1
|
Zimmermann D, Kress M, Nagy I. Established and emerging roles of protein kinases in regulating primary sensory neurons in injury-and inflammation-associated pain. Expert Opin Ther Targets 2025:1-14. [PMID: 40200157 DOI: 10.1080/14728222.2025.2489540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/06/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
INTRODUCTION Recent seminal neuroscience research has significantly increased our knowledge on cellular and molecular responses of various cells in the pain pathway to peripheral nerve injuries and inflammatory processes. Transcriptomic and epigenetic analysis of primary sensory neurons (PSNs) in animal models of peripheral injuries revealed new insights into altered gene expression profiles and epigenetic modifications, which, via increasing spinal nociceptive input, lead to the development of pain. Among the various classes of molecules involved in driving differential gene expression, protein kinases, the enzymes that catalyze the phosphorylation of molecules, are emerging to control histone modification and chromatin remodeling needed for the alteration in transcriptional activity. AREAS COVERED Here, we focused on how protein kinases contribute to transcriptomic changes and pathways of induced reprogramming within PSNs upon peripheral nerve injury and inflammation. We conducted systematic literature search across multiple databases, including PubMed, NIH ClinicalTrials.gov portal and GEOData from 1980 to 2024 and compared protein kinase expression frequencies between publicly available RNA sequencing datasets of PSNs and investigated differences in protein kinase expression levels after peripheral nerve injury. EXPERT OPINION Novel findings support a new concept that protein kinases constitute regulatory hubs of reprogramming of PSNs, which offers novel analgesic approaches.
Collapse
Affiliation(s)
- David Zimmermann
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Istvan Nagy
- Department of Surgery and Cancer, Nociception group, Division of Anaesthetics, Pain Medicine and Intensive Care, Imperial College, London, UK
- Department of Physiology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Zhang X, Wang X, Li H, Wang H, Du D, Huang H. ATF3 mediates PM2.5-induced apoptosis and inflammation in ovarian granulosa cells. J Ovarian Res 2024; 17:215. [PMID: 39501310 PMCID: PMC11536620 DOI: 10.1186/s13048-024-01539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/18/2024] [Indexed: 11/09/2024] Open
Abstract
Particulate matter 2.5 (PM2.5) pollution has emerged as a major global public health concern because of its adverse effects on human health. Our group has previously demonstrated that PM2.5 exposure can seriously impair ovarian function. However, the underlying mechanisms remain a mystery. This study verifies ovarian damage in mice, evidenced by inflammatory cell infiltration and follicular atresia, following 5 months of PM2.5 exposure via tracheal drip (35 µg/m³ for low dose and 150 µg/m³ for high dose). In addition, PM2.5 exposure inhibited the cell viability of human granulosa cells (KGN) and induced apoptosis at the concentrations of 50, 100, and 150 µg/mL for 24 h. The apoptosis of KGN cells induced by inflammation contributes to follicular atresia. Furthermore, we conducted RNA-sequencing analysis to identify the genes and pathways triggered by PM2.5 (100 µg/mL) exposure, which decreases the KGN cell viability. We found a significant increase in Activating Transcription Factor 3 (ATF3). Further mechanistic studies reveal a strong association between PM2.5-induced apoptosis, inflammation, and ATF3 with its downstream oxidative stress signals. In summary, the ATF3 pathway serves a vital role in the ovarian injury caused by PM2.5 exposures.
Collapse
Affiliation(s)
- Xiandan Zhang
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xuan Wang
- Department of Dermatology, Lianyungang Municipal Oriental Hospital, Lianyungang, China
| | - Hao Li
- College of Life and Science, Xiamen University, Xiamen, China
| | - Haihong Wang
- Department of Gynecology and Obstetrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, China
| | - Dewei Du
- Department of Gynecology and Obstetrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Huijuan Huang
- Department of Gynecology and Obstetrics, The 900 Hospital of the Joint Service Support Force of the People's Liberation Army of China, Fuzhou, China.
| |
Collapse
|
3
|
Yamanaka T, Ueki T, Mase M, Inoue K. Arbitrary Ca 2+ regulation for endothelial nitric oxide, NFAT and NF-κB activities by an optogenetic approach. Front Pharmacol 2023; 13:1076116. [PMID: 36703743 PMCID: PMC9871596 DOI: 10.3389/fphar.2022.1076116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023] Open
Abstract
Modern western dietary habits and low physical activity cause metabolic abnormalities and abnormally elevated levels of metabolites such as low-density lipoprotein, which can lead to immune cell activation, and inflammatory reactions, and atherosclerosis. Appropriate stimulation of vascular endothelial cells can confer protective responses against inflammatory reactions and atherosclerotic conditions. This study aims to determine whether a designed optogenetic approach is capable of affecting functional changes in vascular endothelial cells and to evaluate its potential for therapeutic regulation of vascular inflammatory responses in vitro. We employed a genetically engineered, blue light-activated Ca2+ channel switch molecule that utilizes an endogenous store-operated calcium entry system and induces intracellular Ca2+ influx through blue light irradiation and observed an increase in intracellular Ca2+ in vascular endothelial cells. Ca2+-dependent activation of the nuclear factor of activated T cells and nitric oxide production were also detected. Microarray analysis of Ca2+-induced changes in vascular endothelial cells explored several genes involved in cellular contractility and inflammatory responses. Indeed, there was an increase in the gene expression of molecules related to anti-inflammatory and vasorelaxant effects. Thus, a combination of human blue light-activated Ca2+ channel switch 2 (hBACCS2) and blue light possibly attenuates TNFα-induced inflammatory NF-κB activity. We propose that extrinsic cellular Ca2+ regulation could be a novel approach against vascular inflammation.
Collapse
Affiliation(s)
- Tomoyasu Yamanaka
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takatoshi Ueki
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhito Mase
- Department of Neurosurgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koichi Inoue
- Department of Integrative Anatomy, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan,*Correspondence: Koichi Inoue,
| |
Collapse
|
4
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
5
|
de Klerk DJ, de Keijzer MJ, Dias LM, Heemskerk J, de Haan LR, Kleijn TG, Franchi LP, Heger M. Strategies for Improving Photodynamic Therapy Through Pharmacological Modulation of the Immediate Early Stress Response. Methods Mol Biol 2022; 2451:405-480. [PMID: 35505025 DOI: 10.1007/978-1-0716-2099-1_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a minimally to noninvasive treatment modality that has emerged as a promising alternative to conventional cancer treatments. PDT induces hyperoxidative stress and disrupts cellular homeostasis in photosensitized cancer cells, resulting in cell death and ultimately removal of the tumor. However, various survival pathways can be activated in sublethally afflicted cancer cells following PDT. The acute stress response is one of the known survival pathways in PDT, which is activated by reactive oxygen species and signals via ASK-1 (directly) or via TNFR (indirectly). The acute stress response can activate various other survival pathways that may entail antioxidant, pro-inflammatory, angiogenic, and proteotoxic stress responses that culminate in the cancer cell's ability to cope with redox stress and oxidative damage. This review provides an overview of the immediate early stress response in the context of PDT, mechanisms of activation by PDT, and molecular intervention strategies aimed at inhibiting survival signaling and improving PDT outcome.
Collapse
Affiliation(s)
- Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Faculdade de Ciências da Saúde (FCS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Jordi Heemskerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Department of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group, Sciences, and Letters of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Zhang X, Li LX, Ding H, Torres VE, Yu C, Li X. Ferroptosis Promotes Cyst Growth in Autosomal Dominant Polycystic Kidney Disease Mouse Models. J Am Soc Nephrol 2021; 32:2759-2776. [PMID: 34716241 PMCID: PMC8806097 DOI: 10.1681/asn.2021040460] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disease, is regulated by different forms of cell death, including apoptosis and autophagy. However, the role in ADPKD of ferroptosis, a recently discovered form of cell death mediated by iron and lipid metabolism, remains elusive. METHODS To determine a pathophysiologic role of ferroptosis in ADPKD, we investigated whether the absence of Pkd1 (encoding polycystin-1) affected the expression of key factors involved in the process of ferroptosis, using Western blot and qRT-PCR analysis in Pkd1 mutant renal cells and tissues. We also examined whether treatment with erastin, a ferroptosis inducer, and ferrostain-1, a ferroptosis inhibitor, affected cyst growth in Pkd1 mutant mouse models. RESULTS We found that kidney cells and tissues lacking Pkd1 exhibit extensive metabolic abnormalities, including reduced expression of the system Xc- amino acid antiporter (critical for import of cystine), of iron exporter (ferroportin), and of GPX4 (a key and negative regulator of ferroptosis). The abnormalities also include increased expression of iron importers (TfR1, DMT1) and HO-1, which in turn result in high iron levels, low GSH and GPX4 activity, increased lipid peroxidation, and propensity to ferroptosis. We further found that erastin increased, and ferrostatin-1 inhibited ferroptotic cell death and proliferation of Pkd1-deficient cells in kidneys from Pkd1 mutant mice. A lipid peroxidation product increased in Pkd1-deficient cells, 4HNE, promoted the proliferation of survived Pkd1 mutant cells via activation of Akt, S6, Stat3, and Rb during the ferroptotic process, contributing to cyst growth. CONCLUSION These findings indicate that ferroptosis contributes to ADPKD progression and management of ferroptosis may be a novel strategy for ADPKD treatment.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Linda Xiaoyan Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Hao Ding
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | | | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
7
|
Usman TO, Olatunji LA. Late gestational testosterone exposure causes glucose deregulation and elevated cardiac VCAM-1 and DPP-4 activity in rats. Arch Physiol Biochem 2021; 127:445-452. [PMID: 31387411 DOI: 10.1080/13813455.2019.1650068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Abstract
CONTEXT Increased vascular cell adhesion molecule-1 (VCAM-1) has been reported to be a critical link between obesity and atherosclerotic cardiovascular diseases while dipeptidyl peptidase-4 (DPP-4) has been implicated in the development of disrupted glucose regulation and inflammation. OBJECTIVE This study aimed to investigate the effect of gestational testosterone exposure on glucose metabolism, atherogenic dyslipidemia, as well as circulating and cardiac VCAM-1, oxidative stress biomarkers and DPP-4 activity in pregnant rats. METHODS Pregnant Wistar rats received either vehicle or testosterone (0.5 mg/kg; sc) between gestational days 14 and 19. RESULTS Gestational testosterone exposure caused impaired glucose homeostasis that was accompanied with atherogenic dyslipidemia, elevated circulating and cardiac levels of VCAM-1, uric acid, malondialdehyde as well as increased DPP-4 activity. However, nitric oxide levels were decreased. CONCLUSION This study shows that gestational testosterone exposure causes glucose deregulation and atherogenic dyslipidemia that is accompanied by increased circulating and cardiac VCAM-1 and DPP-4 activity.
Collapse
Affiliation(s)
- Taofeek O Usman
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
- Cardiovascular Unit, Department of Physiology, College of Health sciences, Osun State University, Osogbo, Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
8
|
Radyk MD, Spatz LB, Peña BL, Brown JW, Burclaff J, Cho CJ, Kefalov Y, Shih C, Fitzpatrick JAJ, Mills JC. ATF3 induces RAB7 to govern autodegradation in paligenosis, a conserved cell plasticity program. EMBO Rep 2021; 22:e51806. [PMID: 34309175 PMCID: PMC8419698 DOI: 10.15252/embr.202051806] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 06/04/2021] [Accepted: 06/18/2021] [Indexed: 12/20/2022] Open
Abstract
Differentiated cells across multiple species and organs can re-enter the cell cycle to aid in injury-induced tissue regeneration by a cellular program called paligenosis. Here, we show that activating transcription factor 3 (ATF3) is induced early during paligenosis in multiple cellular contexts, transcriptionally activating the lysosomal trafficking gene Rab7b. ATF3 and RAB7B are upregulated in gastric and pancreatic digestive-enzyme-secreting cells at the onset of paligenosis Stage 1, when cells massively induce autophagic and lysosomal machinery to dismantle differentiated cell morphological features. Their expression later ebbs before cells enter mitosis during Stage 3. Atf3-/- mice fail to induce RAB7-positive autophagic and lysosomal vesicles, eventually causing increased death of cells en route to Stage 3. Finally, we observe that ATF3 is expressed in human gastric metaplasia and during paligenotic injury across multiple other organs and species. Thus, our findings indicate ATF3 is an evolutionarily conserved gene orchestrating the early paligenotic autodegradative events that must occur before cells are poised to proliferate and contribute to tissue repair.
Collapse
Affiliation(s)
- Megan D Radyk
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Lillian B Spatz
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Bianca L Peña
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Jeffrey W Brown
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Joseph Burclaff
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Charles J Cho
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Yan Kefalov
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - Chien‐Cheng Shih
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
| | - James AJ Fitzpatrick
- Washington University Center for Cellular ImagingWashington University School of MedicineSt. LouisMOUSA
- Departments of Neuroscience and Cell Biology & PhysiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Biomedical EngineeringWashington University in St. LouisSt. LouisMOUSA
| | - Jason C Mills
- Division of GastroenterologyDepartment of MedicineWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisMOUSA
- Present address:
Section of Gastroenterology and HepatologyDepartments of Medicine and PathologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
9
|
Nagahara R, Matono T, Sugihara T, Matsuki Y, Yamane M, Okamoto T, Miyoshi K, Nagahara T, Okano JI, Koda M, Isomoto H. Gene Expression Analysis of the Activating Factor 3/Nuclear Protein 1 Axis in a Non-alcoholic Steatohepatitis Mouse Model. Yonago Acta Med 2019. [PMID: 30962743 DOI: 10.33160/yam.2019.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Nonalcoholic fatty liver disease/steatohepatitis (NAFLD/NASH) is a chronic liver disease related to metabolic syndrome that can progress to liver cirrhosis. The involvement of the endoplasmic reticulum (ER) stress response in NAFLD progression and the roles played by activating factor 3 (ATF3) and the downstream nuclear protein 1 (NUPR1) are poorly understood. The aim of this study was to determine the gene expression profiles around the ATF3/NUPR1 axis in relation to the development of NAFLD using novel mouse models. Methods Fatty liver Shionogi (FLS) mice (n = 12) as a NAFLD model and FLS-ob/ob mice (n = 28) as a NASH model were fed a standard diet. The FLS mice were sacrificed at 24 weeks of age as a control, whereas the FLS-ob/ob mice were sacrificed at 24, 36, and 48 weeks of age. Hepatic steatosis, inflammation, and fibrosis were evaluated by biochemical, histological, and gene expression analyses. The expression levels of the ER-stress related genes Jun proto-oncogene (C-jun), Atf3, Nupr1, and C/EBP homologous protein (Chop) were measured in liver tissue. Apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Results Control mice demonstrated hepatic steatosis alone without apparent fibrosis. On the other hand, FLS-ob/ob mice showed severe steatohepatitis at both 24 and 36 weeks of age and severe fibrosis at both 36 and 48 weeks of age. The expression levels of Atf3, Nupr-1, and C-jun significantly increased from 24 to 48 weeks of age in FLS-ob/ob mice compared with control mice. The expression level of Chop was already high in FLS mice and maintained similar levels in FLS-ob/ob mice; the expression level was consistent with the percentage of TUNEL-positive cells. Conclusion The ATF3/NUPR1 axis plays a pivotal role in NASH progression in association with C-jun and Chop and appears to induce apoptosis from early steatosis in the NASH model mice.
Collapse
Affiliation(s)
- Ran Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Tomomitsu Matono
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Yukako Matsuki
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masafumi Yamane
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Toshiaki Okamoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Kenichi Miyoshi
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Takakazu Nagahara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Jun-Ichi Okano
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Masahiko Koda
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, School of Medicine, Tottori University Faculty of Medicine, Yonago 683-8504, Japan
| |
Collapse
|
10
|
Rohini M, Haritha Menon A, Selvamurugan N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol 2018; 120:310-317. [PMID: 30144543 DOI: 10.1016/j.ijbiomac.2018.08.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Activating transcription factor 3 (ATF3) is a stress-responsive factor that belongs to the activator protein 1 (AP-1) family of transcription factors. ATF3 expression is stimulated by various factors such as hypoxia, cytokines, and chemotherapeutic and DNA damaging agents. Upon stimulation, ATF3 can form homodimers or heterodimers with other members of the AP-1 family to repress or activate transcription. Under physiological conditions, ATF3 expression is transient and plays a pivotal role in controlling the expression of cell-cycle regulators and tumor suppressor, DNA repair, and apoptosis genes. However, under pathological conditions such as those during breast cancer, a sustained and prolonged expression of ATF3 has been observed. In this review, the structure and function of ATF3, its posttranslational modifications (PTM), and its interacting proteins are discussed with a special emphasis on breast cancer metastasis.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
11
|
Activating transcription factor 3 in cardiovascular diseases: a potential therapeutic target. Basic Res Cardiol 2018; 113:37. [PMID: 30094473 DOI: 10.1007/s00395-018-0698-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) are the primary causes of death worldwide. Among the numerous signaling molecules involved in CVDs, transcriptional factors directly influence gene expression and play a critical role in regulating cell function and the development of diseases. Activating transcription factor (ATF) 3 is an adaptive-response gene in the ATF/cAMP responsive element-binding (CREB) protein family of transcription factors that acts as either a repressor or an activator of transcription via the formation of homodimers or heterodimers with other ATF/CREB members. A appropriate ATF3 expression is important for the normal physiology of cells, and dysfunction of ATF3 is associated with various pathophysiological responses such as inflammation, apoptosis, oxidative stress and endoplasmic reticulum stress, and diseases, including CVDs. This review focuses on the role of ATF3 in cardiac hypertrophy, heart failure, atherosclerosis, ischemic heart diseases, hypertension and diabetes mellitus to provide a novel therapeutic target for CVDs.
Collapse
|
12
|
Bai WJ, Jin PJ, Kuang MQ, Wei QW, Shi FX, Davis JS, Mao DG. Temporal regulation of extracellular signal-regulated kinase 1/2 phosphorylation, heat shock protein 70 and activating transcription factor 3 during prostaglandin F-induced luteal regression in pseudopregnant rats following heat stress. Reprod Fertil Dev 2018; 29:1184-1193. [PMID: 27169499 DOI: 10.1071/rd15415] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/17/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of the present study was to investigate the effects of heat stress on heat shock protein (HSP) 70 expression and mitogen-activated protein kinase (MAPK) and protein kinase (PK) B signalling during prostaglandin F (PGF)-induced luteal regression. During pseudopregnancy, rats were exposed to heat stress (HS, 40°C, 2h) for 7 days and treated with PGF or physiological saline on Day 7; serum and ovaries were collected 0, 1, 2, 8 or 24h after PGF treatment. The early inhibitory effect of PGF on progesterone was reduced in HS rats. HSP70 expression in response to PGF was significantly enhanced in HS rats. PGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly greater in the HS group; however, HS rats exhibited elevated basal levels of phosphorylation of p38 MAPK, but not ERK1/2. PGF treatment increased expression of activating transcription factor (ATF) 3 at 2h, which was inhibited by heat stress. Evaluating PKB signalling revealed that phosphorylation of p-Akt (Thr308 and Ser473) was reduced at 8 and 24h after PGF treatment in both non-heat stress (NHS) and HS groups, but there were no significant differences between the HS and NHS groups at any of the time points. In conclusion, the present study provides further evidence that heat stress may enhance HSP70 and affect ERK1/2 and ATF3 expression, but not Akt activation, during PGF-induced luteal regression in pseudopregnant rats.
Collapse
Affiliation(s)
- Wu-Jiao Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Peng-Jing Jin
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Mei-Qian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Quan-Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fang-Xiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Da-Gan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
13
|
Inoue M, Uchida Y, Edagawa M, Hirata M, Mitamura J, Miyamoto D, Taketani K, Sekine S, Kawauchi J, Kitajima S. The stress response gene ATF3 is a direct target of the Wnt/β-catenin pathway and inhibits the invasion and migration of HCT116 human colorectal cancer cells. PLoS One 2018; 13:e0194160. [PMID: 29966001 PMCID: PMC6028230 DOI: 10.1371/journal.pone.0194160] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Aberrant Wnt/β-catenin signaling is implicated in tumorigenesis and the progression of human colorectal cancers, and mutations in the components of the Wnt/β-catenin signaling pathway are observed in the majority of patients. Therefore, extensive studies on the Wnt signaling pathway and its target genes are crucial to understand the molecular events of tumorigenesis and develop an efficacious therapy. In this study, we showed that the stress response gene ATF3 is transcriptionally activated by the binding of β-catenin and TCF4 to the redundant TCF4 site at the proximal promoter region of the ATF3 gene, indicating that ATF3 is a direct target of the Wnt/β-catenin pathway. The loss of function or overexpression studies showed that ATF3 inhibited the migration or invasion of HCT116 cells. The expression of some MMP and TIMP genes and the ratio of MMP2/9 to TIMP3/4 mRNAs was differentially regulated by ATF3. Therefore, though ATF3 is activated downstream of the Wnt/β-catenin pathway, it acts as a negative regulator of the migration and invasion of HCT116 human colon cancer cells exhibiting aberrant Wnt/β-catenin activity. ATF3 is a candidate biomarker and target for human colorectal cancer treatment and prevention.
Collapse
Affiliation(s)
- Makoto Inoue
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yohei Uchida
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Edagawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Manabu Hirata
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Mitamura
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Daiki Miyamoto
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Taketani
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Surgery and Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigeki Sekine
- Pathology Division, National Cancer Center Research Institute, Tokyo, Japan
| | - Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetaka Kitajima
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
14
|
Zhang Y, Wang M, Dong H, Yu X, Zhang J. Anti-hypoglycemic and hepatocyte-protective effects of hyperoside from Zanthoxylum bungeanum leaves in mice with high-carbohydrate/high-fat diet and alloxan-induced diabetes. Int J Mol Med 2017; 41:77-86. [PMID: 29115390 PMCID: PMC5746319 DOI: 10.3892/ijmm.2017.3211] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The development of diabetes mellitus (DM) is accompanied by hyperglycemia-induced oxidative stress. Hyperoside is a major bioactive component in Zanthoxylum bungeanum leaves (HZL) and is a natural antioxidant. However, the effects of HZL on DM and its mechanisms of action remain undefined. The present study evaluated the anti-hypoglycemic and hepatocyte-protective effects of HZL in mice with diabetes induced by a high-carbohydrate/high-fat diet (HFD) and alloxan. We also aimed to eludicate the underlying mechanisms. Our resutls demonstrated that the administration of HZL significantly reduced body weight gain, serum glucose levels and insulin levels in diabetic mice compared with the vehicle-treated mice. In addition, the levels of dyslipidemia markers including total cholesterol, triglyceride and low-density lipoprotein cholesterol in the HFD-treated mice were markedly decreased. Further experiments using hepatocytes from mice revealed that HZL significantly attenuated liver injury associated with DM compared with vehicle treatment, as evidenced by lower levels of alanine aminotransferase and aspartate aminotransferase in serum and by lower levels of lipid peroxidation, nitric oxide content and inducible nitric oxide synthase activity in liver tissues. Nuclear factor-κB (NF-κB) and mitogen-associated protein kinase (MAPK) signaling pathways were investigated to elucidate the molecular mechanisms responsible for the protective effects of HZL against diabetic liver injury. The results indicated that HZL inhibited the phosphorylation of p65/NF-κB, MAPK (including p38, JNK and ERK1/2) and activating transcription factor 3 protein expression, with an additional suppression of Bax, cytochrome c, caspase-9 and caspase-3 in the liver tissues of diabetic mice. Taken together, our findings suggest that HZL, which was effective in inhibiting oxidative stress-related pathways may be beneficial for use in the treatment of DM.
Collapse
Affiliation(s)
- Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Mimi Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Huanhuan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xiaomin Yu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Jingfang Zhang
- College of Forestry, Northwest A&F University, Xianyang, Shaanxi 712100, P.R. China
| |
Collapse
|
15
|
Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC, Rutkowsky JM. Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress. Am J Physiol Cell Physiol 2017; 312:C500-C516. [PMID: 28077357 DOI: 10.1152/ajpcell.00120.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 12/19/2022]
Abstract
Elevation of blood triglycerides, primarily as triglyceride-rich lipoproteins (TGRL), has been linked to cerebrovascular inflammation, vascular dementia, and Alzheimer's disease (AD). Brain microvascular endothelial cells and astrocytes, two cell components of the neurovascular unit, participate in controlling blood-brain barrier (BBB) permeability and regulating neurovascular unit homeostasis. Our studies showed that infusion of high physiological concentrations of TGRL lipolysis products (TGRL + lipoprotein lipase) activate and injure brain endothelial cells and transiently increase the BBB transfer coefficient (Ki = permeability × surface area/volume) in vivo. However, little is known about how blood lipids affect astrocyte lipid accumulation and inflammation. To address this, we first demonstrated TGRL lipolysis products increased lipid droplet formation in cultured normal human astrocytes. We then evaluated the transcriptional pathways activated in astrocytes by TGRL lipolysis products and found upregulated stress and inflammatory-related genes including activating transcription factor 3 (ATF3), macrophage inflammatory protein-3α (MIP-3α), growth differentiation factor-15 (GDF15), and prostaglandin-endoperoxide synthase 2 (COX2). TGRL lipolysis products also activated the JNK/cJUN/ATF3 pathway, induced endoplasmic reticulum stress protein C/EBP homologous protein (CHOP), and the NF-κB pathway, while increasing secretion of MIP-3α, GDF15, and IL-8. Thus our results demonstrate TGRL lipolysis products increase the BBB transfer coefficient (Ki), induce astrocyte lipid droplet formation, activate cell stress pathways, and induce secretion of inflammatory cytokines. Our observations are consistent with evidence for lipid-induced neurovascular injury and inflammation, and we, therefore, speculate that lipid-induced astrocyte injury could play a role in cognitive decline.
Collapse
Affiliation(s)
- Linda L Lee
- Department of Internal Medicine, University of California, Davis, California
| | - Hnin H Aung
- Department of Internal Medicine, University of California, Davis, California
| | - Dennis W Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California; and
| | - Steven E Anderson
- Department of Physiology and Membrane Biology, University of California, Davis, California
| | - John C Rutledge
- Department of Internal Medicine, University of California, Davis, California
| | | |
Collapse
|
16
|
Esakky P, Moley KH. Paternal smoking and germ cell death: A mechanistic link to the effects of cigarette smoke on spermatogenesis and possible long-term sequelae in offspring. Mol Cell Endocrinol 2016; 435:85-93. [PMID: 27424142 PMCID: PMC5014701 DOI: 10.1016/j.mce.2016.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 12/12/2022]
Abstract
Paternal exposure to constituents of cigarette smoke (CS) is reportedly associated with infertility, birth defects and childhood cancers even though the mechanism behind this relationship is still unclear. Chronic cigarette smoking by men leads to poor sperm quality and quantity mainly through oxidative stress and also direct assault by CS metabolites. Among several carcinogenic and teratogenic components of cigarette smoke condensate (CSC), polycyclic aromatic hydrocarbons (PAHs) display a preeminent role in accelerating germ cell death via the cytoplasmic transcription factor, aryl hydrocarbon receptor (AHR) that is present across all stages of spermatogenesis. Activation of AHR by growth factors though benefits normal cellular functions, its mediation by CSC in a spermatocyte cell line [Gc2(spd)ts] adversely affects the expression of a battery of genes associated with antioxidant mechanisms, cell proliferation and apoptosis, and cell cycle progress. Besides, the CSC-mediated cross talk either between AHR and NRF2 or AHR-NRF2 and MAPKs pathways inhibits normal proliferation of the spermatogenic GC-2spd(ts) cells in vitro and cell death of spermatocytes in vivo. Pharmacological inactivation of CSC-induced AHR but not its genetic manipulation seems preventing DNA and cell membrane damage in Gc2(spd)ts. Data from recent reports suggest that the cigarette smoke affects both the genomic and epigenomic components of the sperm and attributes any associated changes to developmental defects in the offspring. Thus, the studies discussed here in this review shed light on possible mechanistic factors that could probably be responsible for the paternally mediated birth defects in the offspring following exposure to the toxic constituents of cigarette smoke.
Collapse
Affiliation(s)
- Prabagaran Esakky
- Research, Department of Veterans Affairs Medical Center, St. Louis, MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, MO 63110, USA.
| | - Kelle H Moley
- Research, Department of Veterans Affairs Medical Center, St. Louis, MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, MO 63110, USA.
| |
Collapse
|
17
|
Aung HH, Altman R, Nyunt T, Kim J, Nuthikattu S, Budamagunta M, Voss JC, Wilson D, Rutledge JC, Villablanca AC. Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways. J Lipid Res 2016; 57:955-68. [PMID: 27087439 DOI: 10.1194/jlr.m061853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Indexed: 01/10/2023] Open
Abstract
Dysfunction of the cerebrovasculature plays an important role in vascular cognitive impairment (VCI). Lipotoxic injury of the systemic endothelium in response to hydrolyzed triglyceride-rich lipoproteins (TGRLs; TGRL lipolysis products) or a high-fat Western diet (WD) suggests similar mechanisms may be present in brain microvascular endothelium. We investigated the hypothesis that TGRL lipolysis products cause lipotoxic injury to brain microvascular endothelium by generating increased mitochondrial superoxide radical generation, upregulation of activating transcription factor 3 (ATF3)-dependent inflammatory pathways, and activation of cellular oxidative stress and apoptotic pathways. Human brain microvascular endothelial cells were treated with human TGRL lipolysis products that induced intracellular lipid droplet formation, mitochondrial superoxide generation, ATF3-dependent transcription of proinflammatory, stress response, and oxidative stress genes, as well as activation of proapoptotic cascades. Male apoE knockout mice were fed a high-fat/high-cholesterol WD for 2 months, and brain microvessels were isolated by laser capture microdissection. ATF3 gene transcription was elevated 8-fold in the hippocampus and cerebellar brain region of the WD-fed animals compared with chow-fed control animals. The microvascular injury phenotypes observed in vitro and in vivo were similar. ATF3 plays an important role in mediating brain microvascular responses to acute and chronic lipotoxic injury and may be an important preventative and therapeutic target for endothelial dysfunction in VCI.
Collapse
Affiliation(s)
- Hnin Hnin Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| | - Robin Altman
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| | - Tun Nyunt
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| | - Jeffrey Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| | | | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, School of Medicine
| | - John C Voss
- Department of Biochemistry and Molecular Medicine, School of Medicine
| | - Dennis Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - John C Rutledge
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| | - Amparo C Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine School of Medicine
| |
Collapse
|
18
|
Eiselein L, Nyunt T, Lamé MW, Ng KF, Wilson DW, Rutledge JC, Aung HH. TGRL Lipolysis Products Induce Stress Protein ATF3 via the TGF-β Receptor Pathway in Human Aortic Endothelial Cells. PLoS One 2015; 10:e0145523. [PMID: 26709509 PMCID: PMC4699200 DOI: 10.1371/journal.pone.0145523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/05/2015] [Indexed: 01/24/2023] Open
Abstract
Studies have suggested a link between the transforming growth factor beta 1 (TGF-β1) signaling cascade and the stress-inducible activating transcription factor 3 (ATF3). We have demonstrated that triglyceride-rich lipoproteins (TGRL) lipolysis products activate MAP kinase stress associated JNK/c-Jun pathways resulting in up-regulation of ATF3, pro-inflammatory genes and induction of apoptosis in human aortic endothelial cells. Here we demonstrate increased release of active TGF-β at 15 min, phosphorylation of Smad2 and translocation of co-Smad4 from cytosol to nucleus after a 1.5 h treatment with lipolysis products. Activation and translocation of Smad2 and 4 was blocked by addition of SB431542 (10 μM), a specific inhibitor of TGF-β-activin receptor ALKs 4, 5, 7. Both ALK receptor inhibition and anti TGF-β1 antibody prevented lipolysis product induced up-regulation of ATF3 mRNA and protein. ALK inhibition prevented lipolysis product-induced nuclear accumulation of ATF3. ALKs 4, 5, 7 inhibition also prevented phosphorylation of c-Jun and TGRL lipolysis product-induced p53 and caspase-3 protein expression. These findings demonstrate that TGRL lipolysis products cause release of active TGF-β and lipolysis product-induced apoptosis is dependent on TGF-β signaling. Furthermore, signaling through the stress associated JNK/c-Jun pathway is dependent on TGF-β signaling suggesting that TGF-β signaling is necessary for nuclear accumulation of the ATF3/cJun transcription complex and induction of pro-inflammatory responses.
Collapse
Affiliation(s)
- Larissa Eiselein
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Tun Nyunt
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Michael W. Lamé
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Kit F. Ng
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Dennis W. Wilson
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - John C. Rutledge
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
| | - Hnin H. Aung
- Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, United States of America
- * E-mail:
| |
Collapse
|
19
|
Guo N, Meng C, Bai W, Wei Q, Shi F, Davis JS, Mao D. Prostaglandin F2α induces expression of activating transcription factor 3 (ATF3) and activates MAPK signaling in the rat corpus luteum. Acta Histochem 2015; 117:211-8. [PMID: 25614048 DOI: 10.1016/j.acthis.2014.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 12/24/2014] [Accepted: 12/29/2014] [Indexed: 12/11/2022]
Abstract
The current study was conducted to evaluate the expression of ATF3, in association with the activation of mitogen-activated protein kinases (MAPK) during prostaglandin F2α analog (PGF)-induced luteal regression in rats. A sequential PMSG/hCG treatment paradigm was used to obtain a single, well-defined generation of corpora lutea (CL) in rats. Rats were treated with PGF for 0-4h on day 7 of pseudopregnancy. Results showed that serum progesterone (P4) concentrations declined in a time dependent manner. Western blot results revealed that ATF3 increased within 2h post-PGF injection. Phosphorylated ERK1/2 (p-ERK) and JNK (p-JNK) increased within 30min and then were gradually reduced in response to PGF. In contrast, the levels of phosphorylated p38 MAPK (p-p38) were not significantly altered. The immunostaining density for p-ERK decreased from the periphery to the center of the corpus luteum following treatment with PGF, while ATF3 was expressed uniformly in the nuclei of luteal steroidogenic cells. These results indicated that treatment with PGF in vivo could induce increases in MAPK phosphorylation, especially in p-ERK, which might be correlated with the increases in ATF3 expression and the decline in P4 concentrations. To our knowledge, this is the first study to provide evidence for temporal relationships between MAPK activation and ATF3 expression during PGF-induced luteal regression in the rat.
Collapse
Affiliation(s)
- Nannan Guo
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Chenling Meng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wujiao Bai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - John S Davis
- VA Nebraska-Western Iowa Health Care System and Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dagan Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
20
|
Zeng Z, Inoue K, Sun H, Leng T, Feng X, Zhu L, Xiong ZG. TRPM7 regulates vascular endothelial cell adhesion and tube formation. Am J Physiol Cell Physiol 2014; 308:C308-18. [PMID: 25472964 DOI: 10.1152/ajpcell.00275.2013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a nonselective cation channel with an α-kinase domain in its COOH terminal, known to play a role in diverse physiological and pathological processes such as Mg2+ homeostasis, cell proliferation, and hypoxic neuronal injury. Increasing evidence suggests that TRPM7 contributes to the physiology/pathology of vascular systems. For example, we recently demonstrated that silencing TRPM7 promotes growth and proliferation and protects against hyperglycemia-induced injury in human umbilical vein endothelial cells (HUVECs). Here we investigated the potential effects of TRPM7 on morphology, adhesion, migration, and tube formation of vascular endothelial cells and the potential underlying mechanism. We showed that inhibition of TRPM7 function in HUVECs by silencing TRPM7 decreases the density of TRPM7-like current and cell surface area and inhibits cell adhesion to Matrigel. Silencing TRPM7 also promotes cell migration, wound healing, and tube formation. Further studies showed that the extracellular signal-regulated kinase (ERK) pathway is involved in the change of cell morphology and the increase in HUVEC migration induced by TRPM7 silencing. We also demonstrated that silencing TRPM7 enhances the phosphorylation of myosin light chain (MLC) in HUVECs, which might be involved in the enhancement of cell contractility and motility. Collectively, our data suggest that the TRPM7 channel negatively regulates the function of vascular endothelial cells. Further studies on the underlying mechanism may facilitate the development of the TRPM7 channel as a target for the therapeutic intervention of vascular diseases.
Collapse
Affiliation(s)
- Zhao Zeng
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China; and Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Huawei Sun
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Xuechao Feng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| | - Li Zhu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Ministry of Health Key Laboratory of Thrombosis and Hemostasis, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China; and
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia
| |
Collapse
|
21
|
Mackesy DZ, Goalstone ML. Extracellular signal-regulated kinase-5: Novel mediator of insulin and tumor necrosis factor α-stimulated vascular cell adhesion molecule-1 expression in vascular cells. J Diabetes 2014; 6:595-602. [PMID: 24460840 DOI: 10.1111/1753-0407.12132] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 12/18/2013] [Accepted: 01/21/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Atherosclerosis may be stimulated by the increased presence of insulin and tumor necrosis-factor-α (TNFα) with subsequent expression of vascular cell adhesion molecule-1 (VCAM-1). We hypothesized that extracellular signal-regulated kinase-5 (ERK5) plays an important role in insulin and TNFα-stimulated total and cell surface VCAM-1 expression. METHODS Rat aorta vascular endothelial cells were first transfected with either no inhibitory RNA, inactive (scrambled) inhibitory ERK5 RNA (scERK5) or active inhibitory ERK5 RNA (siERK5) and then treated with either (i) no analog; (ii) insulin (1 nM), or TNFα (1 ng/mL) alone, or (iii) insulin plus TNFα for 6 h. Thereafter either total VCAM-1 protein or surface VCAM-1 protein was determined. RESULTS Genetic inhibition of ERK5 decreased TNFα-stimulated total VCAM-1 expression by 57% and surface expression by 27%. In contrast, genetic inhibition of ERK5 did not significantly decrease insulin-stimulated total or surface VCAM-1 expression. Interestingly, genetic inhibition of ERK5 did not significantly decrease insulin plus TNFα-stimulated total VCAM-1 expression, but significantly (P < 0.05) decreased insulin plus TNFα-stimulated surface VCAM-1 expression 41%. CONCLUSIONS We report here that ERK5 plays a minor role in insulin-stimulation of VCAM-1, but plays a significant role in TNFα-stimulation of both total and cell surface VCAM-1 protein expression. Taken together, these results demonstrate that not only does ERK5 have differential mediation of insulin and TNFα-stimulated VCAM-1 expression, but also has differential regulation of insulin plus TNFα-stimulated total and surface VCAM-1 expression, suggesting that other intermediates of the insulin and TNFα intracellular pathways are contributing to atherogenesis.
Collapse
Affiliation(s)
- Daniel Z Mackesy
- Research Department, Eastern Colorado Health Care System, Denver, Colorado, USA
| | | |
Collapse
|
22
|
Koivisto E, Jurado Acosta A, Moilanen AM, Tokola H, Aro J, Pennanen H, Säkkinen H, Kaikkonen L, Ruskoaho H, Rysä J. Characterization of the regulatory mechanisms of activating transcription factor 3 by hypertrophic stimuli in rat cardiomyocytes. PLoS One 2014; 9:e105168. [PMID: 25136830 PMCID: PMC4138181 DOI: 10.1371/journal.pone.0105168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/18/2014] [Indexed: 01/08/2023] Open
Abstract
Aims Activating transcription factor 3 (ATF3) is a stress-activated immediate early gene suggested to have both detrimental and cardioprotective role in the heart. Here we studied the mechanisms of ATF3 activation by hypertrophic stimuli and ATF3 downstream targets in rat cardiomyocytes. Methods and Results When neonatal rat cardiomyocytes were exposed to endothelin-1 (ET-1, 100 nM) and mechanical stretching in vitro, maximal increase in ATF3 expression occurred at 1 hour. Inhibition of extracellular signal-regulated kinase (ERK) by PD98059 decreased ET-1– and stretch–induced increase of ATF3 protein but not ATF3 mRNA levels, whereas protein kinase A (PKA) inhibitor H89 attenuated both ATF3 mRNA transcription and protein expression in response to ET-1 and stretch. To characterize further the regulatory mechanisms upstream of ATF3, p38 mitogen-activated protein kinase (MAPK) signaling was investigated using a gain-of-function approach. Adenoviral overexpression of p38α, but not p38β, increased ATF3 mRNA and protein levels as well as DNA binding activity. To investigate the role of ATF3 in hypertrophic process, we overexpressed ATF3 by adenovirus-mediated gene transfer. In vitro, ATF3 gene delivery attenuated the mRNA transcription of interleukin-6 (IL-6) and plasminogen activator inhibitor-1 (PAI-1), and enhanced nuclear factor-κB (NF-κB) and Nkx-2.5 DNA binding activities. Reduced PAI-1 expression was also detected in vivo in adult rat heart by direct intramyocardial adenovirus-mediated ATF3 gene delivery. Conclusions These data demonstrate that ATF3 activation by ET-1 and mechanical stretch is partly mediated through ERK and cAMP-PKA pathways, whereas p38 MAPK pathway is involved in ATF3 activation exclusively through p38α isoform. ATF3 activation caused induction of modulators of the inflammatory response NF-κB and Nkx-2.5, as well as attenuation of pro-fibrotic and pro-inflammatory proteins IL-6 and PAI-1, suggesting cardioprotective role for ATF3 in the heart.
Collapse
Affiliation(s)
- Elina Koivisto
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Alicia Jurado Acosta
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Anne-Mari Moilanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Heikki Tokola
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Department of Pathology, Institute of Diagnostics, University of Oulu, Oulu, Finland
| | - Jani Aro
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Harri Pennanen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Hanna Säkkinen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Leena Kaikkonen
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Jaana Rysä
- Department of Pharmacology and Toxicology, Institute of Biomedicine, University of Oulu, Oulu, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
23
|
Aung HH, Tsoukalas A, Rutledge JC, Tagkopoulos I. A systems biology analysis of brain microvascular endothelial cell lipotoxicity. BMC SYSTEMS BIOLOGY 2014; 8:80. [PMID: 24993133 PMCID: PMC4112729 DOI: 10.1186/1752-0509-8-80] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/23/2014] [Indexed: 02/08/2023]
Abstract
Background Neurovascular inflammation is associated with a number of neurological diseases including vascular dementia and Alzheimer’s disease, which are increasingly important causes of morbidity and mortality around the world. Lipotoxicity is a metabolic disorder that results from accumulation of lipids, particularly fatty acids, in non-adipose tissue leading to cellular dysfunction, lipid droplet formation, and cell death. Results Our studies indicate for the first time that the neurovascular circulation also can manifest lipotoxicity, which could have major effects on cognitive function. The penetration of integrative systems biology approaches is limited in this area of research, which reduces our capacity to gain an objective insight into the signal transduction and regulation dynamics at a systems level. To address this question, we treated human microvascular endothelial cells with triglyceride-rich lipoprotein (TGRL) lipolysis products and then we used genome-wide transcriptional profiling to obtain transcript abundances over four conditions. We then identified regulatory genes and their targets that have been differentially expressed through analysis of the datasets with various statistical methods. We created a functional gene network by exploiting co-expression observations through a guilt-by-association assumption. Concomitantly, we used various network inference algorithms to identify putative regulatory interactions and we integrated all predictions to construct a consensus gene regulatory network that is TGRL lipolysis product specific. Conclusion System biology analysis has led to the validation of putative lipid-related targets and the discovery of several genes that may be implicated in lipotoxic-related brain microvascular endothelial cell responses. Here, we report that activating transcription factors 3 (ATF3) is a principal regulator of TGRL lipolysis products-induced gene expression in human brain microvascular endothelial cell.
Collapse
Affiliation(s)
| | | | | | - Ilias Tagkopoulos
- UC Davis Genome Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
24
|
Sun H, Leng T, Zeng Z, Gao X, Inoue K, Xiong ZG. Role of TRPM7 channels in hyperglycemia-mediated injury of vascular endothelial cells. PLoS One 2013; 8:e79540. [PMID: 24223965 PMCID: PMC3815131 DOI: 10.1371/journal.pone.0079540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/22/2013] [Indexed: 12/29/2022] Open
Abstract
This study investigated the change of transient receptor potential melastatin 7 (TRPM7) expression by high glucose and its role in hyperglycemia induced injury of vascular endothelial cells. Human umbilical vein endothelial cells (HUVECs) were incubated in the presence or absence of high concentrations of D-glucose (HG) for 72h. RT-PCR, Real-time PCR, Western blotting, Immunofluorescence staining and whole-cell patch-clamp recordings showed that TRPM7 mRNA, TRPM7 protein expression and TRPM7-like currents were increased in HUVECs following exposure to HG. In contrast to D-glucose, exposure of HUVECs to high concentrations of L-glucose had no effect. HG increased reactive oxygen species (ROS) generation, cytotoxicity and decreased endothelial nitric oxide synthase protein expression, which could be attenuated by knockdown of TRPM7 with TRPM7 siRNA. The protective effect of silencing TRPM7 against HG induced endothelial injury was abolished by U0126, an inhibitor of the extracellular signal-regulated kinase signaling pathway. These observations suggest that TRPM7 channels play an important role in hyperglycemia-induced injury of vascular endothelial cells.
Collapse
Affiliation(s)
- Huawei Sun
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Tiandong Leng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhao Zeng
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (XG); (ZGX)
| | - Koichi Inoue
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
| | - Zhi-Gang Xiong
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (XG); (ZGX)
| |
Collapse
|
25
|
Park EJ, Umh HN, Kim SW, Cho MH, Kim JH, Kim Y. ERK pathway is activated in bare-FeNPs-induced autophagy. Arch Toxicol 2013; 88:323-36. [PMID: 24068039 DOI: 10.1007/s00204-013-1134-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
Iron oxide nanoparticles (FeNPs) are known to be one of the most biocompatible and safe nanoparticles. However, their long-term persistence remains a problem, and macrophages play as an important mediator in continuous stimulation of the immune system due to biopersistence of nanoparticles. In the present study, we identified the mechanisms underlying the uptake and toxicity of bare-FeNPs using RAW264.7 cells, a mouse peritoneal macrophage cell line. The bare-FeNPs penetrated the cell membrane through electrostatic interactions together with the general phagocytic pathway. At 24 h after exposure, they distributed freely in the cytosol or within autophagosome-like vacuoles. Bare-FeNPs induced decrease in the cell viability along with the cell cycle arrest in G1 phase. In addition, they increased the generation of ROS and the secretion of NO and TNF alpha as well as the expression of SOD-1 and SOD-2 proteins, which are an antioxidant. While the mitochondrial calcium level, the intensity of labeled mitochondria, and ATP production decreased, the levels of autophagy-related proteins such as p62, beclin 1, ATG5, and LC3B increased in a dose-dependent manner together with the levels of ATF 3, p-EGFR, and p-ERK proteins. However, the level of p-JNK protein clearly decreased. TEM images also showed that damaged organelle exist within autophagosome-like vacuoles with bare-FeNPs. On the basis of these results, we suggest that bare-FeNPs induce autophagy by initiating oxidative stress in RAW264.7 cells. Furthermore, ERK, but not JNK, pathway is activated in bare-FeNPs-induced autophagy.
Collapse
Affiliation(s)
- Eun-Jung Park
- Department of Molecular Science and Technology, Ajou University, Suwon, 443-749, Korea,
| | | | | | | | | | | |
Collapse
|
26
|
Loram LC, Taylor FR, Strand KA, Maier SF, Speake JD, Jordan KG, James JW, Wene SP, Pritchard RC, Green H, Van Dyke K, Mazarov A, Letchworth SR, Watkins LR. Systemic administration of an alpha-7 nicotinic acetylcholine agonist reverses neuropathic pain in male Sprague Dawley rats. THE JOURNAL OF PAIN 2013. [PMID: 23182225 DOI: 10.1016/j.jpain.2012.08.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
UNLABELLED Alpha-7 nicotinic acetylcholine receptor (α7 nAChR) agonists attenuate pain and inflammation in preclinical models. This study tested whether systemic delivery of an α7 nAChR agonist attenuates neuropathic pain and associated immune-mediated pro-inflammation. Hind paw response thresholds to mechanical stimuli in male Sprague Dawley rats were assessed before and after sciatic chronic constriction injury (CCI) or sham surgery. Osmotic mini-pumps containing TC-7020, an α7 nAChR selective agonist, were implanted 10 to 14 days after surgery. TC-7020 (1, 3, and 10 mg/kg/d; s.c.) significantly attenuated CCI-induced allodynia, which lasted through 2 weeks of test compound administration. Spinal cords were collected after 2 weeks and processed for microglial and astrocyte activation markers within the ipsilateral L4-L6 dorsal horn. In addition, ipsilateral L4-5 dorsal root ganglia (DRGs) were processed for neuronal injury and satellite cell activation markers. CCI-induced central glial cell activation markers were not suppressed by TC-7020, even though TC-7020 is mildly blood-brain barrier permeable. However, TC-7020 downregulated the integrated density of activation transcription factor 3 (ATF3) but not the number of ATF positive cells. TC-7020 also downregulated phosphorylated extracellular signal kinase (p-ERK) and satellite cell activation in the CCI-affected DRGs. Therefore, systemic α7 nAChR agonist may be effective in treating neuropathic pain via reducing neuronal injury and immune cells activation occurring in the periphery. PERSPECTIVE These studies demonstrated that TC-7020, an alpha7 nicotinic acetylcholine receptor agonist with partial blood-brain barrier permeability, reversed neuropathic pain in rats, likely via attenuation of inflammation in the DRG and/or the site of sciatic injury.
Collapse
Affiliation(s)
- Lisa C Loram
- Department of Psychology & Neuroscience, and Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro 2013; 27:2213-24. [PMID: 23999411 DOI: 10.1016/j.tiv.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/18/2013] [Accepted: 08/22/2013] [Indexed: 11/21/2022]
Abstract
Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens.
Collapse
|
28
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
29
|
Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC. Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation. Arterioscler Thromb Vasc Biol 2013; 33:2088-96. [PMID: 23868936 DOI: 10.1161/atvbaha.113.301375] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Elevation of triglyceride-rich lipoproteins (TGRLs) contributes to the risk of atherosclerotic cardiovascular disease. Our work has shown that TGRL lipolysis products in high physiological to pathophysiological concentrations cause endothelial cell injury; however, the mechanisms remain to be delineated. APPROACH AND RESULTS We analyzed the transcriptional signaling networks in arterial endothelial cells exposed to TGRL lipolysis products. When human aortic endothelial cells in culture were exposed to TGRL lipolysis products, activating transcription factor 3 (ATF3) was identified as a principal response gene. Induction of ATF3 mRNA and protein was confirmed by quantitative reverse-transcription polymerase chain reaction and Western blot respectively. Immunofluorescence analysis showed that ATF3 accumulated in the nuclei of cells treated with lipolysis products. Nuclear expression of phosphorylated c-Jun N-terminal kinase (JNK), previously shown to be an initiator of the ATF3 signaling cascade, also was demonstrated. Small interfering RNA (siRNA)-mediated inhibition of ATF3 blocked lipolysis products-induced transcription of E-selectin and interleukin-8, but not interleukin-6 or nuclear factor-κB. c-Jun, a downstream protein in the JNK pathway, was phosphorylated, whereas expression of nuclear factor-κB-dependent JunB was downregulated. Additionally, JNK siRNA suppressed ATF3 and p-c-Jun protein expression, suggesting that JNK is upstream of the ATF3 signaling pathway. In vivo studies demonstrated that infusion of TGRL lipolysis products into wild-type mice induced nuclear ATF3 accumulation in carotid artery endothelium. ATF3(-/-) mice were resistant to vascular apoptosis precipitated by treatment with TGRL lipolysis products. Also peripheral blood monocytes isolated from postprandial humans had increased ATF3 expression as compared with fasting monocytes. CONCLUSIONS This study demonstrates that TGRL lipolysis products activate ATF3-JNK transcription factor networks and induce endothelial cells inflammatory response.
Collapse
Affiliation(s)
- Hnin H Aung
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
30
|
Gargiulo G, Cesaroni M, Serresi M, de Vries N, Hulsman D, Bruggeman SW, Lancini C, van Lohuizen M. In vivo RNAi screen for BMI1 targets identifies TGF-β/BMP-ER stress pathways as key regulators of neural- and malignant glioma-stem cell homeostasis. Cancer Cell 2013; 23:660-76. [PMID: 23680149 DOI: 10.1016/j.ccr.2013.03.030] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/10/2013] [Accepted: 03/29/2013] [Indexed: 01/26/2023]
Abstract
In mouse and human neural progenitor and glioblastoma "stem-like" cells, we identified key targets of the Polycomb-group protein BMI1 by combining ChIP-seq with in vivo RNAi screening. We discovered that Bmi1 is important in the cellular response to the transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) and endoplasmic reticulum (ER) stress pathways, in part converging on the Atf3 transcriptional repressor. We show that Atf3 is a tumor-suppressor gene inactivated in human glioblastoma multiforme together with Cbx7 and a few other candidates. Acting downstream of the ER stress and BMP pathways, ATF3 binds to cell-type-specific accessible chromatin preloaded with AP1 and participates in the inhibition of critical oncogenic networks. Our data support the feasibility of combining ChIP-seq and RNAi screens in solid tumors and highlight multiple p16(INK4a)/p19(ARF)-independent functions for Bmi1 in development and cancer.
Collapse
Affiliation(s)
- Gaetano Gargiulo
- Division of Molecular Genetics and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 1066CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu RM, Vayalil PK, Ballinger C, Dickinson DA, Huang WT, Wang S, Kavanagh TJ, Matthews QL, Postlethwait EM. Transforming growth factor β suppresses glutamate-cysteine ligase gene expression and induces oxidative stress in a lung fibrosis model. Free Radic Biol Med 2012; 53:554-63. [PMID: 22634145 PMCID: PMC3432394 DOI: 10.1016/j.freeradbiomed.2012.05.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/03/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023]
Abstract
The concentration of glutathione (GSH), the most abundant intracellular free thiol and an important antioxidant, is decreased in the lung in both fibrotic diseases and experimental fibrosis models. The underlying mechanisms and biological significance of GSH depletion, however, remain unclear. Transforming growth factor β (TGF-β) is the most potent and ubiquitous profibrogenic cytokine and its expression is increased in almost all fibrotic diseases. In this study, we show that increasing TGF-β1 expression in mouse lung to a level comparable to those found in lung fibrotic diseases by intranasal instillation of AdTGF-β1(223/225), an adenovirus expressing constitutively active TGF-β1, suppressed the expression of both catalytic and modifier subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in de novo GSH synthesis, decreased GSH concentration, and increased protein and lipid peroxidation in mouse lung. Furthermore, we show that increasing TGF-β1 expression activated JNK and induced activating transcription factor 3, a transcriptional repressor involved in the regulation of the catalytic subunit of GCL, in mouse lung. Control virus (AdDL70-3) had no significant effect on any of these parameters, compared to saline-treated control. Concurrent with GSH depletion, TGF-β1 induced lung epithelial apoptosis and robust pulmonary fibrosis. Importantly, lung GSH levels returned to normal, whereas fibrosis persisted at least 21 days after TGF-β1 instillation. Together, the data suggest that increased TGF-β1 expression may contribute to the GSH depletion observed in pulmonary fibrosis diseases and that GSH depletion may be an early event in, rather than a consequence of, fibrosis development.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mackesy DZ, Goalstone ML. Insulin augments tumor necrosis factor-alpha stimulated expression of vascular cell adhesion molecule-1 in vascular endothelial cells. JOURNAL OF INFLAMMATION-LONDON 2011; 8:34. [PMID: 22093181 PMCID: PMC3248376 DOI: 10.1186/1476-9255-8-34] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/17/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease that is marked by increased presence of Tumor Necrosis Factor-alpha (TNFα), increased expression of Vascular Cell Adhesion Molecule-1 (VCAM-1), increased presence of serum monocytes and activation of the canonical inflammatory molecule, Nuclear Factor Kappa-B (NFκB). Hyperinsulinemia is a hallmark of insulin resistance and may play a key role in this inflammatory process. METHODS Using Western blot analysis, immunocytochemistry, flow cytometry and biochemical inhibitors, we measured changes in VCAM-1 protein expression and NFκB translocation in vascular endothelial cells in the presence of TNFα and/or hyperinsulinemia and in the absence or presence of kinase pathway inhibitors. RESULTS We report that hyperinsulinemia augmented TNFα stimulated increases in VCAM-1 protein greater than seen with TNFα alone and decreased the time in which VCAM-1 translocated to the cell surface. We also observed that in the presence of Wortmannin, a biochemical inhibitor of phosphatidylinositol 3-kinase (a hallmark of insulin resistance), VCAM-1 expression was greater in the presence of TNFα plus insulin as compared to that seen with insulin or TNFα alone. Additionally, nuclear import of NFκB occurred sooner in the presence of insulin and TNFα together as compared to each alone, and in the presence of Wortmannin, nuclear import of NFκB was greater than that seen with insulin and TNFα alone. CONCLUSIONS hyperinsulinemia and insulin resistance appear to augment the inflammatory effects of TNFα on VCAM-1 expression and NFκB translocation, both of which are markers of inflammation in the vasculature.
Collapse
Affiliation(s)
- Daniel Z Mackesy
- Department of Research Service, Eastern Colorado Health Care System, 1055 Clermont Street, Denver, 80220, USA.
| | | |
Collapse
|
33
|
Activating transcription factor 3 deficiency promotes cardiac hypertrophy, dysfunction, and fibrosis induced by pressure overload. PLoS One 2011; 6:e26744. [PMID: 22053207 PMCID: PMC3203896 DOI: 10.1371/journal.pone.0026744] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 10/02/2011] [Indexed: 12/20/2022] Open
Abstract
Activating transcription factor 3 (ATF3), which is encoded by an adaptive-response gene induced by various stimuli, plays an important role in the cardiovascular system. However, the effect of ATF3 on cardiac hypertrophy induced by a pathological stimulus has not been determined. Here, we investigated the effects of ATF3 deficiency on cardiac hypertrophy using in vitro and in vivo models. Aortic banding (AB) was performed to induce cardiac hypertrophy in mice. Cardiac hypertrophy was estimated by echocardiographic and hemodynamic measurements and by pathological and molecular analysis. ATF3 deficiency promoted cardiac hypertrophy, dysfunction and fibrosis after 4 weeks of AB compared to the wild type (WT) mice. Furthermore, enhanced activation of the MEK-ERK1/2 and JNK pathways was found in ATF3-knockout (KO) mice compared to WT mice. In vitro studies performed in cultured neonatal mouse cardiomyocytes confirmed that ATF3 deficiency promotes cardiomyocyte hypertrophy induced by angiotensin II, which was associated with the amplification of MEK-ERK1/2 and JNK signaling. Our results suggested that ATF3 plays a crucial role in the development of cardiac hypertrophy via negative regulation of the MEK-ERK1/2 and JNK pathways.
Collapse
|
34
|
Konsavage WM, Zhang L, Wu Y, Shenberger JS. Hyperoxia-induced activation of the integrated stress response in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2011; 302:L27-35. [PMID: 21984568 DOI: 10.1152/ajplung.00174.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diverse environmental stresses stimulate eukaryotic translation initiation factor 2α (eIF2α) phosphorylation, leading to a stress-resistant state characterized by global attenuation of protein synthesis and induction of cytoprotective genes. The signal transduction network culminating in these effects is referred to as the integrated stress response (ISR) or, when initiated by misfolded proteins within the endoplasmic reticulum (ER), the unfolded protein response (UPR). Given that we previously reported that exposure of 4-day-old Sprague-Dawley rats to 95% O(2) (Ox) diminishes global pulmonary protein synthesis and increases eIF2α phosphorylation, we conducted the current study to determine whether Ox activates the ISR or UPR. We found that Ox-induced alterations in ER morphology of alveolar type II cells and interstitial fibroblasts were not associated with activation of the UPR sensors PERK or activating transcription factor (ATF) 6 or with X-box binding protein-1 mRNA splicing in whole lung extracts. Exposure to Ox enhanced ATF4 immunoreactivity and nuclear protein content, followed by a 2- and 5-fold increase in ATF3 protein and mRNA expression, respectively. The accumulation of nuclear ATF4 protein coincided with induction of glutamate-cysteine ligase catalytic subunit, an ISR-responsive gene. Immunohistochemistry revealed that changes in ATF3/4 expression were prominent in the alveolus, whereas primary cell culture implicated epithelial and endothelial cells as targets. Finally, induction of ISR intermediates in the intact lung occurred in the absence of the phosphorylation of PKR, JNK, ERK1/2, and p38 MAPK. These findings demonstrate that Ox activates the ISR within the newborn lung and highlight regional and cell-specific alterations in the expression ISR transcription factors that regulate redox balance.
Collapse
Affiliation(s)
- Wesley M Konsavage
- Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | | | | | | |
Collapse
|
35
|
Nascimento D, Pozza DH, Castro-Lopes JM, Neto FL. Neuronal injury marker ATF-3 is induced in primary afferent neurons of monoarthritic rats. Neurosignals 2011; 19:210-21. [PMID: 21912089 DOI: 10.1159/000330195] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/16/2011] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF-3) expression has been associated with several signaling pathways implicated in cellular stress response in many cell types and is usually regarded as a neuronal damage marker in dorsal root ganglia (DRG). We investigated ATF-3 expression in primary afferents in the monoarthritic (MA) model of chronic inflammatory joint pain. Immunohistochemistry revealed that ATF-3 is highly induced mainly in small and medium neurons, especially at 2 and 4 days of MA in L(5) DRGs. Colocalization with calcitonin gene-related peptide (CGRP) and isolectin B4 (IB4) demonstrated that ATF-3-immunoreactive cells are mainly peptidergic. The lack of significant differences in ATF-3 and pAkt colocalization indicated that ATF-3 is probably not involved in a pAkt-mediated survival pathway. Anti-inflammatory (ketoprofen) administration failed to reverse ATF-3 induction in MA rats, but significantly increased CGRP expression. These data suggest that ATF-3 expression is definitely involved in MA, actually marking injured neurons. Some degree of neuronal damage seems to occur right from the first days of disease, mainly affecting small-to-medium peptidergic neurons. The intra-articular injection of complete Freund's adjuvant and the generation of a neuroinflammatory environment seem to be the plausible explanation for the local nerve damage.
Collapse
Affiliation(s)
- Diana Nascimento
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto e Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
36
|
Lim JH, Lee HJ, Pak YK, Kim WH, Song J. Organelle stress-induced activating transcription factor-3 downregulates low-density lipoprotein receptor expression in Sk-Hep1 human liver cells. Biol Chem 2011; 392:377-85. [DOI: 10.1515/bc.2011.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abstract
The low-density lipoprotein receptor (LDLR) plays a central role in cholesterol homeostasis. Here, we provide evidence that an increase in endoplasmic reticulum (ER) stress response or a disturbance of mitochondrial function inhibits LDLR expression in human liver Sk-Hep1 cells. Both organelle stresses triggered activation of activating transcription factor-3 (ATF3), which subsequently reduced LDLR expression. Serial deletion studies revealed that the LDLR promoter region within -234 bp was involved in the repression of LDLR by ATF3. In addition, we identified the region between -8 and -3 of LDLR promoter region as a putative binding site for ATF3 by using deletion construct lacking 6 bp nucleotide corresponding to this region. Transfection of ATF3-specific siRNA rescued LDLR expression under organelle stress, indicating that ATF3 was mainly responsible for the repression of LDLR by these stressors. Additionally, chromatin immunoprecipitation revealed that ATF3 directly binds to the LDLR promoter in a stress-dependent manner. The unique sterol-independent LDLR repression by organelle stress via ATF3 demonstrated here could be involved in obesity-related hypercholesterolemia, which can lead to insulin resistance and type 2 diabetes.
Collapse
|
37
|
Spohn D, Rössler OG, Philipp SE, Raubuch M, Kitajima S, Griesemer D, Hoth M, Thiel G. Thapsigargin induces expression of activating transcription factor 3 in human keratinocytes involving Ca2+ ions and c-Jun N-terminal protein kinase. Mol Pharmacol 2010; 78:865-76. [PMID: 20713550 DOI: 10.1124/mol.110.067637] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Thapsigargin is a specific inhibitor of the sarco/endoplasmic reticulum Ca(2+) ATPase of the endoplasmic reticulum. Here, we show that stimulation of human HaCaT keratinocytes with nanomolar concentrations of thapsigargin triggers expression of activating transcription factor (ATF) 3, a basic-region leucin zipper transcription factor. ATF3 expression was also up-regulated in thapsigargin-stimulated glioma cells, hepatoma cells, retinal pigment epithelial cells, and airway epithelial cells. Thapsigargin-induced up-regulation of ATF3 expression in keratinocytes was attenuated by BAPTA-acetoxymethyl ester or by expression of the Ca(2+)-binding protein parvalbumin in the cytosol of HaCaT cells but not by a panel of pharmacological agents that chelate extracellular Ca(2+) (EGTA) or inhibit either ryanodine receptors (dantrolene) or voltage-gated Ca(2+) channels (nifedipine). Hence, elevated levels of intracellular Ca(2+), released from intracellular stores, are essential for the effect of thapsigargin on the biosynthesis of ATF3. The thapsigargin-induced signaling pathway was blocked by expression of either mitogen-activated protein kinase phosphatase-1 or -5. Experiments involving pharmacological and genetic tools revealed the importance of c-Jun N-terminal protein kinase (JNK) within the signaling cascade, whereas inhibition of extracellular signal-regulated protein kinase or p38 protein kinase did not attenuate thapsigargin-induced expression of ATF3. Functional studies showed that treatment of HaCaT keratinocytes with thapsigargin led to a 2-fold induction of caspase-3/7 activity. The up-regulation of caspase-3/7 activity in thapsigargin-stimulated HaCaT cells was attenuated by inhibition of JNK. Together, these data show that stimulation of HaCaT cells with thapsigargin induces a specific signaling pathway in keratinocytes involving activation of JNK, biosynthesis of ATF3, and up-regulation of caspase-3/7 activity.
Collapse
Affiliation(s)
- Daniel Spohn
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schaible HG, Von Banchet GS, Boettger M, Bräuer R, Gajda M, Richter F, Hensellek S, Brenn D, Natura G. The role of proinflammatory cytokines in the generation and maintenance of joint pain. Ann N Y Acad Sci 2010; 1193:60-9. [DOI: 10.1111/j.1749-6632.2009.05301.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Schauer IE, Knaub LA, Lloyd M, Watson PA, Gliwa C, Lewis KE, Chait A, Klemm DJ, Gunter JM, Bouchard R, McDonald TO, O'Brien KD, Reusch JEB. CREB downregulation in vascular disease: a common response to cardiovascular risk. Arterioscler Thromb Vasc Biol 2010; 30:733-41. [PMID: 20150559 PMCID: PMC2841720 DOI: 10.1161/atvbaha.109.199133] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE To examine the impact of low-density lipoprotein (LDL), an established mediator of atherosclerosis, on the transcription factor cAMP-response element-binding protein (CREB), which is a regulator of vascular smooth muscle cell (VSMC) quiescence. METHODS AND RESULTS VSMC CREB content is diminished in rodent models of diabetes and pulmonary hypertension. We examined aortic CREB content in rodent models of aging, hypertension, and insulin resistance, and we determined nuclear CREB protein in the medial VSMC of high-fat-fed LDL receptor-null mice. There was significant loss of CREB protein in all models. In vitro, primary culture rat aortic VSMC exposed to LDL and oxidized LDL exhibited a rapid, transient increase in CREB phosphorylation and transient phosphorylation/activation of Akt, ERK, JNK, ans p38 MAPK. Exposure to oxidized LDL, but not to LDL, for 24 to 48 hours decreased CREB protein in a dose-dependent fashion and led to nuclear exclusion of CREB. Pharmacological reactive oxygen species scavengers and inhibition of ERK activation blocked oxidized LDL-mediated CREB downregulation. CONCLUSIONS These data support a model wherein loss of VSMC CREB protein, which renders these cells more susceptible to activation and apoptosis, is a common pathological response to vascular injury and potentially contributes to plaque progression.
Collapse
MESH Headings
- Age Factors
- Aging/metabolism
- Animals
- Aorta/metabolism
- Atherosclerosis/metabolism
- Atherosclerosis/physiopathology
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/metabolism
- Dietary Fats/administration & dosage
- Disease Models, Animal
- Down-Regulation
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Female
- Free Radical Scavengers/pharmacology
- Heart Failure/etiology
- Heart Failure/metabolism
- Heart Failure/physiopathology
- Hypertension/complications
- Hypertension/metabolism
- Hypertension/physiopathology
- Insulin Resistance
- JNK Mitogen-Activated Protein Kinases/metabolism
- Lipoproteins, LDL/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Rats
- Rats, Inbred SHR
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptors, LDL/antagonists & inhibitors
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Risk Assessment
- Time Factors
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Irene E Schauer
- Department of Medicine, University of Colorado at Denver-Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Inoue K, Branigan D, Xiong ZG. Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 2010; 285:7430-9. [PMID: 20048154 PMCID: PMC2844191 DOI: 10.1074/jbc.m109.040485] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 12/24/2009] [Indexed: 01/17/2023] Open
Abstract
Transient receptor potential melastatin 7 (TRPM7) channels are novel Ca(2+)-permeable non-selective cation channels ubiquitously expressed. Activation of TRPM7 channels has been shown to be involved in cellular Mg(2+) homeostasis, diseases caused by abnormal magnesium absorption, and in Ca(2+)-mediated neuronal injury under ischemic conditions. Here we show strong evidence suggesting that TRPM7 channels also play an important role in cellular Zn(2+) homeostasis and in Zn(2+)-mediated neuronal injury. Using a combination of fluorescent Zn(2+) imaging, small interfering RNA, pharmacological analysis, and cell injury assays, we show that activation of TRPM7 channels augmented Zn(2+)-induced injury of cultured mouse cortical neurons. The Zn(2+)-mediated neurotoxicity was inhibited by nonspecific TRPM7 blockers Gd(3+) or 2-aminoethoxydiphenyl borate, and by knockdown of TRPM7 channels with small interfering RNA. In addition, Zn(2+)-mediated neuronal injury under oxygen-glucose deprivation conditions was also diminished by silencing TRPM7. Furthermore, we show that overexpression of TRPM7 channels in HEK293 cells increased intracellular Zn(2+) accumulation and Zn(2+)-induced cell injury, while silencing TRPM7 by small interfering RNA attenuated the Zn(2+)-mediated cell toxicity. Thus, TRPM7 channels may represent a novel target for neurological disorders where Zn(2+) toxicity plays an important role.
Collapse
Affiliation(s)
- Koichi Inoue
- From the Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232
| | - Deborah Branigan
- From the Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232
| | - Zhi-Gang Xiong
- From the Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, Oregon 97232
| |
Collapse
|
41
|
Hai T, Wolford CC, Chang YS. ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 2010; 15:1-11. [PMID: 21061913 PMCID: PMC6043823 DOI: 10.3727/105221610x12819686555015] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Activating transcription factor 3 (ATF3) gene encodes a member of the ATF family of transcription factors and is induced by various stress signals. All members of this family share the basic region-leucine zipper (bZip) DNA binding motif and bind to the consensus sequence TGACGTCA in vitro. Previous reviews and an Internet source have covered the following topics: the nomenclature of ATF proteins, the history of their discovery, the potential interplays between ATFs and other bZip proteins, ATF3-interacting proteins, ATF3 target genes, and the emerging roles of ATF3 in cancer and immunity (see footnote 1). In this review, we present evidence and clues that prompted us to put forth the idea that ATF3 functions as a "hub" of the cellular adaptive-response network. We will then focus on the roles of ATF3 in modulating inflammatory response. Inflammation is increasingly recognized to play an important role for the development of many diseases. Putting this in the context of the hub idea, we propose that modulation of inflammation by ATF3 is a unifying theme for the potential involvement of ATF3 in various diseases.
Collapse
Affiliation(s)
- Tsonwin Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
42
|
Pollack BP, Sapkota B, Haun PL. Activating transcription factor 3 (ATF3) expression is increased in erythema multiforme and is regulated by IFN-γ in human keratinocytes. Exp Dermatol 2009; 19:e310-3. [DOI: 10.1111/j.1600-0625.2009.01008.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Kim KH, Jeong JY, Surh YJ, Kim KW. Expression of stress-response ATF3 is mediated by Nrf2 in astrocytes. Nucleic Acids Res 2009; 38:48-59. [PMID: 19864258 PMCID: PMC2800224 DOI: 10.1093/nar/gkp865] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Activating Transcription Factor 3 (ATF3), a member of the ATF/CREB family, is induced rapidly by various stresses. Its induction mechanism and role in response to changes in cellular redox status, however, have not been elucidated. Here, we found that NF-E2-related factor 2 (Nrf2), a transcription factor known to bind to antioxidant response element (ARE) in promoters, transcriptionally upregulated ATF3 expression in astrocytes. Treatment with Nrf2 activators and oxidants provoked ATF3 induction in astrocytes, whereas its expression was reduced in Nrf2-depleted cells. We further demonstrated that the consensus ARE in the ATF3 promoter is critical for Nrf2-mediation by promoter analyses using an ATF3 promoter-driven luciferase construct and a chromatin immunoprecipitation assay. In addition, we found that Nrf2-dependent ATF3 induction contributed to the antioxidative and cytoprotective functions of Nrf2 in astrocytes. Taken together, our findings suggest that ATF3 is a new target for Nrf2 and has a cytoprotective function in astrocytes.
Collapse
Affiliation(s)
- Kyu-Han Kim
- NeuroVascular Coordination Research Center, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
44
|
Experimental arthritis causes tumor necrosis factor-α-dependent infiltration of macrophages into rat dorsal root ganglia which correlates with pain-related behavior. Pain 2009; 145:151-9. [DOI: 10.1016/j.pain.2009.06.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 05/06/2009] [Accepted: 06/01/2009] [Indexed: 11/22/2022]
|
45
|
Nielsen C, Lippke H, Didier A, Dietrich R, Märtlbauer E. Potential of deoxynivalenol to induce transcription factors in human hepatoma cells. Mol Nutr Food Res 2009; 53:479-91. [PMID: 19360757 DOI: 10.1002/mnfr.200800475] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To assess the hepatotoxicity of deoxynivalenol (DON), human hepatoma cells (Hep-G2) were used as an in vitro model. After exposing Hep-G2 cells to low (1 mciroM) and high dose (10 mciroM), gene expression profiles were analysed by microarray. More than 5% of genes were up-regulated, most of them being involved in transcriptional regulation. By real-time RT-PCR, elevated expression of transcription factors, commonly induced by activation of MAPK-pathway, was demonstrated for Hep-G2 cells on mRNA and protein level. Further studies, involving U937 human monocytes, showed that effects of DON treatment on mRNA and protein level were concentration-dependent and cell-specific. An inverse relation was noticed for the level of DON induced expression of transcription factors (JUN, FOS, EGR1 and ATF3) and the susceptibility of the cell lines towards the mycotoxin. This is the first report giving evidence that on a molecular level the mild hepatotoxic effects of DON are probably caused by the induction of transcription factors which are known to be associated with injury-induced liver regeneration processes. With ATF3, a novel downstream target gene was identified in DON-related cell signalling suggesting a potential linkage between molecular action and biological effects like reduction of glycogen storage in liver tissue.
Collapse
Affiliation(s)
- Carina Nielsen
- Central Institute of the Bundeswehr Medical Service, Department of Food Chemistry and Environmental Chemistry, Garching-Hochbrück, Germany.
| | | | | | | | | |
Collapse
|
46
|
Inoue K, Xiong ZG. Silencing TRPM7 promotes growth/proliferation and nitric oxide production of vascular endothelial cells via the ERK pathway. Cardiovasc Res 2009; 83:547-57. [PMID: 19454490 DOI: 10.1093/cvr/cvp153] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
AIMS The presence and potential function of transient receptor potential melastatin 7 (TRPM7), a Ca2+-permeable non-selective cation channel of the TRP channel superfamily in human vascular endothelial cells, were examined. METHODS AND RESULTS Whole-cell patch-clamp recordings showed outward-rectifying currents in human umbilical vein endothelial cells (HUVECs), which was potentiated by removing the extracellular Ca2+ and Mg2+, but inhibited by non-specific TRPM7 blocker Gd3+ or 2-aminoethoxydiphenyl borate (2-APB). TRPM7 mRNA was detected in HUVECs by RT-PCR, but TRPM6, its closest homologue, was not. Silencing TRPM7 by small interfering RNA (siRNA) decreased the level of TRPM7 mRNA and the TRPM7-like current. Interestingly, knockdown of TRPM7 with siRNA or inhibition of TRPM7 function with 2-APB increased the phosphorylation of extracellular signal-regulated kinase (ERK) and enhanced growth/proliferation of HUVECs. This enhanced cell growth/proliferation was abolished by an inhibitor of the ERK signalling pathway. In addition to cell growth/proliferation, silencing TRPM7 also increased expression of nitric oxide synthase and nitric oxide production in an ERK pathway-dependent manner. CONCLUSION These observations suggest that TRPM7 channels may play an important role in the function of vascular endothelial cells.
Collapse
Affiliation(s)
- Koichi Inoue
- Robert S. Dow Neurobiology Laboratories, Legacy Research, 1225 NE 2nd Ave. Portland, OR 97232, USA
| | | |
Collapse
|
47
|
Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril 2009; 91:2177-84. [DOI: 10.1016/j.fertnstert.2008.03.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 03/17/2008] [Accepted: 03/17/2008] [Indexed: 01/28/2023]
|
48
|
Apoptosis-related genes change their expression with age and hearing loss in the mouse cochlea. Apoptosis 2008; 13:1303-21. [PMID: 18839313 DOI: 10.1007/s10495-008-0266-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To understand possible causative roles of apoptosis gene regulation in age-related hearing loss (presbycusis), apoptotic gene expression patterns in the CBA mouse cochlea of four different age and hearing loss groups were compared, using GeneChip and real-time (qPCR) microarrays. GeneChip transcriptional expression patterns of 318 apoptosis-related genes were analyzed. Thirty eight probes (35 genes) showed significant differences in expression. The significant gene families include Caspases, B-cell leukemia/lymphoma2 family, P53, Calpains, Mitogen activated protein kinase family, Jun oncogene, Nuclear factor of kappa light chain gene enhancer in B-cells inhibitor-related and tumor necrosis factor-related genes. The GeneChip results of 31 genes were validated using the new TaqMan Low Density Array (TLDA). Eight genes showed highly correlated results with the GeneChip data. These genes are: activating transcription factor3, B-cell leukemia/lymphoma2, Bcl2-like1, caspase4 apoptosis-related cysteine protease 4, Calpain2, dual specificity phosphatase9, tumor necrosis factor receptor superfamily member12a, and Tumor necrosis factor superfamily member13b, suggesting they may play critical roles in inner ear aging.
Collapse
|
49
|
Mayer SI, Dexheimer V, Nishida E, Kitajima S, Thiel G. Expression of the transcriptional repressor ATF3 in gonadotrophs is regulated by Egr-1, CREB, and ATF2 after gonadotropin-releasing hormone receptor stimulation. Endocrinology 2008; 149:6311-25. [PMID: 18719024 DOI: 10.1210/en.2008-0251] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Stimulation of GnRH receptors enhances expression of activating transcription factor (ATF) 3 in a pituitary gonadotroph cell line. The signaling pathway requires elevated cytosolic Ca2+ levels and activation of ERK and c-Jun N-terminal protein kinase. The signaling cascade was blocked by overexpression of either MAPK phosphatase (MKP)-1 or MAPK phosphatase-5 that dephosphorylate nuclear ERK and c-Jun N-terminal protein kinase. In addition, ATF3 biosynthesis was impaired after lentiviral-mediated expression of a constitutively active mutant of calcineurin A. Thus, MKP-1, MKP-5, and calcineurin may function as shut-off devices for GnRH receptor signaling. Expression of dominant-negative mutants of early growth response protein (Egr)-1, cAMP response element binding protein (CREB), and ATF2 blocked the biosynthesis of ATF3, indicating that these transcription factors connect the intracellular signaling cascade elicited by activation of GnRH receptors with transcription of the ATF3 gene. This view was corroborated by chromatin immunoprecipitation experiments revealing that Egr-1 and the phosphorylated forms of CREB and ATF2 bound to the 5'-upstream region of the ATF3 gene in buserelin-stimulated gonadotrophs. Together the data indicate that the ATF3 gene is a bona fide target gene of Egr-1, CREB, and ATF2 in gonadotrophs. Moreover, we show that in gonadotrophs ATF3 bound to its own promoter under physiological conditions. The analysis of a lentiviral-transmitted ATF3 promoter/luciferase reporter gene, embedded into the chromatin of the cells, revealed that ATF3 blocked the activity of its own promoter. We additionally identified the chromogranin B gene as bona fide target gene of ATF3 in gonadotrophs.
Collapse
Affiliation(s)
- Sabine I Mayer
- Department of Medical Biochemistry and Molecular Biology, Building 44, University of Saarland Medical Center, D-66421 Homburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Symons KT, Massari ME, Dozier SJ, Nguyen PM, Jenkins D, Herbert M, Gahman TC, Noble SA, Rozenkrants N, Zhang Y, Rao TS, Shiau AK, Hassig CA. Inhibition of inducible nitric oxide synthase expression by a novel small molecule activator of the unfolded protein response. CURRENT CHEMICAL GENOMICS 2008; 2:1-9. [PMID: 20161838 PMCID: PMC2803434 DOI: 10.2174/1875397300802010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 08/15/2008] [Accepted: 08/20/2008] [Indexed: 12/03/2022]
Abstract
The transcription of inducible nitric oxide synthase (iNOS) is activated by a network of proinflammatory signaling pathways. Here we describe the identification of a small molecule that downregulates the expression of iNOS mRNA and protein in cytokine-activated cells and suppresses nitric oxide production in vivo. Mechanistic analysis suggests that this small molecule, erstressin, also activates the unfolded protein response (UPR), a signaling pathway triggered by endoplasmic reticulum stress. Erstressin induces rapid phosphorylation of eIF2α and the alternative splicing of XBP-1, hallmark initiating events of the UPR. Further, erstressin activates the transcription of multiple genes involved in the UPR. These data suggest an inverse relationship between UPR activation and iNOS mRNA and protein expression under proinflammatory conditions.
Collapse
Affiliation(s)
- Kent T Symons
- Department of Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|