1
|
Chen L, Yang J, Hu H, Jiang Y, Feng L, Liu J, Zhong K, Liu P, Ma Y, Chen M, Yang J. Large-scale phosphoproteome analysis in wheat seedling leaves provides evidence for extensive phosphorylation of regulatory proteins during CWMV infection. BMC PLANT BIOLOGY 2023; 23:532. [PMID: 37914991 PMCID: PMC10621099 DOI: 10.1186/s12870-023-04559-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND Chinese wheat mosaic virus (CWMV) often causes severe damage to wheat (Triticum aestivum L.) growth and yield. It is well known that a successful infection in plants depends on a complex interaction between the host plant and the pathogen. Post-translational modification (PTM) of proteins is considered to be one of the main processes that decides the outcome of the plant-pathogen arms race during this interaction. Although numerous studies have investigated PTM in various organisms, there has been no large-scale phosphoproteomic analysis of virus-infected wheat plants. We therefore aimed to investigate the CWMV infection-induced phosphoproteomics changes in wheat by high-resolution liquid chromatography-tandem mass spectroscopy (LC-MS/MS) using affinity-enriched peptides followed by comprehensive bioinformatics analysis. RESULTS Through this study, a total of 4095 phosphorylation sites have been identified in 1968 proteins, and 11.6% of the phosphorylated proteins exhibited significant changes (PSPCs) in their phosphorylation levels upon CWMV infection. The result of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that most of the PSPCs were associated with photosynthesis, plant-pathogen interactions, and MAPK signaling pathways. The protein-protein interaction (PPI) network analysis result showed that these PSPCs were mainly participated in the regulation of biosynthesis and metabolism, protein kinase activities, and transcription factors. Furthermore, the phosphorylation levels of TaChi1 and TaP5CS, two plant immunity-related enzymes, were significantly changed upon CWMV infection, resulting in a significant decrease in CWMV accumulation in the infected plants. CONCLUSIONS Our results indicate that phosphorylation modification of protein plays a critical role in wheat resistance to CWMV infection. Upon CWMV infection, wheat plants will regulate the levels of extra- and intra-cellular signals and modifications of enzyme activities via protein phosphorylation. This novel information about the strategies used by wheat to resist CWMV infection will help researchers to breed new CWMV-resistant cultivars and to better understand the arms race between wheat and CWMV.
Collapse
Affiliation(s)
- Lu Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jin Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Haichao Hu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Yaoyao Jiang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Lixiao Feng
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Jiaqian Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kaili Zhong
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Peng Liu
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Youzhi Ma
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China.
| | - Jian Yang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
3
|
Tan QW, Lim PK, Chen Z, Pasha A, Provart N, Arend M, Nikoloski Z, Mutwil M. Cross-stress gene expression atlas of Marchantia polymorpha reveals the hierarchy and regulatory principles of abiotic stress responses. Nat Commun 2023; 14:986. [PMID: 36813788 PMCID: PMC9946954 DOI: 10.1038/s41467-023-36517-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/03/2023] [Indexed: 02/24/2023] Open
Abstract
Abiotic stresses negatively impact ecosystems and the yield of crops, and climate change will increase their frequency and intensity. Despite progress in understanding how plants respond to individual stresses, our knowledge of plant acclimatization to combined stresses typically occurring in nature is still lacking. Here, we used a plant with minimal regulatory network redundancy, Marchantia polymorpha, to study how seven abiotic stresses, alone and in 19 pairwise combinations, affect the phenotype, gene expression, and activity of cellular pathways. While the transcriptomic responses show a conserved differential gene expression between Arabidopsis and Marchantia, we also observe a strong functional and transcriptional divergence between the two species. The reconstructed high-confidence gene regulatory network demonstrates that the response to specific stresses dominates those of others by relying on a large ensemble of transcription factors. We also show that a regression model could accurately predict the gene expression under combined stresses, indicating that Marchantia performs arithmetic multiplication to respond to multiple stresses. Lastly, two online resources ( https://conekt.plant.tools and http://bar.utoronto.ca/efp_marchantia/cgi-bin/efpWeb.cgi ) are provided to facilitate the study of gene expression in Marchantia exposed to abiotic stresses.
Collapse
Affiliation(s)
- Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Zhong Chen
- Amoeba Education Hub, 1 West Coast Road, 128020, Singapore, Singapore
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Nicholas Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Marius Arend
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.,Systems Biology and Mathematical Modeling, Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
4
|
Rivero RM, Mittler R, Blumwald E, Zandalinas SI. Developing climate-resilient crops: improving plant tolerance to stress combination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:373-389. [PMID: 34482588 DOI: 10.1111/tpj.15483] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/31/2021] [Indexed: 05/21/2023]
Abstract
Global warming and climate change are driving an alarming increase in the frequency and intensity of different abiotic stresses, such as droughts, heat waves, cold snaps, and flooding, negatively affecting crop yields and causing food shortages. Climate change is also altering the composition and behavior of different insect and pathogen populations adding to yield losses worldwide. Additional constraints to agriculture are caused by the increasing amounts of human-generated pollutants, as well as the negative impact of climate change on soil microbiomes. Although in the laboratory, we are trained to study the impact of individual stress conditions on plants, in the field many stresses, pollutants, and pests could simultaneously or sequentially affect plants, causing conditions of stress combination. Because climate change is expected to increase the frequency and intensity of such stress combination events (e.g., heat waves combined with drought, flooding, or other abiotic stresses, pollutants, and/or pathogens), a concentrated effort is needed to study how stress combination is affecting crops. This need is particularly critical, as many studies have shown that the response of plants to stress combination is unique and cannot be predicted from simply studying each of the different stresses that are part of the stress combination. Strategies to enhance crop tolerance to a particular stress may therefore fail to enhance tolerance to this specific stress, when combined with other factors. Here we review recent studies of stress combinations in different plants and propose new approaches and avenues for the development of stress combination- and climate change-resilient crops.
Collapse
Affiliation(s)
- Rosa M Rivero
- Department of Plant Nutrition, Campus Universitario de Espinardo, CEBAS-CSIC, Ed 25, Espinardo, Murcia, 30100, Spain
| | - Ron Mittler
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Sara I Zandalinas
- Division of Plant Sciences and Interdisciplinary Plant Group, College of Agriculture, Food and Natural Resources, Christopher S. Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO, 65201, USA
- Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Av. de Vicent Sos Baynat, s/n, Castelló de la Plana, 12071, Spain
| |
Collapse
|
5
|
Loss of TACC1 variant25 inducing cell proliferation and suppressing autophagy in head and neck squamous carcinoma. Cell Death Discov 2021; 7:386. [PMID: 34897285 PMCID: PMC8665927 DOI: 10.1038/s41420-021-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Transforming acidic coiled-coil containing protein1 (TACC1) is closely related to transcription, translation and centrosome dynamics. Dysregulation of TACC1 is associated with multiple malignancies. Alternative splicing (AS) of TACC1 produces multiple variants, which are of great significance in cancer biology. However, the expression and biological functions of TACC1 variants in head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we found for the first time that TACC1 variants exhibited a characteristic expression pattern and that TACC1 variant25 (TACC1v25) was downregulated in HNSCC tissues and cell lines. Overexpression of TACC1v25 in Cal27 and Fadu cells significantly inhibited proliferation and promoted autophagy. Moreover, expression levels of nuclear pERK and p-mTOR were significantly decreased, while the expression of Beclin-1 and the LC3II/LC3I ratio were increased in TACC1v25-overexpressed Cal27 and Fadu cells. After the addition of AKT activator SC79 to TACC1v25-overexpressed Cal27 and Fadu cells, the autophagy levels were remarkably rescued. In conclusion, TACC1v25 inhibits HNSCC progression through the ERK and AKT/mTOR pathways by inhibiting proliferation and increasing autophagy. TACC1v25 might have potential use as a tumour suppressor in HNSCC.
Collapse
|
6
|
Sharma M, Fuertes D, Perez-Gil J, Lois LM. SUMOylation in Phytopathogen Interactions: Balancing Invasion and Resistance. Front Cell Dev Biol 2021; 9:703795. [PMID: 34485289 PMCID: PMC8415633 DOI: 10.3389/fcell.2021.703795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 12/03/2022] Open
Abstract
Plants are constantly confronted by a multitude of biotic stresses involving a myriad of pathogens. In crops, pathogen infections result in significant agronomical losses worldwide posing a threat to food security. In order to enter plant tissues and establish a successful infection, phytopathogens have to surpass several physical, and chemical defense barriers. In recent years, post-translational modification (PTM) mechanisms have emerged as key players in plant defense against pathogens. PTMs allow a highly dynamic and rapid response in front of external challenges, increasing the complexity and precision of cellular responses. In this review, we focus on the role of SUMO conjugation (SUMOylation) in plant immunity against fungi, bacteria, and viruses. In plants, SUMO regulates multiple biological processes, ranging from development to responses arising from environmental challenges. During pathogen attack, SUMO not only modulates the activity of plant defense components, but also serves as a target of pathogen effectors, highlighting its broad role in plant immunity. Here, we summarize known pathogenic strategies targeting plant SUMOylation and, the plant SUMO conjugates involved in host-pathogen interactions. We also provide a catalog of candidate SUMO conjugates according to their role in defense responses. Finally, we discuss the complex role of SUMO in plant defense, focusing on key biological and experimental aspects that contribute to some controversial conclusions, and the opportunities for improving agricultural productivity by engineering SUMOylation in crop species.
Collapse
Affiliation(s)
- Manisha Sharma
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Biosciences, College of Life and Environment Sciences, University of Exeter, Exeter, United Kingdom
| | - Diana Fuertes
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Jordi Perez-Gil
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - L Maria Lois
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain.,Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
7
|
He Q, Zeng Z, Li F, Huang R, Wang Y, Liu T. Ubiquitylome analysis reveals the involvement of ubiquitination in the bast fiber growth of ramie. PLANTA 2021; 254:1. [PMID: 34081200 DOI: 10.1007/s00425-021-03652-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
A total of 249 sites from 197 proteins showed a differential ubiquitination level in the fiber development of ramie barks. The function of two differentially ubiquitinated proteins for fiber growth was demonstrated. Ubiquitination is one of the most common post-translational modifications of proteins, and it plays essential roles in plant growth and development. However, the involvement of ubiquitination in the growth of plant fibers remains largely unknown. We compared the ubiquitylome of the top and middle stems of ramie bark, with different fiber growth stages. We identified 249 differentially ubiquitinated sites in 197 proteins in fiber-developing barks in the stems and found that seven were homologs of Arabidopsis proteins associated with fiber growth. Overexpression of the differentially ubiquitinated proteins, RWA3 homolog whole_GLEAN_10024150 and MYB protein whole_GLEAN_10015497, significantly promoted fiber growth in transgenic Arabidopsis, indicating their involvement in this process. We also found that the abundance of these proteins decreased when their ubiquitination levels increased and vice versa in the fiber-developing bark. These results indicated that the abundance of these two proteins was adjusted through ubiquitin-dependent degradation. Collectively, our findings provide important insights into the involvement of ubiquitination in the growth of ramie fibers.
Collapse
Affiliation(s)
- Qiaoyun He
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Zheng Zeng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Fu Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Renyan Huang
- Hunan Institute of Plant Protection, Changsha, 410125, China
| | - Yanzhou Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China
| | - Touming Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, China.
| |
Collapse
|
8
|
Benbow HR, Brennan CJ, Zhou B, Christodoulou T, Berry S, Uauy C, Mullins E, Doohan FM. Insights into the resistance of a synthetically-derived wheat to Septoria tritici blotch disease: less is more. BMC PLANT BIOLOGY 2020; 20:407. [PMID: 32883202 PMCID: PMC7469286 DOI: 10.1186/s12870-020-02612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/18/2020] [Indexed: 05/30/2023]
Abstract
BACKGROUND Little is known about the initial, symptomless (latent) phase of the devastating wheat disease Septoria tritici blotch. However, speculations as to its impact on fungal success and disease severity in the field have suggested that a long latent phase is beneficial to the host and can reduce inoculum build up in the field over a growing season. The winter wheat cultivar Stigg is derived from a synthetic hexaploid wheat and contains introgressions from wild tetraploid wheat Triticum turgidum subsp. dicoccoides, which contribute to cv. Stigg's exceptional STB resistance, hallmarked by a long latent phase. We compared the early transcriptomic response to Zymoseptoria tritici of cv. Stigg to a susceptible wheat cultivar, to elucidate the mechanisms of and differences in pathogen recognition and disease response in these two hosts. RESULTS The STB-susceptible cultivar Longbow responds to Z. tritici infection with a stress response, including activation of hormone-responsive transcription factors, post translational modifications, and response to oxidative stress. The activation of key genes associated with these pathways in cv. Longbow was independently observed in a second susceptible wheat cultivar based on an independent gene expression study. By comparison, cv. Stigg is apathetic in response to STB, and appears to fail to activate a range of defence pathways that cv. Longbow employs. Stigg also displays some evidence of sub-genome bias in its response to Z. tritici infection, whereas the susceptible cv. Longbow shows even distribution of Z. tritici responsive genes across the three wheat sub-genomes. CONCLUSIONS We identify a suite of disease response genes that are involved in early pathogen response in susceptible wheat cultivars that may ultimately lead to susceptibility. In comparison, we hypothesise that rather than an active defence response to stave off disease progression, cv. Stigg's defence strategy is molecular lethargy, or a lower-amplitude of pathogen recognition that may stem from cv. Stigg's wild wheat-derived ancestry. Overall, we present insights into cv. Stigg's exceptional resistance to STB, and present key biological processes for further characterisation in this pathosystem.
Collapse
Affiliation(s)
- Harriet R Benbow
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Ciarán J Brennan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Binbin Zhou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Thalia Christodoulou
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland
| | - Simon Berry
- Limagrain UK Ltd, Windmill Avenue, Woolpit, Suffolk, IP30 9UP, UK
| | | | - Ewen Mullins
- Teagasc Crops Research, Oak Park, Co. Carlow, Ireland
| | - Fiona M Doohan
- UCD School of Biology and Environmental Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Earth Institute, University College Dublin, UCD Belfield, Dublin 4, Ireland.
- UCD Centre for Plant Science, University College Dublin, UCD Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Wang J, Long X, Chern M, Chen X. Understanding the molecular mechanisms of trade-offs between plant growth and immunity. SCIENCE CHINA-LIFE SCIENCES 2020; 64:234-241. [PMID: 32710363 DOI: 10.1007/s11427-020-1719-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/05/2020] [Indexed: 12/24/2022]
Abstract
Trade-offs between plant growth and immunity are a well-known phenomenon in plants that are meant to ensure the best use of limited resources. Recently, many advances have been achieved on molecular regulations of the trade-offs between plant growth and immunity. Here, we provide an overview on molecular understanding of these trade-offs including those regulated at the transcriptional level or post-transcriptional level by transcriptional factors, microRNAs, and post-translational modifications of proteins, respectively The understanding on the molecular regulation of these trade-offs will provide new strategies to breed crops with high yield and enhanced resistance to disease.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Xiaoyu Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Mawsheng Chern
- Department of Plant Pathology and the Genome Center, University of California, Davis, California, 95616, USA
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China (in preparation), Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
10
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
11
|
Li P, Jing C, Ren H, Jia Z, Ghanem H, Wu G, Li M, Qing L. Analysis of Pathogenicity and Virulence Factors of Ageratum leaf curl Sichuan virus. FRONTIERS IN PLANT SCIENCE 2020; 11:527787. [PMID: 33042171 PMCID: PMC7527423 DOI: 10.3389/fpls.2020.527787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 08/28/2020] [Indexed: 05/05/2023]
Abstract
Ageratum leaf curl Sichuan virus (ALCScV) is a novel monopartite begomovirus, which was identified from Ageratum conyzoides plants in Sichuan Province, China. In this study, we showed that ALCScV can induce typical dwarf and downward leaf-curling symptoms in Ageratum conyzoides, Helianthus annuus, and Nicotiana benthamiana plants and that the noncognate betasatellite can enhance disease symptoms and increase viral accumulation. Expression of the ALCScV-encoded V2, C1, and C4 proteins through a Potato virus X (PVX) vector caused severe symptoms in N. benthamiana. Further study revealed no symptoms in N. benthamiana plants inoculated with infectious ALCScV clones lacking the C4 protein and that the relative viral DNA accumulation levels significantly decreased when compared with ALCScV-inoculated plants. Thus, our mutational analyses demonstrated that C4 is a pathogenicity determinant that plays key roles in symptom formation and virus accumulation. Furthermore, we also demonstrated that the second glycine of C4 was critical for ALCScV pathogenicity.
Collapse
|
12
|
Post-Translational Modifications of Proteins Have Versatile Roles in Regulating Plant Immune Responses. Int J Mol Sci 2019; 20:ijms20112807. [PMID: 31181758 PMCID: PMC6600372 DOI: 10.3390/ijms20112807] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/01/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
To protect themselves from pathogens, plants have developed an effective innate immune system. Plants recognize pathogens and then rapidly alter signaling pathways within individual cells in order to achieve an appropriate immune response, including the generation of reactive oxygen species, callose deposition, and transcriptional reprogramming. Post-translational modifications (PTMs) are versatile regulatory changes critical for plant immune response processes. Significantly, PTMs are involved in the crosstalk that serves as a fine-tuning mechanism to adjust cellular responses to pathogen infection. Here, we provide an overview of PTMs that mediate defense signaling perception, signal transduction in host cells, and downstream signal activation.
Collapse
|
13
|
Quantitative proteomics analysis reveals resistance differences of banana cultivar 'Brazilian' to Fusarium oxysporum f. sp. cubense races 1 and 4. J Proteomics 2019; 203:103376. [PMID: 31078632 DOI: 10.1016/j.jprot.2019.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Banana Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases in banana production. Foc is classified into three physiological races. However, the resistance mechanisms of banana against different Foc races are poorly understood. In this study, we performed a comparative proteomics analysis to investigate the resistance mechanisms of 'Brazilian' against Foc1 and Foc4. The proteomes of 'Brazilian' roots inoculated with Foc1 and Foc4 and mock inoculated control at 48 h were analyzed using TMT based quantitative analysis technique. A total of 7325 unique protein species were identified, of which 689, 744, and 1222 protein species were differentially accumulated in Foc1 vs. CK, Foc4 vs. CK, and Foc1 vs. Foc4, respectively. The differential accumulations of candidate protein species were further confirmed by RT-qPCR, PRM, and physiological and biochemical assays. Bioinformatics analysis revealed that the differentially abundance protein species (DAPS) related to pattern recognition receptors, plant cell wall modification, redox homeostasis, and defense responses were differentially accumulated after Foc1 and Foc4 infection, suggesting that 'Brazilian' differed in resistance to the two Foc races. Our study lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level. SIGNIFICANCE: The banana fusarium wilt disease is one of the most destructive disease of banana and is caused by Fusarium oxysporum f. sp. cubense (Foc). Foc is classified into three physiological races, namely, Foc1, Foc2, and Foc4. Among these races, Foc1 and Foc4 are widely distributed in south China and significantly lose yield. Although both physiological races (Foc1 and Foc4) can invade the Cavendish banana cultivar 'Brazilian', they have significant pathogenicity differences. Unfortunately, how the resistance differences are produced between two races is still largely unclear to date. In this study, we addressed this issue by performing TMT-based comparative quantitative proteomics analysis of 'Brazilian' roots after inoculation with Foc1 and Foc4 as well as sterile water as the control. We revealed that the series of protein species associated with pattern recognition receptors, plant cell wall modification, redox homeostasis, pathogenesis, phytohormones and signal transduction, plant secondary metabolites and programmed cell death etc. were involved in the response to Foc infection. Notably, the potential role of lipid signaling in banana defense against Foc are not reported previously but rather unveiled for the first time in this study. The current study represents the most extensive analysis of the protein profile of 'Brazilian' in response to Foc inoculation and includes for the first time the results from comparison quantitative proteomics analysis between plants inoculated with a pathogenic strain Foc4 and a nonpathogenic strain Foc1 of 'Brazilian', which will lay the foundation for an in-depth understanding of the interaction between bananas and Foc at the proteome level.
Collapse
|
14
|
Chaplin AK, Chernukhin I, Bechtold U. Profiling of advanced glycation end products uncovers abiotic stress-specific target proteins in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:653-670. [PMID: 30395279 PMCID: PMC6322573 DOI: 10.1093/jxb/ery389] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/12/2018] [Indexed: 05/03/2023]
Abstract
Non-enzymatic post-translational modifications of proteins can occur when the nucleophilic amino acid side chains of lysine and arginine encounter a reactive metabolite to form advanced glycation end products (AGEs). Glycation arises predominantly from the degradation of reducing sugars, and glycation has been observed during metabolic stress from glucose metabolism in both animals and plants. The implications of glycating proteins on plant proteins and biology has received little attention, and here we describe a robust assessment of global glycation profiles. We identified 112 glycated proteins that were common under a range of growth conditions and abiotic stress treatments, but also showed rosette age, diurnal, and drought stress-specific targets. Among 18 drought stress-specific glycation targets included several thioredoxin and thioredoxin-like proteins. In vitro glycation of two carbohydrate metabolism enzymes led either to a reduction or to a complete inhibition of activity, demonstrating the impact of glycation on protein function. Taken together, our results suggest that stress-specific glycation patterns of a small number of regulatory proteins may have a much broader impact on downstream target proteins that are, for example, associated with primary metabolism.
Collapse
Affiliation(s)
- Amanda K Chaplin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Igor Chernukhin
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, UK
| |
Collapse
|
15
|
Kim C. ROS-Driven Oxidative Modification: Its Impact on Chloroplasts-Nucleus Communication. FRONTIERS IN PLANT SCIENCE 2019; 10:1729. [PMID: 32038693 PMCID: PMC6990121 DOI: 10.3389/fpls.2019.01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 05/20/2023]
Abstract
As a light-harvesting organelle, the chloroplast inevitably produces a substantial amount of reactive oxygen species (ROS) primarily through the photosystems. These ROS, such as superoxide anion, hydrogen peroxide, hydroxyl radical, and singlet oxygen, are potent oxidizing agents, thereby damaging the photosynthetic apparatus. On the other hand, it became increasingly clear that ROS act as beneficial tools under photo-oxidative stress conditions by stimulating chloroplast-nucleus communication, a process called retrograde signaling (RS). These ROS-mediated RS cascades appear to participate in a broad spectrum of plant physiology, such as acclimation, resistance, programmed cell death (PCD), and growth. Recent reports imply that ROS-driven oxidation of RS-associated components is essential in sensing and responding to an increase in ROS contents. ROS appear to activate RS pathways via reversible or irreversible oxidation of sensor molecules. This review provides an overview of the emerging perspective on the topic of "oxidative modification-associated retrograde signaling."
Collapse
|
16
|
Glyco-Engineering of Plant-Based Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 175:137-166. [PMID: 30069741 DOI: 10.1007/10_2018_76] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most secreted proteins in eukaryotes are glycosylated, and after a number of common biosynthesis steps the glycan structures mature in a species-dependent manner. Therefore, human therapeutic proteins produced in plants often carry plant-like rather than human-like glycans, which can affect protein stability, biological function, and immunogenicity. The glyco-engineering of plant-based expression systems began as a strategy to eliminate plant-like glycans and produce human proteins with authentic or at least compatible glycan structures. The precise replication of human glycans is challenging, owing to the absence of a pathway in plants for the synthesis of sialylated proteins and the necessary precursors, but this can now be achieved by the coordinated expression of multiple human enzymes. Although the research community has focused on the removal of plant glycans and their replacement with human counterparts, the presence of plant glycans on proteins can also provide benefits, such as boosting the immunogenicity of some vaccines, facilitating the interaction between therapeutic proteins and their receptors, and increasing the efficacy of antibody effector functions. Graphical Abstract Typical structures of native mammalian and plant glycans with symbols indicating sugar residues identified by their short form and single-letter codes. Both glycans contain fucose, albeit with different linkages.
Collapse
|
17
|
Meng X, Lv Y, Mujahid H, Edelmann MJ, Zhao H, Peng X, Peng Z. Proteome-wide lysine acetylation identification in developing rice (Oryza sativa) seeds and protein co-modification by acetylation, succinylation, ubiquitination, and phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:451-463. [PMID: 29313810 DOI: 10.1016/j.bbapap.2017.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/20/2017] [Accepted: 12/03/2017] [Indexed: 12/31/2022]
Abstract
Protein lysine acetylation is a highly conserved post-translational modification with various biological functions. However, only a limited number of acetylation sites have been reported in plants, especially in cereals, and the function of non-histone protein acetylation is still largely unknown. In this report, we identified 1003 lysine acetylation sites in 692 proteins of developing rice seeds, which greatly extended the number of known acetylated sites in plants. Seven distinguished motifs were detected flanking acetylated lysines. Functional annotation analyses indicated diverse biological processes and pathways engaged in lysine acetylation. Remarkably, we found that several key enzymes in storage starch synthesis pathway and the main storage proteins were heavily acetylated. A comprehensive comparison of the rice acetylome, succinylome, ubiquitome and phosphorylome with available published data was conducted. A large number of proteins carrying multiple kinds of modifications were identified and many of these proteins are known to be key enzymes of vital metabolic pathways. Our study provides extending knowledge of protein acetylation. It will have critical reference value for understanding the mechanisms underlying PTM mediated multiple signal integration in the regulation of metabolism and development in plants.
Collapse
Affiliation(s)
- Xiaoxi Meng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Yuanda Lv
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States; Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, China
| | - Xiaojun Peng
- Department of Bioinformatics, Jingjie PTM Biolab Co. Ltd, Hangzhou, Zhejiang, China
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States.
| |
Collapse
|
18
|
Yang J, Liu L, Wang Y, Wang C, Yan J, Liu Y, Wang C, Li C. Overexpression of BAS1 in rice blast fungus can promote blast fungus growth, sporulation and virulence in planta. Saudi J Biol Sci 2017; 24:1884-1893. [PMID: 29551940 PMCID: PMC5851901 DOI: 10.1016/j.sjbs.2017.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 12/17/2022] Open
Abstract
Background: BAS1 is biotrophy-associated secreted protein of rice blast strain (Magnaporthe oryzae). In order to study the effect of BAS1 on virulence of rice blast strain, we characterized function of BAS1 using a purified prokaryotic expression product of BAS1 and its overexpression strain. Results: Our results showed in vitro the purified expression product caused rapid callose deposition and ROS production in rice leaves and calli, indicated it triggered transient basal defense. When the purified expression product of BAS1 was sprayed onto rice leaves, and 24 h later the leaves were inoculated with blast strain, the results showed the size and number of lesions, on purified BAS1 product-pretreated leaves of the Lijiangxintuanheigu (LTH) challenged with blast strain, was higher than those in BAS1-untreated leaves directly challenged with the same strain, which suggested the defense response trigged by BAS1 can be overcome by other effectors of the fungus. More severe symptoms, higher sporulation, higher relative fungal growth and more lower expression level of defense-related genes appeared in LTH leaves challenged with overexpression strain 35S:BAS1/Mo-2 than those in LTH inoculated with wild-type strain. Conclusions: These data suggest both in vitro pretreatment with BAS1 prokaryotic expression products and overexpression in blast strains can increase virulence of blast fungus.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Lin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yunfen Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunmei Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jinlu Yan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yanqin Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Changmi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, Yunnan, China
| |
Collapse
|
19
|
Yin X, Komatsu S. Comprehensive analysis of response and tolerant mechanisms in early-stage soybean at initial-flooding stress. J Proteomics 2017; 169:225-232. [PMID: 28137666 DOI: 10.1016/j.jprot.2017.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, which markedly reduces its growth and yield. Morphological and biochemical changes such as an increase of fresh weight and a decrease of ATP content happen in early-stage soybean at initial-flooding stress, indicating that soybean responses to flooding stress are keys for its survival and seedling growth. Phosphoproteomics and nuclear proteomics are useful tools to detect protein-phosphorylation status and to identify transcriptional factors. In the review, the effect of flooding on soybean response to initial flooding stress is discussed based on recent results of proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies. In addition, soybean survival under flooding stress, which is defined as tolerance mechanism, is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. BIOLOGICAL SIGNIFICANCE Soybean is one of the most cultivated crops in the world; however, it is very sensitive to flooding stress, especially soybean responses to initial flooding stress is key for its survival and seedling growth. Recently, proteomic techniques are applied to investigate the response and tolerant mechanisms of soybean at initial flooding condition. In this review, the progress in proteomic, phosphoproteomic, nuclear proteomic, and nuclear phosphoproteomic studies about the initial-flooding response mechanism in early-stage soybean is presented. In addition, the tolerant mechanism in soybean is discussed with the results of comprehensive analysis in flooding-tolerant mutant line and abscisic acid-treated soybean. Through this review, the key proteins and genes involved in initial flooding response and tolerance at early stage soybean are summarized and they contribute greatly to uncover response and tolerance mechanism at early stage under stressful environmental conditions in soybean.
Collapse
Affiliation(s)
- Xiaojian Yin
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan
| | - Setsuko Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan; National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba 305-8518, Japan.
| |
Collapse
|
20
|
Castaño-Miquel L, Mas A, Teixeira I, Seguí J, Perearnau A, Thampi BN, Schapire AL, Rodrigo N, La Verde G, Manrique S, Coca M, Lois LM. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens. MOLECULAR PLANT 2017; 10:709-720. [PMID: 28343913 DOI: 10.1016/j.molp.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 05/26/2023]
Abstract
Protein modification by SUMO modulates essential biological processes in eukaryotes. SUMOylation is facilitated by sequential action of the E1-activating, E2-conjugating, and E3-ligase enzymes. In plants, SUMO regulates plant development and stress responses, which are key determinants in agricultural productivity. To generate additional tools for advancing our knowledge about the SUMO biology, we have developed a strategy for inhibiting in vivo SUMO conjugation based on disruption of SUMO E1-E2 interactions through expression of E1 SAE2UFDCt domain. Targeted mutagenesis and phylogenetic analyses revealed that this inhibition involves a short motif in SAE2UFDCt highly divergent across kingdoms. Transgenic plants expressing the SAE2UFDCt domain displayed dose-dependent inhibition of SUMO conjugation, and have revealed the existence of a post-transcriptional mechanism that regulates SUMO E2 conjugating enzyme levels. Interestingly, these transgenic plants displayed increased susceptibility to necrotrophic fungal infections by Botrytis cinerea and Plectosphaerella cucumerina. Early after fungal inoculation, host SUMO conjugation was post-transcriptionally downregulated, suggesting that targeting SUMOylation machinery could constitute a novel mechanism for fungal pathogenicity. These findings support the role of SUMOylation as a mechanism involved in plant protection from environmental stresses. In addition, the strategy for inhibiting SUMO conjugation in vivo described in this study might be applicable in important crop plants and other non-plant organisms regardless of their genetic complexity.
Collapse
Affiliation(s)
- Laura Castaño-Miquel
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Abraham Mas
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Inês Teixeira
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Josep Seguí
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Anna Perearnau
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Bhagyasree N Thampi
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Arnaldo L Schapire
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Natalia Rodrigo
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Gaelle La Verde
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Silvia Manrique
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - Maria Coca
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain
| | - L Maria Lois
- Center for Research in Agricultural Genomics - CRAG, Edifici CRAG-Campus UAB, Bellaterra (Cerdanyola del Vallés), 08193 Barcelona, Spain.
| |
Collapse
|
21
|
Jin X, Gou JY. A rapid and cost-effective fluorescence detection in tube (FDIT) method to analyze protein phosphorylation. PLANT METHODS 2016; 12:43. [PMID: 27822293 PMCID: PMC5094037 DOI: 10.1186/s13007-016-0143-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/17/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Protein phosphorylation is one of the most important post-translational modifications catalyzed by protein kinases in living organisms. The advance of genome sequencing provided the information of protein kinase families in many organisms, including both model and non-model plants. The development of proteomics technologies also enabled scientists to efficiently reveal a large number of protein phosphorylations of an organism. However, kinases and phosphorylation targets are still to be connected to illustrate the complicated network in life. RESULTS Here we adapted Pro-Q® Diamond (Pro-Q® Diamond Phosphoprotein Gel Stain), a widely used phosphoprotein gel-staining fluorescence dye, to establish a rapid, economical and non-radioactive fluorescence detection in tube (FDIT) method to analyze phosphorylated proteins. Taking advantages of high sensitivity and specificity of Pro-Q® diamond, the FDIT method is also demonstrated to be rapid and reliable, with a suitable linear range for in vitro protein phosphorylation. A significant and satisfactory protein kinase reaction was detected as fast as 15 min from Wheat Kinase START 1.1 (WKS1.1) on a thylakoid ascorbate peroxidase (tAPX), an established phosphorylation target in our earlier study. CONCLUSION The FDIT method saves up to 95% of the dye consumed in a gel staining method. The FDIT method is remarkably quick, highly reproducible, unambiguous and capable to be scaled up to dozens of samples. The FDIT method could serve as a simple and sensitive alternative procedure to determine protein kinase reactions with zero radiation exposure, as a supplementation to other widely used radioactive and in-gel assays.
Collapse
Affiliation(s)
- Xiao Jin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Jin-Ying Gou
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, 200438 China
| |
Collapse
|
22
|
Hewezi T. Cellular Signaling Pathways and Posttranslational Modifications Mediated by Nematode Effector Proteins. PLANT PHYSIOLOGY 2015; 169:1018-26. [PMID: 26315856 PMCID: PMC4587465 DOI: 10.1104/pp.15.00923] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/27/2015] [Indexed: 05/19/2023]
Abstract
Plant-parasitic cyst and root-knot nematodes synthesize and secrete a suite of effector proteins into infected host cells and tissues. These effectors are the major virulence determinants mediating the transformation of normal root cells into specialized feeding structures. Compelling evidence indicates that these effectors directly hijack or manipulate refined host physiological processes to promote the successful parasitism of host plants. Here, we provide an update on recent progress in elucidating the molecular functions of nematode effectors. In particular, we emphasize how nematode effectors modify plant cell wall structure, mimic the activity of host proteins, alter auxin signaling, and subvert defense signaling and immune responses. In addition, we discuss the emerging evidence suggesting that nematode effectors target and recruit various components of host posttranslational machinery in order to perturb the host signaling networks required for immunity and to regulate their own activity and subcellular localization.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
23
|
Zhu Y, Li Y, Fei F, Wang Z, Wang W, Cao A, Liu Y, Han S, Xing L, Wang H, Chen W, Tang S, Huang X, Shen Q, Xie Q, Wang X. E3 ubiquitin ligase gene CMPG1-V from Haynaldia villosa L. contributes to powdery mildew resistance in common wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:154-68. [PMID: 26287740 DOI: 10.1111/tpj.12966] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 08/07/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
Powdery mildew is one of the most devastating wheat fungal diseases. A diploid wheat relative, Haynaldia villosa L., is highly resistant to powdery mildew, and its genetic resource of resistances, such as the Pm21 locus, is now widely used in wheat breeding. Here we report the cloning of a resistance gene from H. villosa, designated CMPG1-V, that encodes a U-box E3 ubiquitin ligase. Expression of the CMPG1-V gene was induced in the leaf and stem of H. villosa upon inoculation with Blumeria graminis f. sp. tritici (Bgt) fungus, and the presence of Pm21 is essential for its rapid induction of expression. CMPG1-V has conserved key residues for E3 ligase, and possesses E3 ligase activity in vitro and in vivo. CMPG1-V is localized in the nucleus, endoplasmic reticulum, plasma membrane and partially in trans-Golgi network/early endosome vesicles. Transgenic wheat over-expressing CMPG1-V showed improved broad-spectrum powdery mildew resistance at seedling and adult stages, associated with an increase in expression of salicylic acid-responsive genes, H2 O2 accumulation, and cell-wall protein cross-linking at the Bgt infection sites, and the expression of CMPG1-V in H. villosa was increased when treated with salicylic acid, abscisic acid and H2 O2 . These results indicate the involvement of E3 ligase in defense responses to Bgt fungus in wheat, particularly in broad-spectrum disease resistance, and suggest association of reactive oxidative species and the phytohormone pathway with CMPG1-V-mediated powdery mildew resistance.
Collapse
Affiliation(s)
- Yanfei Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Yingbo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Fei Fei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Zongkuan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Wei Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Aizhong Cao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Yuan Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Shuang Han
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Liping Xing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Wei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiahe Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianhua Shen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
24
|
Bhattacharjee S, Noor JJ, Gohain B, Gulabani H, Dnyaneshwar IK, Singla A. Post-translational modifications in regulation of pathogen surveillance and signaling in plants: The inside- (and perturbations from) outside story. IUBMB Life 2015; 67:524-32. [PMID: 26177826 DOI: 10.1002/iub.1398] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/21/2022]
Abstract
In its lifetime a plant is exposed to pathogens of diverse types. Although methods of surveillance are broadly pathogen-individualized, immune signaling ultimately connect to common core networks maintained by key protein hubs. Defense elicitations modulate these hubs to re-allocate energy from central metabolic pathway into processes that execute immunity. Because unregulated defenses severely decrease growth and productivity of the host, signaling regulators within the networks function to achieve cellular equilibrium once the threat is minimized. Protein modifications by post-translational processes regulate the molecular switches and crosstalks between interconnected pathways spatially and temporally. Covalent modification of host targets connected to hubs are strategies used by most virulent effectors and result in re-routing signals to suppress host defenses. Resistance is a result of activation of specialized classes of receptors that short-circuit effector activities by co-localizing via post-translational modifications (PTMs) with effector targets. Despite advancement in proteome methodologies, our understanding of how PTMs regulate plant defenses remains elusive. This review presents protein-modifications as forefront regulators of plant innate immunity.
Collapse
Affiliation(s)
- Saikat Bhattacharjee
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Jewel Jameeta Noor
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Bornali Gohain
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Hitika Gulabani
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | | | - Ankit Singla
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| |
Collapse
|
25
|
Motion GB, Amaro TM, Kulagina N, Huitema E. Nuclear processes associated with plant immunity and pathogen susceptibility. Brief Funct Genomics 2015; 14:243-52. [PMID: 25846755 PMCID: PMC4513213 DOI: 10.1093/bfgp/elv013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Plants are sessile organisms that have evolved exquisite and sophisticated mechanisms to adapt to their biotic and abiotic environment. Plants deploy receptors and vast signalling networks to detect, transmit and respond to a given biotic threat by inducing properly dosed defence responses. Genetic analyses and, more recently, next-generation -omics approaches have allowed unprecedented insights into the mechanisms that drive immunity. Similarly, functional genomics and the emergence of pathogen genomes have allowed reciprocal studies on the mechanisms governing pathogen virulence and host susceptibility, collectively allowing more comprehensive views on the processes that govern disease and resistance. Among others, the identification of secreted pathogen molecules (effectors) that modify immunity-associated processes has changed the plant-microbe interactions conceptual landscape. Effectors are now considered both important factors facilitating disease and novel probes, suited to study immunity in plants. In this review, we will describe the various mechanisms and processes that take place in the nucleus and help regulate immune responses in plants. Based on the premise that any process required for immunity could be targeted by pathogen effectors, we highlight and describe a number of functional assays that should help determine effector functions and their impact on immune-related processes. The identification of new effector functions that modify nuclear processes will help dissect nuclear signalling further and assist us in our bid to bolster immunity in crop plants.
Collapse
|
26
|
Hou Y, Qiu J, Tong X, Wei X, Nallamilli BR, Wu W, Huang S, Zhang J. A comprehensive quantitative phosphoproteome analysis of rice in response to bacterial blight. BMC PLANT BIOLOGY 2015; 15:163. [PMID: 26112675 PMCID: PMC4482044 DOI: 10.1186/s12870-015-0541-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/05/2015] [Indexed: 05/06/2023]
Abstract
BACKGROUND Rice is a major crop worldwide. Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) has become one of the most devastating diseases for rice. It has been clear that phosphorylation plays essential roles in plant disease resistance. However, the role of phosphorylation is poorly understood in rice-Xoo system. Here, we report the first study on large scale enrichment of phosphopeptides and identification of phosphosites in rice before and 24 h after Xoo infection. RESULTS We have successfully identified 2367 and 2223 phosphosites on 1334 and 1297 representative proteins in 0 h and 24 h after Xoo infection, respectively. A total of 762 differentially phosphorylated proteins, including transcription factors, kinases, epi-genetic controlling factors and many well-known disease resistant proteins, are identified after Xoo infection suggesting that they may be functionally relevant to Xoo resistance. In particular, we found that phosphorylation/dephosphorylation might be a key switch turning on/off many epi-genetic controlling factors, including HDT701, in response to Xoo infection, suggesting that phosphorylation switch overriding the epi-genetic regulation may be a very universal model in the plant disease resistance pathway. CONCLUSIONS The phosphosites identified in this study would be a big complementation to our current knowledge in the phosphorylation status and sites of rice proteins. This research represents a substantial advance in understanding the rice phosphoproteome as well as the mechanism of rice bacterial blight resistance.
Collapse
Affiliation(s)
- Yuxuan Hou
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jiehua Qiu
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiaohong Tong
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Xiangjin Wei
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Babi R Nallamilli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, 30322, U.S.A..
| | - Weihuai Wu
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Shiwen Huang
- China National Rice Research Institute, Hangzhou, 311400, China.
| | - Jian Zhang
- China National Rice Research Institute, Hangzhou, 311400, China.
| |
Collapse
|
27
|
Tan CM, Li MY, Yang PY, Chang SH, Ho YP, Lin H, Deng WL, Yang JY. Arabidopsis HFR1 is a potential nuclear substrate regulated by the Xanthomonas type III effector XopD(Xcc8004). PLoS One 2015; 10:e0117067. [PMID: 25647296 PMCID: PMC4315394 DOI: 10.1371/journal.pone.0117067] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022] Open
Abstract
XopDXcc8004, a type III effector of Xanthomonas campestris pv. campestris (Xcc) 8004, is considered a shorter version of the XopD, which lacks the N-terminal domain. To understand the functions of XopDXcc8004, in planta, a transgenic approach combined with inducible promoter to analyze the effects of XopDXcc8004 in Arabidopsis was done. Here, the expression of XopDXcc8004, in Arabidopsis elicited the accumulation of host defense-response genes. These molecular changes were dependent on salicylic acid and correlated with lesion-mimic phenotypes observed in XVE::XopDXcc8004 transgenic plants. Moreover, XopDXcc8004 was able to desumoylate HFR1, a basic helix-loop-helix transcription factor involved in photomorphogenesis, through SUMO protease activity. Interestingly, the hfr1-201 mutant increased the expression of host defense-response genes and displayed a resistance phenotype to Xcc8004. These data suggest that HFR1 is involved in plant innate immunity and is potentially regulated by XopDXcc8004.
Collapse
Affiliation(s)
- Choon Meng Tan
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
| | - Meng-Ying Li
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Pei-Yun Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Shu Heng Chang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Yi-Ping Ho
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Hong Lin
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
| | - Wen-Ling Deng
- Department of Plant Pathology, National ChungHsing University, Taichung, Taiwan
| | - Jun-Yi Yang
- Institute of Biochemistry, National ChungHsing University, Taichung, Taiwan
- Ph.D. Program in Microbial Genomics, National ChungHsing University and Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, National ChungHsing University, Taichung, Taiwan
- NCHU-UCD Plant and Food Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- Agricultural Biotechnology Center, National ChungHsing University, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
28
|
Ederli L, Dawe A, Pasqualini S, Quaglia M, Xiong L, Gehring C. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. FRONTIERS IN PLANT SCIENCE 2015; 6:79. [PMID: 25750645 PMCID: PMC4335275 DOI: 10.3389/fpls.2015.00079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/30/2015] [Indexed: 05/08/2023]
Abstract
We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.
Collapse
Affiliation(s)
- Luisa Ederli
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| | - Adam Dawe
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Stefania Pasqualini
- Department of Chemistry, Biology and Biotechnology, University of PerugiaPerugia, Italy
| | - Mara Quaglia
- Department of Agricultural, Food and Environmental Sciences, University of PerugiaPerugia, Italy
| | - Liming Xiong
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Chris Gehring
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
- *Correspondence: Chris Gehring, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia e-mail:
| |
Collapse
|
29
|
Slade WO, Werth EG, Chao A, Hicks LM. Phosphoproteomics in photosynthetic organisms. Electrophoresis 2014; 35:3441-51. [PMID: 24825726 DOI: 10.1002/elps.201400154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/18/2014] [Accepted: 04/29/2014] [Indexed: 02/04/2023]
Abstract
As primarily sessile organisms, photosynthetic species survive in dynamic environments by using elegant signaling pathways to manifest molecular responses to extracellular cues. These pathways exploit phosphorylation of specific amino acids (e.g. serine, threonine, tyrosine), which impact protein structure, function, and localization. Despite substantial progress in implementation of phosphoproteomics to understand photosynthetic organisms, researchers still struggle to translate a biological question into an experimental strategy and vice versa. This review evaluates the current status of phosphoproteomics in photosynthetic organisms and concludes with recommendations based on current knowledge.
Collapse
Affiliation(s)
- William O Slade
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
30
|
Sade D, Brotman Y, Eybishtz A, Cuadros-Inostroza A, Fernie AR, Willmitzer L, Czosnek H. Involvement of the hexose transporter gene LeHT1 and of sugars in resistance of tomato to tomato yellow leaf curl virus. MOLECULAR PLANT 2013; 6:1707-10. [PMID: 23430051 DOI: 10.1093/mp/sst036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Dagan Sade
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
31
|
Sørhagen K, Laxa M, Peterhänsel C, Reumann S. The emerging role of photorespiration and non-photorespiratory peroxisomal metabolism in pathogen defence. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:723-36. [PMID: 23506300 DOI: 10.1111/j.1438-8677.2012.00723.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 11/08/2012] [Indexed: 05/06/2023]
Abstract
Photorespiration represents one of the major highways of primary plant metabolism and is the most prominent example of metabolic cell organelle integration, since the pathway requires the concerted action of plastidial, peroxisomal, mitochondrial and cytosolic enzymes and organellar transport proteins. Oxygenation of ribulose-1,5-bisphosphate by Rubisco leads to the formation of large amounts of 2-phosphoglycolate, which are recycled to 3-phosphoglycerate by the photorespiratory C2 cycle, concomitant with stoichiometric production rates of H2 O2 in peroxisomes. Apart from its significance for agricultural productivity, a secondary function of photorespiration in pathogen defence has emerged only recently. Here, we summarise literature data supporting the crosstalk between photorespiration and pathogen defence and perform a meta-expression analysis of photorespiratory genes during pathogen attack. Moreover, we screened Arabidopsis proteins newly predicted using machine learning methods to be targeted to peroxisomes, the central H2 O2 -producing organelle of photorespiration, for homologues of known pathogen defence proteins and analysed their expression during pathogen infection. The analyses further support the idea that photorespiration and non-photorespiratory peroxisomal metabolism play multi-faceted roles in pathogen defence beyond metabolism of reactive oxygen species.
Collapse
Affiliation(s)
- K Sørhagen
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | | | | | | |
Collapse
|
32
|
Ubiquitination of the tomato cell death suppressor Adi3 by the RING E3 ubiquitin ligase AdBiL. Biochem Biophys Res Commun 2012. [PMID: 23178567 DOI: 10.1016/j.bbrc.2012.11.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Programmed cell death (PCD) is an organized process by which organisms selectively remove cells according to developmental needs or in response to biotic or abiotic stress. Despite recent efforts to understand mechanisms by which cell death takes place in plants, several gaps remain in our understanding of the molecular elements involved. The tomato PCD suppressor Adi3 is an AGC kinase that shares functional homology with the mammalian inhibitor of apoptosis PKB. Regulation of PKB stability, cell localization, and activation state is achieved through post-translational modifications such as ubiquitination. In an effort to understand the regulation of Adi3 function, we studied its interaction with the E3 ubiquitin ligase AdBiL. Using in vitro ubiquitination assays we show that AdBiL is an active E3 ubiquitin ligase using the E2 ubiquitin ligase UBC8 to ubiquitinate Adi3. Adi3 is also degraded in a proteasome-dependent manner. Our data draws additional parallels between Adi3 and PKB to support the functional relationship between these two PCD regulators.
Collapse
|
33
|
Batistic O. Genomics and localization of the Arabidopsis DHHC-cysteine-rich domain S-acyltransferase protein family. PLANT PHYSIOLOGY 2012; 160:1597-612. [PMID: 22968831 PMCID: PMC3490592 DOI: 10.1104/pp.112.203968] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/07/2012] [Indexed: 05/18/2023]
Abstract
Protein lipid modification of cysteine residues, referred to as S-palmitoylation or S-acylation, is an important secondary and reversible modification that regulates membrane association, trafficking, and function of target proteins. This enzymatic reaction is mediated by protein S-acyl transferases (PATs). Here, the phylogeny, genomic organization, protein topology, expression, and localization pattern of the 24 PAT family members from Arabidopsis (Arabidopsis thaliana) is described. Most PATs are expressed at ubiquitous levels and tissues throughout the development, while few genes are expressed especially during flower development preferentially in pollen and stamen. The proteins display large sequence and structural variations but exhibit a common protein topology that is preserved in PATs from various organisms. Arabidopsis PAT proteins display a complex targeting pattern and were detected at the endoplasmic reticulum, Golgi, endosomal compartments, and the vacuolar membrane. However, most proteins were targeted to the plasma membrane. This large concentration of plant PAT activity to the plasma membrane suggests that the plant cellular S-acylation machinery is functionally different compared with that of yeast (Saccharomyces cerevisiae) and mammalians.
Collapse
Affiliation(s)
- Oliver Batistic
- Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, 48149 Muenster, Germany.
| |
Collapse
|
34
|
Hwang IS, Kim NH, Choi DS, Hwang BK. Overexpression of Xanthomonas campestris pv. vesicatoria effector AvrBsT in Arabidopsis triggers plant cell death, disease and defense responses. PLANTA 2012; 236:1191-1204. [PMID: 22678032 DOI: 10.1007/s00425-012-1672-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 05/19/2012] [Indexed: 06/01/2023]
Abstract
Recognition of bacterial effector proteins by plant cells is crucial for plant disease and defense response signaling. The Xanthomonas campestris pv. vesicatoria (Xcv) type III effector protein, AvrBsT, is secreted into plant cells from Xcv strain Bv5-4a. Here, we demonstrate that dexamethasone (DEX): avrBsT overexpression triggers cell death signaling in healthy transgenic Arabidopsis plants. AvrBsT overexpression in Arabidopsis also reduced susceptibility to infection with the obligate biotrophic oomycete Hyaloperonospora arabidopsidis. Overexpression of avrBsT significantly induced some defense-related genes in Arabidopsis leaves. A high-throughput in planta proteomics screen identified TCP-1 chaperonin, SEC7-like guanine nucleotide exchange protein and calmodulin-like protein, which were differentially expressed in DEX:avrBsT-overexpression (OX) Arabidopsis plants during Hp. arabidopsidis infection. Treatment with purified GST-tagged AvrBsT proteins distinctly inhibited the growth and sporulation of Hp. arabidopsidis on Arabdiopsis cotyledons. In contrast, DEX:avrBsT-OX plants exhibited enhanced susceptibility to Pseudomonas syringae pv. tomato (Pst) DC3000 infection. Notably, susceptible cell death and enhanced electrolyte leakage were significantly induced in the Pst-infected leaves of DEX:avrBsT-OX plants. Together, these results suggest that Xcv effector AvrBsT overexpression triggers plant cell death, disease and defense signaling leading to both disease and defense responses to microbial pathogens of different lifestyles.
Collapse
Affiliation(s)
- In Sun Hwang
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul 136-713, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Howden AJM, Huitema E. Effector-triggered post-translational modifications and their role in suppression of plant immunity. FRONTIERS IN PLANT SCIENCE 2012; 3:160. [PMID: 22811685 PMCID: PMC3397307 DOI: 10.3389/fpls.2012.00160] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/29/2012] [Indexed: 05/24/2023]
Abstract
Plant-pathogen interactions feature complex signaling exchanges between host and microbes that ultimately determine association outcomes. Plants deploy pattern recognition receptors to perceive pathogen-associated molecular patterns, mount pattern-triggered immunity (PTI), and fend off potential pathogens. In recent years an increasing number of defense-signaling components have been identified along with a mechanistic understanding of their regulation during immune responses. Post-translational modifications (PTMs) are now thought to play a crucial role in regulating defense signaling. In a bid to suppress PTI and infect their host, pathogens have evolved large repertoires of effectors that trigger susceptibility and allow colonization of host tissues. While great progress has been made in elucidating defense-signaling networks in plants and the activities of effectors in immune suppression, a critical gap exists in our understanding of effector mechanism-of-action. Given the importance of PTMs in the regulation of defense signaling, we will explore the question: how do effectors modify the post-translational status of host proteins and thus interfere with host processes required for immunity? We will consider how emerging proteomics-based experimental strategies may help us answer this important question and ultimately open the pathogens' effector black box.
Collapse
Affiliation(s)
| | - Edgar Huitema
- *Correspondence: Edgar Huitema, Division of Plant Science, College of Life Sciences, University of Dundee at The James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK. e-mail:
| |
Collapse
|
36
|
Gu J, Weber K, Klemp E, Winters G, Franssen SU, Wienpahl I, Huylmans AK, Zecher K, Reusch TBH, Bornberg-Bauer E, Weber APM. Identifying core features of adaptive metabolic mechanisms for chronic heat stress attenuation contributing to systems robustness. Integr Biol (Camb) 2012; 4:480-93. [PMID: 22402787 DOI: 10.1039/c2ib00109h] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The contribution of metabolism to heat stress may play a significant role in defining robustness and recovery of systems; either by providing the energy and metabolites required for cellular homeostasis, or through the generation of protective osmolytes. However, the mechanisms by which heat stress attenuation could be adapted through metabolic processes as a stabilizing strategy against thermal stress are still largely unclear. We address this issue through metabolomic and transcriptomic profiles for populations along a thermal cline where two seagrass species, Zostera marina and Zostera noltii, were found in close proximity. Significant changes captured by these profile comparisons could be detected, with a larger response magnitude observed in northern populations to heat stress. Sucrose, fructose, and myo-inositol were identified to be the most responsive of the 29 analyzed organic metabolites. Many key enzymes in the Calvin cycle, glycolysis and pentose phosphate pathways also showed significant differential expression. The reported comparison suggests that adaptive mechanisms are involved through metabolic pathways to dampen the impacts of heat stress, and interactions between the metabolome and proteome should be further investigated in systems biology to understand robust design features against abiotic stress.
Collapse
Affiliation(s)
- Jenny Gu
- Institute for Evolution and Biodiversity, University of Muenster, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Park CJ, Caddell DF, Ronald PC. Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. FRONTIERS IN PLANT SCIENCE 2012; 3:177. [PMID: 22876255 PMCID: PMC3411088 DOI: 10.3389/fpls.2012.00177] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/18/2012] [Indexed: 05/03/2023]
Abstract
Plants are continuously challenged by pathogens including viruses, bacteria, and fungi. The plant immune system recognizes invading pathogens and responds by activating an immune response. These responses occur rapidly and often involve post-translational modifications (PTMs) within the proteome. Protein phosphorylation is a common and intensively studied form of these PTMs and regulates many plant processes including plant growth, development, and immunity. Most well-characterized pattern recognition receptors (PRRs), including Xanthomonas resistance 21, flagellin sensitive 2, and elongation factor-Tu receptor, possess intrinsic protein kinase activity and regulate downstream signaling through phosphorylation events. Here, we focus on the phosphorylation events of plant PRRs that play important roles in the immune response. We also discuss the role of phosphorylation in regulating mitogen-associated protein kinase cascades and transcription factors in plant immune signaling.
Collapse
Affiliation(s)
| | | | - Pamela C. Ronald
- *Correspondence: Pamela C. Ronald, Department of Plant Pathology and the Genome Center, University of California at Davis, One Shields Avenue, Davis, CA 95616, USA. e-mail:
| |
Collapse
|
38
|
Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. The Strawberry Plant Defense Mechanism: A Molecular Review. ACTA ACUST UNITED AC 2011; 52:1873-903. [DOI: 10.1093/pcp/pcr136] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Post-translational modification of plant-made foreign proteins; glycosylation and beyond. Biotechnol Adv 2011; 30:410-8. [PMID: 21839159 DOI: 10.1016/j.biotechadv.2011.07.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/18/2011] [Accepted: 07/25/2011] [Indexed: 11/23/2022]
Abstract
The complex and diverse nature of the post-translational modification (PTM) of proteins represents an efficient and cost-effective mechanism for the exponential diversification of the genome. PTMs have been shown to affect almost every aspect of protein activity, including function, localisation, stability, and dynamic interactions with other molecules. Although many PTMs are evolutionarily conserved there are also important kingdom-specific modifications which should be considered when expressing recombinant proteins. Plants are gaining increasing acceptance as an expression system for recombinant proteins, particularly where eukaryotic-like PTMs are required. Glycosylation is the most extensively studied PTM of plant-made recombinant proteins. However, other types of protein processing and modification also occur which are important for the production of high quality recombinant protein, such as hydroxylation and lipidation. Plant and/or protein engineering approaches offer many opportunities to exploit PTM pathways allowing the molecular farmer to produce a humanised product with modifications functionally similar or identical to the native protein. Indeed, plants have demonstrated a high degree of tolerance to changes in PTM pathways allowing recombinant proteins to be modified in a specific and controlled manner, frequently resulting in a homogeneity of product which is currently unrivalled by alternative expression platforms. Whether a recombinant protein is intended for use as a scientific reagent, a cosmetic additive or as a pharmaceutical, PTMs through their presence and complexity, offer an extensive range of options for the rational design of humanised (biosimilar), enhanced (biobetter) or novel products.
Collapse
|
40
|
How ubiquitination and autophagy participate in the regulation of the cell response to bacterial infection. Biol Cell 2011; 102:621-34. [PMID: 21077843 PMCID: PMC2975374 DOI: 10.1042/bc20100101] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial infection relies on the micro-organism's ability to orchestrate the host's cell signalling such that the immune response is not activated. Conversely, the host cell has dedicated signalling pathways for coping with intrusions by pathogens. The autophagy of foreign micro-organisms (known as xenophagy) has emerged as one of the most powerful of these pathways, although the triggering mode remains largely unknown. In the present paper, we discuss the role that certain post-translational modifications (primarily ubiquitination) may play in the activation of xenophagy and how some bacteria have evolved mechanisms to subvert or hijack this process. In particular, we address the role played by P62/SQSTM1 (sequestosome 1). Finally, we discuss how autophagy can be subverted to eliminate bacteria-induced danger signals.
Collapse
|
41
|
Li W, Zhong S, Li G, Li Q, Mao B, Deng Y, Zhang H, Zeng L, Song F, He Z. Rice RING protein OsBBI1 with E3 ligase activity confers broad-spectrum resistance against Magnaporthe oryzae by modifying the cell wall defence. Cell Res 2011; 21:835-48. [PMID: 21221134 DOI: 10.1038/cr.2011.4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear. We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OsBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3 ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M. oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBI1-overexpressing plants showed higher levels of H(2)O(2) accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. oryzae compared with wild-type (WT) plants. The cell walls were thicker in the OsBBI1-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBI1 modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.
Collapse
Affiliation(s)
- Wei Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Paddibhatla I, Lee MJ, Kalamarz ME, Ferrarese R, Govind S. Role for sumoylation in systemic inflammation and immune homeostasis in Drosophila larvae. PLoS Pathog 2010; 6:e1001234. [PMID: 21203476 PMCID: PMC3009591 DOI: 10.1371/journal.ppat.1001234] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/18/2010] [Indexed: 01/01/2023] Open
Abstract
To counter systemic risk of infection by parasitic wasps, Drosophila larvae activate humoral immunity in the fat body and mount a robust cellular response resulting in encapsulation of the wasp egg. Innate immune reactions are tightly regulated and are resolved within hours. To understand the mechanisms underlying activation and resolution of the egg encapsulation response and examine if failure of the latter develops into systemic inflammatory disease, we correlated parasitic wasp-induced changes in the Drosophila larva with systemic chronic conditions in sumoylation-deficient mutants. We have previously reported that loss of either Cactus, the Drosophila (IκB) protein or Ubc9, the SUMO-conjugating enzyme, leads to constitutive activation of the humoral and cellular pathways, hematopoietic overproliferation and tumorogenesis. Here we report that parasite infection simultaneously activates NF-κB-dependent transcription of Spätzle processing enzyme (SPE) and cactus. Endogenous Spätzle protein (the Toll ligand) is expressed in immune cells and excessive SPE or Spätzle is pro-inflammatory. Consistent with this function, loss of Spz suppresses Ubc9− defects. In contrast to the pro-inflammatory roles of SPE and Spätzle, Cactus and Ubc9 exert an anti-inflammatory effect. We show that Ubc9 maintains steady state levels of Cactus protein. In a series of immuno-genetic experiments, we demonstrate the existence of a robust bidirectional interaction between blood cells and the fat body and propose that wasp infection activates Toll signaling in both compartments via extracellular activation of Spätzle. Within each organ, the IκB/Ubc9-dependent inhibitory feedback resolves immune signaling and restores homeostasis. The loss of this feedback leads to chronic inflammation. Our studies not only provide an integrated framework for understanding the molecular basis of the evolutionary arms race between insect hosts and their parasites, but also offer insights into developing novel strategies for medical and agricultural pest control. Parasitoid wasps are a large group of insects in which the female injects her eggs into the bodies of host caterpillars (also called larvae). When the wasp egg hatches, the parasite larva gradually eats the host alive and takes over its body. Soon after the parasite egg is laid, an arms race between the parasite and the host is initiated. In a dramatic and highly restrained reaction, the host's blood cells surround and choke the development of the parasite egg. This encapsulation reaction allows the host to resume its development. We use Drosophila and its natural parasites to identify the mechanism that is essential for proper activation and termination of the encapsulation reaction. Unchecked encapsulation-like reaction flares up into a chronic inflammatory blood cancer in uninfected sumoylation-deficient larvae. Our studies reveal the parallels between acute (egg encapsulation) and chronic (blood cancer) inflammation in the fly. Moreover, these parallels match the criteria for acute and chronic inflammation in mammals. We can now understand more clearly how virus-like particles and factors introduced into the host along with the wasp egg disable the host's immune system to win the host/parasite arms race.
Collapse
Affiliation(s)
- Indira Paddibhatla
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Mark J. Lee
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Marta E. Kalamarz
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Roberto Ferrarese
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
| | - Shubha Govind
- Biology Department, The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- The Graduate Center, The City College of the City University of New York, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
43
|
Tarchevsky IA, Yakovleva VG, Egorova AM. Salicylate-induced modification of plant proteomes (review). APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Sorek N, Yalovsky S. Analysis of protein S-acylation by gas chromatography-coupled mass spectrometry using purified proteins. Nat Protoc 2010; 5:834-40. [PMID: 20379138 DOI: 10.1038/nprot.2010.33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
S-acylation, also known as palmitoylation, involves the attachment of acyl fatty acids to thiol groups of cysteine residues through a reversible thioester bond. Owing to its reversibility, S-acylation is important in regulation of diverse signaling cascades, including Ras-associated cancers in mammals, stress response and metabolic regulation. Here we describe a simple protocol for analysis of protein S-acylation using gas chromatography-coupled mass spectrometry. Analysis can be carried out with as little as 1 microg of purified protein and allows chemical identification and, potentially, quantification of the acyl moieties. The method is based on cleavage of the fatty acids from proteins by hydrogenation with platinum (IV) oxide. This causes an acid transesterification of the acyl groups, adding an ethyl group to the carboxyl head of the fatty acid. The addition of the ethyl group reduces the polarity of the fatty acids, allowing their efficient separation by gas chromatography.
Collapse
Affiliation(s)
- Nadav Sorek
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
45
|
Mika A, Boenisch MJ, Hopff D, Lüthje S. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:831-41. [PMID: 20032108 PMCID: PMC2814115 DOI: 10.1093/jxb/erp353] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 05/18/2023]
Abstract
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H(2)O(2) treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses.
Collapse
Affiliation(s)
- Angela Mika
- University of Hamburg, Biocenter Klein Flottbek and Botanical Garden, Plant Physiology, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| | | | | | | |
Collapse
|
46
|
Chung DWD, Ponts N, Cervantes S, Le Roch KG. Post-translational modifications in Plasmodium: more than you think! Mol Biochem Parasitol 2009; 168:123-34. [PMID: 19666057 DOI: 10.1016/j.molbiopara.2009.08.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/10/2009] [Accepted: 08/03/2009] [Indexed: 12/21/2022]
Abstract
Recent evidences indicate that transcription in Plasmodium may be hard-wired and rigid, deviating from the classical model of transcriptional gene regulation. Thus, it is important that other regulatory pathways be investigated as a comprehensive effort to curb the deadly malarial parasite. Research in post-translational modifications in Plasmodium is an emerging field that may provide new venues for drug discovery and potential new insights into how parasitic protozoans regulate their life cycle. Here, we discuss the recent findings of post-translational modifications in Plasmodium.
Collapse
Affiliation(s)
- Duk-Won Doug Chung
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | | | | | | |
Collapse
|
47
|
Stulemeijer IJE, Joosten MHAJ, Jensen ON. Quantitative phosphoproteomics of tomato mounting a hypersensitive response reveals a swift suppression of photosynthetic activity and a differential role for hsp90 isoforms. J Proteome Res 2009; 8:1168-82. [PMID: 19178300 DOI: 10.1021/pr800619h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An important mechanism by which plants defend themselves against pathogens is the rapid execution of a hypersensitive response (HR). Tomato plants containing the Cf-4 resistance gene mount an HR that relies on the activation of phosphorylation cascades, when challenged with the Avr4 elicitor secreted by the pathogenic fungus Cladosporium fulvum. Phosphopeptides were isolated from tomato seedlings expressing both Cf-4 and Avr4 using titanium dioxide columns and LC-MS/MS analysis led to the identification of 50 phosphoproteins, most of which have not been described in tomato before. Phosphopeptides were quantified using a label-free approach based on the MS peak areas. We identified 12 phosphopeptides for which the abundance changed upon HR initiation, as compared to control seedlings. Our results suggest that photosynthetic activity is specifically suppressed in a phosphorylation-dependent way during the very early stages of HR development. In addition, phosphopeptides originating from four Hsp90 isoforms exhibited altered abundances in Cf-4/Avr4 seedlings compared to control seedlings, suggesting that the isoforms of this chaperone protein have a different function in defense signaling. We show that label-free relative quantification of the phosphoproteome of complex samples is feasible, allowing extension of our knowledge on the general physiology and defense signaling of plants mounting the HR.
Collapse
Affiliation(s)
- Iris J E Stulemeijer
- Laboratory of Phytopathology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | | | | |
Collapse
|
48
|
Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Muñoz-Blanco J, Caballero JL. Evidence for a positive regulatory role of strawberry (Fragaria x ananassa) Fa WRKY1 and Arabidopsis At WRKY75 proteins in resistance. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3043-65. [PMID: 19470657 DOI: 10.1093/jxb/erp152] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Knowledge of the molecular basis of plant resistance to pathogens in species other than Arabidopsis is limited. The function of Fa WRKY1, the first WRKY gene isolated from strawberry (Fragaria x ananassa), an important agronomical fruit crop, has been investigated here. Fa WRKY1 encodes a IIc WRKY transcription factor and is up-regulated in strawberry following Colletotrichum acutatum infection, treatments with elicitors, and wounding. Its Arabidopsis sequence homologue, At WRKY75, has been described as playing a role in regulating phosphate starvation responses. However, using T-DNA insertion mutants, a role for the At WRKY75 and Fa WRKY1 in the activation of basal and R-mediated resistance in Arabidopsis is demonstrated. At wrky75 mutants are more susceptible to virulent and avirulent isolates of Pseudomonas syringae. Overexpression of Fa WRKY1 in At wrky75 mutant and wild type reverts the enhanced susceptible phenotype of the mutant, and even increases resistance to avirulent strains of P. syringae. The resistance phenotype is uncoupled to PATHOGENESIS-RELATED (PR) gene expression, but it is associated with a strong oxidative burst and glutathione-S-transferase (GST) induction. Taken together, these results indicate that At WRKY75 and Fa WRKY1 act as positive regulators of defence during compatible and incompatible interactions in Arabidopsis and, very likely, Fa WRKY1 is an important element mediating defence responses to C. acutatum in strawberry. Moreover, these results provide evidence that Arabidopsis can be a useful model for functional studies in Rosacea species like strawberry.
Collapse
Affiliation(s)
- Sonia Encinas-Villarejo
- Departamento de Bioquímica y Biología Molecular e Instituto Andaluz de Biotecnología, Campus de Rabanales, Edificio Severo Ochoa (C-6), Universidad de Córdoba, E-14071 Córdoba, Spain
| | | | | | | | | | | | | | | |
Collapse
|