1
|
Chojnacka-Purpurowicz J, Owczarczyk-Saczonek A, Nedoszytko B. The Role of Gamma Delta T Lymphocytes in Physiological and Pathological Condition-Focus on Psoriasis, Atopic Dermatitis, Autoimmune Disorders, Cancer and Lymphomas. Int J Mol Sci 2024; 25:7960. [PMID: 39063202 PMCID: PMC11277122 DOI: 10.3390/ijms25147960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gamma delta (γδ) T cells are a heterogeneous population of cells that play roles in inflammation, host tissue repair, clearance of viral and bacterial pathogens, regulation of immune processes, and tumor surveillance. Recent research suggests that these are the main skin cells that produce interleukin-17 (I-17). Furthermore, γδ T cells exhibit memory-cell-like characteristics that mediate repeated episodes of psoriatic inflammation. γδ T cells are found in epithelial tissues, where many cancers develop. There, they participate in antitumor immunity as cytotoxic cells or as immune coordinators. γδ T cells also participate in host defense, immune surveillance, and immune homeostasis. The aim of this review is to present the importance of γδ T cells in physiological and pathological diseases, such as psoriasis, atopic dermatitis, autoimmune diseases, cancer, and lymphoma.
Collapse
Affiliation(s)
- Joanna Chojnacka-Purpurowicz
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, The University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Bogusław Nedoszytko
- Department of Medical Laboratory Diagnostics–Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, 3A M. Skłodowskiej-Curie Street, 80-210 Gdansk, Poland;
- Molecular Laboratory, Invicta Fertility and Reproductive Center, 81-740 Sopot, Poland
| |
Collapse
|
2
|
Korkmaz FT, Traber KE. Innate immune responses in pneumonia. Pneumonia (Nathan) 2023; 15:4. [PMID: 36829255 PMCID: PMC9957695 DOI: 10.1186/s41479-023-00106-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 01/05/2023] [Indexed: 02/26/2023] Open
Abstract
The lungs are an immunologically unique environment; they are exposed to innumerable pathogens and particulate matter daily. Appropriate clearance of pathogens and response to pollutants is required to prevent overwhelming infection, while preventing tissue damage and maintaining efficient gas exchange. Broadly, the innate immune system is the collection of immediate, intrinsic immune responses to pathogen or tissue injury. In this review, we will examine the innate immune responses of the lung, with a particular focus on their role in pneumonia. We will discuss the anatomic barriers and antimicrobial proteins of the lung, pathogen and injury recognition, and the role of leukocytes (macrophages, neutrophils, and innate lymphocytes) and lung stromal cells in innate immunity. Throughout the review, we will focus on new findings in innate immunity as well as features that are unique to the lung.
Collapse
Affiliation(s)
- Filiz T Korkmaz
- Department of Medicine, Division of Immunology & Infectious Disease, University of Massachusetts, Worcester, MA, USA
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA
| | - Katrina E Traber
- Pulmonary Center, Boston University School of Medicine, Boston, MA, USA.
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
3
|
Muro R, Narita T, Nitta T, Takayanagi H. Spleen tyrosine kinase mediates the γδTCR signaling required for γδT cell commitment and γδT17 differentiation. Front Immunol 2023; 13:1045881. [PMID: 36713401 PMCID: PMC9878111 DOI: 10.3389/fimmu.2022.1045881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The γδT cells that produce IL-17 (γδT17 cells) play a key role in various pathophysiologic processes in host defense and homeostasis. The development of γδT cells in the thymus requires γδT cell receptor (γδTCR) signaling mediated by the spleen tyrosine kinase (Syk) family proteins, Syk and Zap70. Here, we show a critical role of Syk in the early phase of γδT cell development using mice deficient for Syk specifically in lymphoid lineage cells (Syk-conditional knockout (cKO) mice). The development of γδT cells in the Syk-cKO mice was arrested at the precursor stage where the expression of Rag genes and αβT-lineage-associated genes were retained, indicating that Syk is required for γδT-cell lineage commitment. Loss of Syk in γδT cells weakened TCR signal-induced phosphorylation of Erk and Akt, which is mandatory for the thymic development of γδT17 cells. Syk-cKO mice exhibited a loss of γδT17 cells in the thymus as well as throughout the body, and thereby are protected from γδT17-dependent psoriasis-like skin inflammation. Collectively, our results indicate that Syk is a key player in the lineage commitment of γδT cells and the priming of γδT17 cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoya Narita
- Department of Pharmacotherapeutics, Research Institute of Pharmaceutical Sciences and Faculty of Pharmacy, Musashino University, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan,*Correspondence: Takeshi Nitta,
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Zhou Q, Xiang H, Liu H, Qi B, Shi X, Guo W, Zou J, Wan X, Wu W, Wang Z, Liu W, Xia S, Shang D. Emodin Alleviates Intestinal Barrier Dysfunction by Inhibiting Apoptosis and Regulating the Immune Response in Severe Acute Pancreatitis. Pancreas 2021; 50:1202-1211. [PMID: 34714285 PMCID: PMC8565508 DOI: 10.1097/mpa.0000000000001894] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The intestinal barrier injury caused by severe acute pancreatitis (SAP) can induce enterogenous infection, further aggravating the inflammatory reactions and immune responses. This study aimed to test the hypothesis that emodin protects the intestinal function and is involved in the immune response in SAP. METHODS The network pharmacology was established using the Swiss target prediction and pathway enrichment analysis. The SAP mice model was induced by cerulein (50 μg/kg) and lipopolysaccharide (10 mg/kg) hyperstimulation. The pharmacological effect of emodin in treating SAP was evaluated at mRNA and protein levels by various methods. RESULTS The network analysis provided the connectivity between the targets of emodin and the intestinal barrier-associated proteins and predicted the BAX/Bcl-2/caspase 3 signaling pathway. Emodin alleviated the pathological damages to the pancreas and intestine and reduced the high concentrations of serum amylase and cytokines in vivo. Emodin increased the expression of intestinal barrier-related proteins and reversed the changes in the apoptosis-related proteins in the intestine. Simultaneously, emodin regulated the ratio of T helper type 1 (TH1), TH2, TH17, γδ T cells, and interferon γ/interleukin 17 producing γδ T cells. CONCLUSIONS These findings partly verified the mechanism underlying the regulation of the intestinal barrier and immune response by emodin.
Collapse
Affiliation(s)
- Qi Zhou
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
| | - Hong Xiang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University
| | - Bing Qi
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xueying Shi
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
| | - Wenhui Guo
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Jiacheng Zou
- Department of Molecular, Cellular, & Developmental Biology, University of California, Santa Barbara, Goleta, CA
| | - Xueting Wan
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Wenjing Wu
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Zhengpeng Wang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Wenhui Liu
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Shilin Xia
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
| | - Dong Shang
- From the Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University
- Institute (College) of Integrative Medicine
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
5
|
General Principles of Immunotherapy in Neurological Diseases. CONTEMPORARY CLINICAL NEUROSCIENCE 2019. [DOI: 10.1007/978-3-030-19515-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Maffucci P, Chavez J, Jurkiw TJ, O’Brien PJ, Abbott JK, Reynolds PR, Worth A, Notarangelo LD, Felgentreff K, Cortes P, Boisson B, Radigan L, Cobat A, Dinakar C, Ehlayel M, Ben-Omran T, Gelfand EW, Casanova JL, Cunningham-Rundles C. Biallelic mutations in DNA ligase 1 underlie a spectrum of immune deficiencies. J Clin Invest 2018; 128:5489-5504. [PMID: 30395541 PMCID: PMC6264644 DOI: 10.1172/jci99629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 09/04/2018] [Indexed: 12/30/2022] Open
Abstract
We report the molecular, cellular, and clinical features of 5 patients from 3 kindreds with biallelic mutations in the autosomal LIG1 gene encoding DNA ligase 1. The patients exhibited hypogammaglobulinemia, lymphopenia, increased proportions of circulating γδT cells, and erythrocyte macrocytosis. Clinical severity ranged from a mild antibody deficiency to a combined immunodeficiency requiring hematopoietic stem cell transplantation. Using engineered LIG1-deficient cell lines, we demonstrated chemical and radiation defects associated with the mutant alleles, which variably impaired the DNA repair pathway. We further showed that these LIG1 mutant alleles are amorphic or hypomorphic, and exhibited variably decreased enzymatic activities, which lead to premature release of unligated adenylated DNA. The variability of the LIG1 genotypes in the patients was consistent with that of their immunological and clinical phenotypes. These data suggest that different forms of autosomal recessive, partial DNA ligase 1 deficiency underlie an immunodeficiency of variable severity.
Collapse
Affiliation(s)
- Patrick Maffucci
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jose Chavez
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Thomas J. Jurkiw
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick J. O’Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Jordan K. Abbott
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Paul R. Reynolds
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Austen Worth
- Department of Pediatric Medicine, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kerstin Felgentreff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Science, CUNY School of Medicine, City College of New York, New York, New York, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
| | - Lin Radigan
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
| | - Aurélie Cobat
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
| | - Chitra Dinakar
- Allergy, Asthma & Immunodeficiency, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Stanford University, Stanford, California, USA
| | - Mohammad Ehlayel
- Section of Pediatric Allergy-Immunology, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Tawfeg Ben-Omran
- Department of Clinical and Metabolic Genetics, Department of Pediatrics, Weill Cornell Medical College, Hamad Medical Corporation, Doha, Qatar
| | - Erwin W. Gelfand
- Immunodeficiency Diagnosis and Treatment Program, Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
- Paris Descartes University, Imagine Institute, Paris, France
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, New York, USA
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Departments of Medicine and Pediatrics, and
- Graduate School of Biomedical Sciences, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
7
|
Muro R, Nitta T, Nakano K, Okamura T, Takayanagi H, Suzuki H. γδTCR recruits the Syk/PI3K axis to drive proinflammatory differentiation program. J Clin Invest 2017; 128:415-426. [PMID: 29202478 DOI: 10.1172/jci95837] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
γδT cells produce inflammatory cytokines and have been implicated in the pathogenesis of cancer, infectious diseases, and autoimmunity. The T cell receptor (TCR) signal transduction that specifically regulates the development of IL-17-producing γδT (γδT17) cells largely remains unclear. Here, we showed that the receptor proximal tyrosine kinase Syk is essential for γδTCR signal transduction and development of γδT17 in the mouse thymus. Zap70, another tyrosine kinase essential for the development of αβT cells, failed to functionally substitute for Syk in the development of γδT17. Syk induced the activation of the PI3K/Akt pathway upon γδTCR stimulation. Mice deficient in PI3K signaling exhibited a complete loss of γδT17, without impaired development of IFN-γ-producing γδT cells. Moreover, γδT17-dependent skin inflammation was ameliorated in mice deficient in RhoH, an adaptor known to recruit Syk. Thus, we deciphered lineage-specific TCR signaling and identified the Syk/PI3K pathway as a critical determinant of proinflammatory γδT cell differentiation.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan.,Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | | | - Tadashi Okamura
- Department of Laboratory Animal Medicine, and.,Section of Animal Models, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| |
Collapse
|
8
|
Cheng M, Hu S. Lung-resident γδ T cells and their roles in lung diseases. Immunology 2017; 151:375-384. [PMID: 28555812 PMCID: PMC5506441 DOI: 10.1111/imm.12764] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/12/2017] [Accepted: 05/20/2017] [Indexed: 12/15/2022] Open
Abstract
γδ T cells are greatly enriched in mucosal and epithelial sites, such as the skin, respiratory, digestive and reproductive tracts, and they are defined as tissue-resident immune cells. In these tissues, the characteristics and biological roles of γδ T cells are distinguished from each other. The lungs represent the most challenging immunological dilemma for the host, and they have their own effective immune system. The abundance of γδ T cells, an estimated 8-20% of resident pulmonary lymphocytes in the lung, maintains lung tissue homeostasis. In this review, we summarize the recent research progress regarding lung-resident γδ T cells, including their development, residency and immune characteristics, and discuss the involvement of γδ T cells in infectious diseases of the lung, including bacterial, viral and fungal infections; lung allergic disease; lung inflammation and fibrosis; and lung cancer.
Collapse
Affiliation(s)
- Min Cheng
- Gerontology Institute of Anhui ProvinceAnhui Province HospitalAnhui Medical UniversityHefeiChina
- Anhui Provincial Key Laboratory of Tumour Immunotherapy and Nutrition TherapyHefeiChina
| | - Shilian Hu
- Gerontology Institute of Anhui ProvinceAnhui Province HospitalAnhui Medical UniversityHefeiChina
- Anhui Provincial Key Laboratory of Tumour Immunotherapy and Nutrition TherapyHefeiChina
| |
Collapse
|
9
|
Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 2017; 278:63-86. [PMID: 28658551 PMCID: PMC5501488 DOI: 10.1111/imr.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite advances in the treatment of asthma, optimization of symptom control remains an unmet need in many patients. These patients, labeled severe asthma, are responsible for a substantial fraction of the disease burden. In these patients, research is needed to define the cellular and molecular pathways contributing to disease which in large part are refractory to corticosteroid treatment. The causes of steroid-resistant asthma are multifactorial and result from complex interactions of genetics, environmental factors, and innate and adaptive immunity. Adaptive immunity, addressed here, integrates the activities of distinct T-cell subsets and by definition is dynamic and responsive to an ever-changing environment and the influences of epigenetic modifications. These T-cell subsets exhibit different susceptibilities to the actions of corticosteroids and, in some, corticosteroids enhance their functional activation. Moreover, these subsets are not fixed in lineage differentiation but can undergo transcriptional reprogramming in a bidirectional manner between protective and pathogenic effector states. Together, these factors contribute to asthma heterogeneity between patients but also in the same patient at different stages of their disease. Only by carefully defining mechanistic pathways, delineating their sensitivity to corticosteroids, and determining the balance between regulatory and effector pathways will precision medicine become a reality with selective and effective application of targeted therapies.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
10
|
Sharma A, Yang WL, Matsuo S, Wang P. Differential alterations of tissue T-cell subsets after sepsis. Immunol Lett 2015; 168:41-50. [PMID: 26362089 DOI: 10.1016/j.imlet.2015.09.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 08/31/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Among immune cells in responding to sepsis, macrophages and neutrophils have been extensively studied, while the contribution of T lymphocytes and natural killer T (NKT) cells is less well characterized. Here we monitored tissue specific changes of T cell subsets in male C57BL/6 mice subjected to sham operation or cecal ligation and puncture (CLP) to induce polymicrobial sepsis. Thymus, spleen, liver, lungs and blood were processed and analyzed 20h later. Total lymphocyte count showed a significant reduction in septic thymus, spleen and blood but not in lungs and liver. The septic thymi were hypocellular with severe reduction in cell numbers of immature CD4(+)CD8(+) subset. CD4(+) T and CD8(+) T lymphocyte numbers in septic spleens were also significantly reduced, but the frequency of CD4(+)CD25(+) Tregs was significantly increased. In addition, naïve and Tcm CD4(+) T cell numbers were significantly reduced in the septic spleens. By contrast, in septic liver the CD8(+) T cell numbers were significantly increased, whereas NKT cell numbers were reduced, but more activated with increased CD69 and CD25 expression. In the septic lungs, the CD4(+) T and CD8(+) T cell numbers showed no significant change, whereas they were severely reduced in the septic blood. Overall, this study provides important information on the alterations of different T-cell subsets in various tissues after sepsis.
Collapse
Affiliation(s)
- Archna Sharma
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA.
| | - Weng-Lang Yang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Shingo Matsuo
- Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| | - Ping Wang
- Center for Translational Research, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA; Department of Surgery, Hofstra North Shore-LIJ School of Medicine, Manhasset, NY 11030, USA.
| |
Collapse
|
11
|
Busman-Sahay KO, Walrath T, Huber S, O'Connor W. Cytokine crowdsourcing: multicellular production of TH17-associated cytokines. J Leukoc Biol 2015; 97:499-510. [PMID: 25548251 PMCID: PMC5477895 DOI: 10.1189/jlb.3ru0814-386r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/14/2022] Open
Abstract
In the 2 decades since its discovery, IL-17A has become appreciated for mounting robust, protective responses against bacterial and fungal pathogens. When improperly regulated, however, IL-17A can play a profoundly pathogenic role in perpetuating inflammation and has been linked to a wide variety of debilitating diseases. IL-17A is often present in a composite milieu that includes cytokines produced by TH17 cells (i.e., IL-17F, IL-21, IL-22, and IL-26) or associated with other T cell lineages (e.g., IFN-γ). These combinatorial effects add mechanistic complexity and more importantly, contribute differentially to disease outcome. Whereas TH17 cells are among the best-understood cell types that secrete IL-17A, they are frequently neither the earliest nor dominant producers. Indeed, non-TH17 cell sources of IL-17A can dramatically alter the course and severity of inflammatory episodes. The dissection of the temporal regulation of TH17-associated cytokines and the resulting net signaling outcomes will be critical toward understanding the increasingly intricate role of IL-17A and TH17-associated cytokines in disease, informing our therapeutic decisions. Herein, we discuss important non-TH17 cell sources of IL-17A and other TH17-associated cytokines relevant to inflammatory events in mucosal tissues.
Collapse
Affiliation(s)
- Kathleen O Busman-Sahay
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Travis Walrath
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - William O'Connor
- *Center for Immunology and Microbial Disease, Albany Medical Center, Albany, New York, USA; and Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Effector Vγ9Vδ2 T cells dominate the human fetal γδ T-cell repertoire. Proc Natl Acad Sci U S A 2015; 112:E556-65. [PMID: 25617367 DOI: 10.1073/pnas.1412058112] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
γδ T cells are unconventional T cells recognizing antigens via their γδ T-cell receptor (TCR) in a way that is fundamentally different from conventional αβ T cells. γδ T cells usually are divided into subsets according the type of Vγ and/or Vδ chain they express in their TCR. T cells expressing the TCR containing the γ-chain variable region 9 and the δ-chain variable region 2 (Vγ9Vδ2 T cells) are the predominant γδ T-cell subset in human adult peripheral blood. The current thought is that this predominance is the result of the postnatal expansion of cells expressing particular complementary-determining region 3 (CDR3) in response to encounters with microbes, especially those generating phosphoantigens derived from the 2-C-methyl-d-erythritol 4-phosphate pathway of isoprenoid synthesis. However, here we show that, rather than requiring postnatal microbial exposure, Vγ9Vδ2 T cells are the predominant blood subset in the second-trimester fetus, whereas Vδ1(+) and Vδ3(+) γδ T cells are present only at low frequencies at this gestational time. Fetal blood Vγ9Vδ2 T cells are phosphoantigen responsive and display very limited diversity in the CDR3 of the Vγ9 chain gene, where a germline-encoded sequence accounts for >50% of all sequences, in association with a prototypic CDR3δ2. Furthermore, these fetal blood Vγ9Vδ2 T cells are functionally preprogrammed (e.g., IFN-γ and granzymes-A/K), with properties of rapidly activatable innatelike T cells. Thus, enrichment for phosphoantigen-responsive effector T cells has occurred within the fetus before postnatal microbial exposure. These various characteristics have been linked in the mouse to the action of selecting elements and would establish a much stronger parallel between human and murine γδ T cells than is usually articulated.
Collapse
|
13
|
Woodward Davis AS, Bergsbaken T, Delaney MA, Bevan MJ. Dermal-resident versus recruited γδ T cell response to cutaneous vaccinia virus infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:2260-7. [PMID: 25609844 PMCID: PMC4340759 DOI: 10.4049/jimmunol.1402438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study of T cell immunity at barrier surfaces has largely focused on T cells bearing the αβ TCR. However, T cells that express the γδ TCR are disproportionately represented in peripheral tissues of mice and humans, suggesting they too may play an important role responding to external stimuli. In this article, we report that, in a murine model of cutaneous infection with vaccinia virus, dermal γδ T cell numbers increased 10-fold in the infected ear and resulted in a novel γδ T cell population not found in naive skin. Circulating γδ T cells were specifically recruited to the site of inflammation and differentially contributed to dermal populations based on their CD27 expression. Recruited γδ T cells, the majority of which were CD27(+), were granzyme B(+) and made up about half of the dermal population at the peak of the response. In contrast, recruited and resident γδ T cell populations that made IL-17 were CD27(-). Using a double-chimera model that can discriminate between the resident dermal and recruited γδ T cell populations, we demonstrated their divergent functions and contributions to early stages of tissue inflammation. Specifically, the loss of the perinatal thymus-derived resident dermal population resulted in decreased cellularity and collateral damage in the tissue during viral infection. These findings have important implications for our understanding of immune coordination at barrier surfaces and the contribution of innate-like lymphocytes on the front lines of immune defense.
Collapse
Affiliation(s)
| | - Tessa Bergsbaken
- Department of Immunology, University of Washington, Seattle, WA 98109; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109; and
| | - Martha A Delaney
- Department of Comparative Medicine, University of Washington, Seattle, WA 98109
| | - Michael J Bevan
- Department of Immunology, University of Washington, Seattle, WA 98109; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98109; and
| |
Collapse
|
14
|
|
15
|
Anderson G, Maes M. Redox Regulation and the Autistic Spectrum: Role of Tryptophan Catabolites, Immuno-inflammation, Autoimmunity and the Amygdala. Curr Neuropharmacol 2014; 12:148-67. [PMID: 24669209 PMCID: PMC3964746 DOI: 10.2174/1570159x11666131120223757] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 08/18/2013] [Accepted: 11/02/2013] [Indexed: 12/12/2022] Open
Abstract
The autistic spectrum disorders (ASD) form a set of multi-faceted disorders with significant genetic, epigenetic and environmental determinants. Oxidative and nitrosative stress (O&NS), immuno-inflammatory pathways, mitochondrial dysfunction and dysregulation of the tryptophan catabolite (TRYCATs) pathway play significant interactive roles in driving the early developmental etiology and course of ASD. O&NS interactions with immuno-inflammatory pathways mediate their effects centrally via the regulation of astrocyte and microglia responses, including regional variations in TRYCATs produced. Here we review the nature of these interactions and propose an early developmental model whereby different ASD genetic susceptibilities interact with environmental and epigenetic processes, resulting in glia biasing the patterning of central interarea interactions. A role for decreased local melatonin and N-acetylserotonin production by immune and glia cells may be a significant treatment target.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Deakin University, Geelong, Australia
| |
Collapse
|
16
|
Geherin SA, Lee MH, Wilson RP, Debes GF. Ovine skin-recirculating γδ T cells express IFN-γ and IL-17 and exit tissue independently of CCR7. Vet Immunol Immunopathol 2013; 155:87-97. [PMID: 23838472 DOI: 10.1016/j.vetimm.2013.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 05/29/2013] [Accepted: 06/12/2013] [Indexed: 01/13/2023]
Abstract
γδ T cells continuously survey extralymphoid tissues, providing key effector functions during infection and inflammation. Despite their importance, the function and the molecules that drive migration of skin-recirculating γδ T cells are poorly described. Here we found that γδ T cells traveling in the skin-draining afferent lymph of sheep are effectors that produce IFN-γ or IL-17 and express high levels of the skin- and inflammation-seeking molecule E-selectin ligand. Consistent with a role for chemokine receptor CCR7 in mediating T cell exit from extralymphoid tissues, conventional CD4 and CD8T cells in skin-draining lymph were enriched in their expression of CCR7 compared to their skin-residing counterparts. In contrast, co-isolated γδ T cells in skin or lymph lacked expression of CCR7, indicating that they use alternative receptors for egress. Skin-draining γδ T cells were unresponsive to many cutaneous and inflammatory chemokines, including ligands for CCR2, CCR4, CCR5, CCR8, CCR10, and CXCR3, but showed selective chemotaxis toward the cutaneously expressed CCR6 ligand CCL20. Moreover, IL-17(+) γδ T cells were the most CCL20-responsive subset of γδ T cells. The data suggest that γδ T cells survey the skin and sites of inflammation and infection, entering via CCR6 and E-selectin ligand and leaving independent of the CCR7-CCL21 axis.
Collapse
Affiliation(s)
- Skye A Geherin
- University of Pennsylvania, School of Veterinary Medicine, Department of Pathobiology, 380 South University Avenue, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
17
|
Anderson G, Maes M. Schizophrenia: linking prenatal infection to cytokines, the tryptophan catabolite (TRYCAT) pathway, NMDA receptor hypofunction, neurodevelopment and neuroprogression. Prog Neuropsychopharmacol Biol Psychiatry 2013; 42:5-19. [PMID: 22800757 DOI: 10.1016/j.pnpbp.2012.06.014] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/06/2012] [Accepted: 06/18/2012] [Indexed: 02/07/2023]
Abstract
In 1995, the macrophage-T lymphocyte theory of schizophrenia (Smith and Maes, 1995) considered that activated immuno-inflammatory pathways may account for the higher neurodevelopmental pathology linked with gestational infections through the detrimental effects of activated microglia, oxidative and nitrosative stress (O&NS), cytokine-induced activation of the tryptophan catabolite (TRYCAT) pathway and consequent modulation of the N-methyl d-aspartate receptor (NMDAr) and glutamate production. The aim of the present paper is to review the current state-of-the art regarding the role of the above pathways in schizophrenia. Accumulating data suggest a powerful role for prenatal infection, both viral and microbial, in driving an early developmental etiology to schizophrenia. Models of prenatal rodent infection show maintained activation of immuno-inflammatory pathways coupled to increased microglia activation. The ensuing activation of immuno-inflammatory pathways in schizophrenia may activate the TRYCAT pathway, including increased kynurenic acid (KA) and neurotoxic TRYCATs. Increased KA, via the inhibition of the α7 nicotinic acetylcholine receptor, lowers gamma-amino-butyric-acid (GABA)ergic post-synaptic current, contributing to dysregulated glutamatergic activity. Hypofunctioning of the NMDAr on GABAergic interneurons will contribute to glutamatergic dysregulation. Many susceptibility genes for schizophrenia are predominantly expressed in early development and will interact with these early developmental driven changes in the immuno-inflammatory and TRYCAT pathways. Maternal infection and subsequent immuno-inflammatory responses are additionally associated with O&NS, including lowered antioxidants such as glutathione. This will contribute to alterations in neurogenesis and myelination. In such a scenario a) a genetic or epigenetic potentiation of immuno-inflammatory pathways may constitute a double hit on their own, stimulating wider immuno-inflammatory responses and thus potentiating the TRYCAT pathway and subsequent NMDAr dysfunction and neuroprogression; and b) antipsychotic-induced changes in immuno-inflammatory, TRYCAT and O&NS pathways would modulate the CNS glia-neuronal interactions that determine synaptic plasticity as well as myelin generation and maintenance.
Collapse
|