating peptide (CPP), penetratin (pAntp), along with the entire sequence of tumor necrosis factor-α (TNF-α), were attached to the N-terminal and C-terminal of the CD70 epitopes. Computational assessments were performed on these chimeric vaccines for antigenicity, allergenicity, peptide toxicity, population coverage, and physicochemical properties. Furthermore, refined 3D constructs were subjected to a range of analyses, encompassing structural B-cell epitope prediction and molecular docking. The chosen vaccine construct underwent diverse assessments such as molecular dynamics simulation, immune response simulation, and in silico cloning. All vaccines comprised antigenic, nontoxic, and nonallergenic epitopes, ensuring extensive global population coverage. The vaccine constructs demonstrated favorable physicochemical characteristics. The binding affinity of chimeric vaccines to the TNF receptor remained relatively stable, influenced by the alignment of vaccine components. Molecular docking and dynamics analyses predicted stable interactions between CD70-CPP-TNF and the TNF receptor, indicating potential efficacy. In silico codon optimization and cloning of the vaccine nucleic acid sequence were accomplished using the pET28a plasmid. Furthermore, this vaccine displayed the capacity to modulate humoral and cellular immune responses. Overall, the results suggest therapeutic potential for the chimeric CD70-CPP-TNF vaccine against RCC. However, validation through in vitro and in vivo experiments is necessary. This trial is registered with NCT04696731 and NCT04046445.
Collapse
Affiliation(s)
- Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Farhad Rezaei
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Heidarnejad
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Yaghoubzad-Maleki
- Division of Biochemistry, Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Nordin ML, Azemi AK, Nordin AH, Nabgan W, Ng PY, Yusoff K, Abu N, Lim KP, Zakaria ZA, Ismail N, Azmi F. Peptide-Based Vaccine against Breast Cancer: Recent Advances and Prospects. Pharmaceuticals (Basel) 2023; 16:923. [PMID: 37513835 PMCID: PMC10386531 DOI: 10.3390/ph16070923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer is considered the second-leading cancer after lung cancer and is the most prevalent cancer among women globally. Currently, cancer immunotherapy via vaccine has gained great attention due to specific and targeted immune cell activity that creates a potent immune response, thus providing long-lasting protection against the disease. Despite peptides being very susceptible to enzymatic degradation and poor immunogenicity, they can be easily customized with selected epitopes to induce a specific immune response and particulate with carriers to improve their delivery and thus overcome their weaknesses. With advances in nanotechnology, the peptide-based vaccine could incorporate other components, thereby modulating the immune system response against breast cancer. Considering that peptide-based vaccines seem to show remarkably promising outcomes against cancer, this review focuses on and provides a specific view of peptide-based vaccines used against breast cancer. Here, we discuss the benefits associated with a peptide-based vaccine, which can be a mainstay in the prevention and recurrence of breast cancer. Additionally, we also report the results of recent trials as well as plausible prospects for nanotechnology against breast cancer.
Collapse
Affiliation(s)
- Muhammad Luqman Nordin
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan (UMK), Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Ahmad Khusairi Azemi
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Malaysia
| | - Walid Nabgan
- Departament d'Enginyeria Química, Universitat Rovira I Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Khatijah Yusoff
- National Institutes of Biotechnology, Malaysia Genome and Vaccine Institute, Jalan Bangi, Kajang 43000, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kue Peng Lim
- Cancer Immunology & Immunotherapy Unit, Cancer Research Malaysia, No. 1 Jalan SS12/1A, Subang Jaya 47500, Malaysia
| | - Zainul Amiruddin Zakaria
- Borneo Research on Algesia, Inflammation and Neurodegeneration (BRAIN) Group, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Malaysia
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu 21030, Malaysia
| | - Fazren Azmi
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM) Kuala Lumpur Campus, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
5
|
Ueki H, Kitagawa K, Kato M, Yanase S, Okamura Y, Bando Y, Hara T, Terakawa T, Furukawa J, Nakano Y, Fujisawa M, Shirakawa T. An oral cancer vaccine using Bifidobacterium vector augments combination of anti-PD-1 and anti-CTLA-4 antibodies in mouse renal cell carcinoma model. Sci Rep 2023; 13:9994. [PMID: 37340017 DOI: 10.1038/s41598-023-37234-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/18/2023] [Indexed: 06/22/2023] Open
Abstract
Recently, immune checkpoint inhibitor (ICI) based combination therapies, including anti-PD-1 antibody, nivolumab with anti-CTLA-4 antibody, and ipilimumab have become the primary treatment option for metastatic or unresectable renal cell carcinoma (RCC). However, despite the combination of two ICIs, 60-70% of patients are still resistant to first-line cancer immunotherapy. In the present study, undertook combination immunotherapy for RCC using an oral cancer vaccine (Bifidobacterium longum displaying WT1 tumor associated antigen (B. longum 420)) with anti-PD-1 and anti-CTLA-4 antibodies in a mouse syngeneic model of RCC to explore possible synergistic effects. We found that B. longum 420 significantly improved the survival of mice bearing RCC tumors treated by anti-PD-1 and anti-CTLA-4 antibodies compared to the mice treated by the antibodies alone. This result suggests that B. longum 420 oral cancer vaccine as an adjunct to ICIs could provide a novel treatment option for RCC patients. Our microbiome analysis revealed that the proportion of Lactobacilli was significantly increased by B. longum 420. Although the detailed mechanism of action is unknown, it is possible that microbiome alteration by B. longum 420 enhances the efficacy of the ICIs.
Collapse
Affiliation(s)
- Hideto Ueki
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Koichi Kitagawa
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Mako Kato
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Shihoko Yanase
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yasuyoshi Okamura
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yukari Bando
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Takuto Hara
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Tomoaki Terakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Junya Furukawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Yuzo Nakano
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Toshiro Shirakawa
- Department of Urology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
- Laboratory of Translational Research for Biologics, Department of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| |
Collapse
|
6
|
Kashima S, Braun DA. The Changing Landscape of Immunotherapy for Advanced Renal Cancer. Urol Clin North Am 2023; 50:335-349. [PMID: 36948676 DOI: 10.1016/j.ucl.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The management of advanced renal cell carcinoma has advanced tremendously over the past decade, but most patients still do not receive durable clinical benefit from current therapies. Renal cellcarcinoma is an immunogenic tumor, historically with conventional cytokine therapies, such as interleukin-2 and interferon-α, and contemporarily with the introduction of immune checkpoint inhibitors. Now the central therapeutic strategy in renal cell carcinoma is combination therapies including immunecheckpoint inhibitors. In this Review, we look back on the historical changes in systemic therapy for advanced renal cell carcinoma, and focus on the latest developments and prospects in this field.
Collapse
Affiliation(s)
- Soki Kashima
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA; Department of Urology, Akita University, Graduate School of Medicine, Akita, Japan
| | - David A Braun
- Center of Molecular and Cellular Oncology, Yale Cancer Center, Yale School of Medicine, 300 George Street, Suite 6400, New Haven, CT, USA.
| |
Collapse
|
7
|
Contemporary Clinical Definitions, Differential Diagnosis, and Novel Predictive Tools for Renal Cell Carcinoma. Biomedicines 2022; 10:biomedicines10112926. [PMID: 36428491 PMCID: PMC9687297 DOI: 10.3390/biomedicines10112926] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Despite significant progress regarding clinical detection/imaging evaluation modalities and genetic/molecular characterization of pathogenesis, advanced renal cell carcinoma (RCC) remains an incurable disease and overall RCC mortality has been steadily rising for decades. Concomitantly, clinical definitions have been greatly nuanced and refined. RCCs are currently viewed as a heterogeneous series of cancers, with the same anatomical origin, but fundamentally different metabolisms and clinical behaviors. Thus, RCC pathological diagnosis/subtyping guidelines have become increasingly intricate and cumbersome, routinely requiring ancillary studies, mainly immunohistochemistry. Meanwhile, RCC-associated-antigen targeted systemic therapy has been greatly diversified and emerging, novel clinical applications for RCC immunotherapy have already reported significant survival benefits, at least in the adjuvant setting. Even so, systemically disseminated RCCs still associate very poor clinical outcomes, with currently available therapeutic modalities only being able to prolong survival. In lack of a definitive cure for advanced RCCs, integration of the amounting scientific knowledge regarding RCC pathogenesis into RCC clinical management has been paramount for improving patient outcomes. The current review aims to offer an integrative perspective regarding contemporary RCC clinical definitions, proper RCC clinical work-up at initial diagnosis (semiology and multimodal imaging), RCC pathological evaluation, differential diagnosis/subtyping protocols, and novel clinical tools for RCC screening, risk stratification and therapeutic response prediction.
Collapse
|
8
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
9
|
Evaluating Established Roles, Future Perspectives and Methodological Heterogeneity for Wilms’ Tumor 1 (WT1) Antigen Detection in Adult Renal Cell Carcinoma, Using a Novel N-Terminus Targeted Antibody (Clone WT49). Biomedicines 2022; 10:biomedicines10040912. [PMID: 35453662 PMCID: PMC9026801 DOI: 10.3390/biomedicines10040912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma (RCC) is arguably the deadliest form of genitourinary malignancy and is nowadays viewed as a heterogeneous series of cancers, with the same origin but fundamentally different metabolisms and clinical behaviors. Immunohistochemistry (IHC) is increasingly necessary for RCC subtyping and definitive diagnosis. WT1 is a complex gene involved in carcinogenesis. To address reporting heterogeneity and WT1 IHC standardization, we used a recent N-terminus targeted monoclonal antibody (clone WT49) to evaluate WT1 protein expression in 56 adult RCC (aRCC) cases. This is the largest WT1 IHC investigation focusing exclusively on aRCCs and the first report on clone WT49 staining in aRCCs. We found seven (12.5%) positive cases, all clear cell RCCs, showing exclusively nuclear staining for WT1. We did not disregard cytoplasmic staining in any of the negative cases. Extratumoral fibroblasts, connecting tubules and intratumoral endothelial cells showed the same exclusively nuclear WT1 staining pattern. We reviewed WT1 expression patterns in aRCCs and the possible explanatory underlying metabolomics. For now, WT1 protein expression in aRCCs is insufficiently investigated, with significant discrepancies in the little data reported. Emerging WT1-targeted RCC immunotherapy will require adequate case selection and sustained efforts to standardize the quantification of tumor-associated antigens for aRCC and its many subtypes.
Collapse
|
10
|
Fu S, Piccioni DE, Liu H, Lukas RV, Kesari S, Aregawi D, Hong DS, Yamaguchi K, Whicher K, Zhang Y, Chen YL, Poola N, Eddy J, Blum D. A phase I study of the WT2725 dosing emulsion in patients with advanced malignancies. Sci Rep 2021; 11:22355. [PMID: 34785698 PMCID: PMC8595891 DOI: 10.1038/s41598-021-01707-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 10/19/2021] [Indexed: 11/09/2022] Open
Abstract
WT2725 is a Wilms' tumor gene 1 (WT1)-derived-oligopeptide vaccine designed to induce WT1-specific cytotoxic T-lymphocytes against WT1+ tumors in human leukocyte antigen (HLA)-A*0201+ and/or HLA-A*0206+ patients. Here, we report the results of a phase I study of WT2725. In this phase I, open-label, dose-escalation and expansion two-part study, the WT2725 dosing emulsion was administered as a monotherapy to patients with advanced malignancies known to overexpress WT1, including glioblastoma. In part 1, 44 patients were sequentially allocated to four doses: 0.3 mg (n = 5), 0.9 mg (n = 5), 3 mg (n = 6), and 9 mg (n = 28). In part 2, 18 patients were allocated to two doses: 18 mg (n = 9) and 27 mg (n = 9). No dose-limiting toxicities were observed, so the maximum tolerated dose was not reached. Median progression-free survival was 58 (95% confidence interval [CI] 56-81) days (~ 2 months) across all patients with solid tumors; median overall survival was 394 days (13.0 months) (95% CI 309-648). Overall immune-related response rate in solid tumor patients was 7.5% (95% CI 2.6-19.9); response was most prominent in the glioblastoma subgroup. Overall, 62.3% of patients were considered cytotoxic T-lymphocyte responders; the proportion increased with increasing WT2725 dosing emulsion dose. WT2725 dosing emulsion was well tolerated. Preliminary tumor response and biological marker data suggest that WT2725 dosing emulsion may exert antitumor activity in malignancies known to overexpress the WT1 protein, particularly glioblastoma, and provide a rationale for future clinical development.Trial registration: NCT01621542.
Collapse
Affiliation(s)
- Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - David E. Piccioni
- grid.266100.30000 0001 2107 4242UCSD Moores Cancer Center, San Diego, CA USA
| | - Hongtao Liu
- grid.412578.d0000 0000 8736 9513University of Chicago Medical Center, Chicago, IL USA
| | - Rimas V. Lukas
- grid.16753.360000 0001 2299 3507Northwestern University, Chicago, IL USA ,Lou and Jean Malnati Brain Tumor Institute, Chicago, IL USA
| | - Santosh Kesari
- Saint John’s Cancer Institute and Pacific Neuroscience Institute, Santa Monica, CA USA
| | - Dawit Aregawi
- grid.240473.60000 0004 0543 9901Penn State Milton S. Hershey Medical Center, Penn State College of Medicine, Hershey, PA USA
| | - David S. Hong
- grid.240145.60000 0001 2291 4776Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 USA
| | - Kenichiro Yamaguchi
- grid.417741.00000 0004 1797 168XSumitomo Dainippon Pharma Co., Ltd., Tokyo, Japan
| | - Kate Whicher
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA
| | - Yi Zhang
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA
| | - Yu-Luan Chen
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA
| | - Nagaraju Poola
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA ,Present Address: Otsuka Pharmaceuticals, Princeton, NJ USA
| | - John Eddy
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA ,Present Address: Morphic Therapeutic, Waltham, MA USA
| | - David Blum
- grid.419756.8Sunovion Pharmaceuticals Inc., Marlborough, MA USA
| |
Collapse
|
11
|
Nakajima H, Nakata J, Imafuku K, Hayashibara H, Isokawa K, Udaka K, Fujiki F, Morimoto S, Hasegawa K, Hosen N, Hashii Y, Nishida S, Tsuboi A, Oka Y, Oji Y, Sogo S, Sugiyama H. Identification of mouse helper epitopes for WT1-specific CD4 + T cells. Cancer Immunol Immunother 2021; 70:3323-3335. [PMID: 34272593 DOI: 10.1007/s00262-021-03003-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
Helper T lymphocytes (HTLs) play a central role in cancer immunity because they can not only help the induction and proliferation of cytotoxic T lymphocytes (CTLs) but also their differentiation into cytotoxic CD4+ T cells and directly kill the target cells.This study describes the identification of three novel mouse Th epitope peptides, WT135-52, WT186-102 and WT1294-312, derived from WT1 protein, which is the most potent tumor-associated antigen. Compared to immunization with WT1 CTL peptide alone, immunization with the addition of these WT1-specific Th peptides strongly induced WT1-specific CTLs, continued to maintain them, and efficiently rejected the challenge of WT1-expressing tumor cells. Importantly, the majority of WT1-specific CTLs induced by the co-immunization with WT1 CTL and the WT1-specific Th peptides were CD44+CD62L- effector memory CD8+ T cells, which played a central role in tumor rejection. Establishment of mouse models suitable for the analysis of the detailed mechanism of these functions of HTLs is very important. These results clearly showed that WT1-specific HTLs perform an essential function in WT1-specific tumor immunity. Therefore, the WT1-specific Th peptides identified here should make a major contribution to elucidation of the mutual roles of WT1-specific CTLs and HTLs in cancer immunity in in vivo mouse models.
Collapse
Affiliation(s)
- Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-city, Osaka, 565-0871, Japan.
| | - Jun Nakata
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kanako Imafuku
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromu Hayashibara
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuki Isokawa
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keiko Udaka
- Department of Immunology, School of Medicine, Kochi University, Kochi, Japan
| | - Fumihiro Fujiki
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Soyoko Morimoto
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kana Hasegawa
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| | - Naoki Hosen
- Department of Hematology and Oncology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiko Hashii
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Sumiyuki Nishida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshihiro Oka
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, WPI, Immunology Frontier Research Center (iFReC), Osaka University, Osaka, Japan
| | - Yusuke Oji
- Department of Clinical Laboratory and Biomedical Sciences, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Sogo
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
- Immunology Research Unit, Department of Medical Innovations, Otsuka Pharmaceutical Co., Ltd., Tokushima, Japan
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, 1-7 Yamadaoka, Suita-city, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Xu Y, Miller CP, Warren EH, Tykodi SS. Current status of antigen-specific T-cell immunotherapy for advanced renal-cell carcinoma. Hum Vaccin Immunother 2021; 17:1882-1896. [PMID: 33667140 PMCID: PMC8189101 DOI: 10.1080/21645515.2020.1870846] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In renal-cell carcinoma (RCC), tumor-reactive T-cell responses can occur spontaneously or in response to systemic immunotherapy with cytokines and immune checkpoint inhibitors. Cancer vaccines and engineered T-cell therapies are designed to selectively augment tumor antigen-specific CD8+ T-cell responses with the goal to elicit tumor regression and avoid toxicities associated with nonspecific immunotherapies. In this review, we provide an overview of the central role of T-cell immunity in the treatment of advanced RCC. Clinical outcomes for antigen-targeted vaccines or other T-cell-engaging therapies for RCC are summarized and evaluated, and emerging new strategies to enhance the effectiveness of antigen-specific therapy for RCC are discussed.
Collapse
Affiliation(s)
- Yuexin Xu
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chris P Miller
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| | - Scott S Tykodi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Diagnostic and Prognostic Role of WT1 Immunohistochemical Expression in Uterine Carcinoma: A Systematic Review and Meta-Analysis across All Endometrial Carcinoma Histotypes. Diagnostics (Basel) 2020; 10:diagnostics10090637. [PMID: 32859123 PMCID: PMC7555656 DOI: 10.3390/diagnostics10090637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 11/17/2022] Open
Abstract
Background: The diagnostic role of Wilms’ tumor 1 (WT1) is well known in gynaeco-pathological setting, since it is considered a specific marker of serous histotype and adnexal origin. Moreover, its oncogenic role has been recently highlighted in many cancers and it has also been regarded as a promising target antigen for cancer immunotherapy. However, the relationship between its expression and prognostic role in uterine cancer remains unclear. We analyzed the diagnostic and prognostic role of WT1 expression in patients with uterine carcinoma by completing a search using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines and the PICOS (Participants, Intervention, Comparison, Outcomes, Study Design) model through PubMed, Scopus and Web of Science databases to identify studies that fit our search criteria. The objective of the current meta-analysis was to investigate the diagnostic and prognostic role of WT1 expression in patients with uterine carcinoma. Materials and Methods: A literature search was performed of the PubMed, Scopus, and Web of Science databases for English-language studies published from January 2000 to April 2020. Studies were considered eligible if they evaluated the WT1 expression in uterine carcinoma. Results: In total, 35 articles were identified that used uterine carcinoma criteria and provided data for 1616 patients. The overall rate of WT1 expression in uterine carcinoma was 25%. The subgroup analysis of uterine cancer types revealed that WT1 was expressed differently among different histotypes (endometrioid, clear cell, serous carcinoma and carcinosarcoma). Discussion and Conclusions: The WT1 immunohistochemical expression is not limited to serous histotype and/or ovarian origin. In fact, a significant proportion of endometrial adenocarcinomas can also show WT1 immunoreactivity. Moreover, our study suggests that WT1 may be a potential marker to predict the prognosis of patients with uterine cancer, but more studies are needed to confirm its role in clinical practice.
Collapse
|
14
|
Cytotoxic T Lymphocytes Regenerated from iPS Cells Have Therapeutic Efficacy in a Patient-Derived Xenograft Solid Tumor Model. iScience 2020; 23:100998. [PMID: 32259478 PMCID: PMC7188741 DOI: 10.1016/j.isci.2020.100998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/20/2020] [Accepted: 03/17/2020] [Indexed: 12/27/2022] Open
Abstract
Current adoptive T cell therapies conducted in an autologous setting are costly, time consuming, and depend on the quality of the patient's T cells. To address these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs) are regenerated from iPSCs that were originally derived from T cells and succeeded in regenerating CTLs specific for the WT1 antigen, which exhibited therapeutic efficacy in a xenograft model of leukemia. In this study, we extended our strategy to solid tumors. The regenerated WT1-specific CTLs had a strong therapeutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell line. To make our method more generally applicable, we developed an allogeneic approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific TCR α/β genes that had been tested clinically. The regenerated CTLs antigen-specifically suppressed tumor growth in a patient-derived xenograft model of RCC, demonstrating the feasibility of our strategy against solid tumors. Patient-derived xenograft of renal cell carcinoma was used in a cell-therapy model Cytotoxic T lymphocytes (CTLs) that target WT1-antigen were used as effector cells CTLs produced from iPSCs transduced with WT1-TCR genes showed efficacy in the model The present results demonstrate the feasibility of our strategy against solid tumors
Collapse
|
15
|
Smith CC, Selitsky SR, Chai S, Armistead PM, Vincent BG, Serody JS. Alternative tumour-specific antigens. Nat Rev Cancer 2019; 19:465-478. [PMID: 31278396 PMCID: PMC6874891 DOI: 10.1038/s41568-019-0162-4] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2019] [Indexed: 12/20/2022]
Abstract
The study of tumour-specific antigens (TSAs) as targets for antitumour therapies has accelerated within the past decade. The most commonly studied class of TSAs are those derived from non-synonymous single-nucleotide variants (SNVs), or SNV neoantigens. However, to increase the repertoire of available therapeutic TSA targets, 'alternative TSAs', defined here as high-specificity tumour antigens arising from non-SNV genomic sources, have recently been evaluated. Among these alternative TSAs are antigens derived from mutational frameshifts, splice variants, gene fusions, endogenous retroelements and other processes. Unlike the patient-specific nature of SNV neoantigens, some alternative TSAs may have the advantage of being widely shared by multiple tumours, allowing for universal, off-the-shelf therapies. In this Opinion article, we will outline the biology, available computational tools, preclinical and/or clinical studies and relevant cancers for each alternative TSA class, as well as discuss both current challenges preventing the therapeutic application of alternative TSAs and potential solutions to aid in their clinical translation.
Collapse
Affiliation(s)
- Christof C Smith
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Bioinformatics Core, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Marsico Hall, Chapel Hill, NC, USA
| | - Shengjie Chai
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin G Vincent
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jonathan S Serody
- Department of Microbiology and Immunology, UNC School of Medicine, Marsico Hall, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Division of Hematology/Oncology, Department of Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Program in Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Sönmez MG, Sönmez LÖ. New treatment modalities with vaccine therapy in renal cell carcinoma. Urol Ann 2019; 11:119-125. [PMID: 31040593 PMCID: PMC6476201 DOI: 10.4103/ua.ua_166_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/06/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of implementing vaccine therapy is to activate immune response against malignant cells by overcoming the tolerance triggered by the tumor. These treatments are effective using the immune response against cancer. Not every type of cancer is suitable for vaccine therapies. For a vaccine therapy to be implemented, cancer should be immunogenic and contain tissue-specific proteins, should have a slow progression, and treatments should be feasible. For that reason, studies regarding urological cancers are mostly focused on the kidneys and the prostate. Vaccine therapies used in renal cell carcinoma (RCC) can be categorized under the following titles: autologous tumor cells, dendritic cells, genetically modified tumor cells, and protein/peptide. Although there are old studies on the implementation of vaccine therapies in RCC, researches have only been intensified recently. In addition to their effective potential for lengthening general survival, decreasing tumor burden and cancer development in long term, vaccine treatments are especially effective in metastatic RCC patients. We think that vaccine treatments would be applied more in near future since RCC are immunogenic. In this compilation, we will discuss vaccine therapies used in RCC, which urologists are not so familiar with, in the light of the up-to-date literature.
Collapse
Affiliation(s)
- Mehmet Giray Sönmez
- Department of Urology, Meram Medical Faculty, Necmettin Erbakan University, Konya, Turkey
| | - Leyla Öztürk Sönmez
- Department of Physiology, Selcuklu Medical School, Selcuk University, Konya, Turkey
| |
Collapse
|
17
|
Kitagawa K, Gonoi R, Tatsumi M, Kadowaki M, Katayama T, Hashii Y, Fujisawa M, Shirakawa T. Preclinical Development of a WT1 Oral Cancer Vaccine Using a Bacterial Vector to Treat Castration-Resistant Prostate Cancer. Mol Cancer Ther 2019; 18:980-990. [PMID: 30824610 DOI: 10.1158/1535-7163.mct-18-1105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 02/22/2019] [Indexed: 11/16/2022]
Abstract
Previously, we constructed a recombinant Bifidobacterium longum displaying a partial mouse Wilms' tumor 1 (WT1) protein (B. longum 420) as an oral cancer vaccine using a bacterial vector and demonstrated that oral administration of B. longum 420 significantly inhibited tumor growth compared with the Db126 WT1 peptide vaccine in the TRAMP-C2, mouse castration-resistant prostate cancer (CRPC) syngeneic tumor model. The present study demonstrated that oral administration of 1.0×109 colony-forming units of B. longum 420 induced significantly higher cytotoxicity against TRAMP-C2 cells than intraperitoneal injection of 100 μg of Db126, and the in vivo antitumor activity of B. longum 420 in the TRAMP-C2 tumor model could be augmented by intraperitoneal injections of 250 μg of anti-PD-1 antibody. For the clinical development, we produced the B440 pharmaceutical formulation, which is lyophilized powder of inactivated B. longum 440 displaying the partially modified human WT1 protein. We confirmed that B. longum 440 could induce cellular immunity specific to multiple WT1 epitopes. In a preclinical dosage study, B440 significantly inhibited growth of the TRAMP-C2 tumors compared with that of the control groups (PBS and B. longum not expressing WT1) at all dosages (1, 5, and 10 mg/body of B440). These mouse doses were considered to correspond with practical oral administration doses of 0.2, 1, and 2 g/body for humans. Taken together, these results suggest that the B440 WT1 oral cancer vaccine can be developed as a novel oral immuno-oncology drug to treat CRPC as a monotherapy or as an adjunct to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Koichi Kitagawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan.,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Reina Gonoi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Maho Tatsumi
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Masahide Kadowaki
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan
| | - Takane Katayama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masato Fujisawa
- Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Division of Advanced Medical Science, Kobe University Graduate School of Science, Technology and Innovation, Kobe, Japan. .,Division of Translational Research for Biologics, Department of Internal Medicine Related, Kobe University Graduate School of Medicine, Kobe, Japan.,Department of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
18
|
Obara W, Kanehira M, Katagiri T, Kato R, Kato Y, Takata R. Present status and future perspective of peptide-based vaccine therapy for urological cancer. Cancer Sci 2018; 109:550-559. [PMID: 29345737 PMCID: PMC5834812 DOI: 10.1111/cas.13506] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/26/2017] [Accepted: 01/12/2018] [Indexed: 12/20/2022] Open
Abstract
Use of peptide‐based vaccines as therapeutics aims to elicit immune responses through antigenic epitopes derived from tumor antigens. Peptide‐based vaccines are easily synthesized and lack significant side‐effects when given in vivo. Peptide‐based vaccine therapy against several cancers including urological cancers has made progress for several decades, but there is no worldwide approved peptide vaccine. Peptide vaccines were also shown to induce a high frequency of immune response in patients accompanied by clinical efficacy. These data are discussed in light of the recent progression of immunotherapy caused by the addition of immune checkpoint inhibitors thus providing a general picture of the potential therapeutic efficacy of peptide‐based vaccines and their combination with other biological agents. In this review, we discuss the mechanism of the antitumor effect of peptide‐based vaccine therapy, development of our peptide vaccine, recent clinical trials using peptide vaccines for urological cancers, and perspectives of peptide‐based vaccine therapy.
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University, Tokushima, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, Morioka, Japan
| |
Collapse
|
19
|
Ueda Y, Ogura M, Miyakoshi S, Suzuki T, Heike Y, Tagashira S, Tsuchiya S, Ohyashiki K, Miyazaki Y. Phase 1/2 study of the WT1 peptide cancer vaccine WT4869 in patients with myelodysplastic syndrome. Cancer Sci 2017; 108:2445-2453. [PMID: 28949050 PMCID: PMC5715294 DOI: 10.1111/cas.13409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/14/2017] [Accepted: 09/21/2017] [Indexed: 01/23/2023] Open
Abstract
WT4869 is a synthetic peptide vaccine derived from the Wilms’ tumor gene 1 (WT1) protein. This phase 1/2 open‐label study evaluated the safety and efficacy of WT4869, and biomarkers for response, in patients with myelodysplastic syndrome. WT4869 (5–1200 μg/dose) was administered intradermally every 2 weeks, according to a 3 + 3 dose‐escalation method in higher‐risk (International Prognostic Scoring System score ≥1.5) or lower‐risk (score <1.5) red blood cell transfusion‐dependent patients with myelodysplastic syndrome. Twenty‐six patients were enrolled and treated (median age, 75 years; range, 32 to 89). The most common adverse event was injection site reaction (61.5%). Main grade 3 or 4 adverse events were neutropenia (30.8%), febrile neutropenia, pneumonia, elevated blood creatine phosphokinase levels and hypoalbuminemia (all 7.7%). Dose‐limiting toxicities occurred in 1 patient in the 50 μg/dose cohort (pyrexia, muscle hemorrhage and hypoalbuminemia) and 1 patient in the 400 μg/dose cohort (pneumonitis); however, the maximum tolerated dose could not be determined from this trial. The overall response rate was 18.2%, the disease control rate was 59.1% and median overall survival was 64.71 weeks (95% confidence interval: 50.29, 142.86) as assessed by the Kaplan–Meier method. Subgroup analysis of azacitidine‐refractory patients with higher‐risk myelodysplastic syndrome (11 patients) showed median overall survival of 55.71 weeks (approximately 13 months). WT1‐specific cytotoxic T lymphocyte induction was observed in 11 of 25 evaluable patients. WT4869 was well tolerated in patients with myelodysplastic syndrome and preliminary data suggest that WT4869 is efficacious. This trial was registered at www.clinicaltrials.jp as JapicCTI‐101374.
Collapse
Affiliation(s)
- Yasunori Ueda
- Department of Hematology/Oncology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Michinori Ogura
- Department of Hematology and Oncology, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Shigesaburo Miyakoshi
- Department of Hematology, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Takahiro Suzuki
- Division of Hematology, Department of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Yuji Heike
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Kazuma Ohyashiki
- Department of Hematology, Tokyo Medical University, Tokyo, Japan
| | | |
Collapse
|
20
|
Obara W, Karashima T, Takeda K, Kato R, Kato Y, Kanehira M, Takata R, Inoue K, Katagiri T, Shuin T, Nakamura Y, Fujioka T. Effective induction of cytotoxic T cells recognizing an epitope peptide derived from hypoxia-inducible protein 2 (HIG2) in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother 2016; 66:17-24. [PMID: 27757561 PMCID: PMC5222936 DOI: 10.1007/s00262-016-1915-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 10/11/2016] [Indexed: 12/22/2022]
Abstract
Purpose Through genome-wide expression profile analysis, hypoxia-inducible protein 2 (HIG2) has previously been identified as an oncoprotein involved in development/progression of renal cell carcinoma (RCC). We subsequently identified a highly immunogenic HLA-A*0201/0206-restricted epitope peptide (HIG2-9-4) corresponding to a part of HIG2 and applied it as a therapeutic vaccine. We conducted a phase I clinical trial using the HIG2-9-4 peptide for patients with advanced RCC. Materials and Methods Nine patients having HLA-A*0201 or HLA-A*0206 with metastatic or unresectable RCC after failure of the cytokine and/or tyrosine kinase inhibitor therapies were enrolled in this study. The patients received subcutaneous administration of the peptide as an emulsion form with Montanide ISA-51 VG once a week in a dose-escalation manner (doses of 0.5, 1.0, or 3.0 mg/body, 3 patients for each dose). The primary endpoint was safety, and the secondary endpoints were immunological and clinical responses. Results Vaccinations with HIG2-9-4 peptide could be well tolerated without any serious systemic adverse events. Peptide-specific cytotoxic T lymphocyte (CTL) responses were detected in eight of the nine patients. Doses of 1.0 or 3.0 mg/body seemed to induce a CTL response better than did a dose of 0.5 mg/body, although the number of patients was too small to draw a firm conclusion. The disease control rate (stable disease for ≥4 months) was 77.8 %, and the median progression-free survival time was 10.3 months. Conclusions HIG2-9-4 peptide vaccine treatment was tolerable and effectively induced peptide-specific CTLs in RCC patients. This novel peptide vaccine therapy for RCC is promising.
Collapse
Affiliation(s)
- Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan.
| | | | - Kazuyoshi Takeda
- Division of Cell Biology, Biomedical Research Center, Graduated School of Medicine, Juntendo University, Tokyo, Japan
- Department of Biofunctional Micribiota, Graduated School of Medicine, Juntendo University, Tokyo, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Yoichiro Kato
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Mitsugu Kanehira
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Ryo Takata
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| | - Keiji Inoue
- Department of Urology, Kochi Medical School, Kochi, Japan
| | - Toyomasa Katagiri
- Division of Genome Medicine, Institute for Genome Research, Tokushima University Graduate School, Tokushima, Japan
| | - Taro Shuin
- Department of Urology, Kochi Medical School, Kochi, Japan
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tomoaki Fujioka
- Department of Urology, Iwate Medical University School of Medicine, 19-1 Uchimaru, Morioka, 020-8505, Japan
| |
Collapse
|
21
|
Sawada A, Inoue M, Kondo O, Yamada-Nakata K, Ishihara T, Kuwae Y, Nishikawa M, Ammori Y, Tsuboi A, Oji Y, Koyama-Sato M, Oka Y, Yasui M, Sugiyama H, Kawa K. Feasibility of Cancer Immunotherapy with WT1 Peptide Vaccination for Solid and Hematological Malignancies in Children. Pediatr Blood Cancer 2016; 63:234-41. [PMID: 26469989 DOI: 10.1002/pbc.25792] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND Advances in cancer immunotherapy in the pediatric field are needed in order to improve the prognosis of children with malignancies. We conducted a prospective phase I/II study of WT1 peptide vaccination for children with relapsed or refractory malignancies. METHODS The main eligibility criteria were affected tissues or leukemic cells expressing the WT1 gene, and patients (and donors for allogeneic hematopoietic stem cell transplantation) having HLA-A*24:02. Vaccination using the WT1 peptide (CYTWNQMNL), which was modified for higher affinity to this HLA-type molecule with the adjuvant Montanide ISA51, was performed weekly 12 times. RESULTS Twenty-six patients were enrolled and 13 (50.0%) completed the vaccination 12 times. Evidence for the induction of WT1-specific cytotoxic T-lymphocyte (CTL) responses without severe systemic side effects was obtained. Two out of 12 patients with bulky disease exhibited a transient clinical effect (one mixed response and one stable disease), three out of six patients with minimal residual disease achieved transient molecular remission, and five out of eight patients without a detectable level of the molecular marker, but with a high risk of relapse, had the best outcome of long-term continuous complete remission. CONCLUSIONS WT1 vaccination is a safe immunotherapy and induced WT1-specific CTL responses in children; however, as a single agent, vaccination only provided patients in remission, but with a high risk of relapse, with "long-term benefits" in the context of its use for relapse prevention. WT1 peptide-based treatments in combination with other modalities, such as anti-tumor drugs or immunomodulating agents, need to be planned.
Collapse
Affiliation(s)
- Akihisa Sawada
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masami Inoue
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Osamu Kondo
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Kayo Yamada-Nakata
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Takashi Ishihara
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yuko Kuwae
- Department of Pathology and Clinical Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan.,Department of Diagnostic Pathology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Masanori Nishikawa
- Department of Radiology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yasuhiro Ammori
- Pharmacy, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Akihiro Tsuboi
- Department of Cancer Immunotherapy, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yusuke Oji
- Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Maho Koyama-Sato
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Yoshihiro Oka
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Immunopathology, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masahiro Yasui
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Keisei Kawa
- Department of Hematology/Oncology, Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| |
Collapse
|
22
|
Bologna-Molina R, Takeda Y, Kuga T, Chosa N, Kitagawa M, Takata T, Ishisaki A, Mikami T. Expression of Wilms' tumor 1 (WT1) in ameloblastomas. J Oral Sci 2016; 58:407-413. [PMID: 27665981 DOI: 10.2334/josnusd.15-0546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Wilms' tumor 1 gene (WT1) was originally isolated and described as the gene responsible for Wilms' tumor. Although there is growing evidence linking the overexpression of WT1 to tumorigenesis, no reports on ameloblastoma are available at present. The aim of this study was to examine the expression of WT1 in various histological subtypes of ameloblastoma tissue specimens and in human ameloblastoma cell lines. Immunohistochemical analyses were performed on a total of 168 cases of ameloblastoma, one case of ameloblastic carcinoma, and five cases of tooth germs (control). Three immortalized human dental epithelial cell lines (HAM1, HAM2, and HAM3) derived from the same ameloblastoma patient were used for reverse transcription-polymerase chain reaction (RT-PCR) and western blot assays. The tooth germs did not express WT1 (0%), and more than half of the ameloblastoma cases showed WT1 overexpression (54.7%). Immunoreactivity of solid-type ameloblastoma (76.1%) was more evident than that of unicystic-type ameloblastoma (40.9%). The expression level of WT1 mRNA in HAM2 was higher than that in HAM1 (moderate) and HAM3 (weak), showing the heterogeneity of tumor cells. The WT1 protein was strongly detected in HAM2 and minimally detected in HAM1 and HAM3. Our results suggest that WT1 expression influences the pathogenesis of ameloblastoma by varying its expression level in different histological types. (J Oral Sci 58, 407-413, 2016).
Collapse
|
23
|
Nishida S, Sugiyama H. Immunotherapy Targeting WT1: Designing a Protocol for WT1 Peptide-Based Cancer Vaccine. Methods Mol Biol 2016; 1467:221-232. [PMID: 27417973 DOI: 10.1007/978-1-4939-4023-3_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
There is much current excitement about the potential of cancer immunotherapy. WT1 is high on the National Cancer Institute's list of priority antigens for immune therapy. In this chapter we describe a protocol for a clinical trial using a WT1 peptide-based cancer vaccine.
Collapse
Affiliation(s)
- Sumiyuki Nishida
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, 2-2, Yamada-Oka, Suita-City, Osaka, 565-0871, Japan.
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
24
|
Lv L, Chen G, Zhou J, Li J, Gong J. WT1-AS promotes cell apoptosis in hepatocellular carcinoma through down-regulating of WT1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2015; 34:119. [PMID: 26462627 PMCID: PMC4604772 DOI: 10.1186/s13046-015-0233-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/02/2015] [Indexed: 12/18/2022]
Abstract
Background The antisense of the tumor suppressor gene WT1 (WT1-AS) is a long non-coding RNA. The role of WT1-AS in the development of hepatocellular carcinoma (HCC) has not yet been elucidated. Methods Quantitative real-time PCR and western blot analyses were used to measure levels of WT1-AS and its related genes in tumor and corresponding adjacent tumor tissues of HCC patients. The effect on HCC cell proliferation and apoptosis was assessed by EdU incorporation assays and PI-Annexin-V staining, respectively. ShRNA and dual-luciferase assays were used to investigate the regulatory relationship between WT1-AS and WT1 in cell lines. Results WT1-AS expression correlated negatively with WT1 expression in HCC tumor tissue. Kaplan-Meier curve analysis revealed that WT1-AS expression is a reliable indicator of HCC prognosis. The downregulation of WT1 expression by WT1-AS promoted cell apoptosis by suppressing the JAK/STAT3 signaling pathway. Bioinformatics analysis showed that WT1-AS downregulates WT1 by binding to the TATA region of the WT1 promotor. WT1-AS was also able to reverse WT1-mediated resistance to Dox based chemotherapy in HCC cells. Conclusions WT1-AS downregulates WT1 expression in HCC tumors and promotes apoptosis by binding to the promoter region of WT1. Our findings suggest that WT1-AS may function as a tumor suppressor in HCC by reversing the oncogenic effects of WT1. Electronic supplementary material The online version of this article (doi:10.1186/s13046-015-0233-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Long Lv
- Department of General Surgery, People's Hospital of Gaochun, No. 9 Chunzhong Road, Gaochun, Nanjing, 211300, Jiangsu Province, China.
| | - Gong Chen
- Department of General Surgery, People's Hospital of Gaochun, No. 9 Chunzhong Road, Gaochun, Nanjing, 211300, Jiangsu Province, China
| | - Jianping Zhou
- Department of General Surgery, Yixing People's Hospital, the Affiliated Hospital of Jiangsu University, Yixing, 214200, Jiangsu Province, China
| | - Jun Li
- Department of General Surgery, Nanjing Jiangning Hospital, the Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, Jiangsu Province, P.R. China
| | - Jianping Gong
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, 210009, China
| |
Collapse
|
25
|
Present and future perspectives on immunotherapy for advanced renal cell carcinoma: Going to the core or beating around the bush? J Kidney Cancer VHL 2015; 2:55-63. [PMID: 28326259 PMCID: PMC5345540 DOI: 10.15586/jkcvhl.2015.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 03/30/2015] [Indexed: 01/01/2023] Open
Abstract
Metastatic lesions of renal cell carcinoma (RCC) occasionally regress spontaneously after surgical removal of the primary tumor. Although this is an exceptionally rare occurrence, RCC has thus been postulated to be immunogenic. Immunotherapies, including cytokine therapy, peptide-based vaccines, and immune checkpoint inhibitors have therefore been used to treat patients with advanced, metastatic RCC. We review the history, trends, and recent progress in immunotherapy for advanced RCC and discuss future perspectives, with consideration of our experimental work on galectin 9 and PINCH as promising specific immunotherapy targets.
Collapse
|
26
|
Hedley C, Sriraksa R, Showeil R, Van Noorden S, El-Bahrawy M. The frequency and significance of WT-1 expression in serous endometrial carcinoma. Hum Pathol 2014; 45:1879-1884. [PMID: 25033726 DOI: 10.1016/j.humpath.2014.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
Serous endometrial carcinoma is an aggressive type of endometrial carcinoma. Wilms tumor gene 1 (WT-1) is commonly expressed in ovarian serous carcinomas and considered a diagnostic marker of these tumors. However, it is generally believed that WT-1 is rarely expressed by endometrial serous carcinoma. The aim of this study was to evaluate the frequency and significance of WT-1 expression in endometrial serous carcinoma. We studied the expression of WT-1 in formalin-fixed, paraffin-embedded tumor sections from 77 cases of endometrial serous carcinoma. Thirty-four tumors showed positive expression for WT-1 (44%). There was a statistically significant association between the presence of WT-1 expression and disease-free survival (DFS), where patients with tumors expressing WT-1 had a shorter DFS compared with those with no WT-1 expression (P = .031; median DFS, 15 and 38 months, respectively). By multivariate Cox regression analysis, DFS was independent from other clinicopathological data (tumor stage, presence of lymphovascular space invasion, cervical involvement, and extrauterine spread), indicating that WT-1 expression is independently associated with DFS. Our study shows that WT-1 is expressed in a considerable percentage of endometrial serous carcinomas, suggesting a role for WT-1 in the pathology of these tumors. This has therapeutic significance, as WT-1 is an emerging target for immunotherapy. Moreover, our results show that WT-1 has prognostic value, being predictive of DFS. As a potential prognostic marker and therapeutic target, we recommend that WT-1 expression should be included in histopathologic reports of endometrial serous carcinoma.
Collapse
Affiliation(s)
- Catherine Hedley
- School of Medicine, Imperial College London, London, United Kingdom SW7 2AZ
| | - Ruethairat Sriraksa
- Epigenetics Group, International Agency for Research on Cancer, Lyon, France CEDEX 08
| | - Rania Showeil
- Department of Clinical Pathology, Alexandria Regional Center for Women's Health and Development, Alexandria, Egypt; Department of Histopathology, Hammersmith Hospital, Imperial College London, London, United Kingdom W12 0HS
| | - Susan Van Noorden
- Department of Histopathology, Hammersmith Hospital, Imperial College London, London, United Kingdom W12 0HS
| | - Mona El-Bahrawy
- Department of Histopathology, Hammersmith Hospital, Imperial College London, London, United Kingdom W12 0HS; Department of Pathology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
27
|
Kawashima H, Masaki S, Kawamura M. Induction of HLA-A*33-restricted cytotoxic lymphocytes against renal cell carcinoma targeting galectin 9 and PINCH. Biomed Rep 2014; 2:809-812. [PMID: 25279150 DOI: 10.3892/br.2014.334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 08/01/2014] [Indexed: 01/04/2023] Open
Abstract
Galectin 9, a ligand of T cell immunoglobulin and mucin domain 3 (TIM-3), and PINCH, an epithelial-to-mesenchymal transition (EMT)-promoting molecule, are expressed at much higher levels in cancerous lesions of clear cell type renal cell carcinoma (RCC) compared to normal renal tissues, and their expression levels are extremely low in normal tissues, except for galectin 9 in the spleen. Galectin 9- and PINCH-derived peptides have previously been shown to induce human leukocyte antigen (HLA)-A*2402-restricted and HLA-A*0201-restricted cytotoxic lymphocytes (CTLs) with specific and highly cytotoxic activities toward RCC cells. The present study aimed to identify the peptides that induced HLA-A*33-restricted CTLs that exhibited specific and highly cytotoxic activities toward RCC cells. Specific CTLs were induced significantly, as shown by cluster of differentiation 107a degranulation stimulated with VMRC-RCW renal carcinoma cells. Therefore, peptide vaccines targeting galectin 9 and PINCH appear to be promising for clinical application.
Collapse
Affiliation(s)
- Hidenori Kawashima
- Shirahama Hamayu Hospital, Shirahama, Wakayama 649-2211, Japan ; Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Sakae Masaki
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Marie Kawamura
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
28
|
Dong W, Zhang J, Shao N, Tian T, Li L, Jian J, Zang S, Ma D, Ji C. Development and immunological evaluation of HLA-specific chronic myeloid leukemia polyepitope vaccine in Chinese population. Vaccine 2014; 32:3501-8. [PMID: 24793940 DOI: 10.1016/j.vaccine.2014.04.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 04/03/2014] [Accepted: 04/17/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND BCR/ABL and Wilms' tumor 1 (WT1) are an ideal tumor associated antigens which can be used to develop a potential chronic myeloid leukemia (CML) dentritic cell (DC) vaccine. Here, we constructed a novel polyepitope vaccine which used recombinant lentiviral vector carrying BCR/ABL and WT1 genes, and determined the immunological effects of this vaccine in vitro. METHODS The DC vaccine was constructed using lentiviral vector transduced DCs. T lymphocytes were stimulated with DC vaccine and then co-cultured in vitro with peripheral blood mononuclear cells (PBMCs) from CML or ALL patients, respectively. The cytotoxicity of proliferous cytotoxic T lymphocytes (CTLs) was determined by the LDH assay. The IFN-γ production of CTLs was detected using ELISPOT assay. RESULTS We constructed an lentiviral vector encoding 50 different epitopes from BCR/ABL and WT1 antigens, and transferred it into DCs to prepare the DC vaccine successfully. The in vivo stimulation of CTLs with this DC vaccine were proved to show strong cytotoxicity and produce high level of IFN-γ. CONCLUSIONS The novel recombinant lentiviral polyepitope DC vaccine is a promising candidate for clinical trials and may be an effective approach for CML immunotherapy.
Collapse
Affiliation(s)
- Wenhao Dong
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jingru Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Na Shao
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Tian Tian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Lu Li
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Jimo Jian
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Shaolei Zang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, China.
| |
Collapse
|
29
|
Kawashima H, Obayashi A, Kawamura M, Masaki S, Tamada S, Iguchi T, Uchida J, Kuratsukuri K, Tanaka T, Nakatani T. Galectin 9 and PINCH, novel immunotherapy targets of renal cell carcinoma: a rationale to find potential tumour antigens and the resulting cytotoxic T lymphocytes induced by the derived peptides. BJU Int 2014; 113:320-32. [PMID: 24895689 DOI: 10.1111/bju.12499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To analyse and then generalize the mechanism by which partial or complete response is achieved among a limited number of patients with metastatic renal cell carcinoma (RCC) treated with interferon or interleukin-2. MATERIALS AND METHODS An expression library of RCC (clear-cell carcinoma) was screened using the sera of patients with metastatic RCC who benefited from partial or complete response to cytokine therapy, the postulation being that those remarkable responders obtained specific cellular immunity against RCC with the antibodies to react with the cancer antigen. Peripheral blood mononuclear-cells (PBMCs) from healthy volunteers were stimulated with the antigen-derived peptides to induce specific cytotoxic T lymphocytes (CTLs). Specific activities of CTLs were measured by ⁵¹Cr-releasing assay. RESULTS Among 15 positive clones isolated, two novel genes, galectin 9 and PINCH, were expressed at much higher levels in cancerous lesions than in normal tissues in all the patients with clear-cell carcinoma who were examined. Both HLA-A*2402-restricted and HLA-A*0201-restricted CTLs were induced by each antigen-derived peptide to exhibit specific and highly cytotoxic activities towards RCC cells. Specific CTLs were induced abundantly, as shown by flow cytometry analysis of the CTLs labelled with fluorescein isothiocyanate anti-CD107a and APC anti-CD8. The clonal expansion of the CTLs was shown by the clonality of T-cell receptor Vβ repertoires. CONCLUSION A novel approach based on clinical observations yielded promising tumour antigens as immunotherapy targets of RCC.
Collapse
|
30
|
Andersson C, Oji Y, Ohlson N, Wang S, Li X, Ottander U, Lundin E, Sugiyama H, Li A. Prognostic significance of specific anti-WT1 IgG antibody level in plasma in patients with ovarian carcinoma. Cancer Med 2014; 3:909-18. [PMID: 24715586 PMCID: PMC4303158 DOI: 10.1002/cam4.244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 03/04/2014] [Accepted: 03/06/2014] [Indexed: 11/12/2022] Open
Abstract
Ovarian carcinoma (OC) has a poor prognosis and lack early effective screening markers. Wilm's tumor gene 1 (WT1) is overexpressed in OCs. Therefore, it is of great interest to investigate whether WT1-specific antibody (Ab) measurements in plasma can serve as a biomarker of anti-OC response, and is of importance in relation to patient prognosis. Peripheral blood samples were obtained from a total of 103 women with ovarian tumors with median being 1 day (range 0–48 days) before operation. WT1 IgG Ab levels were evaluated using enzyme-linked immunosorbent assay (ELISA). Immunohistochemical analysis of WT1 protein expression was performed on OC tissue samples. We found that low-WT1 Ab level in plasma was related to improved survival in patients diagnosed at stages III–IV and grade 3 carcinomas. Positive WT1 protein staining on OC tissue samples had a negative impact on survival in the entire cohort, both overall survival (OS) (P = 0.046) and progression-free survival (PFS) (P = 0.006), but not in the serous OC subtype. Combining WT1 IgG Ab levels and WT1 staining, patients with high-WT1 IgG Ab levels in plasma and positive WT1 protein staining in cancer tissues had shorter survival, with a significant association in PFS (P = 0.016). These results indicated that WT1 Ab measurements in plasma and WT1 staining in tissue specimens could be useful as biomarkers for patient outcome in the high-risk subtypes of OCs for postoperative individualized therapy.
Collapse
Affiliation(s)
- Charlotta Andersson
- Clinical Chemistry, Department of Medical Biosciences, Umeå University, Umeå, Sweden; Pathology, Department of Medical Biosciences, Umeå University, Umeå, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Minami T, Minami T, Shimizu N, Yamamoto Y, De Velasco M, Nozawa M, Yoshimura K, Harashima N, Harada M, Uemura H. Identification of erythropoietin receptor-derived peptides having the potential to induce cancer-reactive cytotoxic T lymphocytes from HLA-A24(+) patients with renal cell carcinoma. Int Immunopharmacol 2014; 20:59-65. [PMID: 24583149 DOI: 10.1016/j.intimp.2014.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 11/20/2022]
Abstract
Molecular targeting therapy with anti-angiogenic agents, including sunitinib and sorafenib, has been proven to be the first- and second-line standard treatments for metastatic renal cell carcinoma (mRCC) worldwide. Despite their significant antitumor effects, most of the patients with mRCC have not been cured. Under such circumstances, anti-cancer immunotherapy has been considered as a promising treatment modality for mRCC, and cytotoxic T lymphocytes (CTLs) are the most powerful effectors among several immune cells and molecules. Therefore, we previously conducted anti-cancer vaccine therapy with peptides derived from carbonic anhydrase-9 and vascular endothelial growth factor receptor-1 as phase-I/II trials for mRCC patients and reported their clinical benefits. Alternatively, up-regulated expression of erythropoietin (Epo) and its receptor (EpoR) in RCC has been reported, and their co-expression is involved in tumorigenesis. In order to increase options for peptide-based vaccination therapy, we searched for novel EpoR-peptides for HLA-A24(+) RCC patients. Among 5 peptides derived from EpoR, which were prepared based on the binding motif to the HLA-A24 allele, EpoR52-60 peptide had the potential to induce peptide-specific CTLs from peripheral blood mononuclear cells of HLA-A24(+) RCC patients. Cytotoxicity toward HLA-A24(+) and EpoR-expressing RCC cells was ascribed to peptide-specific CD8(+) T cells. These results indicate that the EpoR52-60 peptide could be a promising candidate for a peptide-based anti-cancer vaccine for HLA-A24(+) mRCC patients.
Collapse
Affiliation(s)
- Takafumi Minami
- Department of Urology, Kinki University School of Medicine, Osaka, Japan.
| | - Tomoko Minami
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Nobutaka Shimizu
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Yutaka Yamamoto
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Marco De Velasco
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Masahiro Nozawa
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Kinki University School of Medicine, Osaka, Japan
| | - Nanae Harashima
- Department of Immunology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Mamoru Harada
- Department of Immunology, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kinki University School of Medicine, Osaka, Japan.
| |
Collapse
|
32
|
Abstract
The targets for the immune system are antigens present on cancer cells; however, many are not cancer-specific and may also be found on normal tissues. These antigens are often products of mutated cellular genes, aberrantly expressed normal genes, or genes encoding viral proteins. Vaccines constitute an active and specific immunotherapy designed to stimulate the intrinsic antitumor immune response by presenting tumor-associated antigens expressed on normal tissues that are overexpressed on tumor cells.
Collapse
|
33
|
Yoshimura K, Uemura H. Role of vaccine therapy for renal cell carcinoma in the era of targeted therapy. Int J Urol 2013; 20:744-55. [PMID: 23521119 DOI: 10.1111/iju.12147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/21/2013] [Indexed: 12/28/2022]
Abstract
Renal cell carcinoma is the most common malignant tumor originating from the kidney. Compared with other solid tumors, it does not respond to traditional management modalities, such as chemotherapy and radiotherapy. However, it is well known that renal cell carcinoma represents one of the most immune-responsive cancers and several immunotherapeutic strategies have been investigated in the management of renal cell carcinoma with variable degrees of success. The development of immunotherapy with α-interferon or high-dose interleukin-2 is the best established treatment, and is associated with durable disease control. Although the lack of defined antigens in renal cell carcinoma has hindered more specific vaccine development, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma for more than 30 years. At present, there are three types of cell-based vaccines in renal cell carcinoma treatment: autologous tumor-cell vaccines, genetically modified tumor vaccines and dendritic cell-based vaccines. A further type is peptide-based vaccination with tumor-associated antigens as possible targets, such as carbonic anhydrase IX, survivin and telomerase that are overexpressed in renal cell carcinoma. In the present article, we review data from completed clinical trials of vaccine therapy, and discuss future trials to assess the current knowledge and future role of vaccine therapy for renal cell carcinoma in the era of recently developed targeted therapy.
Collapse
Affiliation(s)
- Kazuhiro Yoshimura
- Department of Urology, Faculty of Medicine, Kinki University, Osaka, Japan.
| | | |
Collapse
|
34
|
Phase I clinical trial of human vascular endothelial growth factor receptor 1 peptide vaccines for patients with metastatic renal cell carcinoma. Br J Cancer 2013; 108:1260-6. [PMID: 23470466 PMCID: PMC3619266 DOI: 10.1038/bjc.2013.90] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is well known that renal cell carcinoma (RCC) represents one of the most immune-responsive cancers. Although the lack of defined antigens in RCC has hindered more specific vaccine development, research regarding vaccination therapy has been of special interest for the treatment of RCC for more than 30 years. METHODS To evaluate the safety of the vascular endothelial growth factor receptor 1 (VEGFR1) peptide vaccination and its clinical outcomes, data from 18 metastatic RCC (mRCC) patients treated with VEGFR1 vaccine were collected. Toxicity assessments were performed. Clinical outcomes included assessment using CT scanning, magnetic resonance imaging or X-ray examination in accordance with the WHO Response Evaluation Criteria in Solid Tumors. RESULTS No patient showed any toxicities of grade 3 or greater. Of the 18 patients, 2 patients showed a partial response during treatment. Stable disease for more than 5 months was observed in eight patients with a median duration of 16.5 months (4-32 months). At the time of the analysis in this study, six patients were alive with a median follow-up of 30 months (26-36 months). CONCLUSION These results suggest that VEGFR1 peptide vaccine is safe and is recommended for further trials for patients with mRCC.
Collapse
|
35
|
Mikami T, Hada T, Chosa N, Ishisaki A, Mizuki H, Takeda Y. Expression of Wilms' tumor 1 (WT1) in oral squamous cell carcinoma. J Oral Pathol Med 2012; 42:133-9. [PMID: 22672247 DOI: 10.1111/j.1600-0714.2012.01182.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The product of the Wilms' tumor gene, WT1 protein, is a tumor antigen for various kinds of cancer, and WT1 peptide-based cancer immunotherapy is widely anticipated as a new possibility for cancer treatment. The aim of this study was to investigate the expression of WT1 from quantitative and morphological perspectives in oral squamous cell carcinoma (OSCC), the most widespread malignant neoplasm of the oral cavity. METHODS Six OSCC cell lines and tissue sections from 29 OSCC patients were analyzed. To detect WT1 expression, reverse transcription-polymerase chain reaction analysis (RT-PCR), real-time PCR, Western blots, and immunofluorescence flow cytometry for WT1 were performed on the cell lines, and immunohistochemistry and fluorescence in situ hybridization (FISH) were performed on the tissue sections. RESULTS WT1 mRNA was found overexpressed in one of the six OSCC cell lines, with expression levels higher than that seen in human leukemia cell line (K562). Immunohistochemical analysis of tissue sections showed overexpression of WT1 protein in two patients, concentrated mainly in the cytoplasm of the outer one to three cell layers of the cancer nests. This was consistent with the expression of WT1 mRNA observed by FISH. Meanwhile, WT1 was not detected on normal oral epithelium. WT1 protein was detected on actively proliferating cancer nests and even on elongated epithelial ridge where new droplet-cancer-nests were being formed and starting infiltration toward subepithelial layer. CONCLUSIONS The results suggest that WT1 plays an important role in the pathogenesis of some types of OSCC, particularly in proliferation of the cancer cells.
Collapse
Affiliation(s)
- Toshinari Mikami
- Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, Iwate, Japan.
| | | | | | | | | | | |
Collapse
|
36
|
Van Driessche A, Berneman ZN, Van Tendeloo VFI. Active specific immunotherapy targeting the Wilms' tumor protein 1 (WT1) for patients with hematological malignancies and solid tumors: lessons from early clinical trials. Oncologist 2012; 17:250-9. [PMID: 22291091 DOI: 10.1634/theoncologist.2011-0240] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
There is a growing body of evidence that Wilms' tumor protein 1 (WT1) is a promising tumor antigen for the development of a novel class of universal cancer vaccines. Recently, in a National Cancer Institute prioritization project, WT1 was ranked first in a list of 75 cancer antigens. In this light, we exhaustively reviewed all published cancer vaccine trials reporting on WT1-targeted active specific immunotherapy in patients with hematological malignancies and solid tumors. In all clinical trials, vaccine-induced immunological responses could be detected. Importantly, objective clinical responses (including stable disease) were observed in 46% and 64% of evaluable vaccinated patients with solid tumors and hematological malignancies, respectively. Immunogenicity of WT1-based cancer vaccines was demonstrated by the detection of a specific immunological response in 35% and 68% of evaluable patients with solid tumors and hematological malignancies, respectively. In order to become part of the armamentarium of the modern oncologist, it will be important to design WT1-based immunotherapies applicable to a large patient population, to standardize vaccination protocols enabling systematic review, and to further optimize the immunostimulatory capacity of the vaccine components. Moreover, improved immunomonitoring tools that reveal clinically relevant T-cell responses will further shape the ideal WT1 immunotherapy strategy. In conclusion, the clinical results obtained so far in WT1-targeted cancer vaccine trials reveal an untapped potential for inducing cancer immunity with minimal side effects and hold promise for a new adjuvant treatment against residual disease and against cancer relapse.
Collapse
Affiliation(s)
- Ann Van Driessche
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VaxInfectio), Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | |
Collapse
|
37
|
|
38
|
Ikeda H, Shiku H. Antigen-receptor gene-modified T cells for treatment of glioma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 746:202-15. [PMID: 22639170 DOI: 10.1007/978-1-4614-3146-6_16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunological effector cells and molecules have been shown to access intracranial tumor sites despite the existence of blood brain barrier (BBB) or immunosuppressive mechanisms associated with brain tumors. Recent progress in T-cell biology and tumor immunology made possible to develop strategies of tumor-associated antigen-specific immunotherapeutic approaches such as vaccination with defined antigens and adoptive T-cell therapy with antigen-specific T cells including gene-modified T cells for the treatment of patients with brain tumors. An array of recent reports on the trials of active and passive immunotherapy for patients with brain tumors have documented safety and some preliminary clinical efficacy, although the ultimate judgment for clinical benefits awaits rigorous evaluation in trials of later phases. Nevertheless, treatment with lymphocytes that are engineered to express tumor-specific receptor genes is a promising immunotherapy against glioma, based on the significant efficacy reported in the trials for patients with other types of malignancy. Overcoming the relative difficulty to apply immunotherapeutic approach to intracranial region, current advances in the understanding of human tumor immunology and the gene-therapy methodology will address the development of effective immunotherapy of brain tumors.
Collapse
Affiliation(s)
- Hiroaki Ikeda
- Department of Immuno-Gene Therapy, Mie University Graduate School of Medicine, Tsu, Japan.
| | | |
Collapse
|
39
|
Nakajima H, Oka Y, Tsuboi A, Tatsumi N, Yamamoto Y, Fujiki F, Li Z, Murao A, Morimoto S, Hosen N, Shirakata T, Nishida S, Kawase I, Isaka Y, Oji Y, Sugiyama H. Enhanced tumor immunity of WT1 peptide vaccination by interferon-β administration. Vaccine 2011; 30:722-9. [PMID: 22133512 DOI: 10.1016/j.vaccine.2011.11.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 11/18/2011] [Accepted: 11/19/2011] [Indexed: 10/14/2022]
Abstract
To induce and activate tumor-associated antigen-specific cytotoxic T lymphocytes (CTLs) for cancer immunity, it is important not only to select potent CTL epitopes but also to combine them with appropriate immunopotentiating agents. Here we investigated whether tumor immunity induced by WT1 peptide vaccination could be enhanced by IFN-β. For the experimental group, C57BL/6 mice were twice pre-treated with WT1 peptide vaccine, implanted with WT1-expressing C1498 cells, and treated four times with WT1 peptide vaccine at one-week intervals. During the vaccination period, IFN-β was injected three times a week. Mice in control groups were treated with WT1 peptide alone, IFN-β alone, or PBS alone. The mice in the experimental group rejected tumor cells and survived significantly longer than mice in the control groups. The overall survival on day 75 was 40% for the mice treated with WT1 peptide+IFN-β, while it was 7, 7, and 0% for those treated with WT1 peptide alone, IFN-β alone or PBS alone, respectively. Induction of WT1-specific CTLs and enhancement of NK activity were detected in splenocytes from mice in the experimental group. Furthermore, administration of IFN-β enhanced expression of MHC class I molecules on the implanted tumor cells. In conclusion, our results showed that co-administration of WT1 peptide+IFN-β enhanced tumor immunity mainly through the induction of WT1-specific CTLs, enhancement of NK activity, and promotion of MHC class I expression on the tumor cells. WT1 peptide vaccination combined with IFN-β administration can thus be expected to enhance the clinical efficacy of WT1 immunotherapy.
Collapse
Affiliation(s)
- Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brookman-May S, Burger M, Wieland WF, Rössler W, May M, Denzinger S. Vaccination therapy in renal cell carcinoma: current position and future options in metastatic and localized disease. Expert Rev Vaccines 2011; 10:837-52. [PMID: 21692704 DOI: 10.1586/erv.11.64] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As renal cell carcinoma represents one of the most immune-responsive cancers, immunotherapy exhibits a suitable treatment basis. Beside nonspecific stimulation via cytokines, passive specific and active immunotherapy are also appropriate options to recognize and destroy tumor cells. For more than 30 years, research regarding vaccination therapy has been of special interest for the treatment of renal cell carcinoma. However, apart from occasional promising results in Phase I and II trials, vaccination therapy is still considered experimental in this tumor entity, especially owing to missing results from Phase III trials demonstrating clinical efficacy. In the present article, we review data from completed clinical trials of vaccination therapy and also discuss scheduled future trials, in order to assess the current position and possible future fields of application of vaccination therapy in renal cell carcinoma in the era of recently developed targeted therapies.
Collapse
Affiliation(s)
- Sabine Brookman-May
- University of Regensburg, Department of Urology, Caritas St. Josef Medical Center, Landshuter Strasse 65, 93053 Regensburg, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Oka Y, Sugiyama H. WT1 peptide vaccine, one of the most promising cancer vaccines: its present status and the future prospects. Immunotherapy 2011; 2:591-4. [PMID: 20874639 DOI: 10.2217/imt.10.58] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
42
|
Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2011; 2010:284581. [PMID: 21253521 PMCID: PMC3022170 DOI: 10.1155/2010/284581] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
Abstract
Immunotherapy plays a significant role in the management of renal cell carcinoma (RCC) patients with metastatic disease because RCC is highly resistant to both chemotherapy and radiation therapy. Many reports illustrate various approaches to the treatment of RCC, such as cytokine-, antigen- or dendritic cell- (DC-) based immunotherapy, and the safety and effectiveness of immunotherapy have been highlighted by multiple clinical trials. Although antitumor immune responses and clinically significant outcomes have been achieved in these trials, the response rate is still low, and very few patients show long-term clinical improvement. Recently, the importance of immune regulation by antigen-presenting cells (APC) and regulatory T cells (Treg cells) has also been discussed. The authors outline the principles of cell-mediated tumor immunotherapy and discuss clinical trials of immunotherapy for RCC.
Collapse
|
43
|
Chi N, Maranchie JK, Appleman LJ, Storkus WJ. Update on vaccine development for renal cell cancer. Res Rep Urol 2010; 2:125-41. [PMID: 24198621 PMCID: PMC3703676 DOI: 10.2147/rru.s7242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) remains a significant health concern that frequently presents as metastatic disease at the time of initial diagnosis. Current first-line therapeutics for the advanced-stage RCC include antiangiogenic drugs that have yielded high rates of objective clinical response; however, these tend to be transient in nature, with many patients becoming refractory to chronic treatment with these agents. Adjuvant immunotherapies remain viable candidates to sustain disease-free and overall patient survival. In particular, vaccines designed to optimize the activation, maintenance, and recruitment of specific immunity within or into the tumor site continue to evolve. Based on the integration of increasingly refined immunomonitoring systems in both translational models and clinical trials, allowing for the improved understanding of treatment mechanism(s) of action, further refined (combinational) vaccine protocols are currently being developed and evaluated. This review provides a brief history of RCC vaccine development, discusses the successes and limitations in such approaches, and provides a rationale for developing combinational vaccine approaches that may provide improved clinical benefits to patients with RCC.
Collapse
Affiliation(s)
- Nina Chi
- Department of immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | | | | | | |
Collapse
|
44
|
Hashii Y, Sato E, Ohta H, Oka Y, Sugiyama H, Ozono K. WT1 peptide immunotherapy for cancer in children and young adults. Pediatr Blood Cancer 2010; 55:352-5. [PMID: 20582983 DOI: 10.1002/pbc.22522] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Wilms tumor gene (WT1) can be overexpressed in childhood cancers. We evaluated the efficacy of WT1 vaccination for five children with solid cancer or acute leukemia. WT1 vaccine was administered to HLA-A*2402-positive patients with WT1-overexpressing residual tumor despite prior conventional treatment. One patient showed complete response and one patient showed stable disease according to the Response Evaluation Criteria in Solid Tumors; the remaining three showed progressive disease. Treatment-related adverse effects were limited to local injection site erythema. These results suggest that WT1 vaccination has therapeutic potential, but any beneficial effect may be insufficient in the presence of gross residual disease.
Collapse
Affiliation(s)
- Yoshiko Hashii
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Sugiyama H. WT1 (Wilms' Tumor Gene 1): Biology and Cancer Immunotherapy. Jpn J Clin Oncol 2010; 40:377-87. [DOI: 10.1093/jjco/hyp194] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Clarke JM, Morse MA, Lyerly HK, Clay T, Osada T. Adenovirus vaccine immunotherapy targeting WT1-expressing tumors. Expert Opin Biol Ther 2010; 10:875-83. [DOI: 10.1517/14712591003798278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Murao A, Oka Y, Tsuboi A, Elisseeva OA, Tanaka-Harada Y, Fujiki F, Nakajima H, Nishida S, Hosen N, Shirakata T, Hashimoto N, Myoui A, Ueda T, Takeda Y, Osaki T, Enomoto T, Yoshikawa H, Kimura T, Oji Y, Kawase I, Sugiyama H. High frequencies of less differentiated and more proliferative WT1-specific CD8+ T cells in bone marrow in tumor-bearing patients: an important role of bone marrow as a secondary lymphoid organ. Cancer Sci 2010; 101:848-54. [PMID: 20136847 PMCID: PMC11158461 DOI: 10.1111/j.1349-7006.2009.01468.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
In tumor-bearing patients, tumor-associated antigen (TAA)-specific CTLs are spontaneously induced as a result of immune response to TAAs and play an important role in anti-tumor immunity. Wilms' tumor gene 1 (WT1) is overexpressed in various types of tumor and WT1 protein is a promising pan-TAA because of its high immunogenicity. In this study, to clarify the immune response to the WT1 antigen, WT1-specific CD8(+) T cells that were spontaneously induced in patients with solid tumor were comparatively analyzed in both bone marrow (BM) and peripheral blood (PB). WT1-specific CD8(+) T cells more frequently existed in BM than in PB, whereas frequencies of naïve (CCR7(+) CD45RA(+)), central memory (CCR7(+) CD45RA-), effector-memory (CCR7- CD45RA(-)), and effector (CCR7- CD45RA(+)) subsets were not significantly different between BM and PB. However, analysis of these subsets for the expression of CD57 and CD28, which were associated with differentiation, revealed that effector-memory and effector subsets of the WT1-specific CD8(+) T cells in BM had less differentiated phenotypes and more proliferative potential than those in PB. Furthermore, CD107a/b functional assay for WT1 peptide-specific cytotoxic potential and carboxyfluorescein diacetate succinimidyl ester dilution assay for WT1 peptide-specific proliferation also showed that WT1-specific CD8(+) T cells in BM were less cytotoxic and more proliferative in response to WT1 peptide than those in PB. These results implied that BM played an important role as a secondary lymphoid organ in tumor-bearing patients. Preferential residence of WT1-specific CD8(+) T cells in BM could be, at least in part, explained by higher expression of chemokine receptor CCR5, whose ligand was expressed on BM fibroblasts on the WT1-specific CD8(+) T cells in BM, compared to those in PB. These results should provide us with an insight into WT1-specific immune response in tumor-bearing patients and give us an idea of enhancement of clinical response in WT1 protein-targeted immunotherapy.
Collapse
Affiliation(s)
- Ayako Murao
- Department of Respiratory Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Saitoh A, Narita M, Watanabe N, Tochiki N, Yamahira A, Nakamura T, Kaji M, Masuko M, Furukawa T, Toba K, Fuse I, Aizawa Y, Takahashi M. WT1 peptide vaccination in a CML patient: induction of effective cytotoxic T lymphocytes and significance of peptide administration interval. Med Oncol 2010; 28:219-30. [PMID: 20107936 DOI: 10.1007/s12032-010-9425-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Accepted: 01/11/2010] [Indexed: 11/26/2022]
Abstract
Although antigen-specific immune responses including cytotoxic T cells (CTLs) against antigen peptide could be enhanced after tumor antigen peptide vaccinations, the immune responses do not necessarily result in a decrease or eradication of tumor cells in the vaccination trials. We focused on whether antigen-specific CTLs could be damaged by the repeated stimulation of antigenic peptide and whether regulatory T (Treg) cells would be increased by the administration of WT1 peptide. We administered WT1 peptide 22 times over 18 months in a CML patient who was being treated with imatinib. Although WT1 peptide administration every 2 weeks did not show any beneficial effects on the minimal residual disease (copies of bcr-abl transcripts), the transcripts remarkably decreased to the level of major molecular response after changing the administration interval of WT1 peptide from 2 to 4 weeks. An ex vivo study demonstrated that re-stimulation with WT1 peptide made WT1-specific T cells less reactive to WT1 tetramers and the impaired reactivity of CTLs lasted at least for 1 week. In addition, the cytotoxicity of the T cells was hampered by re-stimulation. Treg cells increased up to more than fivefold at the end of the WT1 administration period. The present findings suggested that the administration of the peptide every 4 weeks is superior to every 2 weeks. In addition, the findings that Treg cells increased gradually in accordance with the duration of WT1 peptide administration revealed the significance of manipulating Treg cells for establishing an efficient tumor antigen peptide vaccination.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Benzamides
- Cancer Vaccines/therapeutic use
- Combined Modality Therapy
- Fusion Proteins, bcr-abl/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/immunology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/therapy
- Neoplasm, Residual/genetics
- Neoplasm, Residual/immunology
- Neoplasm, Residual/therapy
- Peptide Fragments/immunology
- Peptide Fragments/therapeutic use
- Piperazines/therapeutic use
- Prognosis
- Pyrimidines/therapeutic use
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Vaccination
- WT1 Proteins/immunology
Collapse
Affiliation(s)
- Anri Saitoh
- Division of Hematology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Ishiyama K, Takami A, Suzuki S, Konaka H, Namiki M, Ooi A, Nakao S. Relationship between tumor-infiltrating T lymphocytes and clinical response after reduced-intensity allogeneic hematopoietic stem cell transplantation for advanced renal cell carcinoma: a single center prospective study. Jpn J Clin Oncol 2009; 39:807-12. [PMID: 19770130 DOI: 10.1093/jjco/hyp104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE Renal cell carcinoma (RCC) is refractory to conventional therapy, including chemotherapy and radiation. However, because RCC is sensitive to cytokine therapy, an immunotherapeutic approach such as hematopoietic stem cell transplantation (HSCT) might lead to a cure. We performed an institutional clinical study of HSCT for refractory RCC patients. METHODS RCC patients aged 50 years or over, refractory to therapy, were eligible for the study. HSCT was performed after reduced-intensity conditioning. Primary endpoint was defined as the survival at day 100 after HSCT with complete donor chimerism, and secondary endpoint was the effectiveness of HSCT. RESULTS Seven patients, provided with written informed consent, were enrolled in the study. Six of the seven patients achieved complete donor chimera at day 30 after HSCT, but one patient received second HSCT because of graft rejection. Four patients achieved a partial response (PR) and stable disease was observed in another patient, but these responses were temporary. The disease of the other two patients became progressive. Autopsy findings revealed an accumulation of CD8(+) lymphocytes and degenerative changes in the local RCC lesion in three of six patients who responded clinically. An autopsy of a patient who had obtained a PR revealed lymphocyte involvement with a cytotoxic T cell (CTL) phenotype in the metastasis of RCC. CONCLUSIONS Our results demonstrate the efficacy of HSCT for RCC and suggest that the graft-versus-tumor effect elicited by CTLs is induced in vivo. HSCT should be further explored as a potential curative treatment for RCC.
Collapse
Affiliation(s)
- Ken Ishiyama
- Division of Cancer Medicine, Department of Cellular Transplantation Biology, Kanazawa University Graduate School of Medical Science, Kanazawa, Ishikawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
50
|
Asgarian Omran H, Shabani M, Vossough P, Sharifian R, Tabrizi M, Khoshnoodi J, Jeddi-Tehrani M, Rabbani H, Shokri F. Cross-sectional monitoring of Wilms' tumor gene 1 (WT1) expression in Iranian patients with acute lymphoblastic leukemia at diagnosis, relapse and remission. Leuk Lymphoma 2009; 49:281-90. [DOI: 10.1080/10428190701784706] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|