1
|
Clark CR, Khalil RA. Regulation of vascular angiotensin II type 1 and type 2 receptor and angiotensin-(1-7)/MasR signaling in normal and hypertensive pregnancy. Biochem Pharmacol 2024; 220:115963. [PMID: 38061417 PMCID: PMC10860599 DOI: 10.1016/j.bcp.2023.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/01/2024]
Abstract
Normal pregnancy (Norm-Preg) is associated with a slight reduction in blood pressure (BP) and decreased BP response to vasoconstrictor stimuli such as angiotensin II (Ang II), although the renin-angiotensin-aldosterone system (RAAS) is upregulated. Preeclampsia (PE) is a complication of pregnancy manifested as hypertension-in-pregnancy (HTN-Preg), and dysregulation of angiotensin biosynthesis and signaling have been implicated. Ang II activates vascular Ang II type-1 receptor (AT1R) and Ang II type-2 receptor (AT2R), while angiotensin-(1-7) promotes Ang-(1-7)/MasR signaling. The role of AT1R in vasoconstriction and the activated cellular mechanisms are well-characterized. The sensitivity of vascular AT1R to Ang II and consequent activation of vasoconstrictor mechanisms decrease during Norm-Preg, but dramatically increase in HTN-Preg. Placental ischemia in late pregnancy could also initiate the release of AT1R agonistic autoantibodies (AT1AA) with significant impact on endothelial dysfunction and activation of contraction pathways in vascular smooth muscle including [Ca2+]c and protein kinase C. On the other hand, the role of AT2R and Ang-(1-7)/MasR in vascular relaxation, particularly during Norm-Preg and PE, is less clear. During Norm-Preg, increases in the expression/activity of vascular AT2R and Ang-(1-7)/MasR promote the production of endothelium-derived relaxing factors such as nitric oxide (NO), prostacyclin and endothelium-derived hyperpolarizing factor leading to generalized vasodilation. Aortic segments of Preg rats show prominent endothelial AT2R staining and increased relaxation and NO production in response to AT2R agonist CGP42112A, and treatment with AT2R antagonist PD123319 enhances phenylephrine-induced contraction. Decreased vascular AT2R and Ang-(1-7)/MasR expression and receptor-mediated mechanisms of vascular relaxation have been suggested in HTN-Preg animal models, but their role in human PE needs further testing. Changes in angiotensin-converting enzyme-2 (ACE2) have been observed in COVID-19 patients, and whether ACE2 influences the course of COVID-19 viral infection/immunity in Norm-Preg and PE is an intriguing area for research.
Collapse
Affiliation(s)
- Caroline R Clark
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Angiotensin type 2 receptor (AT2R) and receptor Mas (MasR) are part of the "protective arm" of the renin angiotensin system. Gene and pharmacological manipulation studies reveal that AT2R and MasR are involved in natriuretic, vasodilatory, and anti-inflammatory responses and in lowering blood pressure in various animal models under normal and pathological conditions such as salt-sensitive hypertension, obesity, and diabetes. The scope of this review is to discuss co-localization and heterodimerization as potential molecular mechanisms of AT2R- and MasR-mediated functions including antihypertensive activities. RECENT FINDINGS Accumulating evidences show that AT2R and MasR are co-localized, make a heterodimer, and are functionally interdependent in producing their physiological responses. Moreover, ang-(1-7) preferably may be an AT1R-biased agonist while acting as a MasR agonist. The physical interactions of AT2R and MasR appear to be an important mechanism by which these receptors are involved in blood pressure regulation and antihypertensive activity. Whether heteromers of these receptors influence affinity or efficacy of endogenous or synthetic agonists remains a question to be considered.
Collapse
MESH Headings
- Animals
- Blood Pressure/physiology
- Dimerization
- Humans
- Hypertension/metabolism
- Hypertension/physiopathology
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/physiology
- Receptor, Angiotensin, Type 2/metabolism
- Receptor, Angiotensin, Type 2/physiology
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/physiology
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Sanket Patel
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, Room 3046, 4849 Calhoun Street, Houston, TX, 77204-5000, USA
| | - Tahir Hussain
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Health 2, Room 3046, 4849 Calhoun Street, Houston, TX, 77204-5000, USA.
| |
Collapse
|
3
|
Vinturache AE, Smith FG. Glomerular and tubular effects of nitric oxide (NO) are regulated by angiotensin II (Ang II) in an age-dependent manner through activation of both angiotensin receptors (AT1Rs and AT2Rs) in conscious lambs. Pflugers Arch 2017; 470:249-261. [PMID: 28861607 DOI: 10.1007/s00424-017-2053-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 07/23/2017] [Accepted: 08/02/2017] [Indexed: 01/01/2023]
Abstract
Renin-angiotensin (RAS) and nitric oxide (NO) systems and the balance and interaction between them are considered of primary importance in maintaining fluid and electrolyte homeostasis. It has been suggested that the effects of NO may be modulated at least in part by the angiotensin (Ang) II, yet the roles of angiotensin receptor type 1 (AT1R) and type 2 (AT2R) are not well understood. Even though both Ang II and NO are elevated at birth and during the newborn period, their contribution to the adaptation of the newborn to life after birth as well as their physiological roles during development are poorly understood. The aim of this study was to determine if NO regulation of renal function during postnatal maturation is modulated by Ang II through activation of AT1R or AT2R or both receptors. Glomerular and tubular effects of either AT1R selective antagonist ZD 7155, AT2R selective antagonist PD 123319, and both antagonists ZD 7155 plus PD 123319, were measured in 1- (N = 9) and 6-week-old (N = 13) conscious, chronically instrumented lambs before and after removal of endogenous NO with L-arginine analogue, L-NAME. Two-way analysis of variance (ANOVA) procedures for repeated measures over time with factors age and treatment were used to compare the effects of the treatments on several glomerular and tubular variables in both groups. This study showed that L-NAME infusion after pre-treatment with ATR antagonists did not alter glomerular function in 1- or 6-week-old lambs. NO effects on electrolytes handling along the nephron during postnatal development were modulated by Ang II through AT1R and AT2R in an age-dependent manner. Selective inhibition of AT1R and AT2R increased excretion of Na+, K+, and Cl- in 6- but not in 1-week-old lambs. In 6-week-old lambs, urinary flow rate increased by 200%, free water clearance increased by 50%, and urine osmolality decreased by 40% after L-NAME was added to the pre-treatment with ZD 7155 plus PD 123319. When L-NAME was added either to ZD 7155 or PD 123319, the same trend in the alterations of these variables was observed, albeit to a lower degree. In conclusion, in conscious animals, during postnatal maturation, Ang II modulates the effects of NO on glomerular function, fluid, and electrolyte homeostasis through AT1Rs and AT2Rs in an age-dependent manner. Under physiological conditions, AT2Rs may potentiate the effects of AT1R, providing evidence of a crosstalk between ATRs in modulating NO effects on fluid and electrolyte homeostasis during postnatal maturation. This study provides new insights on the regulation of renal function during early postnatal development showing that, compared with later in life, newborns have impaired capacity to regulate glomerular function, water, and electrolyte balance.
Collapse
Affiliation(s)
- Angela E Vinturache
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Francine G Smith
- Department of Physiology and Pharmacology, Alberta Children's Hospital Research Institute for Child and Maternal Health, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Samson R, Lee A, Lawless S, Hsu R, Sander G. Novel Pathophysiological Mechanisms in Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 956:21-35. [PMID: 27981434 DOI: 10.1007/5584_2016_96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypertension is the most common disease affecting humans and imparts a significant cardiovascular and renal risk to patients. Extensive research over the past few decades has enhanced our understanding of the underlying mechanisms in hypertension. However, in most instances, the cause of hypertension in a given patient continues to remain elusive. Nevertheless, achieving aggressive blood pressure goals significantly reduces cardiovascular morbidity and mortality, as demonstrated in the recently concluded SPRINT trial. Since a large proportion of patients still fail to achieve blood pressure goals, knowledge of novel pathophysiologic mechanisms and mechanism based treatment strategies is crucial. The following chapter will review the novel pathophysiological mechanisms in hypertension, with a focus on role of immunity, inflammation and vascular endothelial homeostasis. The therapeutic implications of these mechanisms will be discussed where applicable.
Collapse
Affiliation(s)
- Rohan Samson
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA.
| | - Andrew Lee
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Sean Lawless
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Robert Hsu
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| | - Gary Sander
- Tulane University Heart and Vascular Institute, Tulane School of Medicine, 1430 Tulane Avenue, SL-48, New Orleans, LA, 70112, USA
| |
Collapse
|
5
|
Te Riet L, van Esch JHM, Roks AJM, van den Meiracker AH, Danser AHJ. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res 2015; 116:960-75. [PMID: 25767283 DOI: 10.1161/circresaha.116.303587] [Citation(s) in RCA: 512] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.
Collapse
Affiliation(s)
- Luuk Te Riet
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton J M Roks
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
6
|
Abstract
Intrarenal autoregulatory mechanisms maintain renal blood flow (RBF) and glomerular filtration rate (GFR) independent of renal perfusion pressure (RPP) over a defined range (80-180 mmHg). Such autoregulation is mediated largely by the myogenic and the macula densa-tubuloglomerular feedback (MD-TGF) responses that regulate preglomerular vasomotor tone primarily of the afferent arteriole. Differences in response times allow separation of these mechanisms in the time and frequency domains. Mechanotransduction initiating the myogenic response requires a sensing mechanism activated by stretch of vascular smooth muscle cells (VSMCs) and coupled to intracellular signaling pathways eliciting plasma membrane depolarization and a rise in cytosolic free calcium concentration ([Ca(2+)]i). Proposed mechanosensors include epithelial sodium channels (ENaC), integrins, and/or transient receptor potential (TRP) channels. Increased [Ca(2+)]i occurs predominantly by Ca(2+) influx through L-type voltage-operated Ca(2+) channels (VOCC). Increased [Ca(2+)]i activates inositol trisphosphate receptors (IP3R) and ryanodine receptors (RyR) to mobilize Ca(2+) from sarcoplasmic reticular stores. Myogenic vasoconstriction is sustained by increased Ca(2+) sensitivity, mediated by protein kinase C and Rho/Rho-kinase that favors a positive balance between myosin light-chain kinase and phosphatase. Increased RPP activates MD-TGF by transducing a signal of epithelial MD salt reabsorption to adjust afferent arteriolar vasoconstriction. A combination of vascular and tubular mechanisms, novel to the kidney, provides for high autoregulatory efficiency that maintains RBF and GFR, stabilizes sodium excretion, and buffers transmission of RPP to sensitive glomerular capillaries, thereby protecting against hypertensive barotrauma. A unique aspect of the myogenic response in the renal vasculature is modulation of its strength and speed by the MD-TGF and by a connecting tubule glomerular feedback (CT-GF) mechanism. Reactive oxygen species and nitric oxide are modulators of myogenic and MD-TGF mechanisms. Attenuated renal autoregulation contributes to renal damage in many, but not all, models of renal, diabetic, and hypertensive diseases. This review provides a summary of our current knowledge regarding underlying mechanisms enabling renal autoregulation in health and disease and methods used for its study.
Collapse
Affiliation(s)
- Mattias Carlström
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Christopher S Wilcox
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - William J Arendshorst
- Department of Medicine, Division of Nephrology and Hypertension and Hypertension, Kidney and Vascular Research Center, Georgetown University, Washington, District of Columbia; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; and Department of Cell Biology and Physiology, UNC Kidney Center, and McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
7
|
Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves MLM. Angiotensin II Type 2 Receptor (AT2R) is Associated with Increased Tolerance of the Hyperthyroid Heart to Ischemia-Reperfusion. Cardiovasc Drugs Ther 2013; 27:393-402. [DOI: 10.1007/s10557-013-6473-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Taguchi K, Matsumoto T, Kamata K, Kobayashi T. Angiotensin II type 2 receptor-dependent increase in nitric oxide synthase activity in the endothelium of db/db mice is mediated via a MEK pathway. Pharmacol Res 2012; 66:41-50. [DOI: 10.1016/j.phrs.2012.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/15/2012] [Accepted: 02/27/2012] [Indexed: 01/01/2023]
|
9
|
Wang CH, Li F, Takahashi N. The renin angiotensin system and the metabolic syndrome. THE OPEN HYPERTENSION JOURNAL 2010; 3:1-13. [PMID: 21132096 PMCID: PMC2995894 DOI: 10.2174/1876526203010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The renin angiotensin system (RAS) is important for fluid and blood pressure regulation. Recent studies suggest that an overactive RAS is involved in the metabolic syndrome. This article discusses recent advances on how genetic alteration of the RAS affects cardiovascular and metabolic phenotypes, with a special emphasis on the potential role of angiotensin-independent effects of renin.
Collapse
Affiliation(s)
- Chih-Hong Wang
- Department of Pathology and Laboratory Medicine The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7525
| | - Feng Li
- Department of Pathology and Laboratory Medicine The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7525
| | - Nobuyuki Takahashi
- Department of Pathology and Laboratory Medicine The University of North Carolina at Chapel Hill Chapel Hill, NC 27599-7525
- Tohoku University, Graduate Schools of Pharmaceutical Sciences and Medicine, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Wenzel UO, Krebs C, Benndorf R. The angiotensin II type 2 receptor in renal disease. J Renin Angiotensin Aldosterone Syst 2009; 11:37-41. [PMID: 19861345 DOI: 10.1177/1470320309347787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Suppression of angiotensin II formation by angiotensin-converting enzyme inhibitors or blockade of the angiotensin II receptor by angiotensin receptor blockers is a powerful therapeutic strategy to slow the progression of renal disease. However, angiotensin-converting enzyme inhibitors and angiotensin receptor blockers provide only imperfect protection against the progression of chronic kidney disease to end-stage renal failure. Hence, innovative approaches are needed to keep patients with chronic kidney disease off dialysis. Angiotensin II activates at least two receptors, namely the angiotensin II type 1 (AT( 1)) and angiotensin II type 2 (AT(2)) receptors. The majority of the effects of angiotensin II, such as vasoconstriction, inflammation, and matrix deposition, are mediated via the AT(1) receptor. It is thought that the AT(2) receptor counteracts these effects and plays a role in nephroprotection. However, recent data support the notion that the AT(2) receptor transduces pro-inflammatory effects and promotes fibrosis and hypertrophy. Therefore, the question of whether stimulation of the AT(2) receptor could represent a silver bullet for the treatment of chronic kidney disease or may, on the contrary, exert detrimental effects on renal physiology remains unresolved. Recent data from AT(2) receptor-knockout mice demonstrate that the loss of AT(2) receptor signalling is associated with increased renal injury and mortality in chronic kidney disease. This raises the expectation that pharmacological stimulation of the AT(2) receptor may positively influence renal pathologies. However, further research is needed to explore the question whether AT(2) receptor stimulation may represent a new therapeutic strategy for the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Ulrich Otto Wenzel
- Department of Medicine, Division of Nephrology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | | |
Collapse
|
11
|
Coleman CG, Anrather J, Iadecola C, Pickel VM. Angiotensin II type 2 receptors have a major somatodendritic distribution in vasopressin-containing neurons in the mouse hypothalamic paraventricular nucleus. Neuroscience 2009; 163:129-42. [PMID: 19539723 PMCID: PMC2740934 DOI: 10.1016/j.neuroscience.2009.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 05/21/2009] [Accepted: 06/12/2009] [Indexed: 01/16/2023]
Abstract
The hypothalamic paraventricular nucleus (PVN) and angiotensin II (AngII) play critical roles in cardiovascular and neurohumoral regulation ascribed in part to vasopressin (VP) release. The AngII actions in the PVN are mediated largely through angiotensin II type 1 (AT1) receptors. However, there is indirect evidence that the functionally elusive central angiotensin II type 2 (AT2) receptors are also mediators of AngII signaling in the PVN. We used electron microscopic dual immunolabeling of antisera recognizing the AT2 receptor and VP to test the hypothesis that mouse PVN neurons expressing VP are among the cellular sites where this receptor has a subcellular distribution conducive to local activation. Immunoreactivity for the AT2 receptor was detected in somatodendritic profiles, of which approximately 60% of the somata and approximately 28% of the dendrites also contained VP. In comparison with somata and dendrites, axons, axon terminals, and glia less frequently contained the AT2 receptor. Somatic labeling for the AT2 receptor was often seen in the cytoplasm near the Golgi lamellae and other endomembrane structures implicated in receptor trafficking. AT2 receptor immunoreactivity in dendrites was commonly localized to cytoplasmic endomembranes, but was occasionally observed on extra- or peri-synaptic portions of the plasma membrane apposed by astrocytic processes or by unlabeled axon terminals. The labeled dendritic plasmalemmal segments containing AT2 receptors received asymmetric excitatory-type or more rarely symmetric inhibitory-type contacts from unlabeled axon terminals containing dense core vesicles, many of which are known to store neuropeptides. These results provide the first ultrastructural evidence that AT2 receptors in PVN neurons expressing VP and other neuromodulators are strategically positioned for surface activation by AngII and/or intracellular trafficking.
Collapse
Affiliation(s)
- C G Coleman
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, 407 E 61st Street, New York, NY, USA.
| | | | | | | |
Collapse
|
12
|
Pavel J, Terrón JA, Benicky J, Falcón-Neri A, Rachakonda A, Inagami T, Saavedra JM. Increased angiotensin II AT1 receptor mRNA and binding in spleen and lung of AT2 receptor gene disrupted mice. ACTA ACUST UNITED AC 2009; 158:156-66. [PMID: 19766151 DOI: 10.1016/j.regpep.2009.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Revised: 08/11/2009] [Accepted: 09/08/2009] [Indexed: 01/21/2023]
Abstract
To clarify the relationship between Angiotensin II AT(1) and AT(2) receptors, we studied AT(1) receptor mRNA and binding expression in tissues from AT(2) receptor gene disrupted (AT(2)(-/-)) female mice, where AT(2) receptors are not expressed in vivo, using in situ hybridization and quantitative autoradiography. Wild type mice expressed AT(1A) receptor mRNA and AT(1) receptor binding in lung parenchyma, the spleen, predominantly in the red pulp, and in liver parenchyma. In wild type mice, lung AT(2) receptors were expressed in lung bronchial epithelium and smooth muscle, and were not present in the lung parenchyma, the spleen or the liver. This indicates that AT(1) and AT(2) receptors were not expressed in the same cells. In AT(2)(-/-) mice, we found higher AT(1A) receptor mRNA and AT(1) receptor binding in lung parenchyma and in the red pulp of the spleen, but not in the liver, when compared to littermate wild type controls. Our results suggest that impaired AT(2) receptor function upregulates AT(1) receptor transcription and expression in a tissue-specific manner and in cells not expressing AT(2) receptors. AT(1) upregulation explains the increased sensitivity to Angiotensin II characteristic of the AT(2)(-/-) phenotype, consistent with enhanced AT(1) receptor activation in a number of tissues.
Collapse
Affiliation(s)
- Jaroslav Pavel
- Section on Pharmacology, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, 10 Center Dr. MSC 1514 Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Stennett AK, Qiao X, Falone AE, Koledova VV, Khalil RA. Increased vascular angiotensin type 2 receptor expression and NOS-mediated mechanisms of vascular relaxation in pregnant rats. Am J Physiol Heart Circ Physiol 2009; 296:H745-55. [PMID: 19151255 PMCID: PMC2660233 DOI: 10.1152/ajpheart.00861.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 01/12/2009] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with reduced blood pressure (BP) and decreased pressor response to vasoconstrictors, even though the renin-angiotensin system is upregulated. Angiotensin II (ANG II) activates both angiotensin type 1 receptors (AT(1)Rs) and angiotensin type 2 receptors (AT(2)Rs). Although the role of the AT(1)R in vascular contraction is well documented, the role of the AT(2)R in vascular relaxation, particularly during pregnancy, is less clear. It was hypothesized that the decreased BP and vasoconstriction during pregnancy was, at least in part, due to changes in AT(2)R amount, distribution, and/or postreceptor mechanisms of vascular relaxation. To test this hypothesis, systolic BP was measured in virgin and pregnant (day 19) Sprague-Dawley rats. Isometric contraction/relaxation was measured in isolated aortic rings, and nitric oxide (NO) production was measured using 4-amino-5-methylamino-2',7'-difluorescein fluorescence. AT(1)R and AT(2)R mRNA expression and protein amount were measured in tissue homogenates using real-time RT-PCR and Western blots, and their local distribution was visualized in cryosections using immunohistochemistry and immunofluorescence. BP was lower in pregnant than virgin rats. Phenylephrine (Phe) caused concentration-dependent contraction that was reduced in the aorta of pregnant compared with virgin rats. Treatment with the AT(2)R antagonist PD-123319 caused greater enhancement of Phe contraction, and the AT(2)R agonist CGP-42112A caused greater relaxation of Phe contraction in the aorta of pregnant than virgin rats. ANG II plus the AT(1)R blocker losartan induced greater NO production in the aorta of pregnant than virgin rats. RT-PCR revealed increased mRNA expression of vascular endothelial NO synthase (eNOS), little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Western blots revealed an increased protein amount of activated phospho-eNOS, little change in AT(1)Rs, and increased AT(2)Rs in pregnant compared with virgin rats. Immunohistochemistry and immunofluorescence analysis in aortic sections of virgin rats revealed abundant AT(1)R staining in tunica media that largely colocalized with actin in vascular smooth muscle and less AT(2)Rs mainly in the tunica intima and endothelium. In pregnant rats, AT(1)R staining in the smooth muscle layer and adventitia was reduced, and endothelial AT(2)R staining was enhanced. These data suggest an enhanced AT(2)R-mediated vascular relaxation pathway involving increased expression/activity of endothelial AT(2)Rs and increased postreceptor activated phospho-eNOS, which may contribute to the decreased BP during pregnancy.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Aorta/enzymology
- Blood Pressure
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Female
- Imidazoles/pharmacology
- Losartan/pharmacology
- Muscle, Smooth, Vascular/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Oligopeptides/pharmacology
- Phenylephrine/pharmacology
- Phosphorylation
- Pregnancy
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Up-Regulation
- Vasoconstriction
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Amanda K Stennett
- Div. of Vascular Surgery, Harvard Medical School and Brigham and Women's Hospital, 75 Francis St., Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Valsartan improves l-NAME-exacerbated cardiac fibrosis with TGF-β inhibition and apoptosis induction in spontaneously hypertensive rats. J Cardiol 2008; 52:239-46. [DOI: 10.1016/j.jjcc.2008.07.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 06/29/2008] [Accepted: 07/08/2008] [Indexed: 01/19/2023]
|
15
|
Sandberg K, Ji H. Why can't a woman be more like a man?: Is the angiotensin type 2 receptor to blame or to thank? Hypertension 2008; 52:615-7. [PMID: 18711007 DOI: 10.1161/hypertensionaha.108.115063] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
17
|
Diniz C, Leal S, Logan K, Rocha-Pereira C, Soares AS, Rocha E, Gonçalves J, Fresco P. Immunohistochemical localization of angiotensin II receptor types 1 and 2 in the mesenteric artery from spontaneously hypertensive rats. Microsc Res Tech 2007; 70:677-81. [PMID: 17393477 DOI: 10.1002/jemt.20453] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Angiotensin II plays a crucial role in the control of blood pressure, acting at AT1 or AT2 receptors, and can act as a potent vasoconstrictor of the peripheral vasculature inducing hypertrophy, hyperplasia, or both, in resistance arteries. The aim of the present study was to investigate whether the pattern of distribution of angiotensin AT1 and AT2 receptors on mesenteric artery sections differs in spontaneously hypertensive rats (SHR) versus their respective controls (Wistar-Kyoto [WKY] rats). Immunohistochemistry using anti-AT1 or anti-AT2 antibodies was performed on perfused-fixed/paraffin-embedded mesenteric arteries from SHR and WKY rats. 3,3'-Diaminobenzidine tetrahydrochloride (DAB; activated by hydrogen peroxide) staining revealed distinct AT1 and AT2 labeling of all artery layers (adventitia, media and intima) from WKY rats, whereas in SHR an abundant AT1 labeling was found in both intima and adventitia and a sparser labeling in the media. There was a vast reduction of AT2 labeling throughout all layers. These results suggest a crucial role for AT2 receptors in the pathogenesis of hypertension.
Collapse
MESH Headings
- Animals
- Hypertension/metabolism
- Immunohistochemistry/methods
- Male
- Mesenteric Arteries/chemistry
- Mesenteric Arteries/metabolism
- Paraffin Embedding
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Receptor, Angiotensin, Type 1/analysis
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/analysis
- Receptor, Angiotensin, Type 2/metabolism
Collapse
Affiliation(s)
- Carmen Diniz
- Serviço de Farmacologia, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-047 Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hennenberg M, Trebicka J, Biecker E, Schepke M, Sauerbruch T, Heller J. Vascular dysfunction in human and rat cirrhosis: role of receptor-desensitizing and calcium-sensitizing proteins. Hepatology 2007; 45:495-506. [PMID: 17256744 DOI: 10.1002/hep.21502] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED In cirrhosis, vascular hypocontractility leads to vasodilation and contributes to portal hypertension. Impaired activation of contractile pathways contributes to vascular hypocontractility. Angiotensin II type 1 receptors (AT1-Rs) are coupled to the contraction-mediating RhoA/Rho-kinase pathway and may be desensitized by phosphorylation through G-protein-coupled receptor kinases (GRKs) and binding of beta-arrestin-2. In the present study, we analyzed vascular hypocontractility to angiotensin II in cirrhosis. Human hepatic arteries were obtained during liver transplantation. In rats, cirrhosis was induced by bile duct ligation (BDL). Contractility of rat aortic rings was measured myographically. Protein expression and phosphorylation were analyzed by Western blot analysis. Immunoprecipitation was performed with protein A-coupled Sepharose beads. Myosin light chain (MLC) phosphatase activity was assessed as dephosphorylation of MLCs. Aortas from BDL rats were hyporeactive to angiotensin II and extracellular Ca2+. Expression of AT1-R and Galphaq/11,12,13 remained unchanged in hypocontractile rat and human vessels, whereas GRK-2 and beta-arrestin-2 were up-regulated. The binding of beta-arrestin-2 to the AT1-R was increased in hypocontractile rat and human vessels. Inhibition of angiotensin II-induced aortic contraction by the Rho-kinase inhibitor Y-27632 was pronounced in BDL rats. Basal phosphorylation of the ROK-2 substrate moesin was reduced in vessels from rats and patients with cirrhosis. Analysis of the expression and phosphorylation of Ca(2+)-sensitizing proteins (MYPT1 and CPI-17) in vessels from rats and patients with cirrhosis suggested decreased Ca2+ sensitivity. Angiotensin II-stimulated moesin phosphorylation was decreased in aortas from BDL rats. MLC phosphatase activity was elevated in aortas from BDL rats. CONCLUSION Vascular hypocontractility to angiotensin II in cirrhosis does not result from changes in expression of AT1-Rs or G-proteins. Our data suggest that in cirrhosis-induced vasodilation, the AT1-R is desensitized by GRK-2 and beta-arrestin-2 and that changed patterns of phosphorylated Ca(2+) sensitizing proteins decrease Ca(2+) sensitivity.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Li H, Gao Y, Grobe JL, Raizada MK, Katovich MJ, Sumners C. Potentiation of the antihypertensive action of losartan by peripheral overexpression of the ANG II type 2 receptor. Am J Physiol Heart Circ Physiol 2006; 292:H727-35. [PMID: 17085538 DOI: 10.1152/ajpheart.00938.2006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Our previous studies demonstrated that peripheral overexpression of angiotensin II (ANG II) type 2 receptors (AT(2)R) prevents hypertension-induced cardiac hypertrophy and remodeling without altering high blood pressure. This, coupled with the observations that AT(2)R play a role in the antihypertensive actions of ANG II type 1 receptor (AT(1)R) blockers (ARBs), led us to propose that peripheral overexpression of AT(2)R would improve the antihypertensive action of losartan (Los) in Sprague-Dawley (SD) rats made hypertensive via chronic infusion of ANG II. Here we utilized adenoviral vector-mediated AT(2)R gene transfer to test this hypothesis. A single intracardiac injection of adenoviral vector containing genomic AT(2)R (G-AT(2)R) DNA and enhanced green fluorescent protein (EGFP) gene controlled by cytomegalovirus (CMV) promoters (Ad-G-AT(2)R-EGFP; 5 x 10(9) infectious units) into adult SD rats produced robust AT(2)R overexpression in cardiovascular tissues (kidney, lung, heart, aorta, mesenteric artery, and renal artery) that persisted for 3-5 days postinjection. By 7 days post viral injection, the overexpressed AT(2)R are reduced toward basal values in certain tissues (lung, kidney, and heart) and are undetectable in others (kidney and blood vessels). In two separate protocols, we demonstrated that the hypotensive effect of Los (0.125, 0.5, and 1.0 mg/kg iv) was significantly greater in the AT(2)R-overexpressing animals (-40.7 +/- 4.3, -41.8 +/- 4.8, and -48.1 +/- 2.6 mmHg, respectively) compared with control vector (Ad-CMV-EGFP)-treated rats (-12.4 +/- 2.2, -20.2 +/- 3.4, and -27.3 +/- 3.4 mmHg, respectively). These results provide support for a depressor role of AT(2)R and the proposal that combined AT(2)R agonist and ARB treatment may be an improved therapeutic strategy for controlling hypertension.
Collapse
MESH Headings
- Adenoviridae/genetics
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Blood Pressure/drug effects
- Cardiovascular System/drug effects
- Cardiovascular System/metabolism
- Cells, Cultured
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Fibroblasts/metabolism
- Genetic Vectors
- Hypertension/chemically induced
- Hypertension/drug therapy
- Hypertension/metabolism
- Hypertension/physiopathology
- Imidazoles/pharmacology
- Losartan/pharmacology
- Male
- Myocardium/cytology
- Myocardium/metabolism
- Pyridines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 2/biosynthesis
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Time Factors
- Transduction, Genetic
- Up-Regulation
Collapse
Affiliation(s)
- Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610-0274, USA
| | | | | | | | | | | |
Collapse
|
20
|
Braszko JJ. D2 dopamine receptor blockade prevents cognitive effects of Ang IV and des-Phe6 Ang IV. Physiol Behav 2006; 88:152-9. [PMID: 16690090 DOI: 10.1016/j.physbeh.2006.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 01/27/2006] [Accepted: 03/27/2006] [Indexed: 10/24/2022]
Abstract
Angiotensins, especially angiotensin IV (Ang IV), have recently been found to be potent cognitive enhancers in rodents. However, the precise mechanisms of their memory improving effects remain unknown. In this study we tested the hypothesis that D2 dopamine receptors at least partially mediate cognitive effects of Ang IV and its derivative des-Phe6 Ang IV. Namely, the well known cognitive effects of both peptides [facilitation of a conditioned avoidance responses (CARs) acquisition, increase of a passive avoidance behavior (PAB) retrieval, and improvement of object recognition] were evaluated in rats either pretreated or not with a selective D2 dopamine receptor antagonist remoxipride {(S)-(-)-3-Bromo-N-[(1-ethyl-2-pyrrolidinylOmethyl]2,6-dimethoxybenzamide hydrochloride}. To control for the unspecific motor and emotional effects of our treatments that could confound results of the memory tests we used respectively, 'open' field and elevated 'plus' maze tests. Ang IV as well as des-Phe6 Ang IV remarkably improved learning of CARs, recall of PAB and recognition of the previously seen objects. D2 receptors blockade by remoxipride abolished all these effects of both peptides. In the elevated 'plus' maze remoxipride abolished anxiogenic effects of both Ang IV and des-Phe6 Ang IV. Also, the drug followed by Ang IV decreased number of crossings and by des-Phe6 Ang IV number of crossings and rearings. The results point to importance of the functional D2 dopamine receptors in cognitive effects of Ang IV and its naturally occurring product devoid of C-terminal Phe6.
Collapse
Affiliation(s)
- J J Braszko
- Department of Clinical Pharmacology, Medical University of Bialystok, Waszyngtona 15 A, PL-15274 Bialystok, Poland.
| |
Collapse
|
21
|
Siragy HM. Angiotensin II compartmentalization within the kidney: effects of salt diet and blood pressure alterations. Curr Opin Nephrol Hypertens 2006; 15:50-3. [PMID: 16340666 DOI: 10.1097/01.mnh.0000196148.42460.4f] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW All components of the renin-angiotensin-aldosterone system are present within the kidney. Renin, renin receptor, angiotensinogen and angiotensin AT1 and AT2 receptor and aldosterone synthase messenger RNA and protein are present in close proximity to the renal vasculature and tubules. The interaction between the different components of the renin-angiotensin-aldosterone system determines the level of activity of this system and in turn may influence the regulation of blood pressure and renal sodium handling. RECENT FINDINGS Angiotensin through the stimulation of its subtype AT2 receptor regulates sodium excretion, renin synthesis and secretion. Aldosterone synthase mRNA and protein are expressed in glomeruli, renal vasculature and tubules, and are regulated by angiotensin AT1 receptor, diabetes and salt. Although aldosterone is known to influence renal tubular channels with the subsequent enhancement of sodium reabsorption, it is not clear if the renally produced aldosterone also influences renal sodium handling or blood pressure regulation. In addition, angiotensin II influences kidney function and structure through the stimulation of renal inflammation. New data suggest that the renal AT1 receptor plays an important role in the determination of blood pressure levels, and this effect is unique and non-redundant in the actions of extrarenal AT1 receptors. SUMMARY The finding of new functions and components of the renin-angiotensin-aldosterone system clearly adds new knowledge to our understanding of how angiotensin II influences the kidney and blood pressure.
Collapse
Affiliation(s)
- Helmy M Siragy
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908-1409, USA.
| |
Collapse
|
22
|
Fritz RD, Radziwill G. The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem Biophys Res Commun 2005; 338:1906-12. [PMID: 16289034 DOI: 10.1016/j.bbrc.2005.10.168] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 10/27/2005] [Indexed: 11/23/2022]
Abstract
The scaffold protein CNK1 mediates proliferative as well as antiproliferative responses including differentiation and apoptosis. The angiotensin II type 2 (AT2) receptor belongs to the class of G protein-coupled receptors and also promotes antiproliferative effects. Here we report that CNK1 binds through the sterile alpha motif (SAM) and the conserved region in CNK (CRIC) to the AT2 receptor. The exchange of a conserved leucine residue with arginine in the CRIC domain increases the binding affinity of CNK1 to the AT2 receptor. The insertion of a negatively charged amino acid stretch into the linker region between the N- and the C-terminal part of CNK1 strengthens the interaction between CNK1 and the AT2 receptor in a Ras-regulated manner. The biological significance of the interaction was supported by coprecipitation of CNK1 and the AT2 receptor in mouse heart extracts. Thus, CNK1 may play a role in the AT2 receptor-mediated signaling pathways.
Collapse
Affiliation(s)
- Rafael D Fritz
- Institute of Medical Virology, University of Zurich, 8006 Zurich, Switzerland
| | | |
Collapse
|
23
|
Gembardt F, Sterner-Kock A, Imboden H, Spalteholz M, Reibitz F, Schultheiss HP, Siems WE, Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides 2005; 26:1270-7. [PMID: 15949646 PMCID: PMC7115528 DOI: 10.1016/j.peptides.2005.01.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/08/2005] [Accepted: 01/11/2005] [Indexed: 11/15/2022]
Abstract
Biochemical analysis revealed that angiotensin-converting enzyme related carboxy-peptidase (ACE2) cleaves angiotensin (Ang) II to Ang-(1-7), a heptapeptide identified as an endogenous ligand for the G protein-coupled receptor Mas. No data are currently available that systematically describe ACE2 distribution and activity in rodents. Therefore, we analyzed the ACE2 expression in different tissues of mice and rats on mRNA (RNase protection assay) and protein levels (immunohistochemistry, ACE2 activity, western blot). Although ACE2 mRNA in both investigated species showed the highest expression in the ileum, the mouse organ exceeded rat ACE2, as also demonstrated in the kidney and colon. Corresponding to mRNA, ACE2 activity was highest in the ileum and mouse kidney but weak in the rat kidney, which was also confirmed by immunohistochemistry. Contrary to mRNA, we found weak activity in the lung of both species. Our data demonstrate a tissue- and species-specific pattern for ACE2 under physiological conditions.
Collapse
Affiliation(s)
- Florian Gembardt
- Department of Cardiology, Charité, Campus Benjamin Franklin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Liu Y, Li JQ. Preventive and therapeutic effects of enalapril on liver fibrosis in rats. Shijie Huaren Xiaohua Zazhi 2004; 12:2119-2122. [DOI: 10.11569/wcjd.v12.i9.2119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects of angiotensin-converting enzyme inhibitor, enalapril, on the extent of liver fibrosis in experimental fibrotic rats induced by carbon tetrachloride (CCl4).
METHODS: Liver fibrosis in rats was induced by CCl4. Rats were assigned into control group, model group, prevention groups and treatment groups. Except for rats in control group, all rats were given subcutaneous injection of 400 mL/L CCl4, once every 3 days for 10 weeks. Rats in prevention groups were also given enalapril via gastrogavage. But rats in treatment groups were given enalapril from the fifth week to the end via gastrogavage. At the end of tenth week, livers and spleens were measured and specimens of liver were stored. The extent of liver inflammation and fibrosis was evaluated with HE and Masson staining. We also observed the ultrastructures of hepatocytes under electron microscope.
RESULTS: After using enalapril, the body weights of model group, enalapril prevention groups and enalapril treatment groups decreased significantly as compared with that of control group (P <0.01). Compared with model group, the liver and spleen indexes of enalapril prevention and treatment groups decreased significantly (P <0.01), enalapril prevention and treatment groups of higher dose considerablely attenuated the extent of liver inflammation and fibrosis (P <0.01). The extent of hepatotic injury in enalapril prevention and treatment groups of higher dose decreased significantly than that of model group under electron microscope.
CONCLUSION: Enalapril has better preventive and therapeutic effects on experimental liver fibrosis in rats induced by CCl4.
Collapse
|