1
|
Hughes DC, Hardee JP, Waddell DS, Goodman CA. CORP: Gene delivery into murine skeletal muscle using in vivo electroporation. J Appl Physiol (1985) 2022; 133:41-59. [PMID: 35511722 DOI: 10.1152/japplphysiol.00088.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The strategy of gene delivery into skeletal muscles has provided exciting avenues in identifying new potential therapeutics towards muscular disorders and addressing basic research questions in muscle physiology through overexpression and knockdown studies. In vivo electroporation methodology offers a simple, rapidly effective technique for the delivery of plasmid DNA into post-mitotic skeletal muscle fibers and the ability to easily explore the molecular mechanisms of skeletal muscle plasticity. The purpose of this review is to describe how to robustly electroporate plasmid DNA into different hindlimb muscles of rodent models. Further, key parameters (e.g., voltage, hyaluronidase, plasmid concentration) which contribute to the successful introduction of plasmid DNA into skeletal muscle fibers will be discussed. In addition, details on processing tissue for immunohistochemistry and fiber cross-sectional area (CSA) analysis will be outlined. The overall goal of this review is to provide the basic and necessary information needed for successful implementation of in vivo electroporation of plasmid DNA and thus open new avenues of discovery research in skeletal muscle physiology.
Collapse
Affiliation(s)
- David C Hughes
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Justin P Hardee
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - David S Waddell
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Craig A Goodman
- Centre for Muscle Research (CMR), Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Holloway GP, Nickerson JG, Lally JSV, Petrick HL, Dennis KMJH, Jain SS, Alkhateeb H, Bonen A. Co-overexpression of CD36 and FABPpm increases fatty acid transport additively, not synergistically, within muscle. Am J Physiol Cell Physiol 2022; 322:C546-C553. [PMID: 35138177 DOI: 10.1152/ajpcell.00435.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We aimed to determine the combined effects of over-expressing FABPpm and CD36 on skeletal muscle fatty acid transport to establish if these transport proteins function collaboratively. Electrotransfection with either FABPpm or CD36 increased their protein content at the plasma membrane (+75% and +64%), increased fatty acid transport rates +24% for FABPpm and +62% for CD36, resulting in a calculated transport efficiency of ~0.019 and ~0.053 per unit protein change for FABPpm and CD36, respectively. We subsequently used these data to determine if increasing both proteins additively or synergistically increased fatty acid transport. Co-transfection of FABPpm and CD36 simultaneously increased protein content in whole muscle (FABPpm, +46%; CD36, +45%) and at the sarcolemma (FABPpm, +41% and CD36, +42%), as well as fatty acid transport rates (+50%). Since the relative effects of changing FABPpm and CD36 content had been independently determined, we were able to a predict a change in fatty acid transport based on the overexpression of plasmalemmal transporters in the co-transfection experiments. This prediction yielded an increase in fatty acid transport of +0.984 and +1.722 pmol/mg prot/15sec for FABPpm and CD36, respectively, for a total increase of +2.96 pmol/mg prot/15sec. This calculated determination was remarkably consistent with the measured change in transport, namely +2.89 pmol/mg prot/15sec. Altogether, these data indicate that increasing CD36 and FABPpm alters fatty acid transport rates additively, but not synergistically, suggesting an independent mechanism-of-action within muscle for each transporter. This conclusion was further supported by the observation that plasmalemmal CD36 and FABPpm did not co-immunoprecipitate.
Collapse
Affiliation(s)
- Graham P Holloway
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - James S V Lally
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Heather L Petrick
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Kaitlyn M J H Dennis
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | - Swati S Jain
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| | | | - Arend Bonen
- Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canad
| |
Collapse
|
3
|
Hain BA, Xu H, Waning DL. Loss of REDD1 prevents chemotherapy-induced muscle atrophy and weakness in mice. J Cachexia Sarcopenia Muscle 2021; 12:1597-1612. [PMID: 34664403 PMCID: PMC8718092 DOI: 10.1002/jcsm.12795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chemotherapy is an essential treatment to combat solid tumours and mitigate metastasis. Chemotherapy causes side effects including muscle wasting and weakness. Regulated in Development and DNA Damage Response 1 (REDD1) is a stress-response protein that represses the mechanistic target of rapamycin (mTOR) in complex 1 (mTORC1), and its expression is increased in models of muscle wasting. The aim of this study was to determine if deletion of REDD1 is sufficient to attenuate chemotherapy-induced muscle wasting and weakness in mice. METHODS C2C12 myotubes were treated with carboplatin, and changes in myotube diameter were measured. Protein synthesis was measured by puromycin incorporation, and REDD1 mRNA and protein expression were analysed in myotubes treated with carboplatin. Markers of mTORC1 signalling were measured by western blot. REDD1 global knockout mice and wild-type mice were treated with a single dose of carboplatin and euthanized 7 days later. Body weight, hindlimb muscle weights, forelimb grip strength, and extensor digitorum longus whole muscle contractility were measured in all groups. Thirty minutes prior to euthanasia, mice were injected with puromycin to measure puromycin incorporation in skeletal muscle. RESULTS C2C12 myotube diameter was decreased at 24 (P = 0.0002) and 48 h (P < 0.0001) after carboplatin treatment. Puromycin incorporation was decreased in myotubes treated with carboplatin for 24 (P = 0.0068) and 48 h (P = 0.0008). REDD1 mRNA and protein expression were increased with carboplatin treatment (P = 0.0267 and P = 0.0015, respectively), and this was accompanied by decreased phosphorylation of Akt T308 (P < 0.0001) and S473 (P = 0.0006), p70S6K T389 (P = 0.0002), and 4E-binding protein 1 S65 (P = 0.0341), all markers of mTORC1 activity. REDD1 mRNA expression was increased in muscles from mice treated with carboplatin (P = 0.0295). Loss of REDD1 reduced carboplatin-induced body weight loss (P = 0.0013) and prevented muscle atrophy in mice. REDD1 deletion prevented carboplatin-induced decrease of protein synthesis (P = 0.7626) and prevented muscle weakness. CONCLUSIONS Carboplatin caused loss of body weight, muscle atrophy, muscle weakness, and inhibition of protein synthesis. Loss of REDD1 attenuates muscle atrophy and weakness in mice treated with carboplatin. Our study illustrates the importance of REDD1 in the regulation of muscle mass with chemotherapy treatment and may be an attractive therapeutic target to combat cachexia.
Collapse
Affiliation(s)
- Brian A Hain
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - David L Waning
- Dept. of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Eftestøl E, Egner IM, Lunde IG, Ellefsen S, Andersen T, Sjåland C, Gundersen K, Bruusgaard JC. Increased hypertrophic response with increased mechanical load in skeletal muscles receiving identical activity patterns. Am J Physiol Cell Physiol 2016; 311:C616-C629. [PMID: 27488660 DOI: 10.1152/ajpcell.00016.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/26/2016] [Indexed: 11/22/2022]
Abstract
It is often assumed that mechanical factors are important for effects of exercise on muscle, but during voluntary training and most experimental conditions the effects could solely be attributed to differences in electrical activity, and direct evidence for a mechanosensory pathway has been scarce. We here show that, in rat muscles stimulated in vivo under deep anesthesia with identical electrical activity patterns, isometric contractions induced twofold more hypertrophy than contractions with 50-60% of the isometric force. The number of myonuclei and the RNA levels of myogenin and myogenic regulatory factor 4 were increased with high load, suggesting that activation of satellite cells is mechano dependent. On the other hand, training induced a major shift in fiber type distribution from type 2b to 2x that was load independent, indicating that the electrical signaling rather than mechanosignaling controls fiber type. RAC-α serine/threonine-protein kinase (Akt) and ribosomal protein S6 kinase β-1 (S6K1) were not significantly differentially activated by load, suggesting that the differences in mechanical factors were not important for activating the Akt/mammalian target of rapamycin/S6K1 pathway. The transmembrane molecule syndecan-4 implied in overload hypertrophy in cardiac muscle was not load dependent, suggesting that mechanosignaling in skeletal muscle is different.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ingrid M Egner
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ida G Lunde
- Department of Genetics, Harvard Medical School, Boston, Massachusetts; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Stian Ellefsen
- Section for Sport Sciences, Lillehammer University College, Lillehammer, Norway; and
| | - Tom Andersen
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jo C Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway; Department of Health Sciences, Kristiania University College, Oslo, Norway
| |
Collapse
|
5
|
García-Moreno F, Molnár Z. Subset of early radial glial progenitors that contribute to the development of callosal neurons is absent from avian brain. Proc Natl Acad Sci U S A 2015; 112:E5058-67. [PMID: 26305942 PMCID: PMC4568669 DOI: 10.1073/pnas.1506377112] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The classical view of mammalian cortical development suggests that pyramidal neurons are generated in a temporal sequence, with all radial glial cells (RGCs) contributing to both lower and upper neocortical layers. A recent opposing proposal suggests there is a subgroup of fate-restricted RGCs in the early neocortex, which generates only upper-layer neurons. Little is known about the existence of fate restriction of homologous progenitors in other vertebrate species. We investigated the lineage of selected Emx2+ [vertebrate homeobox gene related to Drosophila empty spiracles (ems)] RGCs in mouse neocortex and chick forebrain and found evidence for both sequential and fate-restricted programs only in mouse, indicating that these complementary populations coexist in the developing mammalian but not avian brain. Among a large population of sequentially programmed RGCs in the mouse brain, a subset of self-renewing progenitors lack neurogenic potential during the earliest phase of corticogenesis. After a considerable delay, these progenitors generate callosal upper-layer neurons and glia. On the other hand, we found no homologous delayed population in any sectors of the chick forebrain. This finding suggests that neurogenic delay of selected RGCs may be unique to mammals and possibly associated with the evolution of the corpus callosum.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| | - Zoltán Molnár
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3QX, United Kingdom
| |
Collapse
|
6
|
Houston FE, Hain BA, Adams TJ, Houston KL, O'Keeffe R, Dodd SL. Heat shock protein 70 overexpression does not attenuate atrophy in botulinum neurotoxin type A-treated skeletal muscle. J Appl Physiol (1985) 2015; 119:83-92. [PMID: 25953835 DOI: 10.1152/japplphysiol.00233.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Botulinum neurotoxin type A (BoNT/A) is used clinically to induce therapeutic chemical denervation of spastically contracted skeletal muscles. However, BoNT/A administration can also cause atrophy. We sought to determine whether a major proteolytic pathway contributing to atrophy in multiple models of muscle wasting, the ubiquitin proteasome system (UPS), is involved in BoNT/A-induced atrophy. Three and ten days following BoNT/A injection of rat hindlimb, soleus muscle fiber cross-sectional area was reduced 25 and 65%, respectively. The transcriptional activity of NF-κB and Foxo was significantly elevated at 3 days (2- to 4-fold) and 10 days (5- to 6-fold). Muscle RING-finger protein-1 (MuRF1) activity was elevated (2-fold) after 3 days but not 10 days, while atrogin-1 activity was not elevated at any time point. BoNT/A-induced polyubiquitination occurred after 3 days (3-fold increase) but was totally absent after 10 days. Proteasome activity was elevated (1.5- to 2-fold) after 3 and 10 days. We employed the use of heat shock protein 70 (Hsp70) to inhibit NF-κB and Foxo transcriptional activity. Electrotransfer of Hsp70 into rat soleus, before BoNT/A administration, was insufficient to attenuate atrophy. It was also insufficient to decrease BoNT/A-induced Foxo activity at 3 days, although NF-κB activity was abolished. By 10 days both NF-κB and Foxo activation were abolished by Hsp70. Hsp70-overexpression was unable to alter the levels of BoNT/A-induced effects on MuRF1/atrogin-1, polyubiquitination, or proteasome activity. In conclusion, Hsp70 overexpression is insufficient to attenuate BoNT/A-induced atrophy. It remains unclear what proteolytic mechanism/s are contributing to BoNT/A-induced atrophy, although a Foxo-MuRF1-ubiquitin-proteasome contribution may exist, at least in early BoNT/A-induced atrophy. Further clarification of UPS involvement in BoNT/A-induced atrophy is warranted.
Collapse
Affiliation(s)
- Fraser E Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Brian A Hain
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Thomas J Adams
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | - Kati L Houston
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| | | | - Stephen L Dodd
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida; and
| |
Collapse
|
7
|
DNA vaccines: MHC II-targeted vaccine protein produced by transfected muscle fibres induces a local inflammatory cell infiltrate in mice. PLoS One 2014; 9:e108069. [PMID: 25299691 PMCID: PMC4191975 DOI: 10.1371/journal.pone.0108069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/25/2014] [Indexed: 01/27/2023] Open
Abstract
Vaccination with naked DNA holds great promise but immunogenicity needs to be improved. DNA constructs encoding bivalent proteins that bind antigen-presenting cells (APC) for delivery of antigen have been shown to enhance T and B cell responses and protection in tumour challenge experiments. However, the mechanism for the increased potency remains to be determined. Here we have constructed DNA vaccines that express the fluorescent protein mCherry, a strategy which allowed tracking of vaccine proteins. Transfected muscle fibres in mice were visualized, and their relationship to infiltrating mononuclear cells could be determined. Interestingly, muscle fibers that produced MHC class II-specific dimeric vaccine proteins with mCherry were for weeks surrounded by a localized intense cellular infiltrate composed of CD45+, MHC class II+ and CD11b+ cells. Increasing numbers of eosinophils were observed among the infiltrating cells from day 7 after immunization. The local infiltrate surrounding mCherry+ muscle fibers was dependent on the MHC II-specificity of the vaccine proteins since the control, a non-targeted vaccine protein, failed to induce similar infiltrates. Chemokines measured on day 3 in immunized muscle indicate both a DNA effect and an electroporation effect. No influence of targeting was observed. These results contribute to our understanding for why targeted DNA vaccines have an improved immunogenicity.
Collapse
|
8
|
Eftestøl E, Alver TN, Gundersen K, Bruusgaard JC. Overexpression of SMPX in adult skeletal muscle does not change skeletal muscle fiber type or size. PLoS One 2014; 9:e99232. [PMID: 24936977 PMCID: PMC4060999 DOI: 10.1371/journal.pone.0099232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/12/2014] [Indexed: 01/12/2023] Open
Abstract
Mechanical factors such as stretch are thought to be important in the regulation of muscle phenotype. Small muscle protein X-linked (SMPX) is upregulated by stretch in skeletal muscle and has been suggested to serve both as a transcription factor and a mechanosensor, possibly giving rise to changes in both fiber size and fiber type. We have used in vivo confocal imaging to study the subcellular localization of SMPX in skeletal muscle fibers of adult rats using a SMPX-EGFP fusion protein. The fusion protein was localized predominantly in repetitive double stripes flanking the Z-disc, and was excluded from all nuclei. This localization would be consistent with SMPX being a mechanoreceptor, but not with SMPX playing a role as a transcription factor. In vivo overexpression of ectopic SMPX in skeletal muscle of adult mice gave no significant changes in fiber type distribution or cross sectional area, thus a role of SMPX in regulating muscle phenotype remains unclear.
Collapse
Affiliation(s)
- Einar Eftestøl
- Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jo C. Bruusgaard
- Department of Biosciences, University of Oslo, Oslo, Norway
- Atlantis Medical University College, Oslo, Norway
- * E-mail:
| |
Collapse
|
9
|
García-Moreno F, Vasistha NA, Begbie J, Molnár Z. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 2014; 141:1589-98. [PMID: 24644261 PMCID: PMC3957378 DOI: 10.1242/dev.105254] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/02/2014] [Indexed: 01/20/2023]
Abstract
Cell lineage analysis enables us to address pivotal questions relating to: the embryonic origin of cells and sibling cell relationships in the adult body; the contribution of progenitors activated after trauma or disease; and the comparison across species in evolutionary biology. To address such fundamental questions, several techniques for clonal labelling have been developed, each with its shortcomings. Here, we report a novel method, CLoNe that is designed to work in all vertebrate species and tissues. CLoNe uses a cocktail of labelling, targeting and transposition vectors that enables targeting of specific subpopulations of progenitor types with a combination of fluorophores resulting in multifluorescence that describes multiple clones per specimen. Furthermore, transposition into the genome ensures the longevity of cell labelling. We demonstrate the robustness of this technique in mouse and chick forebrain development, and show evidence that CLoNe will be broadly applicable to study clonal relationships in different tissues and species.
Collapse
Affiliation(s)
- Fernando García-Moreno
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Navneet A. Vasistha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Jo Begbie
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
10
|
Kósa M, Zádor E. Transfection efficiency along the regenerating soleus muscle of the rat. Mol Biotechnol 2013; 54:220-7. [PMID: 22580850 DOI: 10.1007/s12033-012-9555-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We investigated the efficiency of a single plasmid transfection along the longitudinal axis of the regenerating soleus of young rats. This also reflected transfection efficiency along the fibers because the soleus is a nearly fusiform muscle in young animals. The complete regeneration was induced by notexin and the transfection was made by intramuscular injection of enhanced green fluorescent protein- or Discosoma red-coding plasmids after 4 days. One week after transfection the number of transfected fibers was higher at the place of injection (i.e., in the muscle belly) and lower or absent at the ends of the muscle. The inspection of longitudinal sections and neuromuscular endplates indicated that one of the reasons of uneven transfection might be the shortness of transfected myotubes and the other reason might be the limit of diffusion of transgenic proteins from the expressing nuclei. As a result, the efficiency of transfection in the whole regenerating muscle was much lower than it could be estimated from the most successfully transfected part.
Collapse
Affiliation(s)
- Magdolna Kósa
- Department of Biochemistry, University of Szeged, Szeged, Hungary.
| | | |
Collapse
|
11
|
The E3 ubiquitin ligase TRAF6 intercedes in starvation-induced skeletal muscle atrophy through multiple mechanisms. Mol Cell Biol 2012; 32:1248-59. [PMID: 22290431 DOI: 10.1128/mcb.06351-11] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Starvation, like many other catabolic conditions, induces loss of skeletal muscle mass by promoting fiber atrophy. In addition to the canonical processes, the starvation-induced response employs many distinct pathways that make it a unique atrophic program. However, in the multiplex of the underlying mechanisms, several components of starvation-induced atrophy have yet to be fully understood and their roles and interplay remain to be elucidated. Here we unveiled the role of tumor necrosis factor receptor-associated factor 6 (TRAF6), a unique E3 ubiquitin ligase and adaptor protein, in starvation-induced muscle atrophy. Targeted ablation of TRAF6 suppresses the expression of key regulators of atrophy, including MAFBx, MuRF1, p62, LC3B, Beclin1, Atg12, and Fn14. Ablation of TRAF6 also improved the phosphorylation of Akt and FoxO3a and inhibited the activation of 5' AMP-activated protein kinase in skeletal muscle in response to starvation. In addition, our study provides the first evidence of the involvement of endoplasmic reticulum stress and unfolding protein response pathways in starvation-induced muscle atrophy and its regulation through TRAF6. Finally, our results also identify lysine 63-linked autoubiquitination of TRAF6 as a process essential for its regulatory role in starvation-induced muscle atrophy.
Collapse
|
12
|
Wada S, Kato Y, Okutsu M, Miyaki S, Suzuki K, Yan Z, Schiaffino S, Asahara H, Ushida T, Akimoto T. Translational suppression of atrophic regulators by microRNA-23a integrates resistance to skeletal muscle atrophy. J Biol Chem 2011; 286:38456-38465. [PMID: 21926429 DOI: 10.1074/jbc.m111.271270] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Muscle atrophy is caused by accelerated protein degradation and occurs in many pathological states. Two muscle-specific ubiquitin ligases, MAFbx/atrogin-1 and muscle RING-finger 1 (MuRF1), are prominently induced during muscle atrophy and mediate atrophy-associated protein degradation. Blocking the expression of these two ubiquitin ligases provides protection against muscle atrophy. Here we report that miR-23a suppresses the translation of both MAFbx/atrogin-1 and MuRF1 in a 3'-UTR-dependent manner. Ectopic expression of miR-23a is sufficient to protect muscles from atrophy in vitro and in vivo. Furthermore, miR-23a transgenic mice showed resistance against glucocorticoid-induced skeletal muscle atrophy. These data suggest that suppression of multiple regulators by a single miRNA can have significant consequences in adult tissues.
Collapse
Affiliation(s)
- Shogo Wada
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yoshio Kato
- Research Institute for Cell Engineering, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8562, Japan
| | - Mitsuharu Okutsu
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Shigeru Miyaki
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Katsuhiko Suzuki
- Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Faculty of Sport Sciences, Waseda University, Tokorozawa, Saitama 359-1192, Japan
| | - Zhen Yan
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | | | - Hiroshi Asahara
- Department of Regenerative Biology and Medicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Takashi Ushida
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Takayuki Akimoto
- Division of Regenerative Medical Engineering, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan; Institute for Biomedical Engineering Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku, Tokyo 162-0041, Japan; Venetian Institute of Molecular Medicine, 35129 Padova, Italy.
| |
Collapse
|
13
|
Senf SM, Sandesara PB, Reed SA, Judge AR. p300 Acetyltransferase activity differentially regulates the localization and activity of the FOXO homologues in skeletal muscle. Am J Physiol Cell Physiol 2011; 300:C1490-501. [PMID: 21389279 DOI: 10.1152/ajpcell.00255.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Forkhead Box O (FOXO) transcription factors regulate diverse cellular processes, and in skeletal muscle are both necessary and sufficient for muscle atrophy. Although the regulation of FOXO by Akt is well evidenced in skeletal muscle, the current study demonstrates that FOXO is also regulated in muscle via the histone acetyltransferase (HAT) activities of p300/CREB-binding protein (CBP). Transfection of rat soleus muscle with a dominant-negative p300, which lacks HAT activity and inhibits endogenous p300 HAT activity, increased FOXO reporter activity and induced transcription from the promoter of a bona fide FOXO target gene, atrogin-1. Conversely, increased HAT activity via transfection of either wild-type (WT) p300 or WT CBP repressed FOXO activation in vivo in response to muscle disuse, and in C2C12 cells in response to dexamethasone and acute starvation. Importantly, manipulation of HAT activity differentially regulated the expression of various FOXO target genes. Cotransfection of FOXO1, FOXO3a, or FOXO4 with the p300 constructs further identified p300 HAT activity to also differentially regulate the activity of the FOXO homologues. Markedly, decreased HAT activity strongly increased FOXO3a transcriptional activity, while increased HAT activity repressed FOXO3a activity and prevented its nuclear localization in response to nutrient deprivation. In contrast, p300 increased FOXO1 nuclear localization. In summary, this study provides the first evidence to support the acetyltransferase activities of p300/CBP in regulating FOXO signaling in skeletal muscle and suggests that acetylation may be an important mechanism to differentially regulate the FOXO homologues and dictate which FOXO target genes are activated in response to varying atrophic stimuli.
Collapse
Affiliation(s)
- Sarah M Senf
- Dept. of Physical Therapy, University of Florida, 1275 Center Drive, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
14
|
Lunde IG, Anton SL, Bruusgaard JC, Rana ZA, Ellefsen S, Gundersen K. Hypoxia inducible factor 1 links fast-patterned muscle activity and fast muscle phenotype in rats. J Physiol 2011; 589:1443-54. [PMID: 21262877 DOI: 10.1113/jphysiol.2010.202762] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Exercise influences muscle phenotype by the specific pattern of action potentials delivered to the muscle, triggering intracellular signalling pathways. PO2 can be reduced by an order of magnitude in working muscle. In humans, carriers of a hyperactive polymorphism of the transcription factor hypoxia inducible factor 1α (HIF-1α) have 50% more fast fibres, and this polymorphism is prevalent among strength athletes. We have investigated the putative role of HIF-1α in mediating activity changes in muscle.When rat muscles were stimulated with short high frequency bursts of action potentials known to induce a fast muscle phenotype, HIF-1α increased by about 80%. In contrast, a pattern consisting of long low frequency trains known to make fast muscles slow reduced the HIF-1α level of the fast extensor digitorum longus (EDL) muscle by 44%. Nuclear protein extracts from normal EDL contained 2.3-fold more HIF-1α and 4-fold more HIF-1β than the slow soleus muscle, while von-Hippel-Lindau protein was 4.8-fold higher in slow muscles. mRNA displayed a reciprocal pattern; thus FIH-1 mRNA was almost 2-fold higher in fast muscle, while the HIF-1α level was half, and consequently protein/mRNA ratio for HIF-1α was more than 4-fold higher in the fast muscle, suggesting that HIF-1α is strongly suppressed post-transcriptionally in slow muscles.When HIF-1α was overexpressed for 14 days after somatic gene transfer in adult rats, a slow-to-fast transformation was observed, encompassing an increase in fibre cross sectional area, oxidative enzyme activity and myosin heavy chain. The latter was shown to be regulated at the mRNA level in C2C12 myotubes.
Collapse
Affiliation(s)
- Ida G Lunde
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, N-0316 Oslo, Norway
| | | | | | | | | | | |
Collapse
|
15
|
Reed SA, Senf SM, Cornwell EW, Kandarian SC, Judge AR. Inhibition of IkappaB kinase alpha (IKKα) or IKKbeta (IKKβ) plus forkhead box O (Foxo) abolishes skeletal muscle atrophy. Biochem Biophys Res Commun 2011; 405:491-6. [PMID: 21256828 DOI: 10.1016/j.bbrc.2011.01.059] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 01/17/2011] [Indexed: 10/18/2022]
Abstract
Two transcription factor families that are activated during multiple conditions of skeletal muscle wasting are nuclear factor κB (NF-κB) and forkhead box O (Foxo). There is clear evidence that both NF-κB and Foxo activation are sufficient to cause muscle fiber atrophy and they are individually required for at least half of the fiber atrophy during muscle disuse, but there is no work determining the combined effect of inhibiting these factors during a physiological condition of muscle atrophy. Here, we determined whether inhibition of Foxo activation plus inhibition of NF-κB activation, the latter by blocking the upstream inhibitor of kappaB kinases (IKKα and IKKβ), would prevent muscle atrophy induced by 7 days of cast immobilization. Results were based on measurements of mean fiber cross-sectional area (CSA) from 72 muscles transfected with 5 different mutant expression plasmids or plasmid combinations. Immobilization caused a 47% decrease in fiber CSA in muscles injected with control plasmids. Fibers from immobilized muscles transfected with dominant negative (d.n.) IKKα-EGFP, d.n. IKKβ-EGFP or d.n. Foxo-DsRed showed a 22%, 57%, and 76% inhibition of atrophy, respectively. Co-expression of d.n. IKKα-EGFP and d.n. Foxo-DsRed significantly inhibited 89% of the immobilization-induced fiber atrophy. Similarly, co-expression of d.n. IKKβ-EGFP and d.n. Foxo-DsRed inhibited the immobilization-induced fiber atrophy by 95%. These findings demonstrate that the combined effects of inhibiting immobilization-induced NF-κB and Foxo transcriptional activity has an additive effect on preventing immobilization-induced atrophy, indicating that NF-κB and Foxo have a cumulative effect on atrophy signaling and/or atrophy gene expression.
Collapse
Affiliation(s)
- S A Reed
- Department of Physical Therapy, University of Florida, 101 S. Newell Drive, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
16
|
Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 2010; 143:35-45. [PMID: 20887891 DOI: 10.1016/j.cell.2010.09.004] [Citation(s) in RCA: 369] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 06/01/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
Abstract
Maintenance of skeletal muscle structure and function requires innervation by motor neurons, such that denervation causes muscle atrophy. We show that myogenin, an essential regulator of muscle development, controls neurogenic atrophy. Myogenin is upregulated in skeletal muscle following denervation and regulates expression of the E3 ubiquitin ligases MuRF1 and atrogin-1, which promote muscle proteolysis and atrophy. Deletion of myogenin from adult mice diminishes expression of MuRF1 and atrogin-1 in denervated muscle and confers resistance to atrophy. Mice lacking histone deacetylases (HDACs) 4 and 5 in skeletal muscle fail to upregulate myogenin and also preserve muscle mass following denervation. Conversely, forced expression of myogenin in skeletal muscle of HDAC mutant mice restores muscle atrophy following denervation. Thus, myogenin plays a dual role as both a regulator of muscle development and an inducer of neurogenic atrophy. These findings reveal a specific pathway for muscle wasting and potential therapeutic targets for this disorder.
Collapse
|
17
|
Ebert SM, Monteys AM, Fox DK, Bongers KS, Shields BE, Malmberg SE, Davidson BL, Suneja M, Adams CM. The transcription factor ATF4 promotes skeletal myofiber atrophy during fasting. Mol Endocrinol 2010; 24:790-9. [PMID: 20197309 DOI: 10.1210/me.2009-0345] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Prolonged fasting alters skeletal muscle gene expression in a manner that promotes myofiber atrophy, but the underlying mechanisms are not fully understood. Here, we examined the potential role of activating transcription factor 4 (ATF4), a transcription factor with an evolutionarily ancient role in the cellular response to starvation. In mouse skeletal muscle, fasting increases the level of ATF4 mRNA. To determine whether increased ATF4 expression was required for myofiber atrophy, we reduced ATF4 expression with an inhibitory RNA targeting ATF4 and found that it reduced myofiber atrophy during fasting. Likewise, reducing the fasting level of ATF4 mRNA with a phosphorylation-resistant form of eukaryotic initiation factor 2alpha decreased myofiber atrophy. To determine whether ATF4 was sufficient to reduce myofiber size, we overexpressed ATF4 and found that it reduced myofiber size in the absence of fasting. In contrast, a transcriptionally inactive ATF4 construct did not reduce myofiber size, suggesting a requirement for ATF4-mediated transcriptional regulation. To begin to determine the mechanism of ATF4-mediated myofiber atrophy, we compared the effects of fasting and ATF4 overexpression on global skeletal muscle mRNA expression. Interestingly, expression of ATF4 increased a small subset of five fasting-responsive mRNAs, including four of the 15 mRNAs most highly induced by fasting. These five mRNAs encode proteins previously implicated in growth suppression (p21(Cip1/Waf1), GADD45alpha, and PW1/Peg3) or titin-based stress signaling [muscle LIM protein (MLP) and cardiac ankyrin repeat protein (CARP)]. Taken together, these data identify ATF4 as a novel mediator of skeletal myofiber atrophy during starvation.
Collapse
Affiliation(s)
- Scott M Ebert
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Senf SM, Dodd SL, Judge AR. FOXO signaling is required for disuse muscle atrophy and is directly regulated by Hsp70. Am J Physiol Cell Physiol 2009; 298:C38-45. [PMID: 19864323 DOI: 10.1152/ajpcell.00315.2009] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the current study was to determine whether heat shock protein 70 (Hsp70) directly regulates forkhead box O (FOXO) signaling in skeletal muscle. This aim stems from previous work demonstrating that Hsp70 overexpression inhibits disuse-induced FOXO transactivation and prevents muscle fiber atrophy. However, although FOXO is sufficient to cause muscle wasting, no data currently exist on the requirement of FOXO signaling in the progression of physiological muscle wasting, in vivo. In the current study we show that specific inhibition of FOXO, via expression of a dominant-negative FOXO3a, in rat soleus muscle during disuse prevented >40% of muscle fiber atrophy, demonstrating that FOXO signaling is required for disuse muscle atrophy. Subsequent experiments determined whether Hsp70 directly regulates FOXO3a signaling when independently activated in skeletal muscle, via transfection of FOXO3a. We show that Hsp70 inhibits FOXO3a-dependent transcription in a gene-specific manner. Specifically, Hsp70 inhibited FOXO3a-induced promoter activation of atrogin-1, but not MuRF1. Further studies showed that a FOXO3a DNA-binding mutant can activate MuRF1, but not atrogin-1, suggesting that FOXO3a activates these two genes through differential mechanisms. In summary, FOXO signaling is required for physiological muscle atrophy and is directly inhibited by Hsp70.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Physical Therapy, 101 S. Newell Dr., PO Box 100154, Univ. of Florida, Gainesville, FL 32611, USA.
| | | | | |
Collapse
|
19
|
Dodd SL, Hain B, Senf SM, Judge AR. Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 2009; 23:3415-23. [PMID: 19528257 DOI: 10.1096/fj.08-124602] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heat shock protein 25/27 (Hsp25/27) is a cytoprotective protein that is ubiquitously expressed in most cells, and is up-regulated in response to cellular stress. Previous work, in nonmuscle cells, has shown that Hsp27 inhibits TNF-alpha-induced NF-kappaB activation. During skeletal muscle disuse, Hsp25/27 levels are decreased and NF-kappaB activity increased, and this increase in NF-kappaB activity is required for disuse muscle atrophy. Therefore, the purpose of the current study was to determine whether electrotransfer of Hsp27 into the soleus muscle of rats, prior to skeletal muscle disuse, is sufficient to inhibit skeletal muscle disuse atrophy and NF-kappaB activation. The 35% disuse muscle-fiber atrophy observed in nontransfected fibers was attenuated by 50% in fibers transfected with Hsp27. Hsp27 also inhibited the disuse-induced increase in MuRF1 and atrogin-1 transcription by 82 and 40%, respectively. Furthermore, disuse- and IKKbeta-induced NF-kappaB transactivation were abolished by Hsp27. In contrast, Hsp27 had no effect on Foxo transactivation. In conclusion, Hsp27 is a negative regulator of NF-kappaB in skeletal muscle, in vivo, and is sufficient to inhibit MuRF1 and atrogin-1 and attenuate skeletal muscle disuse atrophy.
Collapse
Affiliation(s)
- Stephen L Dodd
- Department of Applied Physiology and Kinesiology, 25 Stadium Rd., University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
20
|
Dodd S, Hain B, Judge A. Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 2008; 10:605-11. [PMID: 19083119 DOI: 10.1007/s10522-008-9203-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Accepted: 11/27/2008] [Indexed: 11/28/2022]
Abstract
This study determined the effects of heat shock protein 70 (Hsp70) overexpression on disuse muscle atrophy in senescent rats. Solei of young and senescent rats were co-injected with Hsp70 plus a nuclear factor kappa B (NF-kappaBeta) reporter plasmid. After 4 days, the hind limbs of half the young and senescent rats were immobilized for 6 days with the remainder serving as weight bearing controls. Hsp70 protein levels and cross-sectional area decreased in both groups (~20%) after immobilization. Atrophy was prevented in those fibers overexpressing Hsp70. NF-kappaBeta activity increased in the soleus of both young (three-fold) and senescent (five-fold) animals after immobilization and was prevented by Hsp70 overexpression. Inhibitor of kappaBeta decreased in young (~30%) and senescent (~10%) animals with immobilization and returned to normal with Hsp70. Heat shock protein 70 overexpression prevents disuse atrophy in senescent rats, possibly through suppression of the NF-kappaB pathway.
Collapse
Affiliation(s)
- Stephen Dodd
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, 32611, USA.
| | | | | |
Collapse
|
21
|
Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC. The IkappaB kinases IKKalpha and IKKbeta are necessary and sufficient for skeletal muscle atrophy. FASEB J 2008; 23:362-70. [PMID: 18827022 DOI: 10.1096/fj.08-114249] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) signaling is necessary for many types of muscle atrophy, yet only some of the required components have been identified. Gene transfer of a dominant negative (d.n.) IKKbeta into rat soleus muscles showed complete inhibition of 7-day disuse-induced activation of a kappaB reporter gene, while overexpression of wild-type (w.t.) IKKbeta did not. Overexpression of a d.n. IKKbeta-EGFP fusion protein showed that atrophy was inhibited by 50%, indicating that IKKbeta is required for the atrophy process. Overexpression of constitutively active (c.a.) IKKbeta-EGFP showed a marked increase in NF-kappaB activity and a decrease in fiber size of weight-bearing soleus muscles, while muscles overexpressing w.t. IKKbeta-HA had no effect. The same results were found for IKKalpha; overexpression of a d.n. form of the protein decreased unloading-induced NF-kappaB activation and inhibited atrophy by 50%, while overexpression of the w.t. protein had no effect. Overexpression of a c.a. IKKalpha-EGFP fusion protein showed that IKKalpha was sufficient to activate NF-kappaB activity and induce fiber atrophy in muscle. Overexpression of d.n. IKKbeta plus d.n. IKKalpha showed an additive effect on the inhibition of disuse atrophy (70%), suggesting that both kinases of the IKK complex are required for muscle atrophy. These data show that both IKKalpha and IKKbeta are necessary and sufficient for physiological muscle atrophy.
Collapse
|
22
|
Zádor E. dnRas stimulates autocrine-paracrine growth of regenerating muscle via calcineurin-NFAT-IL-4 pathway. Biochem Biophys Res Commun 2008; 375:265-70. [PMID: 18706889 DOI: 10.1016/j.bbrc.2008.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 12/21/2022]
Abstract
Ras and calcineurin are members of two independent pathways in muscle growth but their interaction is not known. This work shows that the transfection of about 1% of the muscle fibers with dominant negative Ras (dnRas) shows a wilder effect; it stimulates the fiber growth in the entire regenerating soleus muscle, including the nontransfected fibers. Co-transfection with the calcineurin inhibitor cain/cabin prevented the growth stimulation. Injection of antibody for interleukin-4 (IL-4) also abolished the growth ameliorating effect. These results suggest that the inactivation of Ras in 1% of the fibers upregulates the calcineurin-NFAT-IL-4 pathway and the secreted IL-4 triggers fiber growth stimulation in the whole regenerating soleus muscle of the rat. The results highlight the importance of the autocrine-paracrine regulation in muscle regeneration and hint to a novel method of gene theraphy of degenerative-regenerative muscle dystrophies.
Collapse
Affiliation(s)
- Erno Zádor
- Institute of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Dóm tér 9, H-6720, Hungary.
| |
Collapse
|
23
|
Senf SM, Dodd SL, McClung JM, Judge AR. Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 2008; 22:3836-45. [PMID: 18644837 DOI: 10.1096/fj.08-110163] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heat shock protein 70 (Hsp70) is a highly conserved and ubiquitous protein that is reported to provide cytoprotection in various cell types and tissues. However, the importance of Hsp70 expression during skeletal muscle atrophy, when Hsp70 levels are significantly decreased, is not known. The current study aimed to determine whether plasmid-mediated overexpression of Hsp70, in the soleus muscle of rats, was sufficient to regulate specific atrophy signaling pathways and attenuate skeletal muscle disuse atrophy. We found that Hsp70 overexpression prevented disuse muscle fiber atrophy and inhibited the increased promoter activities of atrogin-1 and MuRF1. Importantly, the transcriptional activities of Foxo3a and NF-kappaB, which are implicated in the regulation of atrogin-1 and MuRF1, were abolished by Hsp70. These data suggest that Hsp70 may regulate key atrophy genes through inhibiting Foxo3a and NF-kappaB activities during disuse. Indeed, we show that specific inhibition of Foxo3a prevented the increases in both atrogin-1 and MuRF1 promoter activities during disuse. However, inhibition of NF-kappaB did not affect the activation of either promoter, suggesting its requirement for disuse atrophy is through its regulation of other atrophy genes. We conclude that overexpression of Hsp70 is sufficient to inhibit key atrophy signaling pathways and prevent skeletal muscle atrophy.
Collapse
Affiliation(s)
- Sarah M Senf
- Department of Applied Physiology and Kinesiology, 25 Stadium Rd., University of Florida, Gainesville, FL 32611, USA
| | | | | | | |
Collapse
|
24
|
Allera-Moreau C, Delluc-Clavières A, Castano C, Van den Berghe L, Golzio M, Moreau M, Teissié J, Arnal JF, Prats AC. Long term expression of bicistronic vector driven by the FGF-1 IRES in mouse muscle. BMC Biotechnol 2007; 7:74. [PMID: 17963525 PMCID: PMC2180170 DOI: 10.1186/1472-6750-7-74] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 10/28/2007] [Indexed: 11/24/2022] Open
Abstract
Background Electrotransfer of plasmid DNA into skeletal muscle is a promising strategy for the delivery of therapeutic molecules targeting various muscular diseases, cancer and lower-limb ischemia. Internal Ribosome Entry Sites (IRESs) allow co-expression of proteins of interest from a single transcriptional unit. IRESs are RNA elements that have been found in viral RNAs as well as a variety of cellular mRNAs with long 5' untranslated regions. While the encephalomyocarditis virus (EMCV) IRES is often used in expression vectors, we have shown that the FGF-1 IRES is equally active to drive short term transgene expression in mouse muscle. To compare the ability of the FGF-1 IRES to drive long term expression against the EMCV and FGF-2 IRESs, we performed analyses of expression kinetics using bicistronic vectors that express the bioluminescent renilla and firefly luciferase reporter genes. Long term expression of bicistronic vectors was also compared to that of monocistronic vectors. Bioluminescence was quantified ex vivo using a luminometer and in vivo using a CCD camera that monitors luminescence within live animals. Results Our data demonstrate that the efficiency of the FGF-1 IRES is comparable to that of the EMCV IRES for long term expression of bicistronic transgenes in mouse muscle, whereas the FGF-2 IRES has a very poor activity. Interestingly, we show that despite the global decrease of vector expression over time, the ratio of firefly to renilla luciferase remains stable with bicistronic vectors containing the FGF-1 or FGF-2 IRES and is slightly affected with the EMCV IRES, whereas it is clearly unstable for mixed monocistronic vectors. In addition, long term expression more drastically decreases with monocistronic vectors, and is different for single or mixed vector injection. Conclusion These data validate the use of bicistronic vectors rather than mixed monocistronic vectors for long term expression, and support the use of the FGF-1 IRES. The use of a cellular IRES over one of viral origin is of particular interest in the goal of eliminating viral sequences from transgenic vectors. In addition, the FGF-1 IRES, compared to the EMCV IRES, has a more stable activity, is shorter in length and more flexible in terms of downstream cloning of second cistrons. Finally, the FGF-1 IRES is very attractive to develop multicistronic expression cassettes for gene transfer in mouse muscle.
Collapse
Affiliation(s)
- Camille Allera-Moreau
- Institut national de la santé et de la recherche médicale (INSERM), U858, Toulouse, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ekmark M, Rana ZA, Stewart G, Hardie DG, Gundersen K. De-phosphorylation of MyoD is linking nerve-evoked activity to fast myosin heavy chain expression in rodent adult skeletal muscle. J Physiol 2007; 584:637-50. [PMID: 17761773 PMCID: PMC2277165 DOI: 10.1113/jphysiol.2007.141457] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Elucidating the molecular pathways linking electrical activity to gene expression is necessary for understanding the effects of exercise on muscle. Fast muscles express higher levels of MyoD and lower levels of myogenin than slow muscles, and we have previously linked myogenin to expression of oxidative enzymes. We here report that in slow muscles, compared with fast, 6 times as much of the MyoD is in an inactive form phosphorylated at T115. In fast muscles, 10 h of slow electrical stimulation had no effect on the total MyoD protein level, but the fraction of phosphorylated MyoD was increased 4-fold. Longer stimulation also decreased the total level of MyoD mRNA and protein, while the level of myogenin protein was increased. Fast patterned stimulation did not have any of these effects. Overexpression of wild type MyoD had variable effects in active slow muscles, but increased expression of fast myosin heavy chain in denervated muscles. In normally active soleus muscles, MyoD mutated at T115 (but not at S200) increased the number of fibres containing fast myosin from 50% to 85% in mice and from 13% to 62% in rats. These data establish de-phosphorylated active MyoD as a link between the pattern of electrical activity and fast fibre type in adult muscles.
Collapse
Affiliation(s)
- Merete Ekmark
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
26
|
Lunde IG, Ekmark M, Rana ZA, Buonanno A, Gundersen K. PPARdelta expression is influenced by muscle activity and induces slow muscle properties in adult rat muscles after somatic gene transfer. J Physiol 2007; 582:1277-87. [PMID: 17463039 PMCID: PMC2075258 DOI: 10.1113/jphysiol.2007.133025] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The effects of exercise on skeletal muscle are mediated by a coupling between muscle electrical activity and gene expression. Several activity correlates, such as intracellular Ca(2+), hypoxia and metabolites like free fatty acids (FFAs), might initiate signalling pathways regulating fibre-type-specific genes. FFAs can be sensed by lipid-dependent transcription factors of the peroxisome proliferator-activated receptor (PPAR) family. We found that the mRNA for the predominant muscle isoform, PPARdelta, was three-fold higher in the slow/oxidative soleus compared to the fast/glycolytic extensor digitorum longus (EDL) muscle. In histological sections of the soleus, the most oxidative fibres display the highest levels of PPARdelta protein. When the soleus muscle was stimulated electrically by a pattern mimicking fast/glycolytic IIb motor units, the mRNA level of PPARdelta was reduced to less than half within 24 h. In the EDL, a three-fold increase was observed after slow type I-like electrical stimulation. When a constitutively active form of PPARdelta was overexpressed for 14 days in normally active adult fibres after somatic gene transfer, the number of I/IIa hybrids in the EDL more than tripled, IIa fibres increased from 14% to 25%, and IIb fibres decreased from 55% to 45%. The level of succinate dehydrogenase activity increased and size decreased, also when compared to normal fibres of the same type. Thus PPARdelta can change myosin heavy chain, oxidative enzymes and size locally in muscle cells in the absence of general exercise. Previous studies on PPARdelta in muscle have been performed in transgenic animals where the transgene has been present during muscle development. Our data suggest that PPARdelta can mediate activity effects acutely in pre-existing adult fibres, and thus is an important link in excitation-transcription coupling.
Collapse
Affiliation(s)
- Ida G Lunde
- Department of Molecular Biosciences, University of Oslo, PO Box 1041, Blindern, N-0316 Oslo, Norway
| | | | | | | | | |
Collapse
|
27
|
Judge AR, Koncarevic A, Hunter RB, Liou HC, Jackman RW, Kandarian SC. Role for IκBα, but not c-Rel, in skeletal muscle atrophy. Am J Physiol Cell Physiol 2007; 292:C372-82. [PMID: 16928772 DOI: 10.1152/ajpcell.00293.2006] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Skeletal muscle atrophy is associated with a marked and sustained activation of nuclear factor-κB (NF-κB) activity. Previous work showed that p50 is one of the NF-κB family members required for this activation and for muscle atrophy. In this work, we tested whether another NF-κB family member, c-Rel, is required for atrophy. Because endogenous inhibitory factor κBα (IκBα) was activated (i.e., decreased) at 3 and 7 days of muscle disuse (i.e., hindlimb unloading), we also tested if IκBα, which binds and retains Rel proteins in the cytosol, is required for atrophy and intermediates of the atrophy process. To do this, we electrotransferred a dominant negative IκBα (IκBαΔN) in soleus muscles, which were either unloaded or weight bearing. IκBαΔN expression abolished the unloading-induced increase in both NF-κB activation and total ubiquitinated protein. IκBαΔN inhibited unloading-induced fiber atrophy by 40%. The expression of certain genes known to be upregulated with atrophy were significantly inhibited by IκBαΔN expression during unloading, including MAFbx/atrogin-1, Nedd4, IEX, 4E-BP1, FOXO3a, and cathepsin L, suggesting these genes may be targets of NF-κB transcription factors. In contrast, c-Rel was not required for atrophy because the unloading-induced markers of atrophy were the same in c-rel−/−and wild-type mice. Thus IκBα degradation is required for the unloading-induced decrease in fiber size, the increase in protein ubiquitination, activation of NF-κB signaling, and the expression of specific atrophy genes, but c-Rel is not. These data represent a significant advance in our understanding of the role of NF-κB/IκB family members in skeletal muscle atrophy, and they provide new candidate NF-κB target genes for further study.
Collapse
Affiliation(s)
- Andrew R Judge
- Department of Health Sciences, Boston University, 635 Commonwealth Avenue, 4th Fl., Boston, MA 02215, USA
| | | | | | | | | | | |
Collapse
|
28
|
Greenland JR, Liu H, Berry D, Anderson DG, Kim WK, Irvine DJ, Langer R, Letvin NL. β–Amino Ester Polymers Facilitate in Vivo DNA Transfection and Adjuvant Plasmid DNA Immunization. Mol Ther 2005; 12:164-70. [PMID: 15963932 DOI: 10.1016/j.ymthe.2005.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 12/16/2004] [Accepted: 01/28/2005] [Indexed: 11/29/2022] Open
Abstract
Increased in vivo expression of intramuscularly delivered plasmid DNA will be essential for clinical success in gene therapy and plasmid DNA vaccination. We screened polymers from a library of beta-amino esters for their ability to augment transgene expression as measured by beta-galactosidase activity and cellular immune responses. Among the candidates identified in this screen, poly[(1,6-di(acryloxyethoxy)hexane)-co-(4-aminobutanol)] enhanced plasmid DNA transgene expression by sevenfold (P=0.0001) and its immunogenicity by 70% (P=0.03). We found that polymers with moderately hydrophobic backbones and terminal alcohol groups facilitated transfection most effectively in vivo. We also observed a log-linear correlation (R2=0.93) between peak cellular immune responses and transgene activity in all evaluated polymer-plasmid DNA formulations, clarifying the relationship between immunogenicity and the quantity of expressed antigen.
Collapse
Affiliation(s)
- John R Greenland
- Division of Viral Pathogenesis, Harvard Medical School, Beth Israel Deaconess Medical Center, Research East Room 113, 330 Brookline Avenue, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|