1
|
Zheng S, Qi W, Xue T, Zao X, Xie J, Zhang P, Li X, Ye Y, Liu A. Chinese medicine in the treatment of chronic hepatitis B: The mechanisms of signal pathway regulation. Heliyon 2024; 10:e39176. [PMID: 39640799 PMCID: PMC11620126 DOI: 10.1016/j.heliyon.2024.e39176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic hepatitis B (CHB) is a chronic inflammatory disease of the liver caused by infection with the hepatitis B virus (HBV), which in later stages can lead to the development of end-stage liver diseases such as cirrhosis and hepatocellular carcinoma in severe cases, jeopardizing long-term quality of life, with a poor prognosis, and placing a serious financial burden on many families around the world. The pathogenesis of the disease is complex and closely related to the immune function of the body, which has not yet been fully elucidated. The development of chronic hepatitis B is closely related to the involvement of various signaling pathways, such as JAK/STAT, PI3K/Akt, Toll-like receptor, NF-κB and MAPK signaling pathways. A large number of studies have shown that Chinese medicine has obvious advantages in anti-hepatitis B virus, and it can effectively treat the disease by modulating relevant signaling pathways, strengthening immune resistance and defense, and inhibiting inflammatory responses, and certain research progress has been made, but there is still a lack of a comprehensive review on the modulation of relevant signaling pathways in Chinese medicine for the treatment of CHB. Therefore, this article systematically combed and elaborated the relevant literature on the modulation of relevant signaling pathways by traditional Chinese medicine in recent years, with a view to providing new ideas for the treatment of CHB and further drug development.
Collapse
Affiliation(s)
- Shihao Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Wenying Qi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Beijing University of Chinese Medicine, Beijing, 100102, China
| | - Tianyu Xue
- Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, 050000, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
| | - Jinchi Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Peng Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yongan Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100007, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Aimin Liu
- Shangzhuang Township Community Health Service Center, Beijing, 100094, China
| |
Collapse
|
2
|
Zhao M, Wang C, Li P, Sun T, Wang J, Zhang S, Ma Q, Ma F, Shi W, Shi M, Ma Y, Pan Y, Zhang H, Xie X. Single-cell RNA sequencing reveals the transcriptomic characteristics of peripheral blood mononuclear cells in hepatitis B vaccine non-responders. Front Immunol 2023; 14:1091237. [PMID: 37593735 PMCID: PMC10431960 DOI: 10.3389/fimmu.2023.1091237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/12/2023] [Indexed: 08/19/2023] Open
Abstract
The emergence of a vaccine against hepatitis B has proven to be an important milestone in the prevention of this disease; however, 5%-10% of vaccinated individuals do not generate an immune response to the vaccine, and its molecular mechanism has not been clarified. In this study, single-cell RNA sequencing was performed on peripheral blood mononuclear cells (PBMCs) from three volunteers with a high immune response (HR) and three with no immune response (NR) to the hepatitis B vaccine. We found that the antigen-presenting activity scores of various antigen-presenting cells, the mitogen-activated protein kinase (MAPK) pathway activity scores of naive B cells, and the cell activity scores of three types of effector T cells were significantly decreased, whereas the cytotoxicity scores of CD3highCD16lowKLRG1high natural killer T (NKT) cells were significantly increased in the NR group compared with those in the HR group. Additionally, the expression levels of some classical molecules associated with distinct signaling pathways-including HLA-B, HLA-DRB5, BLNK, BLK, IL4R, SCIMP, JUN, CEBPB, NDFIP1, and TXNIP-were significantly reduced in corresponding subsets of PBMCs from the NR group relative to those of the HR group. Furthermore, the expression of several cytotoxicity-related effector molecules, such as GNLY, NKG7, GZMB, GZMM, KLRC1, KLRD1, PRF1, CST7, and CTSW, was significantly higher in CD3highCD16lowKLRG1high NKT cells derived from non-responders. Our study provides a molecular basis for the lack of response to the hepatitis B vaccine, including defective antigen presentation, decreased T cell activity, and reduced IL-4 secretion, as well as novel insight into the role of NKT cells in the immune response to the hepatitis B vaccine.
Collapse
Affiliation(s)
- Meie Zhao
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Chunxia Wang
- Department of Laboratory Medicine, The First People’s Hospital of Lanzhou, Lanzhou, Gansu, China
| | - Peiqiang Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Sun
- Clinical Laboratory, Huzhou Central Hospital, Huzhou Hospital Affiliated with Zhejiang University, Huzhou, Zhejiang, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Shasha Zhang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Qinglong Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Fengdie Ma
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Wenjing Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Yapeng Ma
- Department of Laboratory Medicine, The First People’s Hospital of Tianshui, Tian Shui, Gansu, China
| | - Yunyan Pan
- Department of Laboratory Medicine, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hui Zhang
- Virus Laboratory, Gansu Provincial Center for Disease Control and Prevention, Lanzhou, Gansu, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Dong R, Zhang B, Zhang X. Liver organoids: an in vitro 3D model for liver cancer study. Cell Biosci 2022; 12:152. [PMID: 36085085 PMCID: PMC9463833 DOI: 10.1186/s13578-022-00890-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/28/2022] [Indexed: 11/21/2022] Open
Abstract
Primary liver cancer (PLC) is the second leading cause of cancer mortality worldwide, and its morbidity unceasingly increases these years. Hepatitis B virus (HBV) infection accounted for approximately 50% of hepatocellular carcinoma (HCC) cases globally in 2015. Due to the lack of an effective model to study HBV-associated liver carcinogenesis, research has made slow progress. Organoid, an in vitro 3D model which maintains self-organization, has recently emerged as a powerful tool to investigate human diseases. In this review, we first summarize the categories and development of liver organoids. Then, we mainly focus on the functions of culture medium components and applications of organoids for HBV infection and HBV-associated liver cancer studies. Finally, we provide insights into a potential patient-derived organoid model from those infected with HBV based on our study, as well as the limitations and future applications of organoids in liver cancer research.
Collapse
|
4
|
Bakarozi M, Mavropoulos A, Bogdanos DP, Dalekos GN, Rigopoulou EI. p38 mitogen-activated protein kinase impairment of innate immune cells is a characteristic feature of HBeAg-negative chronic hepatitis B. J Viral Hepat 2020; 27:52-60. [PMID: 31520461 DOI: 10.1111/jvh.13209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/06/2019] [Accepted: 08/20/2019] [Indexed: 12/09/2022]
Abstract
The mitogen-activated protein kinase p38 (MAPK) is implicated in the induction of immune responses by regulating the differentiation of T lymphocytes and production of cytokines. Our aim was to investigate p38MAPK phosphorylation in different stages of the natural history of hepatitis B virus (HBV) infection. Peripheral blood mononuclear cells (PBMCs) were isolated by Ficoll-Hypaque density-based centrifugation from 10 patients with HBeAg-negative chronic hepatitis B [HBeAg(-) CHB;HBV-DNA>2000IU/mL], eight patients with HBeAg-negative chronic HBV infection [HBeAg(-) CI;undetectable HBV-DNA] and 8 healthy controls (HCs). p38MAPK phosphorylation was assessed by phospho-specific flow cytometry in PBMCs and cell subsets (CD3+,CD3-,CD56+,CD56-) after stimulation with cytokines (IL-12+IL-2 and IL-12+IL-18) or nonspecific stimuli [arsenite, phorbol 12-myristate 13-acetate (PMA) and ionomycin] at 0,30,60,120 and 240 minutes using p38 phospho-specific conjugated antibodies. ΙFN-γ was determined by ELISA in PBMCs culture supernatants after stimulation with rhIL-2, rhIL-12 and rhIL-18, with and without pre-treatment with the p38 MAPK inhibitor, SB203580. HBeAg(-) CI patients showed the highest expression of phosphor-p38 MAPK in total PBMCs and subpopulations compared to HBeAg(-) CHB and HCs. A striking impairment in p38 phosphorylation was noted in CD56+ cells and in especially in NK cells (CD3-CD56+). SB203580-induced inhibition of p38MAPK phosphorylation was associated with suppression of IFN-γ production in all groups. The universal lack of p38 MAPK activation in CD56+ and in particular in NK cells from HBeAg(-) CHB patients during viremia suggests a potential cell-dependent implication of this pathway in the natural history of HBV infection.
Collapse
Affiliation(s)
- Marianna Bakarozi
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Athanasios Mavropoulos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios P Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George N Dalekos
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eirini I Rigopoulou
- Department of Medicine & Research Laboratory of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| |
Collapse
|
5
|
Vyas AK, Negi P, Patra S, Maras JS, Ramakrishna G, Sarin SK, Trehanpati N. Maternal Immunity Influences Vertical Transmission of Hepatitis B to Newborns. Hepatol Commun 2019; 3:795-811. [PMID: 31168514 PMCID: PMC6546022 DOI: 10.1002/hep4.1351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/05/2019] [Indexed: 12/24/2022] Open
Abstract
Vertical transmission of hepatitis B virus (HBV) from the mother to the newborn often results in viral persistence. To understand mechanisms of maternofetal HBV transmission, we studied maternal immunity and peripheral blood mononuclear cell (PBMC) transcriptome in mothers and newborns. We included 50 mothers and babies who were hepatitis B surface antigen (HBsAg) positive: 22 HBV transmitting mothers (group [Gr.] I) and 28 HBV nontransmitting mothers (Gr. II) to newborns and 10 healthy mother-baby pairs (Gr. III). PBMCs were analyzed for HBV-specific dendritic cells (DCs), T cells, T follicular helper (TFh) cells, B cells, functional immune responses, and cytokine levels as well as transcriptome signatures to identify immune gene expression correlates for protective immunity. Group II mothers had lower HBsAg levels (3.82 × 103 versus 1.493 × 104; P < 0.0001) with greater HBV-specific responses of DCs, T cells, TFh cells, and B cells than Gr. I mothers. Frequencies of TFh cells were lower in Gr. I mothers, with reduced interleukin-21 (IL-21) levels, and these inversely correlated with HBV DNA levels. Cut-off levels of 9.5% and 8.93% from the receiver operating curve predicted the involvement of TFh cells and B cells in HBV transmission. Transcriptome signatures revealed that maternal gene imprints were reflected in the newborns. Genes related to DCs, TFh cells, and B cells were increased in Gr. II, and Gr. II newborns showed a boost in cellular and humoral responses after vaccination. Conclusion: In mothers infected with HBV, low serum IL-21 levels and decreased TFh-cell and plasma B-cell frequencies are associated with vertical transmission of HBV to newborns. These features are indicative of low protective maternal immunity.
Collapse
Affiliation(s)
- Ashish Kumar Vyas
- Department of Molecular and Cellular MedicineInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Pooja Negi
- Department of Molecular and Cellular MedicineInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Sharda Patra
- Lady Harding Medical College and Smt. S. K. HospitalNew DelhiIndia
| | - Jaswinder Singh Maras
- Department of Molecular and Cellular MedicineInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular MedicineInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Shiv Kumar Sarin
- Department of HepatologyInstitute of Liver and Biliary SciencesNew DelhiIndia
| | - Nirupma Trehanpati
- Department of Molecular and Cellular MedicineInstitute of Liver and Biliary SciencesNew DelhiIndia
| |
Collapse
|
6
|
HoxA10 Facilitates SHP-1-Catalyzed Dephosphorylation of p38 MAPK/STAT3 To Repress Hepatitis B Virus Replication by a Feedback Regulatory Mechanism. J Virol 2019; 93:JVI.01607-18. [PMID: 30674631 DOI: 10.1128/jvi.01607-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection is the leading cause of chronic hepatitis B (CHB), liver cirrhosis (LC), and hepatocellular carcinoma (HCC). This study reveals a distinct mechanism underlying the regulation of HBV replication. HBV activates homeobox A10 (HoxA10) in human hepatocytes, leukocytes, peripheral blood mononuclear cells (PBMCs), HepG2-NTCP cells, leukocytes isolated from CHB patients, and HBV-associated HCC tissues. HoxA10 in turn represses HBV replication in human hepatocytes, HepG2-NTCP cells, and BALB/c mice. Interestingly, we show that during early HBV infection, p38 mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3) were activated to facilitate HBV replication; however, during late HBV infection, HoxA10 was induced to attenuate HBV replication. Detailed studies reveal that HoxA10 binds to p38 MAPK, recruits SH2-containing protein tyrosine phosphatase 1 (SHP-1) to facilitate SHP-1 in catalyzing dephosphorylation of p38 MAPK/STAT3, and thereby attenuates p38 MAPK/STAT3 activation and HBV replication. Furthermore, HoxA10 binds to the HBV enhancer element I (EnhI)/X promoter, competes with STAT3 for binding of the promoter, and thereby represses HBV transcription. Taken together, these results show that HoxA10 attenuates HBV replication through repressing the p38 MAPK/STAT3 pathway by two approaches: HoxA10 interacts with p38 MAPK and recruits SHP-1 to repress HBV replication, and HoxA10 binds to the EnhI/X promoter and competes with STAT3 to attenuate HBV transcription. Thus, the function of HoxA10 is similar to the action of interferon (IFN) in terms of inhibition of HBV infection; however, the mechanism of HoxA10-mediated repression of HBV replication is different from the mechanism underlying IFN-induced inhibition of HBV infection.IMPORTANCE Two billion people have been infected with HBV worldwide; about 240 million infected patients developed chronic hepatitis B (CHB), and 650,000 die each year from liver cirrhosis (LC) or hepatocellular carcinoma (HCC). This work elucidates a mechanism underlying the control of HBV replication. HBV infection activates HoxA10, a regulator of cell differentiation and cancer progression, in human cells and patients with CHB and HCC. HoxA10 subsequently inhibits HBV replication in human tissue culture cells and mice. Additionally, HoxA10 interacts with p38 MAPK to repress the activation of p38 MAPK and STAT3 and recruits and facilitates SHP-1 to catalyze the dephosphorylation of p38 MAPK and STAT3. Moreover, HoxA10 competes with STAT3 for binding of the HBV X promoter to repress HBV transcription. Thus, this work reveals a negative regulatory mechanism underlying the control of HBV replication and provides new insights into the development of potential agents to control HBV infection.
Collapse
|
7
|
Jan RH, Chen CJ, Hong YR, Lin YL, Chen LK. A surface antigen of Orientia tsutsugamushi activates human monocyte-derived dendritic cells via nuclear factor-kB & p38 mitogen-activated protein kinase pathways. Indian J Med Res 2019; 148:215-224. [PMID: 30381545 PMCID: PMC6206779 DOI: 10.4103/ijmr.ijmr_1417_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background & objectives: Scrub typhus is a chigger-borne disease caused by Orientia tsutsugamushi. The immunological reactions to O. tsutsugamushi infection are not completely understood. In this study, we investigated the response of dendritic cells (DCs) to a major 56-kDa scrub typhus antigen Sta56. Methods: Monocyte-derived human DCs were incubated with different concentrations of recombinant Sta56 and analyzed for maturation based on phagocytic capacity, the ability to induce T-cell proliferation, expression of surface markers, cytokine secretion and activation of toll-like receptor (TLR)-dependent signalling pathways. Results: Treatment of DCs with Sta56 induced cell surface expression of CD80, CD83, CD86 and MHC Class II increased the production of interleukin-12 (IL-12) p40, IL-12 p70 and IL-10 and decreased DC phagocytic capacity. Furthermore, Sta56 increased the ability of DCs to activate T-cell proliferation and interferon-γ secretion. TLR4-specific antibodies neutralized Sta56-elicited effects on DC maturation, suggesting direct interaction between Sta56 and TLR4. Moreover, Sta56 activated nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK) signalling as evidenced by decrease in Sta56-induced cytokine production and surface marker expression by specific inhibitors helenalin and SB203580, respectively, and increase in IκBα and p38 phosphorylation and NF-κB-DNA binding. Interpretation & conclusions: Our results showed that the surface antigen of O. tsutsugamushi activated DCs through interaction with TLR4 and activation of MAPK and NF-κB signalling, suggesting Sta56 as a potential candidate molecule for the development of vaccine against scrub typhus.
Collapse
Affiliation(s)
- Rong-Hwa Jan
- Institute of Medical Sciences, Tzu Chi University; Department of Pediatrics, Hualien Tzu Chi Hospital, Chia Yi, Taiwan
| | - Chia-Jung Chen
- Department of Nursing, Dalin Tzu Chi Hospital, Chia Yi, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Li Lin
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Li-Kuang Chen
- Institute of Medical Sciences, Tzu Chi University, Chia Yi, Taiwan
| |
Collapse
|
8
|
Han R, Song YJ, Sun SY, Zhou Q, Chen XZ, Zheng QL, Cheng H. Influence of Human Papillomavirus E7 Oncoprotein on Maturation and Function of Plasmacytoid Dendritic Cells In Vitro. Virol Sin 2018; 33:493-501. [PMID: 30569289 PMCID: PMC6335218 DOI: 10.1007/s12250-018-0069-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022] Open
Abstract
The major difficulties of human papillomavirus (HPV) treatment are its persistence and recurrence. The HPV E7 oncoprotein-loaded dendritic cells have been evaluated as cellular vaccine in previous reports. Plasmacytoid dendritic cells (pDCs) play an essential role of connecting the innate immune response and adaptive immune response in the immune system. But they function in HPV E7 loading is unclear. To investigate whether loading of the HPV type 6b, 11, and 16 E7 proteins affects the activity of pDCs, human peripheral blood-separated pDCs and mouse bone marrow-derived pDCs were pulsed with the HPV E7 proteins. The expression levels of CD40, CD80, CD86, and MHC II were significantly upregulated in pDCs upon HPV 6b/11 E7 protein pulse. The secretion and gene expression of type I IFN and IL-6 were both upregulated by HPV 6b/11 E7 proteins, more significant than HPV 16 E7 protein. The expression of essential factors of TLR signaling pathway and JNK/p38 MAP kinase signaling pathway were all increased in HPV 6b/11 E7 proteins pulsed pDCs. Our results suggest that HPV E7 proteins could promote the differentiation and maturation of pDCs and activate the TLR and MAPK pathway to induce host innate immune response. It might be conducive to explore novel immunotherapy targeting HPV infection with HPV E7 loaded pDC.
Collapse
Affiliation(s)
- Rui Han
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yin-Jing Song
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Si-Yuan Sun
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Qiang Zhou
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xian-Zhen Chen
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Qiao-Li Zheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Hao Cheng
- Department of Dermatology and Venereology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
9
|
Ortega-Prieto AM, Dorner M. Immune Evasion Strategies during Chronic Hepatitis B and C Virus Infection. Vaccines (Basel) 2017; 5:E24. [PMID: 28862649 PMCID: PMC5620555 DOI: 10.3390/vaccines5030024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 08/25/2017] [Accepted: 08/30/2017] [Indexed: 12/15/2022] Open
Abstract
Both hepatitis B virus (HBV) and hepatitis C virus (HCV) infections are a major global healthcare problem with more than 240 million and 70 million infected, respectively. Both viruses persist within the liver and result in progressive liver disease, resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma. Strikingly, this pathogenesis is largely driven by immune responses, unable to clear an established infection, rather than by the viral pathogens themselves. Even though disease progression is very similar in both infections, HBV and HCV have evolved distinct mechanisms, by which they ensure persistence within the host. Whereas HCV utilizes a cloak-and-dagger approach, disguising itself as a lipid-like particle and immediately crippling essential pattern-recognition pathways, HBV has long been considered a "stealth" virus, due to the complete absence of innate immune responses during infection. Recent developments and access to improved model systems, however, revealed that even though it is among the smallest human-tropic viruses, HBV may, in addition to evading host responses, employ subtle immune evasion mechanisms directed at ensuring viral persistence in the absence of host responses. In this review, we compare the different strategies of both viruses to ensure viral persistence by actively interfering with viral recognition and innate immune responses.
Collapse
Affiliation(s)
| | - Marcus Dorner
- Section of Virology, Department of Medicine, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
10
|
Du Q, Huang Y, Wang T, Zhang X, Chen Y, Cui B, Li D, Zhao X, Zhang W, Chang L, Tong D. Porcine circovirus type 2 activates PI3K/Akt and p38 MAPK pathways to promote interleukin-10 production in macrophages via Cap interaction of gC1qR. Oncotarget 2017; 7:17492-507. [PMID: 26883107 PMCID: PMC4951228 DOI: 10.18632/oncotarget.7362] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/29/2016] [Indexed: 01/02/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) infection caused PCV2-associated diseases (PCVAD) is one of the major emerging immunosuppression diseases in pig industry. In this study, we investigated how PCV2 inoculation increases interleukin (IL)-10 expression in porcine alveolar macrophages (PAMs). PCV2 inoculation significantly upregulated IL-10 expression compared with PCV1. Upon initial PCV2 inoculation, PI3K/Akt cooperated with NF-κB pathways to promote IL-10 transcription via p50, CREB and Ap1 transcription factors, whereas inhibition of PI3K/Akt activation blocked Ap1 and CREB binding to the il10 promoter, and decreased the binding level of NF-κB1 p50 with il10 promoter, leading to great reduction in early IL-10 transcription. In the later phase of inoculation, PCV2 further activated p38 MAPK and ERK pathways to enhance IL-10 production by promoting Sp1 binding to the il10 promoter. For PCV2-induced IL-10 production in macrophages, PCV2 capsid protein Cap, but not the replicase Rep or ORF3, was the critical component. Cap activated PI3K/Akt, p38 MAPK, and ERK signaling pathways to enhance IL-10 expression. In the whole process, gC1qR mediated PCV2-induced PI3K/Akt and p38 MAPK activation to enhance IL-10 induction by interaction with Cap. Depletion of gC1qR blocked PI3K/Akt and p38 MAPK activation, resulting in significant decrease in IL-10 production in PCV2-inoculated cells. Thus, gC1qR might be a critical functional receptor for PCV2-induced IL-10 production. Taken together, these data demonstrated that Cap protein binding with host gC1qR induction of PI3K/Akt and p38 MAPK signalings activation is a critical process in enhancing PCV2-induced IL-10 production in porcine alveolar macrophages.
Collapse
Affiliation(s)
- Qian Du
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Tongtong Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiujuan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Yu Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Beibei Cui
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Delong Li
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Lingling Chang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shaanxi, P. R. China
| |
Collapse
|
11
|
Hepatitis B Virus Surface Antigen Activates Myeloid Dendritic Cells via a Soluble CD14-Dependent Mechanism. J Virol 2016; 90:6187-6199. [PMID: 27099316 DOI: 10.1128/jvi.02903-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) infection can cause chronic liver disease, which is associated with increased risk of liver cirrhosis, liver failure, and liver cancer. Clearance of HBV infection requires effective HBV-specific immunity; however, the immunological mechanisms that determine the development of effective HBV-specific immunity are poorly understood. Dendritic cells (DC) play a pivotal role in the regulation of antiviral immunity. Here, we investigated the interaction between HBV surface antigen (HBsAg), the main envelope glycoprotein of HBV, and BDCA1(+) myeloid dendritic cells (mDC). Exposure of peripheral blood-derived BDCA1(+) mDC to HBsAg resulted in strong DC maturation, cytokine production, and enhanced capacity to activate antigen-specific cytotoxic T cells (CTLs). By using neutralizing antibodies, crucial roles for CD14 and Toll-like receptor 4 (TLR4) in HBsAg-mediated BDCA1(+) mDC maturation were identified. Concordantly, HBsAg-mediated DC maturation required fetal calf serum (FCS) or human plasma, naturally containing soluble CD14 (sCD14). Intriguingly, HBsAg-induced DC maturation was significantly reduced in umbilical cord blood plasma, which contained less sCD14 than adult plasma, indicating that sCD14 is an important host factor for recognition of HBsAg by DC and subsequent DC activation. A direct interaction between sCD14 and HBsAg was demonstrated by using enzyme-linked immunosorbent assay (ELISA). Moreover, sCD14-HBsAg complexes were detected both in vitro and in sera of HBV-infected patients. The abundance of sCD14-HBsAg complexes varied between chronic HBV disease stages and correlated with activation of BDCA1(+) mDC in vivo We conclude that HBsAg activates BDCA1(+) DC via an sCD14-dependent mechanism. These findings provide important novel insights into the initiation of HBV-specific immunity and facilitate development of effective immunotherapeutic interventions for HBV. IMPORTANCE Hepatitis B virus (HBV) infection is a significant health problem, as it causes progressive liver injury and liver cancer in patients with chronic HBV infection, which affects approximately 250 million individuals worldwide. Some of the infected adults and the majority of neonates fail to mount an effective immune response and consequently develop chronic infection. The viral and host factors involved in the initiation of effective HBV-specific immune responses remain poorly understood. Here we identified CD14 and TLR4 as receptors for HBsAg, the main HBV envelope antigen. HBsAg induced strong maturation of dendritic cells (DC), which have a central role in regulation of virus-specific immunity. These results provide essential novel insights into the mechanisms underlying the initiation of HBV-specific immunity. Intriguingly, since neonates have naturally low sCD14, the finding that serum-derived sCD14 is a crucial host factor for recognition of HBsAg by DC may have implications for immunity of neonates to HBV infection.
Collapse
|
12
|
Zou ZQ, Wang L, Wang K, Yu JG. Innate immune targets of hepatitis B virus infection. World J Hepatol 2016; 8:716-725. [PMID: 27330680 PMCID: PMC4911505 DOI: 10.4254/wjh.v8.i17.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/19/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023] Open
Abstract
Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.
Collapse
Affiliation(s)
- Zhi-Qiang Zou
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Li Wang
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Kai Wang
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Ji-Guang Yu
- Zhi-Qiang Zou, Li Wang, Ji-Guang Yu, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| |
Collapse
|
13
|
Wang H, Gao K, Wen K, Allen IC, Li G, Zhang W, Kocher J, Yang X, Giri-Rachman E, Li GH, Clark-Deener S, Yuan L. Lactobacillus rhamnosus GG modulates innate signaling pathway and cytokine responses to rotavirus vaccine in intestinal mononuclear cells of gnotobiotic pigs transplanted with human gut microbiota. BMC Microbiol 2016; 16:109. [PMID: 27301272 PMCID: PMC4908676 DOI: 10.1186/s12866-016-0727-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/06/2016] [Indexed: 12/12/2022] Open
Abstract
Background A better understanding of mechanisms underlying dose-effects of probiotics in their applications as treatments of intestinal infectious or inflammatory diseases and as vaccine adjuvant is needed. In this study, we evaluated the modulatory effects of Lactobacillus rhamnosus GG (LGG) on transplanted human gut microbiota (HGM) and on small intestinal immune cell signaling pathways in gnotobiotic pigs vaccinated with an oral attenuated human rotavirus (AttHRV) vaccine. Results Neonatal HGM transplanted pigs were given two doses of AttHRV on 5 and 15 days of age and were divided into three groups: none-LGG (AttHRV), 9-doses LGG (AttHRV + LGG9X), and 14-doses LGG (AttHRV + LGG14X) (n = 3–4). At post-AttHRV-inoculation day 28, all pigs were euthanized and intestinal contents and ileal tissue and mononuclear cells (MNC) were collected. AttHRV + LGG14X pigs had significantly increased LGG titers in the large intestinal contents and shifted structure of the microbiota as indicated by the formation of a cluster that is separated from the cluster formed by the AttHRV and AttHRV + LGG9X pigs. The increase in LGG titers concurred with significantly increased ileal HRV-specific IFN-γ producing T cell responses to the AttHRV vaccine reported in our previous publication, suggesting pro-Th1 adjuvant effects of the LGG. Both 9- and 14-doses LGG fed pig groups had significantly higher IkBα level and p-p38/p38 ratio, while significantly lower p-ERK/ERK ratio than the AttHRV pigs, suggesting activation of regulatory signals during immune activation. However, 9-doses, but not 14-doses LGG fed pigs had enhanced IL-6, IL-10, TNF-α, TLR9 mRNA levels, and p38 MAPK and ERK expressions in ileal MNC. Increased TLR9 mRNA was in parallel with higher mRNA levels of cytokines, p-NF-kB and higher p-p38/p38 ratio in MNC of the AttHRV + LGG9X pigs. Conclusions The relationship between modulation of gut microbiota and regulation of host immunity by different doses of probiotics is complex. LGG exerted divergent dose-dependent effects on the intestinal immune cell signaling pathway responses, with 9-doses LGG being more effective in activating the innate immunostimulating TLR9 signaling pathway than 14-doses in the HGM pigs vaccinated with AttHRV. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0727-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Kan Gao
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Ke Wen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Irving Coy Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Guohua Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Wenming Zhang
- Present address: College of Animal Science and Technology, Zhejiang A & F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Jacob Kocher
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Xingdong Yang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Ernawati Giri-Rachman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.,Present address: School of Life Science and Technology, Institut Teknologi Bandung, Bandung, Indonesia
| | - Guan-Hong Li
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA
| | - Sherrie Clark-Deener
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Integrated Life Science Building (0913), 1981 Kraft Drive, Blacksburg, VA, 24061, USA.
| |
Collapse
|
14
|
Yu Z, Jiang T, Zhu M, Pan K, Yan F, Zhu J. Effects of T cell immunoglobulin and mucin domain-containing molecule-3 signaling molecule on human monocyte-derived dendritic cells with hepatitis B virus surface antigen stimulation in vitro. Mol Med Rep 2016; 13:2785-90. [PMID: 26820685 DOI: 10.3892/mmr.2016.4815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 12/11/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the in vitro effects of hepatitis B virus surface antigen (HBsAg) on the immune function of human monocyte-derived dendritic cells (MD‑DCs), and the moderating role of T cell immunoglobulin and mucin domain‑containing molecule‑3 (Tim‑3) signaling molecule. The monocytes, obtained from healthy adult peripheral blood, were incubated with recombinant human granulocyte‑macrophage colony‑stimulating factor and interleukin (IL)‑4 to induce DCs. DC‑associated cell markers were detected using flow cytometry. MD‑DCs were treated with HBsAg (5 µg/ml) in vitro for 48 h and subsequently, cell markers, lymphocyte stimulatory capacity, signaling protein and downstream cytokines were assessed. In addition, a Tim‑3 monoclonal antibody was used to inhibit the Tim‑3 signaling pathway, and subsequently the immune responses of MD‑DCs to HBsAg stimulation were determined using the aforementioned method. The cell phenotype expressions of MD‑DCs were all significantly increased with cluster of differentiation (CD)11c at 70.09±0.57%, human leukocyte antigen‑DR at 79.83±2.12%, CD80 at 48.33±7.34% and CD86 at 44.21±5.35%. The treatment of MD‑DCs with HBsAg resulted in a CD80 and CD86 enhanced expression, enhanced lymphocyte stimulatory capacity, upregulated expression of Tim‑3 and nuclear factor‑κB (NF‑κB), as well as enhanced cytokine secretion of IL‑6, IL‑10 and interferon (IFN)‑γ. However, a reduced immune response of MD‑DCs in response to HBsAg stimulation was observed when the Tim‑3 signaling pathway was inhibited prior to stimulation. The expression of NF‑κB was decreased and the cytokine secretion level of IL‑6, IL‑10 and IFN‑γ were downregulated. The treatment with HBsAg in vitro resulted in an enhanced immune response of MD‑DCs, which may be positively regulated by the Tim-3 signaling molecule.
Collapse
Affiliation(s)
- Zhenjun Yu
- Medical Research Center of Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Ting Jiang
- Medical Research Center of Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Min Zhu
- Medical Research Center of Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Kechuan Pan
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Fei Yan
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| | - Jiansheng Zhu
- Department of Infectious Diseases, Affiliated Taizhou Hospital of Wenzhou Medical University, Linhai, Zhejiang 317000, P.R. China
| |
Collapse
|
15
|
Wang L, Wang K, Zou ZQ. Crosstalk between innate and adaptive immunity in hepatitis B virus infection. World J Hepatol 2015; 7:2980-2991. [PMID: 26730277 PMCID: PMC4691701 DOI: 10.4254/wjh.v7.i30.2980] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/11/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a major public health problem worldwide. HBV is not directly cytotoxic to infected hepatocytes; the clinical outcome of infection results from complicated interactions between the virus and the host immune system. In acute HBV infection, initiation of a broad, vigorous immune response is responsible for viral clearance and self-limited inflammatory liver disease. Effective and coordinated innate and adaptive immune responses are critical for viral clearance and the development of long-lasting immunity. Chronic hepatitis B patients fail to mount efficient innate and adaptive immune responses to the virus. In particular, HBV-specific cytotoxic T cells, which are crucial for HBV clearance, are hyporesponsiveness to HBV infection. Accumulating experimental evidence obtained from the development of animal and cell line models has highlighted the importance of innate immunity in the early control of HBV spread. The virus has evolved immune escape strategies, with higher HBV loads and HBV protein concentrations associated with increasing impairment of immune function. Therefore, treatment of HBV infection requires inhibition of HBV replication and protein expression to restore the suppressed host immunity. Complicated interactions exist not only between innate and adaptive responses, but also among innate immune cells and different components of adaptive responses. Improved insight into these complex interactions are important in designing new therapeutic strategies for the treatment HBV infection. In this review, we summarize the current knowledge regarding the cross-talk between the innate and adaptive immune responses and among different immunocytes in HBV infection.
Collapse
Affiliation(s)
- Li Wang
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Kai Wang
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| | - Zhi-Qiang Zou
- Li Wang, Zhi-Qiang Zou, Infectious Disease Hospital of Yantai, Yantai 264001, Shandong Province, China
| |
Collapse
|
16
|
Triterpenoids and Polysaccharide Fractions of Ganoderma tsugae Exert Different Effects on Antiallergic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:754836. [PMID: 25960757 PMCID: PMC4417579 DOI: 10.1155/2015/754836] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/18/2014] [Indexed: 12/01/2022]
Abstract
This study was to investigate antiallergic effects of triterpenoids (Gt-TRE) and polysaccharide (Gt-PS) extracts from Ganoderma tsugae, using mast cell line RBL-2H3, T cell line EL4, primary T cells, and transfected RAW264.7 macrophage cells. The results showed that histamine secreted from activated RBL-2H3 mast cells was significantly suppressed by Gt-TRE but not Gt-PS. Interleukin- (IL-) 4 secreted from activated EL4 cells was significantly suppressed by Gt-TRE but not Gt-PS. Further primary CD4+ T cells cultures also confirmed that Gt-TRE (5 ~ 50 µg/mL) significantly suppressed Th2 cytokines IL-4 and IL-5 secretions but had no effect on Th1 cytokines IL-2 and interferon (IFN)-γ. Gt-PS did not affect IL-4 and IL-5 secretions until higher doses (400, 500 µg/mL) and significantly suppressed IFNγ secretions but enhanced IL-2 at these high doses. The reporter gene assay indicated that Gt-TRE inhibited but Gt-PS enhanced the transcriptional activity of NF-κB in activated transfected RAW264.7 cells and transfected EL4 cells. IL-4 secreted by this transfected EL-4 cells was also significantly decreased by Gt-TRE but not by Gt-PS, suggesting that these two fractions may exert different effects on NF-κB related cytokines expression. These data suggested that triterpenoids fraction of Ganoderma tsugae might be the main constituents to alleviate allergic asthma.
Collapse
|
17
|
Cáceres A, Perdiguero B, Gómez CE, Cepeda MV, Caelles C, Sorzano CO, Esteban M. Involvement of the cellular phosphatase DUSP1 in vaccinia virus infection. PLoS Pathog 2013; 9:e1003719. [PMID: 24244156 PMCID: PMC3828168 DOI: 10.1371/journal.ppat.1003719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 09/05/2013] [Indexed: 12/30/2022] Open
Abstract
Poxviruses encode a large variety of proteins that mimic, block or enhance host cell signaling pathways on their own benefit. It has been reported that mitogen-activated protein kinases (MAPKs) are specifically upregulated during vaccinia virus (VACV) infection. Here, we have evaluated the role of the MAPK negative regulator dual specificity phosphatase 1 (DUSP1) in the infection of VACV. We demonstrated that DUSP1 expression is enhanced upon infection with the replicative WR virus and with the attenuated VACV viruses MVA and NYVAC. This upregulation is dependent on early viral gene expression. In the absence of DUSP1 in cultured cells, there is an increased activation of its molecular targets JNK and ERK and an enhanced WR replication. Moreover, DUSP1 knock-out (KO) mice are more susceptible to WR infection as a result of enhanced virus replication in the lungs. Significantly, MVA, which is known to produce non-permissive infections in most mammalian cell lines, is able to grow in DUSP1 KO immortalized murine embryo fibroblasts (MEFs). By confocal and electron microscopy assays, we showed that in the absence of DUSP1 MVA morphogenesis is similar as in permissive cell lines and demonstrated that DUSP1 is involved at the stage of transition between IVN and MV in VACV morphogenesis. In addition, we have observed that the secretion of pro-inflammatory cytokines at early times post-infection in KO mice infected with MVA and NYVAC is increased and that the adaptive immune response is enhanced in comparison with WT-infected mice. Altogether, these findings reveal that DUSP1 is involved in the replication and host range of VACV and in the regulation of host immune responses through the modulation of MAPKs. Thus, in this study we demonstrate that DUSP1 is actively involved in the antiviral host defense mechanism against a poxvirus infection. Phosphorylation is a post-translational modification that is highly conserved throughout the animal kingdom. Viruses have evolved to acquire their own kinases and phosphatases and to be able to modulate host phosphorylation mechanisms on their benefit. DUSP1 is an early induced gene that belongs to the superfamily of Dual-specificity phosphatases and provides an essential negative feedback regulation of MAPKs. DUSP1 is involved in innate and adaptive immune responses against different bacteria and parasites infections. The use of Knock-out technology has allowed us to understand the role of DUSP1 in the context of VACV infection both in cultured cells and in the in vivo mouse model. Here, we have showed that DUSP1 expression is upregulated during VACV infection and that DUSP1 plays an important role in VACV replication. Interestingly, we have demonstrated that the VACV attenuated virus MVA is able to grow in immortalized murine embryo fibroblasts in the absence of DUSP1. In vivo results showed that VACV replication-competent WR pathogenesis is enhanced in the absence of DUSP1. Furthermore, we have demonstrated that DUSP1 is involved in the host innate and adaptive responses against VACV. Altogether, we have presented a novel role for DUSP1 in VACV replication and anti-VACV host immune response.
Collapse
Affiliation(s)
- Ana Cáceres
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Beatriz Perdiguero
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carmen E. Gómez
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Maria Victoria Cepeda
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Carme Caelles
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Carlos Oscar Sorzano
- Biocomputing Unit, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, National Centre of Biotechnology, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|