1
|
Zhang Z, Islam MS, Xia J, Feng X, Noman M, Wang J, Hao Z, Qiu H, Chai R, Cai Y, Wang Y, Wang J. The nucleolin MoNsr1 plays pleiotropic roles in the pathogenicity and stress adaptation in the rice blast fungus Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2024; 15:1482934. [PMID: 39494062 PMCID: PMC11528547 DOI: 10.3389/fpls.2024.1482934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
The rice blast disease, caused by the fungus Magnaporthe oryzae, is a significant agricultural problem that adversely impacts rice production and food security. Understanding the precise molecular pathways involved in the interaction between the pathogen and its host is crucial for developing effective disease management strategies. This study examines the crucial function of the nucleolin MoNsr1 in regulating M. oryzae physiological functions. ΔMoNsr1 deletion mutants showed reduced fungal growth, asexual sporulation, and pathogenicity compared to the wild-type. Mutants exhibited impaired conidial germination and appressoria formation, reducing infection progression. Additionally, ΔMoNsr1 deletion mutant had less turgor pressure, confirming that MoNsr1 is essential for cell wall biogenesis and resistant to external stresses. Furthermore, ΔMoNsr1 deletion mutant showed enhanced sensitivity to oxidative stress, reactive oxygen species, and cold tolerance. Our results offer a thorough understanding of the function of MoNsr1 in the virulence and stress-resilient capability in M. oryzae. These findings provide insights into the novel targets and contribute to the emergence of innovative approaches for managing rice blast disease.
Collapse
Affiliation(s)
- Zhen Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mohammad Shafiqul Islam
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects of MARA, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiuzhi Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangyang Feng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Muhammad Noman
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhongna Hao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haiping Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Rongyao Chai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yingying Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yanli Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaoyu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro Products, Key Laboratory of Agricultural Microbiome of MARA and Zhejiang Province, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Zhou S, Liu S, Guo C, Wei H, He Z, Liu Z, Li X. The C 2H 2 Transcription Factor Con7 Regulates Vegetative Growth, Cell Wall Integrity, Oxidative Stress, Asexual Sporulation, Appressorium and Hyphopodium Formation, and Pathogenicity in Colletotrichum graminicola and Colletotrichum siamense. J Fungi (Basel) 2024; 10:495. [PMID: 39057380 PMCID: PMC11277718 DOI: 10.3390/jof10070495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The Colletotrichum genus is listed as one of the top 10 important plant pathogens, causing significant economic losses worldwide. The C2H2 zinc finger protein serves as a crucial transcription factor regulating growth and development in fungi. In this study, we identified two C2H2 transcription factors, CgrCon7 and CsCon7, in Colletotrichum graminicola and Colletotrichum siamense, as the orthologs of Con7p in Magnaporthe oryzae. Both CgrCon7 and CsCon7 have a typical C2H2 zinc finger domain and exhibit visible nuclear localization. Disrupting Cgrcon7 or Cscon7 led to a decreased growth rate, changes in cell wall integrity, and low tolerance to H2O2. Moreover, the deletion of Cgrcon7 or Cscon7 dramatically decreased conidial production, and their knockout mutants also lost the ability to produce appressoria and hyphopodia. Pathogenicity assays displayed that deleting Cgrcon7 or Cscon7 resulted in a complete loss of virulence. Transcriptome analysis showed that CgrCon7 and CsCon7 were involved in regulating many genes related to ROS detoxification, chitin synthesis, and cell wall degradation, etc. In conclusion, CgrCon7 and CsCon7 act as master transcription factors coordinating vegetative growth, oxidative stress response, cell wall integrity, asexual sporulation, appressorium formation, and pathogenicity in C. graminicola and C. siamense.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiqiang Liu
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| | - Xiaoyu Li
- School of Life and Health Sciences, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Zhan S, Wu W, Hu J, Liu F, Qiao X, Chen L, Zhou Y. The pathogenicity and regulatory function of temperature-sensitive proteins PscTSP in Pseudofabraea citricarpa under high temperature stress. Int J Biol Macromol 2024; 270:132017. [PMID: 38697438 DOI: 10.1016/j.ijbiomac.2024.132017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Citrus fruit rich in beneficial health-promoting nutrients used for functional foods or dietary supplements production. However, its quality and yield were damaged by citrus target spot. Citrus target spot is a low-temperature fungal disease caused by Pseudofabraea citricarpa, resulting in citrus production reductions and economic losses. In this study, transcriptome and gene knockout mutant analyses were performed on the growth and pathogenicity of P. citricarpa under different temperature conditions to quantify the functions of temperature-sensitive proteins (PscTSP). The optimum growth temperature for P. citricarpa strain WZ1 was 20 °C, while it inhibited or stopped growth above 30 °C and stopped growth below 4 °C or above 30 °C. Certain PscTSP-key genes of P. citricarpa were identified under high temperature stress. qRT-PCR analysis confirmed the expression levels of PscTSPs under high temperature stress. PscTSPs were limited by temperature and deletion of the PscTSP-X gene leads to changes in the integrity of citrus cell walls, osmotic regulation, oxidative stress response, calcium regulation, chitin synthesis, and the pathogenicity of P. citricarpa. These results provide insight into the underlying mechanisms of temperature sensitivity and pathogenicity in P. citricarpa, providing a foundation for developing resistance strategies against citrus target spot disease.
Collapse
Affiliation(s)
- Shuang Zhan
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Wang Wu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Junhua Hu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Scientific Observing and Experimental Station of Fruit Tree Science (Southwest Region), Ministry of Agriculture, Chongqing 400712, China.
| | - Fengjiao Liu
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China
| | - Xinghua Qiao
- Wanzhou District of Chongqing Plant Protection and Fruit Tree Technology Promotion Station, Wanzhou, 404000, China
| | - Li Chen
- Wanzhou District of Chongqing Plant Protection and Fruit Tree Technology Promotion Station, Wanzhou, 404000, China
| | - Yan Zhou
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing 400712, China; Scientific Observing and Experimental Station of Fruit Tree Science (Southwest Region), Ministry of Agriculture, Chongqing 400712, China
| |
Collapse
|
4
|
Liu Y, Shen S, Hao Z, Wang Q, Zhang Y, Zhao Y, Tong Y, Zeng F, Dong J. Protein kinase A participates in hyphal and appressorial development by targeting Efg1-mediated transcription of a Rab GTPase in Setosphaeria turcica. MOLECULAR PLANT PATHOLOGY 2022; 23:1608-1619. [PMID: 35929228 PMCID: PMC9562828 DOI: 10.1111/mpp.13253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
The cyclic adenosine monophosphate (cAMP) signalling pathway plays an important role in the regulation of the development and pathogenicity of filamentous fungi. cAMP-dependent protein kinase A (PKA) is the conserved element downstream of cAMP, and its diverse mechanisms in multiple filamentous fungi are not well known yet. In the present study, gene knockout mutants of two catalytic subunits of PKA (PKA-C) in Setosphaeria turcica were created to illustrate the regulatory mechanisms of PKA-Cs on the development and pathogenicity of S. turcica. As a result, StPkaC2 was proved to be the main contributor of PKA activity in S. turcica. In addition, it was found that both StPkaC1 and StPkaC2 were necessary for conidiation and invasive growth, while only StPkaC2 played a negative role in the regulation of filamentous growth. We reveal that only StPkaC2 could interact with the transcription factor StEfg1, and it inhibited the transcription of StRAB1, a Rab GTPase homologue coding gene in S. turcica, whereas StPkaC1 could specifically interact with a transcriptional regulator StFlo8, which could rescue the transcriptional inhibition of StEfg1 on StRAB1. We also demonstrated that StRAB1 could positively influence the biosynthesis of chitin in hyphae, thus changing the filamentous growth. Our findings clarify that StPkaC2 participates in chitin biosynthesis to modulate mycelium development by targeting the Efg1-mediated transcription of StRAB1, while StFlo8, interacting with StPkaC1, acts as a negative regulator during this process.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Shen Shen
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Zhimin Hao
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Qing Wang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yumei Zhang
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yulan Zhao
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Yameng Tong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Fanli Zeng
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- College of Life SciencesHebei Agricultural UniversityBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and RegulationBaodingChina
- Key Laboratory of Hebei Province for Plant Physiology and Molecular PathologyBaodingChina
- College of Plant ProtectionHebei Agricultural UniversityBaodingChina
| |
Collapse
|
5
|
Chitin Synthase Genes Are Differentially Required for Growth, Stress Response, and Virulence in Verticillium dahliae. J Fungi (Basel) 2022; 8:jof8070681. [PMID: 35887437 PMCID: PMC9320267 DOI: 10.3390/jof8070681] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Crop wilt disease caused by Verticillium dahliae usually leads to serious yield loss. Chitin, an important component of most fungal cell walls, functions to maintain the rigidity of cell walls and septa. Chitin synthesis mainly relies on the activity of chitin synthase (CHS). Eight CHS genes have been predicted in V. dahliae. In this study, we characterized the functions of these genes in terms of growth, stress responses, penetration, and virulence. Results showed that VdCHS5 is important for conidia germination and resistance to hyperosmotic stress. Conidial production is significantly decreased in Vdchs1, Vdchs4, and Vdchs8 mutants. VdCHS1, VdCHS2, VdCHS4, VdCHS6, VdCHS7, and VdCHS8 genes are important for cell wall integrity, while all mutants are important for cell membrane integrity. All of the VdCHS genes, except for VdCHS3, are required for the full pathogenicity of V. dahliae to Arabidopsis thaliana and cotton plants. The in vitro and in vivo penetration of Vdchs1, Vdchs4, Vdchs6, and Vdchs7 mutants was impaired, while that of the other mutants was normal. Overall, our results indicate that the VdCHS genes exert diverse functions to regulate the growth and development, conidial germination, conidial production, stress response, penetration, and virulence in V. dahliae.
Collapse
|
6
|
Ding Z, Xu T, Zhu W, Li L, Fu Q. A MADS-box transcription factor FoRlm1 regulates aerial hyphal growth, oxidative stress, cell wall biosynthesis and virulence in Fusarium oxysporum f. sp. cubense. Fungal Biol 2020; 124:183-193. [PMID: 32220379 DOI: 10.1016/j.funbio.2020.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/16/2022]
Abstract
The fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) causes Fusarium wilt that affects banana plants. However, the detailed molecular mechanisms of Foc virulence determinants have not been elucidated. In this study, we identified the MADS-box transcription factor FoRlm1 that is conserved among mitogen-activated protein kinases. Our data revealed that FoRlm1 is essential for aerial hyphal growth and virulence. Transcriptional analysis revealed that FoRlm1 deletion altered the expression of anti-oxidant enzymes, chitin synthases, fusaric acid (FA), and beauvericin biosynthesis genes. Furthermore, FoRlm1 deletion promoted tolerance to Congo red and increased sensitivity to hydrogen peroxide. Transcriptome analysis of ΔFoRlm1 mutant and wild-type strain indicated that the expression of many genes associated with fungal physiology and virulence was up- or down-regulated. Overall, these results suggested that FoRlm1 plays a critical role in the regulation of hyphal growth, anti-oxidation mechanisms, cell wall biosynthesis, transcription of mycotoxin biosynthetic genes encoding FA and beauvericin, and virulence in Foc.
Collapse
Affiliation(s)
- Zhaojian Ding
- Department of Biology, Qiongtai Normal University, Haikou, 571127, China.
| | - Tianwei Xu
- Department of Biology, Qiongtai Normal University, Haikou, 571127, China
| | - Weiju Zhu
- Department of Biology, Qiongtai Normal University, Haikou, 571127, China
| | - Lijie Li
- Department of Biology, Qiongtai Normal University, Haikou, 571127, China
| | - Qiyan Fu
- Tropical Agricultural College, Hainan College of Vocation and Technique, Haikou, 570216, China.
| |
Collapse
|
7
|
Zhang J, Jiang H, Du Y, Keyhani NO, Xia Y, Jin K. Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathog 2019; 15:e1007964. [PMID: 31461507 PMCID: PMC6713334 DOI: 10.1371/journal.ppat.1007964] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/06/2019] [Indexed: 11/17/2022] Open
Abstract
Chitin is an important component of the fungal cell wall with a family of chitin synthases mediating its synthesis. Here, we report on the genetic characterization of the full suite of seven chitin synthases (MaChsI-VII) identified in the insect pathogenic fungus, Metarhizium acridum. Aberrant distribution of chitin was most evident in targeted gene knockouts of MaChsV and MaChsVII. Mutants of MaChsI, MaChsIII, MaChsIV showed delayed conidial germination, whereas ΔMaChsII and ΔMaChsV mutants germinated more rapidly when compared to the wild-type parent. All MaChs genes impacted conidial yield, but differentially affected stress tolerances. Inactivation of MaChsIII, MaChsV, MaChsVII resulted in cell wall fragility, and ΔMaChsV and ΔMaChsVII mutants showed high sensitivity to Congo red and calcofluor white, suggesting that the three genes are required for cell wall integrity. In addition, ΔMaChsIII and ΔMaChsVII mutants showed the highest sensitivities to heat and UV-B stress. Three of seven chitin synthase genes, MaChsIII, MaChsV, MaChsVII, were found to contribute to fungal virulence. Compared with the wild-type strain, ΔMaChsIII and ΔMaChsV mutants were reduced in virulence by topical inoculation, while the ΔMaChsVII mutant showed more severe virulence defects. Inactivation of MaChsIII, MaChsV, or MaChsVII impaired appressorium formation, affected growth of in insecta produced hyphal bodies, and altered the surface properties of conidia and hyphal bodies, resulting in defects in the ability of the mutant strains to evade insect immune responses. These data provide important links between the physiology of the cell wall and the ability of the fungus to parasitize insects and reveal differential functional consequences of the chitin synthase family in M. acridum growth, stress tolerances, cell wall integrity and virulence. The fungal cell wall is a dynamic and flexible organelle that modulates the interaction of the pathogen with its host and acts as a critical recognition and evasion interface with host defenses. Chitin is a hallmark constituent of the fungal cell wall and all fungi contain multiple chitin synthase (Chs) genes. However, systematic characterization of chitin synthase genes has not yet been reported in entomopathogenic fungi. By using the insect pathogen Metarhizium acridum as a model, we performed a systematic genetic analysis of the seven member Chs family (ChsI-VII) in the insect pathogenic fungus. Construction of strains bearing targeted single gene mutations revealed differential contributions of specific Chs genes to growth, cell wall integrity, and stress responses. In addition, we revealed that three chitin synthase genes MaChsIII, MaChsV and MaChsVII were shown to be important for fungal appressorium formation and evasion of insect cellular and/or humoral defenses, promoting the fungal dimorphic transition to the production of hyphal bodies that occurs within hosts, and ultimately to virulence. These data provide new insights into the roles of Chs genes and chitin as critical components affecting fungal membrane structure and function.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Hui Jiang
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Yanru Du
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Nemat O Keyhani
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, United States of America
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| | - Kai Jin
- School of Life Sciences, Chongqing University, Chongqing, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, PR China
| |
Collapse
|
8
|
Chitin Prevalence and Function in Bacteria, Fungi and Protists. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:19-59. [DOI: 10.1007/978-981-13-7318-3_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Abstract
The polysaccharide-rich wall, which envelopes the fungal cell, is pivotal to the maintenance of cellular integrity and for the protection of the cell from external aggressors - such as environmental fluxes and during host infection. This review considers the commonalities in the composition of the wall across the fungal kingdom, addresses how little is known about the assembly of the polysaccharide matrix, and considers changes in the wall of plant-pathogenic fungi during on and in planta growth, following the elucidation of infection structures requiring cell wall alterations. It highlights what is known about the phytopathogenic fungal wall and what needs to be discovered.
Collapse
Affiliation(s)
- Ivey Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Sarah Gurr
- Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK; School of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
10
|
Matheis S, Yemelin A, Scheps D, Andresen K, Jacob S, Thines E, Foster A. Functions of the Magnaporthe oryzae Flb3p and Flb4p transcription factors in the regulation of conidiation. Microbiol Res 2017; 196:106-117. [DOI: 10.1016/j.micres.2016.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 11/26/2022]
|
11
|
Geoghegan IA, Gurr SJ. Chitosan Mediates Germling Adhesion in Magnaporthe oryzae and Is Required for Surface Sensing and Germling Morphogenesis. PLoS Pathog 2016; 12:e1005703. [PMID: 27315248 PMCID: PMC4912089 DOI: 10.1371/journal.ppat.1005703] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 11/23/2022] Open
Abstract
The fungal cell wall not only plays a critical role in maintaining cellular integrity, but also forms the interface between fungi and their environment. The composition of the cell wall can therefore influence the interactions of fungi with their physical and biological environments. Chitin, one of the main polysaccharide components of the wall, can be chemically modified by deacetylation. This reaction is catalyzed by a family of enzymes known as chitin deacetylases (CDAs), and results in the formation of chitosan, a polymer of β1,4-glucosamine. Chitosan has previously been shown to accumulate in the cell wall of infection structures in phytopathogenic fungi. Here, it has long been hypothesized to act as a 'stealth' molecule, necessary for full pathogenesis. In this study, we used the crop pathogen and model organism Magnaporthe oryzae to test this hypothesis. We first confirmed that chitosan localizes to the germ tube and appressorium, then deleted CDA genes on the basis of their elevated transcript levels during appressorium differentiation. Germlings of the deletion strains showed loss of chitin deacetylation, and were compromised in their ability to adhere and form appressoria on artificial hydrophobic surfaces. Surprisingly, the addition of exogenous chitosan fully restored germling adhesion and appressorium development. Despite the lack of appressorium development on artificial surfaces, pathogenicity was unaffected in the mutant strains. Further analyses demonstrated that cuticular waxes are sufficient to over-ride the requirement for chitosan during appressorium development on the plant surface. Thus, chitosan does not have a role as a 'stealth' molecule, but instead mediates the adhesion of germlings to surfaces, thereby allowing the perception of the physical stimuli necessary to promote appressorium development. This study thus reveals a novel role for chitosan in phytopathogenic fungi, and gives further insight into the mechanisms governing appressorium development in M.oryzae. Magnaporthe oryzae is a filamentous fungal pathogen which causes devastating crop losses in rice. Successful invasion of the host is dependent upon the ability of the fungus to remain undetected by the innate immune system of the plant, which recognizes conserved components of the fungal cell wall, such as chitin. Previous studies have demonstrated that infection-related changes in cell wall composition are necessary to allow the fungus to remain undetected during infection. One such change that has long been hypothesized to have a role as a 'stealth mechanism' is the deacetylation of the polysaccharide chitin by enzymes known as chitin deacetylases. The deacetylation of chitin produces a polysaccharide known as chitosan, which has previously been shown to accumulate specifically on infection structures in plant pathogenic fungi. However, in this study, we show that germling-localized chitosan is not required for pathogenicity, arguing against a role as a 'stealth mechanism' at this stage. Instead, chitosan is required for the development of the appressorium, a critical fungal infection structure required for the penetration of plant cells. This requirement can be attributed to chitosan mediating the adhesion of germlings to surfaces, which is required for the perception of physical stimuli.
Collapse
Affiliation(s)
- Ivey A. Geoghegan
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Sarah J. Gurr
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
- Biosciences, University of Exeter, Exeter, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Li M, Jiang C, Wang Q, Zhao Z, Jin Q, Xu JR, Liu H. Evolution and Functional Insights of Different Ancestral Orthologous Clades of Chitin Synthase Genes in the Fungal Tree of Life. FRONTIERS IN PLANT SCIENCE 2016; 7:37. [PMID: 26870058 PMCID: PMC4734345 DOI: 10.3389/fpls.2016.00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/11/2016] [Indexed: 05/13/2023]
Abstract
Chitin synthases (CHSs) are key enzymes in the biosynthesis of chitin, an important structural component of fungal cell walls that can trigger innate immune responses in host plants and animals. Members of CHS gene family perform various functions in fungal cellular processes. Previous studies focused primarily on classifying diverse CHSs into different classes, regardless of their functional diversification, or on characterizing their functions in individual fungal species. A complete and systematic comparative analysis of CHS genes based on their orthologous relationships will be valuable for elucidating the evolution and functions of different CHS genes in fungi. Here, we identified and compared members of the CHS gene family across the fungal tree of life, including 18 divergent fungal lineages. Phylogenetic analysis revealed that the fungal CHS gene family is comprised of at least 10 ancestral orthologous clades, which have undergone multiple independent duplications and losses in different fungal lineages during evolution. Interestingly, one of these CHS clades (class III) was expanded in plant or animal pathogenic fungi belonging to different fungal lineages. Two clades (classes VIb and VIc) identified for the first time in this study occurred mainly in plant pathogenic fungi from Sordariomycetes and Dothideomycetes. Moreover, members of classes III and VIb were specifically up-regulated during plant infection, suggesting important roles in pathogenesis. In addition, CHS-associated networks conserved among plant pathogenic fungi are involved in various biological processes, including sexual reproduction and plant infection. We also identified specificity-determining sites, many of which are located at or adjacent to important structural and functional sites that are potentially responsible for functional divergence of different CHS classes. Overall, our results provide new insights into the evolution and function of members of CHS gene family in the fungal kingdom. Specificity-determining sites identified here may be attractive targets for further structural and experimental studies.
Collapse
Affiliation(s)
- Mu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Zhongtao Zhao
- South China Botanical Garden, Chinese Academy of SciencesGuangzhou, China
| | - Qiaojun Jin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
| | - Jin-Rong Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F UniversityYangling, China
- *Correspondence: Huiquan Liu
| |
Collapse
|
13
|
Ding Z, Li M, Sun F, Xi P, Sun L, Zhang L, Jiang Z. Mitogen-activated protein kinases are associated with the regulation of physiological traits and virulence in Fusarium oxysporum f. sp. cubense. PLoS One 2015; 10:e0122634. [PMID: 25849862 PMCID: PMC4388850 DOI: 10.1371/journal.pone.0122634] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/23/2015] [Indexed: 01/09/2023] Open
Abstract
Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence.
Collapse
Affiliation(s)
- Zhaojian Ding
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Minhui Li
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Fei Sun
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Pinggen Xi
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Longhua Sun
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
| | - Lianhui Zhang
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- * E-mail: (ZDJ); (LHZ)
| | - Zide Jiang
- Department of Plant Pathology, South China Agricultural University, Guangzhou 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
- * E-mail: (ZDJ); (LHZ)
| |
Collapse
|
14
|
Dong Y, Zhao Q, Liu X, Zhang X, Qi Z, Zhang H, Zheng X, Zhang Z. MoMyb1 is required for asexual development and tissue-specific infection in the rice blast fungus Magnaporthe oryzae. BMC Microbiol 2015; 15:37. [PMID: 25885817 PMCID: PMC4336695 DOI: 10.1186/s12866-015-0375-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/04/2015] [Indexed: 11/28/2022] Open
Abstract
Background The Myb super-family of proteins contain a group of functionally diverse transcriptional activators found in plant, animal and fungus. Myb proteins are involved in cell proliferation, differentiation and apoptosis, and have crucial roles in telomeres. The purpose of this study was to characterize the biological function of Myb1 protein in the rice blast fungus Magnaporthe oryzae. Results We identified the Saccharomyces cerevisiae BAS1 homolog MYB1 in M. oryzae, named MoMyb1. MoMyb1 encodes a protein of 322 amino acids and has two SANT domains and is well conserved in various organisms. Targeted gene deletion of MoMYB1 resulted in a significant reduction in vegetative growth and showed defects in conidiation and conidiophore development. Quantitative RT-PCR analysis revealed that the transcription levels of several conidiophore-related genes were apparently decreased in the ΔMomyb1 mutant. Inoculation with mycelia mats displayed that the virulence of the ΔMomyb1 mutant was not changed on rice leaves but was non-pathogenic on rice roots in comparison to the wild type Guy11. In addition, ∆Momyb1 mutants showed increased resistance to osmotic stresses but more sensitive to cell wall stressor calcofluor white (CFW). Further analysis revealed that MoMyb1 has an important role in the cell wall biosynthesis pathway. Conclusion This study provides the evidence that MoMyb1 is a key regulator involved in conidiogenesis, stress response, cell wall integrity and pathogenesis on rice roots in the filamentous phytopathogen M. oryzae. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0375-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Qian Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaofang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Xiaobo Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, 210095, China.
| |
Collapse
|
15
|
Gong X, Hurtado O, Wang B, Wu C, Yi M, Giraldo M, Valent B, Goodin M, Farman M. pFPL Vectors for High-Throughput Protein Localization in Fungi: Detecting Cytoplasmic Accumulation of Putative Effector Proteins. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:107-121. [PMID: 25390188 DOI: 10.1094/mpmi-05-14-0144-ta] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
As part of a large-scale project whose goal was to identify candidate effector proteins in Magnaporthe oryzae, we developed a suite of vectors that facilitate high-throughput protein localization experiments in fungi. These vectors utilize Gateway recombinational cloning to place a gene's promoter and coding sequences upstream and in frame with enhanced cyan fluorescent protein, green fluorescent protein (GFP), monomeric red fluorescence protein (mRFP), and yellow fluorescent protein or a nucleus-targeted mCHERRY variant. The respective Gateway cassettes were incorporated into Agrobacterium-based plasmids to allow efficient fungal transformation using hygromycin or geneticin resistance selection. mRFP proved to be more sensitive than the GFP spectral variants for monitoring proteins secreted in planta; and extensive testing showed that Gateway-derived fusion proteins produced localization patterns identical to their "directly fused" counterparts. Use of plasmid for fungal protein localization (pFPL) vectors with two different selectable markers provided a convenient way to label fungal cells with different fluorescent proteins. We demonstrate the utility of the pFPL vectors for identifying candidate effector proteins and we highlight a number of important factors that must be taken into consideration when screening for proteins that are translocated across the host plasma membrane.
Collapse
|
16
|
Ruiz-Roldán C, Pareja-Jaime Y, González-Reyes JA, Roncero MIG. The Transcription Factor Con7-1 Is a Master Regulator of Morphogenesis and Virulence in Fusarium oxysporum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:55-68. [PMID: 25271883 DOI: 10.1094/mpmi-07-14-0205-r] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Previous studies have demonstrated the essential role of morphogenetic regulation in Fusarium oxysporum pathogenesis, including processes such as cell-wall biogenesis, cell division, and differentiation of infection-like structures. We identified three F. oxysporum genes encoding predicted transcription factors showing significant identities to Magnaporthe oryzae Con7p, Con7-1, plus two identical copies of Con7-2. Targeted deletion of con7-1 produced nonpathogenic mutants with altered morphogenesis, including defects in cell wall structure, polar growth, hyphal branching, and conidiation. By contrast, simultaneous inactivation of both con7-2 copies caused no detectable defects in the resulting mutants. Comparative microarray-based gene expression analysis indicated that Con7-1 modulates the expression of a large number of genes involved in different biological functions, including host-pathogen interactions, morphogenesis and development, signal perception and transduction, transcriptional regulation, and primary and secondary metabolism. Taken together, our results point to Con7-1 as general regulator of morphogenesis and virulence in F. oxysporum.
Collapse
|
17
|
Pacheco-Arjona JR, Ramirez-Prado JH. Large-scale phylogenetic classification of fungal chitin synthases and identification of a putative cell-wall metabolism gene cluster in Aspergillus genomes. PLoS One 2014; 9:e104920. [PMID: 25148134 PMCID: PMC4141765 DOI: 10.1371/journal.pone.0104920] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/12/2014] [Indexed: 01/24/2023] Open
Abstract
The cell wall is a protective and versatile structure distributed in all fungi. The component responsible for its rigidity is chitin, a product of chitin synthase (Chsp) enzymes. There are seven classes of chitin synthase genes (CHS) and the amount and type encoded in fungal genomes varies considerably from one species to another. Previous Chsp sequence analyses focused on their study as individual units, regardless of genomic context. The identification of blocks of conserved genes between genomes can provide important clues about the interactions and localization of chitin synthases. On the present study, we carried out an in silico search of all putative Chsp encoded in 54 full fungal genomes, encompassing 21 orders from five phyla. Phylogenetic studies of these Chsp were able to confidently classify 347 out of the 369 Chsp identified (94%). Patterns in the distribution of Chsp related to taxonomy were identified, the most prominent being related to the type of fungal growth. More importantly, a synteny analysis for genomic blocks centered on class IV Chsp (the most abundant and widely distributed Chsp class) identified a putative cell wall metabolism gene cluster in members of the genus Aspergillus, the first such association reported for any fungal genome.
Collapse
Affiliation(s)
- Jose Ramon Pacheco-Arjona
- Unidad de Biotecnologia, Centro de Investigacion Cientifica de Yucatan, A.C., Merida, Yucatan, Mexico
| | | |
Collapse
|
18
|
Lanver D, Berndt P, Tollot M, Naik V, Vranes M, Warmann T, Münch K, Rössel N, Kahmann R. Plant surface cues prime Ustilago maydis for biotrophic development. PLoS Pathog 2014; 10:e1004272. [PMID: 25033195 PMCID: PMC4102580 DOI: 10.1371/journal.ppat.1004272] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/12/2014] [Indexed: 11/19/2022] Open
Abstract
Infection-related development of phytopathogenic fungi is initiated by sensing and responding to plant surface cues. This response can result in the formation of specialized infection structures, so-called appressoria. To unravel the program inducing filaments and appressoria in the biotrophic smut fungus Ustilago maydis, we exposed cells to a hydrophobic surface and the cutin monomer 16-hydroxy hexadecanoic acid. Genome-wide transcriptional profiling at the pre-penetration stage documented dramatic transcriptional changes in almost 20% of the genes. Comparisons with the U. maydis sho1 msb2 double mutant, lacking two putative sensors for plant surface cues, revealed that these plasma membrane receptors regulate a small subset of the surface cue-induced genes comprising mainly secreted proteins including potential plant cell wall degrading enzymes. Targeted gene deletion analysis ascribed a role to up-regulated GH51 and GH62 arabinofuranosidases during plant penetration. Among the sho1/msb2-dependently expressed genes were several secreted effectors that are essential for virulence. Our data also demonstrate specific effects on two transcription factors that redirect the transcriptional regulatory network towards appressorium formation and plant penetration. This shows that plant surface cues prime U. maydis for biotrophic development. A basic requirement for pathogens to infect their hosts and to cause disease is to detect that they are in contact with the host surface. Plant pathogenic fungi typically respond to leaf surface contact with the development of specialized infection structures enabling the fungus to penetrate the leaf cuticle and to enter the plant tissue. In this study we analyzed the response of the corn smut fungus Ustilago maydis to two plant surface cues, such as hydrophobic surface and cutin monomers. Based on genome-wide gene expression analysis we found that these cues trigger the production of secreted plant cell wall degrading enzymes helping the fungus to penetrate the plant surface. In addition, genes were activated that code for a group of secreted proteins, so-called effectors, that affect virulence after penetration. These results demonstrate that plant surface cues trigger fungal penetration of the plant surface and also prime the fungus for later development inside plant tissue. These specific responses required two cell surface proteins that likely function as plant surface sensors.
Collapse
Affiliation(s)
- Daniel Lanver
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Patrick Berndt
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Marie Tollot
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Vikram Naik
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology (KIT), Institute for Applied Biosciences, Department of Genetics, Karlsruhe, Germany
| | - Tobias Warmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Karin Münch
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Department of Organismic Interactions, Marburg, Germany
- * E-mail:
| |
Collapse
|
19
|
Gandía M, Harries E, Marcos JF. The myosin motor domain-containing chitin synthase PdChsVII is required for development, cell wall integrity and virulence in the citrus postharvest pathogen Penicillium digitatum. Fungal Genet Biol 2014; 67:58-70. [DOI: 10.1016/j.fgb.2014.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/21/2014] [Accepted: 04/01/2014] [Indexed: 12/14/2022]
|
20
|
Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:446-60. [PMID: 24405033 DOI: 10.1094/mpmi-09-13-0271-r] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The mitogen-activated protein kinase MoOsm1-mediated osmoregulation pathway plays crucial roles in stress responses, asexual and sexual development, and pathogenicity in Magnaporthe oryzae. Utilizing an affinity purification approach, we identified the putative transcriptional activator MoMsn2 as a protein that interacts with MoOsm1 in vivo. Disruption of the MoMSN2 gene resulted in defects in aerial hyphal growth, conidial production, and infection of host plants. Quantitative reverse transcription-polymerase chain reaction analysis showed that the expression of several genes involved in conidiophore formation was reduced in ΔMomsn2, suggesting that MoMsn2 might function as a transcriptional regulator of these genes. Subsequently, MoCos1 was identified as one of the MoMsn2 targets through yeast one-hybrid analysis in which MoMsn2 binds to the AGGGG and CCCCT motif of the MoCOS1 promoter region. Phenotypic characterization showed that MoMsn2 was required for appressorium formation and penetration and pathogenicity. Although the ΔMomsn2 mutant was tolerant to the cell-wall stressor Calcofluor white, it was sensitive to common osmotic stressors. Further analysis suggests that MoMsn2 is involved in the regulation of the cell-wall biosynthesis pathway. Finally, transcriptome data revealed that MoMsn2 modulates numerous genes participating in conidiation, infection, cell-wall integrity, and stress response. Collectively, our results led to a model in which MoMsn2 mediates a series of downstream genes that control aerial hyphal growth, conidiogenesis, appressorium formation, cell-wall biosynthesis, and infection and that also offer potential targets for the development of new disease management strategies.
Collapse
|
21
|
Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics 2013; 12:2249-65. [PMID: 23665591 PMCID: PMC3734583 DOI: 10.1074/mcp.m112.025874] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity.
Collapse
Affiliation(s)
| | - Emine Gokce
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- From the ‡Center for Integrated Fungal Research
| | - David C. Muddiman
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | | |
Collapse
|
22
|
The role of the Tra1p transcription factor of Magnaporthe oryzae in spore adhesion and pathogenic development. Fungal Genet Biol 2013; 57:11-22. [DOI: 10.1016/j.fgb.2013.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 11/22/2022]
|
23
|
Qi Z, Wang Q, Dou X, Wang W, Zhao Q, Lv R, Zhang H, Zheng X, Wang P, Zhang Z. MoSwi6, an APSES family transcription factor, interacts with MoMps1 and is required for hyphal and conidial morphogenesis, appressorial function and pathogenicity of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2012; 13:677-89. [PMID: 22321443 PMCID: PMC3355222 DOI: 10.1111/j.1364-3703.2011.00779.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Magnaporthe oryzae mitogen-activated protein kinase (MAPK) MoMps1 plays a critical role in the regulation of various developmental processes, including cell wall integrity, stress responses and pathogenicity. To identify potential effectors of MoMps1, we characterized the function of MoSwi6, a homologue of Saccharomyces cerevisiae Swi6 downstream of MAPK Slt2 signalling. MoSwi6 interacted with MoMps1 both in vivo and in vitro, suggesting a possible functional link analogous to Swi6-Slt2 in S. cerevisiae. Targeted gene disruption of MoSWI6 resulted in multiple developmental defects, including reduced hyphal growth, abnormal formation of conidia and appressoria, and impaired appressorium function. The reduction in appressorial turgor pressure also contributed to an attenuation of pathogenicity. The ΔMoswi6 mutant also displayed a defect in cell wall integrity, was hypersensitive to oxidative stress, and showed a significant reduction in transcription and activity of extracellular enzymes, including peroxidases and laccases. Collectively, these roles are similar to those of MoMps1, confirming that MoSwi6 functions in the MoMps1 pathway to govern growth, development and full pathogenicity.
Collapse
Affiliation(s)
- Zhongqiang Qi
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kong LA, Yang J, Li GT, Qi LL, Zhang YJ, Wang CF, Zhao WS, Xu JR, Peng YL. Different chitin synthase genes are required for various developmental and plant infection processes in the rice blast fungus Magnaporthe oryzae. PLoS Pathog 2012; 8:e1002526. [PMID: 22346755 PMCID: PMC3276572 DOI: 10.1371/journal.ppat.1002526] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/24/2011] [Indexed: 11/18/2022] Open
Abstract
Chitin is a major component of fungal cell wall and is synthesized by chitin synthases (Chs). Plant pathogenic fungi normally have multiple chitin synthase genes. To determine their roles in development and pathogenesis, we functionally characterized all seven CHS genes in Magnaporthe oryzae. Three of them, CHS1, CHS6, and CHS7, were found to be important for plant infection. While the chs6 mutant was non-pathogenic, the chs1 and chs7 mutants were significantly reduced in virulence. CHS1 plays a specific role in conidiogenesis, an essential step for natural infection cycle. Most of chs1 conidia had no septum and spore tip mucilage. The chs6 mutant was reduced in hyphal growth and conidiation. It failed to penetrate and grow invasively in plant cells. The two MMD-containing chitin synthase genes, CHS5 and CHS6, have a similar expression pattern. Although deletion of CHS5 had no detectable phenotype, the chs5 chs6 double mutant had more severe defects than the chs6 mutant, indicating that they may have overlapping functions in maintaining polarized growth in vegetative and invasive hyphae. Unlike the other CHS genes, CHS7 has a unique function in appressorium formation. Although it was blocked in appressorium formation by germ tubes on artificial hydrophobic surfaces, the chs7 mutant still produced melanized appressoria by hyphal tips or on plant surfaces, indicating that chitin synthase genes have distinct impacts on appressorium formation by hyphal tip and germ tube. The chs7 mutant also was defective in appressorium penetration and invasive growth. Overall, our results indicate that individual CHS genes play diverse roles in hyphal growth, conidiogenesis, appressorium development, and pathogenesis in M. oryzae, and provided potential new leads in the control of this devastating pathogen by targeting specific chitin synthases.
Collapse
Affiliation(s)
- Ling-An Kong
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Guo-Tian Li
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Lin-Lu Qi
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Yu-Jun Zhang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Chen-Fang Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| | - Jin-Rong Xu
- Purdue-NWAFU Joint Research Center and State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
R-SNARE homolog MoSec22 is required for conidiogenesis, cell wall integrity, and pathogenesis of Magnaporthe oryzae. PLoS One 2010; 5:e13193. [PMID: 20949084 PMCID: PMC2950850 DOI: 10.1371/journal.pone.0013193] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 09/09/2010] [Indexed: 11/19/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediate intracellular vesicle fusion, which is an essential cellular process of the eukaryotic cells. To investigate the role of SNARE proteins in the rice blast fungus Magnaporthe oryzae, MoSec22, an ortholog of Saccharomyces cerevisiae SNARE protein Sec22, was identified and the MoSEC22 gene disrupted. MoSec22 restored a S. cerevisiae sec22 mutant in resistance to cell wall perturbing agents, and the ΔMosec22 mutant also exhibited defects in mycelial growth, conidial production, and infection of the host plant. Treatment with oxidative stress inducers indicated a breach in cell wall integrity, and staining and quantification assays suggested abnormal chitin deposition on the lateral walls of hyphae of the ΔMosec22 mutant. Furthermore, hypersensitivity to the oxidative stress correlates with the reduced expression of the extracellular enzymes peroxidases and laccases. Our study thus provides new evidence on the conserved function of Sec22 among fungal organisms and indicates that MoSec22 has a role in maintaining cell wall integrity affecting the growth, morphogenesis, and virulence of M. oryzae.
Collapse
|
26
|
Treitschke S, Doehlemann G, Schuster M, Steinberg G. The myosin motor domain of fungal chitin synthase V is dispensable for vesicle motility but required for virulence of the maize pathogen Ustilago maydis. THE PLANT CELL 2010; 22:2476-94. [PMID: 20663961 PMCID: PMC2929105 DOI: 10.1105/tpc.110.075028] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Revised: 06/26/2010] [Accepted: 07/08/2010] [Indexed: 05/23/2023]
Abstract
Class V chitin synthases are fungal virulence factors required for plant infection. They consist of a myosin motor domain fused to a membrane-spanning chitin synthase region that participates in fungal cell wall formation. The function of the motor domain is unknown, but it might deliver the myosin chitin synthase-attached vesicles to the growth region. Here, we analyze the importance of both domains in Mcs1, the chitin synthase V of the maize smut fungus Ustilago maydis. By quantitative analysis of disease symptoms, tissue colonization, and single-cell morphogenic parameters, we demonstrate that both domains are required for fungal virulence. Fungi carrying mutations in the chitin synthase domain are rapidly recognized and killed by the plant, whereas fungi carrying a deletion of the motor domain show alterations in cell wall composition but can invade host tissue and cause a moderate plant response. We also show that Mcs1-bound vesicles exhibit long-range movement for up to 20 microm at a velocity of approximately 1.75 microm/s. Apical Mcs1 localization depends on F-actin and the motor domain, whereas Mcs1 motility requires microtubules and persists when the Mcs1 motor domain is deleted. Our results suggest that the myosin motor domain of ChsV supports exocytosis but not long-range delivery of transport vesicles.
Collapse
Affiliation(s)
- Steffi Treitschke
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Gunther Doehlemann
- Max Planck Institute for Terrestrial Microbiology, D-35043 Marburg, Germany
| | - Martin Schuster
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Gero Steinberg
- School of Biosciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| |
Collapse
|
27
|
Disruption of the chitin synthase gene CHS1 from Fusarium asiaticum results in an altered structure of cell walls and reduced virulence. Fungal Genet Biol 2010; 47:205-15. [DOI: 10.1016/j.fgb.2009.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 11/10/2009] [Accepted: 11/11/2009] [Indexed: 11/22/2022]
|
28
|
Kramer B, Thines E, Foster AJ. MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea. Fungal Genet Biol 2009; 46:667-81. [PMID: 19520179 DOI: 10.1016/j.fgb.2009.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/23/2009] [Accepted: 06/03/2009] [Indexed: 02/04/2023]
Abstract
Mycosphaerella graminicola is a dimorphic fungus which causes Septoria tritici leaf blotch. This report describes the examination of the role of several components of the Pmk1p/Fus3p mitogen-activated protein kinase (MAPK) signalling pathway in the development of this species. The genes encoding the MAPK kinase kinase MgSte11p and the MAPK kinase MgSte7p were found to be indispensible for pathogenicity while the deletion of the gene encoding the proposed scaffold protein MgSte50p led to a reduction in virulence. These phenotypes were attributed to a reduced ability to form filaments on the plant surface which prevented penetration. A delayed disease progression was observed on deletion of the gene MGSTE12. The MGSTE7, MGSTE50 and MGSTE12 genes were able to complement mutants of Magnaporthe grisea lacking the orthologous genes. Interactions between the My. graminicola signalling components were also investigated. Furthermore genes whose MgSte12p/Mst12p dependence is conserved between My. graminicola and Ma. grisea were identified.
Collapse
Affiliation(s)
- Bastian Kramer
- IBWF e.V., Institute for Biotechnology and Drug Research, Kaiserslautern, Germany
| | | | | |
Collapse
|