1
|
Louit A, Beaudet MJ, Blais M, Gros-Louis F, Dupré N, Berthod F. In Vitro Characterization of Motor Neurons and Purkinje Cells Differentiated from Induced Pluripotent Stem Cells Generated from Patients with Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Stem Cells Int 2023; 2023:1496597. [PMID: 37096129 PMCID: PMC10122584 DOI: 10.1155/2023/1496597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease mainly characterized by spasticity in the lower limbs and poor muscle control. The disease is caused by mutations in the SACS gene leading in most cases to a loss of function of the sacsin protein, which is highly expressed in motor neurons and Purkinje cells. To investigate the impact of the mutated sacsin protein in these cells in vitro, induced pluripotent stem cell- (iPSC-) derived motor neurons and iPSC-derived Purkinje cells were generated from three ARSACS patients. Both types of iPSC-derived neurons expressed the characteristic neuronal markers β3-tubulin, neurofilaments M and H, as well as specific markers like Islet-1 for motor neurons, and parvalbumin or calbindin for Purkinje cells. Compared to controls, iPSC-derived mutated SACS neurons expressed lower amounts of sacsin. In addition, characteristic neurofilament aggregates were detected along the neurites of both iPSC-derived neurons. These results indicate that it is possible to recapitulate in vitro, at least in part, the ARSACS pathological signature in vitro using patient-derived motor neurons and Purkinje cells differentiated from iPSCs. Such an in vitro personalized model of the disease could be useful for the screening of new drugs for the treatment of ARSACS.
Collapse
Affiliation(s)
- Aurélie Louit
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Marie-Josée Beaudet
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Mathieu Blais
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - François Gros-Louis
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Dupré
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Berthod
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Flynn LE, Woodhouse KA. Burn Dressing Biomaterials and Tissue Engineering. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Chen X, Yue Z, Winberg PC, Lou YR, Beirne S, Wallace GG. 3D bioprinting dermal-like structures using species-specific ulvan. Biomater Sci 2021; 9:2424-2438. [DOI: 10.1039/d0bm01784a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D cellularized structures revealing dermal-like properties have been successfully printed using bioinks based on the sulfated polysaccharide ulvan from Australian green seaweed.
Collapse
Affiliation(s)
- Xifang Chen
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- Innovation Campus
- University of Wollongong
- Australia
| | - Zhilian Yue
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- Innovation Campus
- University of Wollongong
- Australia
| | - Pia C. Winberg
- Venus Shell Systems Pty Ltd
- Huskisson
- Australia
- School of Medicine
- Science
| | - Yan-Ru Lou
- Department of Clinical Pharmacy
- School of Pharmacy
- Fudan University
- Shanghai 201203
- P. R. China
| | - Stephen Beirne
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- Innovation Campus
- University of Wollongong
- Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials Science
- Intelligent Polymer Research Institute
- Innovation Campus
- University of Wollongong
- Australia
| |
Collapse
|
4
|
Bibliography. Stem Cells 2018. [DOI: 10.1016/b978-1-78548-254-0.50011-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Abstract
There is substantial need for the replacement of tissues in the craniofacial complex due to congenital defects, disease, and injury. The field of tissue engineering, through the application of engineering and biological principles, has the potential to create functional replacements for damaged or pathologic tissues. Three main approaches to tissue engineering have been pursued: conduction, induction by bioactive factors, and cell transplantation. These approaches will be reviewed as they have been applied to key tissues in the craniofacial region. While many obstacles must still be overcome prior to the successful clinical restoration of tissues such as skeletal muscle and the salivary glands, significant progress has been achieved in the development of several tissue equivalents, including skin, bone, and cartilage. The combined technologies of gene therapy and drug delivery with cell transplantation will continue to increase treatment options for craniofacial cosmetic and functional restoration.
Collapse
Affiliation(s)
- E Alsberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109-2136, USA
| | | | | |
Collapse
|
6
|
Blackstone BN, Drexler JW, Powell HM. Tunable engineered skin mechanics via coaxial electrospun fiber core diameter. Tissue Eng Part A 2014; 20:2746-55. [PMID: 24712409 DOI: 10.1089/ten.tea.2013.0687] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Autologous engineered skin (ES) offers promise as a treatment for massive full thickness burns. Unfortunately, ES is orders of magnitude weaker than normal human skin causing it to be difficult to apply surgically and subject to damage by mechanical shear in the early phases of engraftment. In addition, no manufacturing strategy has been developed to tune ES biomechanics to approximate the native biomechanics at different anatomic locations. To enhance and tune ES biomechanics, a coaxial (CoA) electrospun scaffold platform was developed from polycaprolactone (PCL, core) and gelatin (shell). The ability of the coaxial fiber core diameter to control both scaffold and tissue mechanics was investigated along with the ability of the gelatin shell to facilitate cell adhesion and skin development compared to pure gelatin, pure PCL, and a gelatin-PCL blended fiber scaffold. CoA ES exhibited increased cellular adhesion and metabolism versus PCL alone or gelatin-PCL blend and promoted the development of well stratified skin with a dense dermal layer and a differentiated epidermal layer. Biomechanics of the scaffold and ES scaled linearly with core diameter suggesting that this scaffold platform could be utilized to tailor ES mechanics for their intended grafting site and reduce graft damage in vitro and in vivo.
Collapse
|
7
|
Ebersole GC, Anderson PM, Powell HM. Epidermal differentiation governs engineered skin biomechanics. J Biomech 2010; 43:3183-90. [PMID: 20723899 DOI: 10.1016/j.jbiomech.2010.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 06/03/2010] [Accepted: 07/24/2010] [Indexed: 12/31/2022]
Abstract
Engineered skin must be mechanically strong to facilitate surgical application and prevent damage during the early stages of engraftment. However, the evolution of structural properties during culture, the relative contributions of the epidermis and dermis, and any correlation with tissue morphogenesis are not well known. These aspects are investigated by assessing the mechanical properties of engineered skin (ES) and engineered dermis (ED) during a 21-day culture period, including correlations with cellular metabolism, cellular organization and epidermal differentiation. During culture, the epidermis differentiates and begins to cornify, as evidenced by immunostaining and surface electrical capacitance. Tensile testing reveals that the ultimate tensile strength and linear stiffness increase linearly with time for ES, but are relatively unchanged for ED. ES strength correlates significantly with epidermal differentiation (p < 0.001) and a composite strength model indicates that strength is largely determined by the epidermis. These data suggest that strategies to improve ES biomechanics should target the dermis. Additionally, time-dependant changes in average ES strength and percent elongation can be used to set upper bound limits on mechanical stimulation profiles to avoid tissue damage.
Collapse
Affiliation(s)
- G C Ebersole
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
8
|
ADAM-17 regulates endothelial cell morphology, proliferation, and in vitro angiogenesis. Biochem Biophys Res Commun 2009; 380:33-8. [PMID: 19150341 DOI: 10.1016/j.bbrc.2009.01.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2009] [Accepted: 01/04/2009] [Indexed: 11/21/2022]
Abstract
Modulation of angiogenesis is a promising approach for treating a wide variety of human diseases including ischemic heart disease and cancer. In this study, we show that ADAM-17 is an important regulator of several key steps during angiogenesis. Knocking down ADAM-17 expression using lentivirus-delivered siRNA in HUVECs inhibited cell proliferation and the ability of cells to form close contact in two-dimensional cultures. Similarly, ADAM-17 depletion inhibited the ability of HUVECs to form capillary-like networks on top of three-dimensional Matrigel as well as in co-culture with fibroblasts within a three-dimensional scaffold. In mechanistic studies, both baseline and VEGF-induced MMP-2 activation and Matrigel invasion were inhibited by ADAM-17 depletion. Based on our findings we propose that ADAM-17 is part of a novel pro-angiogenic pathway leading to MMP-2 activation and vessel formation.
Collapse
|
9
|
Burn Dressing Biomaterials and Tissue Engineering. Biomed Mater 2009. [DOI: 10.1007/978-0-387-84872-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
Trottier V, Marceau-Fortier G, Germain L, Vincent C, Fradette J. IFATS collection: Using human adipose-derived stem/stromal cells for the production of new skin substitutes. Stem Cells 2008; 26:2713-23. [PMID: 18617689 DOI: 10.1634/stemcells.2008-0031] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ability to harvest and culture stem cell populations from various human postnatal tissues is central to regenerative medicine applications, including tissue engineering. The discovery of multipotent mesenchymal stem cells within the stromal fraction of adipose tissue prompted their use for the healing and reconstruction of many tissues. Here, we examined the influence of adipose-derived stem/stromal cells (ASCs) on skin's regenerative processes, from a tissue engineering perspective. Using a self-assembly approach, human skin substitutes were produced. They featured a stromal compartment containing human extracellular matrix endogenously produced from either dermal fibroblasts or adipose-derived stem/stromal cells differentiated or not toward the adipogenic lineage. Human keratinocytes were seeded on each stroma and cultured at the air-liquid interface to reconstruct a bilayered skin substitute. These new skin substitutes, containing an epidermis and a distinctive stroma devoid of synthetic biomaterial, displayed characteristics similar to human skin. The influence of the type of stromal compartment on epidermal morphogenesis was assessed by the evaluation of tissue histology, the expression of key protein markers of the epidermal differentiation program (keratin [K] 14, K10, transglutaminase), the expression of dermo-epidermal junction components (laminins, collagen VII), and the presence of basement membrane and hemidesmosomes. Our findings suggest that adipose-derived stem/stromal cells could usefully substitute dermal fibroblasts for skin reconstruction using the self-assembly method. Finally, by exploiting the adipogenic potential of ASCs, we also produced a more complete trilayered skin substitute consisting of the epidermis, the dermis, and the adipocyte-containing hypodermis, the skin's deepest layer. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Valérie Trottier
- Laboratoire d'Organogénèse Expérimentale, Centre Hospitalier Affilié Universitaire de Québec, Hôpital du Saint-Sacrement, Quebec City, Quebec, Canada
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Burd A, Ahmed K, Lam S, Ayyappan T, Huang L. Stem cell strategies in burns care. Burns 2007; 33:282-91. [PMID: 17329028 DOI: 10.1016/j.burns.2006.08.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Accepted: 08/15/2006] [Indexed: 12/16/2022]
Abstract
The prospect of being able to replace damaged tissue by the process of regeneration would dramatically and irrevocably change the impact, management and outcome of burns. The current understanding of stem cell-based modulation and therapy together with their potential developments do bring this prospect ever closer to a clinical reality. This paper gives a background to stem cell strategies in burns care and identifies actual or prospective applications which, collectively, will forever change burns care throughout the world.
Collapse
Affiliation(s)
- A Burd
- Division of Plastic and Reconstructive Surgery, Department of Surgery, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
| | | | | | | | | |
Collapse
|
13
|
Smiley AK, Gardner J, Klingenberg JM, Neely AN, Supp DM. Expression of Human Beta Defensin 4 in Genetically Modified Keratinocytes Enhances Antimicrobial Activity. J Burn Care Res 2007; 28:127-32. [PMID: 17211212 DOI: 10.1097/bcr.0b013e31802c88fd] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Defensins are cationic peptides of the innate host defense system with antimicrobial activity against many of the microorganisms commonly found in burn units. Beta defensins are variably expressed in the epithelia of skin and other organs. Human beta defensin 4 reportedly has antimicrobial activity against Pseudomonas aeruginosa and is not normally expressed in intact skin. Genetic modification was used to ectopically express human beta defensin 4 in cultured primary epidermal keratinocytes. Keratinocytes expressing human beta defensin 4 showed significantly elevated antimicrobial activity against clinically-isolated P. aeruginosa compared with controls. These results suggest that genetic modification of keratinocytes can increase their resistance to microbial contamination. Bioengineered skin replacements containing human beta defensin 4-modified keratinocytes may be useful for transplantation to contaminated burn wounds.
Collapse
Affiliation(s)
- Andrea K Smiley
- Shriners Hospitals for Children, Cincinnati Burns Hospital, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
14
|
Hachiya A, Sriwiriyanont P, Kaiho E, Kitahara T, Takema Y, Tsuboi R. An In Vivo Mouse Model of Human Skin Substitute Containing Spontaneously Sorted Melanocytes Demonstrates Physiological Changes after UVB Irradiation. J Invest Dermatol 2005; 125:364-72. [PMID: 16098048 DOI: 10.1111/j.0022-202x.2005.23832.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human skin substitutes (HSS) have been developed for repairing burns and other acute or chronic wounds. But although the clinical utility of HSS is well known, scant attention has been paid to their cosmetic properties, especially with regard to color compatibility with the patient's complexion. In this study, we generated an HSS from mixed cell slurries containing keratinocytes and fibroblasts with and without melanocytes on the back of severe combined immunodeficient mice by means of a spontaneous cell-sorting technique. At 16 wk after grafting, Caucasian donor-derived HSS with melanocytes were macroscopically clearly darker than those without melanocytes, and a more darkly pigmented HSS was produced when cells from donors of African descent were seeded. Immunohistochemistry of c-kit, S-100, and HMB45, as well as Fontana-Masson staining and transmission electron microscopy (TEM) demonstrated that melanocytes spontaneously localized to the basal layer. Melanosome transfer to keratinocytes was correctly reorganized, and melanin was evenly dispersed in the basal and suprabasal layers. Colorimetric analysis showed a significantly lower L-value by day 14 following irradiation with 120 mJ per cm2 ultraviolet-B (UVB) (p<0.01), whereas epidermal thickness increased by 50% 1 d after exposure (p<0.01), indicating a normal physiological response to UVB irradiation. These findings suggest that HSS with spontaneously sorted melanocytes offer a means of treating both the structural and cosmetic aspects of skin conditions and trauma, such as pigmentary disorders and skin wounds, by allowing manipulation of the color and population of donor melanocytes.
Collapse
Affiliation(s)
- Akira Hachiya
- Kao Biological Science Laboratories, Haga, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Skin allografts were first used at the end of the last century by Girdner [Girdner JH. Skin grafting with graft taken from the dead subject. Med Rec (NY) 1881;20:119-20]; however, routine storage of human tissue developed only in the 1930s to 1940s [Webster JP. Refrigerated skin grafts. Ann Surg 1944;120:431-49] when reliable preservation methods became available. The first proper skin bank was the US Navy Skin Bank, set up in 1949 [McCauley RL. The skin Bank. In: Herndon DN, editor. Total burn care. 1st ed. Philadelphia: Saunders; 1996. p. 159-63]. Several skin banks were subsequently established in the United States and Europe, and in most cases they were organized as multitissue banks. Nowadays, it is estimated that 30 to 50 tissue banks are active in the United States, working according to the American Association of Tissue Banking (AATB) standards (AATB. Standards for tissue banking; 1984) and federal regulations (Real E S and regulations. Fed Regist. 1993).
Collapse
Affiliation(s)
- Elisa Pianigiani
- Department of Dermatology and Tuscan Region Skin Bank, University of Siena, Policlinico Le Scotte, Viale Bracci, 53100 Siena, Italy.
| | | | | | | |
Collapse
|
16
|
Tremblay PL, Hudon V, Berthod F, Germain L, Auger FA. Inosculation of tissue-engineered capillaries with the host's vasculature in a reconstructed skin transplanted on mice. Am J Transplant 2005; 5:1002-10. [PMID: 15816880 DOI: 10.1111/j.1600-6143.2005.00790.x] [Citation(s) in RCA: 255] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The major limitation for the application of an autologous in vitro tissue-engineered reconstructed skin (RS) for the treatment of burnt patients is the delayed vascularization of its relatively thick dermal avascular component, which may lead to graft necrosis. We have developed a human endothelialized reconstructed skin (ERS), combining keratinocytes, fibroblasts and endothelial cells (EC) in a collagen sponge. This skin substitute then spontaneously forms a network of capillary-like structures (CLS) in vitro. After transplantation to nude mice, we demonstrated that CLS containing mouse blood were observed underneath the epidermis in the ERS in less than 4 days, a delay comparable to our human skin control. In comparison, a 14-day period was necessary to achieve a similar result with the non-endothelialized RS. Furthermore, no mouse blood vessels were ever observed close to the epidermis before 14 days in the ERS and the RS. We thus concluded that the early vascularization observed in the ERS was most probably the result of inosculation of the CLS network with the host's capillaries, rather than neovascularization, which is a slower process. These results open exciting possibilities for the clinical application of many other tissue-engineered organs requiring a rapid vascularization.
Collapse
Affiliation(s)
- Pierre-Luc Tremblay
- Laboratoire d'organogénèse Expérimentale, Centre hospitalier affilié universitaire de Québec, Hôpital du St-Sacrement and Département de chirurgie, Québec, Canada
| | | | | | | | | |
Collapse
|
17
|
Supp DM, Karpinski AC, Boyce ST. Vascular endothelial growth factor overexpression increases vascularization by murine but not human endothelial cells in cultured skin substitutes grafted to athymic mice. THE JOURNAL OF BURN CARE & REHABILITATION 2004; 25:337-45. [PMID: 15247832 PMCID: PMC1800876 DOI: 10.1097/01.bcr.0000132168.02947.a1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cultured skin substitutes (CSS) consisting of fibroblasts, keratinocytes, and biopolymers are an adjunctive treatment for large burns. Because CSS lack a vascular plexus, they vascularize more slowly than split-thickness autografts. Previously, CSS were prepared with dermal microvascular endothelial cells (ECs), which formed vascular analogs at a low frequency but did not contribute to increased vascularization after grafting. The present study addressed whether keratinocytes genetically modified to overexpress vascular endothelial growth factor (VEGF), an endothelial cell mitogen, could improve the persistence and organization of ECs in CSS. CSS were prepared with control or VEGF-modified keratinocytes, with (CSS + ECs) or without added ECs, and were grafted to full-thickness wounds in athymic mice. Elevated VEGF expression was detected in VEGF-modified CSS and CSS + ECs compared with controls, but no significant difference in EC density in vitro was observed. After grafting, VEGF-modified CSS and CSS + ECs showed enhanced vascularization, and organization of human ECs into multicellular structures in CSS + ECs was observed. However, VEGF overexpression did not significantly enhance the proliferation of human ECs, suggesting that other factors may be required. Improved persistence and organization of human ECs in vitro will likely be required for their participation in vascularization of CSS + ECs after grafting.
Collapse
Affiliation(s)
- Dorothy M Supp
- Shriners Hospitals for Children, Cincinnati Burns Hospital, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
18
|
Gingras M, Paradis I, Berthod F. Nerve regeneration in a collagen-chitosan tissue-engineered skin transplanted on nude mice. Biomaterials 2003; 24:1653-61. [PMID: 12559825 DOI: 10.1016/s0142-9612(02)00572-0] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A reconstructed skin made of a collagen-chitosan sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 31 days was developed for the treatment of deep and extensive burns. The aim of this study was to assess whether this tissue-engineered skin could promote nerve regeneration in vivo, since recovery of sensation is a major concern for burnt patients. The human reconstructed skin was transplanted on the back of nude mice and the growth of nerve fibres within it was assessed 40, 60, 90 and 120 days after graft. Nerve growth was monitored by confocal microscopy using immunohistochemical staining of PGP 9.5 and 150 kD neurofilament, while Schwann cell migration was observed using protein S100 expression and laminin deposition. Nerve growth was first detected 60 days after transplantation and was more abundant 90 and 120 days after graft. Linear arrangements of Schwann cells were observed in the graft as early as 40 days after graft. Nerve growth was observed along these Schwann cell extensions 60 days after transplantation. We conclude that the three-dimensional architecture of the collagen-chitosan tissue-engineered skin sponge encourages nerve growth. This result provides new perspectives to increase nerve regeneration within the tissue-engineered skin by linkage of neurotrophic factors in the sponge before transplantation.
Collapse
Affiliation(s)
- Marie Gingras
- Laboratoire d'Organogenèse Expérimentale, Université Laval, CHA, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, Québec, Canada G1S 4L8
| | | | | |
Collapse
|
19
|
Dvoránková B, Holíková Z, Vacík J, Königová R, Kapounková Z, Michálek J, Prádn M, Smetana K. Reconstruction of epidermis by grafting of keratinocytes cultured on polymer support--clinical study. Int J Dermatol 2003; 42:219-23. [PMID: 12653921 DOI: 10.1046/j.1365-4362.2003.01792.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Extensive wound coverage still represents a challenge for contemporary medicine. We demonstrate the results of a clinical trial of the grafting of cultured keratinocytes directly on a polymer cultivation support in the treatment of skin defects in seriously burned patients and in patients with trophic ulcers. METHODS Wound closure was evaluated clinically. The morphology and phenotypic pattern of the reconstructed epidermis, including the basal lamina, as well as the presence of Langerhans cells, were evaluated immunocytochemically using a panel of monoclonal antibodies. RESULTS All layers of the reconstructed epidermis were normally differentiated (cytokeratin immunocytochemistry). The basal lamina contained collagen type IV and laminin. The reconstructed epidermis was extensively colonized by Langerhans cells. CONCLUSIONS The results of the described technology are encouraging, especially in patients after a burn injury. The described procedure is suitable for the treatment of skin defects in clinical practice.
Collapse
Affiliation(s)
- Barbora Dvoránková
- Prague Burn Center, 3rd Faculty of Medicine, Center of Cell Therapy and Tissue Repair, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L. Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 2002; 73:1751-7. [PMID: 12084997 DOI: 10.1097/00007890-200206150-00010] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND The best alternative to a split-thickness graft for the wound coverage of patients with extensive burns should be in vitro reconstructed autologous skin made of both dermis and epidermis and devoid of exogenous extracellular matrix proteins and synthetic material. We have designed such a reconstructed human skin (rHS) and present here its first in vivo grafting on athymic mice. METHODS The rHS was made by culturing newborn or adult keratinocytes on superimposed fibrous sheets obtained after culturing human fibroblasts with ascorbic acid. Ten days after keratinocyte seeding, reconstructed skins were either cultured at the air-liquid interface or grafted on athymic mice. We present the macroscopic, histologic, and phenotypic properties of such tissues in vitro and in vivo after grafting on nude mice. RESULTS After maturation in vitro, the reconstructed skin exhibited a well-developed human epidermis that expressed differentiated markers and basement membrane proteins. Four days after grafting, a complete take of all grafts was obtained. Histological analysis revealed that the newly generated epidermis of newborn rHS was thicker than that of adult rHS after 4 days but similar 21 days after grafting. The basement membrane components (bullous pemphigoid antigens, laminin, and type IV and VII collagens) were detected at the dermo-epidermal junction, showing a continuous line 4 days after grafting. Ultrastructural studies revealed that the basement membrane was continuous and well organized 21 days after transplantation. The macroscopic aspect of the reconstructed skin revealed a resistant, supple, and elastic tissue. Elastin staining and elastic fibers were detected as a complex network in the rHS that contributes to the good elasticity of this new reconstructed tissue. CONCLUSIONS This new rHS model gives supple and easy to handle skins while demonstrating an adequate wound healing on mice. These results are promising for the development of this skin substitute for permanent coverage of burn wounds.
Collapse
Affiliation(s)
- Roxane Pouliot
- Laboratoire d'Organogenese Experimentale Hôpital du Saint-Sacrement du CHA, l'Universite Laval, 1050 Chemin Sainte-Foy, Sainte-Foy, P.Q., Canada G1S 4L8
| | | | | | | | | | | | | |
Collapse
|
21
|
Boyce ST, Supp AP, Swope VB, Warden GD. Vitamin C regulates keratinocyte viability, epidermal barrier, and basement membrane in vitro, and reduces wound contraction after grafting of cultured skin substitutes. J Invest Dermatol 2002; 118:565-72. [PMID: 11918700 DOI: 10.1046/j.1523-1747.2002.01717.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cultured skin substitutes have become useful as adjunctive treatments for excised, full-thickness burns, but no skin substitutes have the anatomy and physiology of native skin. Hypothetically, deficiencies of structure and function may result, in part, from nutritional deficiencies in culture media. To address this hypothesis, vitamin C was titrated at 0.0, 0.01, 0.1, and 1.0 mM in a cultured skin substitute model on filter inserts. Cultured skin substitute inserts were evaluated at 2 and 5 wk for viability by incorporation of 5-bromo-2'-deoxyuridine (BrdU) and by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) conversion. Subsequently, cultured skin substitute grafts consisting of cultured human keratinocytes and fibroblasts attached to collagen-glycosaminoglycan substrates were incubated for 5 wk in media containing 0.0 mM or 0.1 mM vitamin C, and then grafted to athymic mice. Cultured skin substitutes (n = 3 per group) were evaluated in vitro at 2 wk of incubation for collagen IV, collagen VII, and laminin 5, and through 5 wk for epidermal barrier by surface electrical capacitance. Cultured skin substitutes were grafted to full-thickness wounds in athymic mice (n = 8 per group), evaluated for surface electrical capacitance through 6 wk, and scored for percentage original wound area through 8 wk and for HLA-ABC-positive wounds at 8 wk after grafting. The data show that incubation of cultured skin substitutes in medium containing vitamin C results in greater viability (higher BrdU and MTT), more complete basement membrane development at 2 wk, and better epidermal barrier (lower surface electrical capacitance) at 5 wk in vitro. After grafting, cultured skin substitutes with vitamin C developed functional epidermal barrier earlier, had less wound contraction, and had more HLA-positive wounds at 8 wk than without vitamin C. These results suggest that incubation of cultured skin substitutes in medium containing vitamin C extends cellular viability, promotes formation of epidermal barrier in vitro, and promotes engraftment. Improved anatomy and physiology of cultured skin substitutes that result from nutritional factors in culture media may be expected to improve efficacy in treatment of full-thickness skin wounds.
Collapse
Affiliation(s)
- Steven T Boyce
- Shriners Hospitals for Children and Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA.
| | | | | | | |
Collapse
|
22
|
Berthod F, Germain L, Li H, Xu W, Damour O, Auger FA. Collagen fibril network and elastic system remodeling in a reconstructed skin transplanted on nude mice. Matrix Biol 2001; 20:463-73. [PMID: 11691586 DOI: 10.1016/s0945-053x(01)00162-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wound healing of deep and extensive burns can induce hypertrophic scar formation, which is a detrimental outcome for skin functionality. These scars are characterized by an impaired collagen fibril organization with fibril bundles oriented parallel to each other, in contrast with a basket weave pattern arrangement in normal skin. We prepared a reconstructed skin made of a collagen sponge seeded with human fibroblasts and keratinocytes and grown in vitro for 20 days. We transplanted it on the back of nude mice to assess whether this reconstructed skin could prevent scar formation. After transplantation, murine blood vessels had revascularized one-third of the sponge thickness on the fifth day and were observed underneath the epidermis at day 15. The reconstructed skin extracellular matrix was mostly made of human collagen I, organized in loosely packed fibrils 5 days after transplantation, with a mean diameter of 45 nm. After 40-90 days, fibril bundles were arranged in a basket weave pattern while their mean diameter increased to 56 nm, therefore exactly matching mouse skin papillary dermis organization. Interestingly, we showed that an elastic system remodeling was started off in this model. Indeed, human elastin deposits were organized in thin fibrils oriented perpendicular to epidermis at day 90 whereas elastic system usually took years to be re-established in human scars. Our reconstructed skin model promoted in only 90 days the remodeling of an extracellular matrix nearly similar to normal dermis (i.e. collagen fibril diameter and arrangement, and the partial reconstruction of the elastic system).
Collapse
Affiliation(s)
- F Berthod
- Laboratoire d'Organogenèse Expérimentale, Université Laval, CHA, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, Québec, QC, Canada G1S 4L8.
| | | | | | | | | | | |
Collapse
|
23
|
Tissue engineering of the vascular system: From capillaries to larger blood vessels. Med Biol Eng Comput 2000. [DOI: 10.1007/bf02344782] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Cho KH, Ahn HT, Park KC, Chung JH, Kim SW, Sung MW, Kim KH, Chung PH, Eun HC, Youn JI. Reconstruction of human hard-palate mucosal epithelium on de-epidermized dermis. J Dermatol Sci 2000; 22:117-24. [PMID: 10674825 DOI: 10.1016/s0923-1811(99)00056-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Artificial hard-palate mucosa equivalents were reconstructed using keratinocytes derived from normal human hard-palate and de-epidermized dermis. Reconstructed hard-palate mucosal epithelium formed in three-dimensional culture was compared to native hard-palate mucosal epithelium and reconstructed oral buccal mucosal epithelium with regard to keratin expression. Artificial hard-palate mucosal epithelium reconstructed in medium with delipidized serum showed a differentiation pattern similar to that of hard-palate epithelium in vivo. The present study also confirmed that keratinocytes derived from hard-palate mucosa are intrinsically different from those of nonkeratinizing oral surfaces.
Collapse
Affiliation(s)
- K H Cho
- Department of Dermatology, Seoul National University College of Medicine, Seoul National University Hospital, South Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999; 68:868-79. [PMID: 10515389 DOI: 10.1097/00007890-199909270-00021] [Citation(s) in RCA: 251] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cell therapy is an emerging therapeutic strategy aimed at replacing or repairing severely damaged tissues with cultured cells. Epidermal regeneration obtained with autologous cultured keratinocytes (cultured autografts) can be life-saving for patients suffering from massive full-thickness burns. However, the widespread use of cultured autografts has been hampered by poor clinical results that have been consistently reported by different burn units, even when cells were applied on properly prepared wound beds. This might arise from the depletion of epidermal stem cells (holoclones) in culture. Depletion of holoclones can occur because of (i) incorrect culture conditions, (ii) environmental damage of the exposed basal layer of cultured grafts, or (iii) use of new substrates or culture technologies not pretested for holoclone preservation. The aim of this study was to show that, if new keratinocyte culture technologies and/or "delivery systems" are proposed, a careful evaluation of epidermal stem cell preservation is essential for the clinical performance of this life-saving technology. METHODS Fibrin was chosen as a potential substrate for keratinocyte cultivation. Stem cells were monitored by clonal analysis using the culture system originally described by Rheinwald and Green as a reference. Massive full-thickness burns were treated with the composite allodermis/cultured autograft technique. RESULTS We show that: (i) the relative percentage of holoclones, meroclones, and paraclones is maintained when keratinocytes are cultivated on fibrin, proving that fibrin does not induce clonal conversion and consequent loss of epidermal stem cells; (ii) the clonogenic ability, growth rate, and long-term proliferative potential are not affected by the new culture system; (iii) when fibrin-cultured autografts bearing stem cells are applied on massive full-thickness burns, the "take" of keratinocytes is high, reproducible, and permanent; and (iv) fibrin allows a significant reduction of the cost of cultured autografts and eliminates problems related to their handling and transportation. CONCLUSION Our data demonstrate that: (i) cultured autografts bearing stem cells can indeed rapidly and permanently cover a large body surface; and (ii) fibrin is a suitable substrate for keratinocyte cultivation and transplantation. These data lend strength to the concept that the success of cell therapy at a clinical level requires cultivation and transplantation of stem cells. We therefore suggest that the proposal of a culture system aimed at the replacement of any severely damaged self-renewing tissue should be preceded by a careful evaluation of its stem cell population.
Collapse
Affiliation(s)
- G Pellegrini
- Laboratory of Tissue Engineering, I.D.I., Istituto Dermopatico dell'Immacolata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Engineering skin substitutes provides a potential source of advanced therapies for the treatment of acute and chronic wounds. Cultured skin substitutes (CSS) consisting of human keratinocytes and fibroblasts attached to collagen-glycosaminoglycan substrates have been designed and tested in preclinical and clinical studies. Cell culture techniques follow general principles of primary culture and cryopreservation in liquid nitrogen for long-term storage. Biopolymer substrates are fabricated from xenogeneic (bovine) collagen and glycosaminoglycan that are lyophilised for storage until use. At maturity in air-exposed culture, CSS develop an epidermal barrier that is not statistically different from native human skin, as measured by surface electrical capacitance. Preclinical studies in athymic mice show rapid healing, expression of cytokines and regulation of pigmentation. Clinical studies in burn patients demonstrate a qualitative outcome with autologous skin that is not different from 1:4 meshed, split-thickness autograft skin, and with a quantitative advantage over autograft skin in the ratio of healed skin to biopsy areas. Chronic wounds resulting from diabetes or venous stasis have been closed successfully with allogeneic CSS prepared from cryopreserved skin cells. These results define the therapeutic benefits of cultured skin substitutes prepared with skin cells from the patient or from cadaver donors. Future directions include genetic modification of transplanted cells to improve wound healing transiently or to deliver gene products systemically.
Collapse
Affiliation(s)
- S T Boyce
- Department of Surgery, University of Cincinnati College of Medicine, Ohio, USA.
| |
Collapse
|
27
|
Auger FA, Rouabhia M, Goulet F, Berthod F, Moulin V, Germain L. Tissue-engineered human skin substitutes developed from collagen-populated hydrated gels: clinical and fundamental applications. Med Biol Eng Comput 1998; 36:801-12. [PMID: 10367474 DOI: 10.1007/bf02518887] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The field of tissue engineering has opened several avenues in biomedical sciences, through ongoing progress. Skin substitutes are currently optimised for clinical as well as fundamental applications. The paper reviews the development of collagen-populated hydrated gels for their eventual use as a therapeutic option for the treatment of burn patients or chronic wounds: tools for pharmacological and toxicological studies, and cutaneous models for in vitro studies. These skin substitutes are produced by culturing keratinocytes on a matured dermal equivalent composed of fibroblasts included in a collagen gel. New biotechnological approaches have been developed to prevent contraction (anchoring devices) and promote epithelial cell differentiation. The impact of dermo-epidermal interactions on the differentiation and organisation of bio-engineered skin tissues has been demonstrated with human skin cells. Human skin substitutes have been adapted for percutaneous absorption studies and toxicity assessment. The evolution of these human skin substitutes has been monitored in vivo in preclinical studies showing promising results. These substitutes could also serve as in vitro models for better understanding of the immunological response and healing mechanism in human skin. Thus, such human skin substitutes present various advantages and are leading to the development of other bio-engineered tissues, such as blood vessels, ligaments and bronchi.
Collapse
Affiliation(s)
- F A Auger
- Département de chirurgie, Université Laval, Québec, Canada.
| | | | | | | | | | | |
Collapse
|
28
|
Black AF, Berthod F, L'heureux N, Germain L, Auger FA. In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 1998; 12:1331-40. [PMID: 9761776 DOI: 10.1096/fasebj.12.13.1331] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
For patients with extensive burns, wound coverage with an autologous in vitro reconstructed skin made of both dermis and epidermis should be the best alternative to split-thickness graft. Unfortunately, various obstacles have delayed the widespread use of composite skin substitutes. Insufficient vascularization has been proposed as the most likely reason for their unreliable survival. Our purpose was to develop a vascular-like network inside tissue-engineered skin in order to improve graft vascularization. To reach this aim, we fabricated a collagen biopolymer in which three human cell types keratinocytes, dermal fibroblasts, and umbilical vein endothelial cells were cocultured. We demonstrated that the endothelialized skin equivalent (ESE) promoted spontaneous formation of capillary-like structures in a highly differentiated extracellular matrix. Immunohistochemical analysis and transmission electron microscopy of the ESE showed characteristics associated with the microvasculature in vivo (von Willebrand factor, Weibel-Palade bodies, basement membrane material, and intercellular junctions). We have developed the first endothelialized human tissue-engineered skin in which a network of capillary-like tubes is formed. The transplantation of this ESE on human should accelerate graft revascularization by inosculation of its preexisting capillary-like network with the patient's own blood vessels, as it is observed with autografts. In addition, the ESE turns out to be a promising in vitro angiogenesis model.
Collapse
Affiliation(s)
- A F Black
- Laboratoire d'Organogénèse Expérimentale/LOEX, Centre Hospitalier Affilié, Pavillon Saint-Sacrement and Department of Surgery, Faculty of Medicine, Laval University, Quebec City, Quebec, Canada G1S 4L8. HYPERLINKmailto:
| | | | | | | | | |
Collapse
|
29
|
Li H, Berthod F, Xu W, Damour O, Germain L, Auger FA. Use of in vitro reconstructed skin To cover skin flap donor site. J Surg Res 1997; 73:143-8. [PMID: 9441808 DOI: 10.1006/jsre.1997.5229] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The skin flap technique is widely used in reconstructive surgery for the coverage of deep burns of the face, neck, and joints. Facial deformities and joint contractures are avoided by transplanting vascularized full-thickness skin on wounds. The major drawback of this technique is the injury inflicted upon the donor site, which corresponds to a third degree burn. The usual technique to cover the flap donor site is the transplantation of split-thickness autografts. In the case of patients with deep and extensive burns, the harvesting of good quality autografts is often difficult because of multiple scars. In order to avoid additional trauma to the patient by split-thickness skin harvesting, we have experimented the use of a new model of in vitro reconstructed skin graft for flap donor site coverage in a mouse model. MATERIALS AND METHODS The reconstructed skin was grafted on the back of nude mice at the skin flap donor site, while flap was used to cover a wound generated on joint of the posterior leg. RESULTS A 100% graft take was achieved (16 mice were used) and a limited contraction of the reconstructed skin was observed 30 days posttransplantation (78% of the initial surface area of the graft remained). Histological analysis of the graft demonstrated healing of a well differentiated epidermis laying on a dense dermis. CONCLUSIONS Since this technique would prevent additional trauma to the patient while achieving a good healing of the wound, it may be a useful approach in the coverage of skin flap donor site in humans.
Collapse
Affiliation(s)
- H Li
- Laboratoire des Grands Brûlés/LOEX, Hôpital du Saint-Sacrement, 1050 chemin Sainte-Foy, G1S 4L8, Canada
| | | | | | | | | | | |
Collapse
|