1
|
Thomas JL, Heagerty AHM, Goldberg Oppenheimer P. Emerging Technologies for Timely Point-of-Care Diagnostics of Skin Cancer. GLOBAL CHALLENGES (HOBOKEN, NJ) 2025; 9:2400274. [PMID: 40352638 PMCID: PMC12065104 DOI: 10.1002/gch2.202400274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/07/2025] [Indexed: 05/14/2025]
Abstract
Skin cancer is a global health crisis and a leading cause of morbidity and mortality worldwide. A leading factor of malignancy remains the UV radiation, driving various biomolecular changes. With shifting population behaviors, deficiency in screening programs and reliance on self-presentation, climate change and the ageing world populace, global incidents have been surging alarmingly. There is an urgent need for new technologies to achieve timely intervention through rapid and accurate diagnostics of skin cancer. Raman spectroscopy has been emerging as a highly promising analytical technology for diagnostic applications, poised to outpace the current costly, invasive and slow procedures, frequently hindered by varying sensitivity, specificity and lack of portability. Herein, complex and intricate progress are overviewed and consolidated across medical and engineering disciplines with a focus on the latest advances in the traditional and emerging skin cancer diagnostics. Methods detecting structural and chemical responses are categorized along with emerging chemo-biophysical sensing techniques. Particular attention is drawn to Raman spectroscopy, as a non-invasive, rapid and accurate sensing of molecular fingerprints in dermatological matrix with an additional focus on artificial intelligence, as a decision support tool collectively, laying the platform toward development and rapid translation of point-of-care diagnostic technologies for skin cancer to real-world applications.
Collapse
Affiliation(s)
- Jarrod L. Thomas
- Advanced Nanomaterials Structures and Applications LaboratoriesSchool of Chemical EngineeringCollege of Engineering and Physical SciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Healthcare Technologies InstituteInstitute of Translational MedicineMindelsohn WayBirminghamB15 2THUK
| | - Adrian H. M. Heagerty
- Department of DermatologyUniversity Hospitals Birmingham NHS Foundation TrustMindelsohn WayBirminghamB15 2GWUK
- Institute of Inflammation and AgeingCollege of Medical and Dental SciencesMindelsohn WayBirminghamB15 2GWUK
| | - Pola Goldberg Oppenheimer
- Advanced Nanomaterials Structures and Applications LaboratoriesSchool of Chemical EngineeringCollege of Engineering and Physical SciencesUniversity of BirminghamEdgbastonBirminghamB15 2TTUK
- Healthcare Technologies InstituteInstitute of Translational MedicineMindelsohn WayBirminghamB15 2THUK
| |
Collapse
|
2
|
Nguyen TQ, Van Pham T, Andriana Y, Truong MN. Cordyceps militaris-Derived Bioactive Gels: Therapeutic and Anti-Aging Applications in Dermatology. Gels 2025; 11:33. [PMID: 39852004 PMCID: PMC11764995 DOI: 10.3390/gels11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Cordyceps militaris is a medicinal mushroom widely utilized in traditional East Asian medicine, recognized for its diverse therapeutic properties. This review explores the potential of C. militaris-derived bioactive gels for applications in dermatology and skincare, with a particular focus on their therapeutic and anti-aging benefits. In response to the rising incidence of skin cancers and the growing demand for natural bioactive ingredients, C. militaris has emerged as a valuable source of functional compounds, including cordycepin, polysaccharides, and adenosine. These compounds exhibit multiple bioactivities, including apoptosis induction, cell cycle arrest, and anti-inflammatory effects, which have been shown to be particularly effective against melanoma and other skin cancers. Additionally, the antioxidant properties of C. militaris enhance skin resilience by scavenging reactive oxygen species, reducing oxidative stress, and promoting collagen synthesis, thereby addressing skin health and anti-aging requirements. The potential for incorporating C. militaris compounds into gel-based formulations for skincare is also examined, either as standalone bioactives or in combination with synergistic ingredients. Emphasis is placed on the necessity of clinical trials and standardization to establish the safety, efficacy, and reproducibility of such applications. By providing a safer alternative to synthetic agents, C. militaris-derived bioactive gels represent a promising advancement in dermatology and skincare.
Collapse
Affiliation(s)
- Trung Quang Nguyen
- Institute of Environmental Science and Public Health, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 11353, Vietnam;
| | - Thinh Van Pham
- Faculty of Tourism and Culinary, Ho Chi Minh City University of Industry and Trade, Ho Chi Minh City 70000, Vietnam;
| | - Yusuf Andriana
- Research Center for Appropriate Technology, Indonesian Institute of Sciences, Subang 41213, Indonesia;
| | - Minh Ngoc Truong
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Cau Giay, Hanoi 100000, Vietnam
| |
Collapse
|
3
|
Almeman AA. Evaluating the Efficacy and Safety of Alpha-Hydroxy Acids in Dermatological Practice: A Comprehensive Clinical and Legal Review. Clin Cosmet Investig Dermatol 2024; 17:1661-1685. [PMID: 39050562 PMCID: PMC11268769 DOI: 10.2147/ccid.s453243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
The global market for alpha-hydroxy acids (AHAs) is undergoing significant expansion, propelled by increasing demand for skincare products that address aging and environmental damage. This review focuses on the dermatological applications of AHAs, particularly in cosmetic formulations like chemical peels. We have identified that AHAs, such as glycolic and lactic acids, enhance skin rejuvenation by promoting apoptosis in skin cells, boosting collagen and elastin synthesis, and improving skin texture and luminosity. Our comprehensive analysis reveals a nuanced understanding of AHAs' effectiveness across various skin types and conditions, demonstrating their broad utility in treating conditions like acne, hyperpigmentation, and photoaging. However, the optimal concentrations for therapeutic efficacy with minimal side effects are yet to be precisely defined, necessitating further research. Regulatory compliance is underscored as essential for the safe application of AHAs in cosmetics, with international guidelines recommending specific concentrations and pH levels to minimize potential skin irritation. In Conclusion, the review highlights the effectiveness of AHAs in cosmetic dermatology, emphasizing the necessity for continued research and rigorous regulatory adherence to maximize their safe and beneficial application worldwide.
Collapse
|
4
|
Coman V, Vodnar DC. Hydroxycinnamic acids and human health: recent advances. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:483-499. [PMID: 31472019 DOI: 10.1002/jsfa.10010] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
There is an urgent need to improve human diet globally. Compelling evidence gathered over the past several decades suggests that a suboptimal diet is associated with many chronic diseases and may be responsible for more deaths than any other risks worldwide. The main components in our diet that need higher intake are whole grains, fruit and vegetables, and nuts and seeds; all of these are important sources of dietary fiber and polyphenols. The health benefits of dietary fiber and polyphenols are also supported by several decades of valuable research. However, the conclusions drawn from interventional human trials are not straightforward and the action mechanisms in improving human health are not fully understood. Moreover, there is a great inter-individual variation caused by different individual capabilities of processing, absorbing and using these compounds effectively. Data on the bioavailability and bioefficacy of hydroxycinnamic acids (HCAs) are limited when compared to other classes of polyphenols (e.g. anthocyanins). This review aims to summarize the latest research advances related to HCA bioavailability and their biological effects revealed by epidemiological data, pre-clinical and clinical studies. Moreover, we aim to review the effects of HCAs on gut microbiota diversity and function and its respective influence on host health. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vasile Coman
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan C Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
5
|
Gollnick H, Dirschka T, Ostendorf R, Kerl H, Kunstfeld R. Long-term clinical outcomes of imiquimod 5% cream vs. diclofenac 3% gel for actinic keratosis on the face or scalp: a pooled analysis of two randomized controlled trials. J Eur Acad Dermatol Venereol 2020; 34:82-89. [PMID: 31407414 DOI: 10.1111/jdv.15868] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 07/08/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Actinic keratosis (AK) is an early in situ epidermal cancer which can progress to invasive squamous cell carcinoma (SCC). Imiquimod 5% cream (IMIQ) and diclofenac 3% gel (DIC) are frequently used to treat AK; however, their long-term effects following repeated treatment cycles have never been compared. OBJECTIVE To compare IMIQ and DIC in the treatment of AK with respect to the risk of change to grade III AK or invasive SCC, after 3 years. METHODS Data were pooled from two randomized, active-controlled, open-label, multicentre, multinational, phase IV studies (Clinicaltrials.gov NCT00777127/NCT01453179), with two parallel groups. Studies were conducted between 2008 and 2015 and were almost identical in design. Patients eligible for inclusion were immunocompetent adults with 5-10 visible AK lesions on the face/scalp and grade I/II AK. The primary endpoint was inhibition of histological change to grade III AK or invasive SCC in the study treatment area, observed until month 36. Patients applied either IMIQ or DIC for a maximum of six treatment cycles. RESULTS In total, 479 patients (IMIQ 242; DIC 237) were included in the full analysis set. Histological change to grade III AK or invasive SCC was observed until month 36 in 13 (5.4%) patients treated with IMIQ, compared with 26 (11.0%) patients treated with DIC (absolute risk difference -5.6% [95% confidence interval -10.7%, -0.7%]). Time to histological change was greater in the IMIQ group than the DIC group (P = 0.0266). Frequency of progression to invasive SCC was lower with IMIQ than with DIC at all time points. Initial clearance rate was higher in the IMIQ group compared with the DIC group, while recurrence rate was lower. Both treatments were well tolerated. CONCLUSIONS Over 3 years, IMIQ was superior to DIC in clearing AK lesions and preventing histological change to grade III AK or invasive SCC and recurrence.
Collapse
Affiliation(s)
- H Gollnick
- Department of Dermatology and Venereology, Otto-von-Guericke University, Magdeburg, Germany
| | - T Dirschka
- Centroderm Clinic, Wuppertal, Germany
- Faculty of Health, University of Witten-Herdecke, Witten, Germany
| | | | - H Kerl
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - R Kunstfeld
- Dermatology Clinic, General Hospital, Vienna, Austria
| |
Collapse
|
6
|
Thomas GJ, Herranz P, Cruz SB, Parodi A. Treatment of actinic keratosis through inhibition of cyclooxygenase-2: Potential mechanism of action of diclofenac sodium 3% in hyaluronic acid 2.5. Dermatol Ther 2019; 32:e12800. [PMID: 30523664 PMCID: PMC6767532 DOI: 10.1111/dth.12800] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 01/08/2023]
Abstract
Cyclooxygenase‐2 (COX‐2) and its metabolic product prostaglandin E2 (PGE2) are induced in response to growth factors, inflammatory cytokines, tumor promoters, activated oncogenes, and, in the skin, ultraviolet (UV) radiation. Accumulating evidence suggests a role for the COX‐2/PGE2 pathway in tumorigenesis in various tissue types including cutaneous squamous cell carcinoma. There is also strong evidence for a role in the development of actinic keratoses (AKs) — common dysplastic lesions of the skin associated with UV radiation overexposure — considered as part of a continuum with skin cancer. Non‐steroidal anti‐inflammatory drugs (NSAIDs) exert their anti‐inflammatory, analgesic, and antipyretic effects by reversibly or irreversibly acetylating COX isoforms, inhibiting downstream prostaglandins, and may have a chemopreventive role in malignancies, including skin cancer. Topical treatment of AK lesions with the NSAID diclofenac sodium 3% in combination with hyaluronic acid 2.5% has been shown to be effective and well tolerated, although the mechanism of action remains to be elucidated.
Collapse
Affiliation(s)
- Gareth J Thomas
- Cancer Sciences Unit, University of Southampton, Southampton, United Kingdom
| | - Pedro Herranz
- Department of Dermatology, La Paz University Hospital, Madrid, Spain
| | | | - Aurora Parodi
- DISSAL Section of Dermatology, University of Genoa-IRCCS, AOU San Martino-IST, Genoa, Italy
| |
Collapse
|
7
|
Zheng Y, Wang K, Wu Y, Chen Y, Chen X, Hu CW, Hu F. Pinocembrin induces ER stress mediated apoptosis and suppresses autophagy in melanoma cells. Cancer Lett 2018; 431:31-42. [PMID: 29807112 DOI: 10.1016/j.canlet.2018.05.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/15/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Melanoma, one of the toughest tumors to treat, features high metastasis and high lethality. Pinocembrin is a natural flavanone with versatile biological and pharmacological activities. Here, we evaluated the anti-tumor effects of pinocembrin against melanoma in vitro and in vivo. In vitro, pinocembrin inhibited the proliferation of melanoma cells (B16F10 and A375) in a dose-dependent manner. It induced endoplasmic reticulum stress via IRE1α/Xbp1 pathway and triggered caspase-12/-4 mediated apoptosis in both cell lines. Furthermore, we discovered that pinocembrin suppressed autophagy through the activation of PI3K/Akt/mTOR pathway, which serves as a dual mechanism to enhance the pro-death effect of pinocembrin. In vivo, pinocembrin inhibited the growth of B16F10 by inducing apoptosis. Taken together, our results demonstrated that pinocembrin can induce ER stress mediated apoptosis and suppress autophagy in melanoma, indicating its application potential for melanoma therapy.
Collapse
Affiliation(s)
- Yufei Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yuqi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yifan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chenyue W Hu
- Department of Bioengineering, Rice University, Houston, 77030, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
Dual Effects of Alpha-Hydroxy Acids on the Skin. Molecules 2018; 23:molecules23040863. [PMID: 29642579 PMCID: PMC6017965 DOI: 10.3390/molecules23040863] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/13/2022] Open
Abstract
AHAs are organic acids with one hydroxyl group attached to the alpha position of the acid. AHAs including glycolic acid, lactic acid, malic acid, tartaric acid, and citric acid are often used extensively in cosmetic formulations. AHAs have been used as superficial peeling agents as well as to ameliorate the appearance of keratoses and acne in dermatology. However, caution should be exercised in relation to certain adverse reactions among patients using products with AHAs, including swelling, burning, and pruritus. Whether AHAs enhance or decrease photo damage of the skin remains unclear, compelling us to ask the question, is AHA a friend or a foe of the skin? The aim of this manuscript is to review the various biological effects and mechanisms of AHAs on human keratinocytes and in an animal model. We conclude that whether AHA is a friend or foe of human skin depends on its concentration. These mechanisms of AHAs are currently well understood, aiding the development of novel approaches for the prevention of UV-induced skin damage.
Collapse
|
9
|
Naimi A, Movassaghpour AA, Hagh MF, Talebi M, Entezari A, Jadidi-Niaragh F, Solali S. TNF-related apoptosis-inducing ligand (TRAIL) as the potential therapeutic target in hematological malignancies. Biomed Pharmacother 2018; 98:566-576. [DOI: 10.1016/j.biopha.2017.12.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/27/2017] [Accepted: 12/18/2017] [Indexed: 02/08/2023] Open
|
10
|
Molecular signaling cascades involved in nonmelanoma skin carcinogenesis. Biochem J 2017; 473:2973-94. [PMID: 27679857 DOI: 10.1042/bcj20160471] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/10/2016] [Indexed: 12/17/2022]
Abstract
Nonmelanoma skin cancer (NMSC) is the most common cancer worldwide and the incidence continues to rise, in part due to increasing numbers in high-risk groups such as organ transplant recipients and those taking photosensitizing medications. The most significant risk factor for NMSC is ultraviolet radiation (UVR) from sunlight, specifically UVB, which is the leading cause of DNA damage, photoaging, and malignant transformation in the skin. Activation of apoptosis following UVR exposure allows the elimination of irreversibly damaged cells that may harbor oncogenic mutations. However, UVR also activates signaling cascades that promote the survival of these potentially cancerous cells, resulting in tumor initiation. Thus, the UVR-induced stress response in the skin is multifaceted and requires coordinated activation of numerous pathways controlling DNA damage repair, inflammation, and kinase-mediated signal transduction that lead to either cell survival or cell death. This review focuses on the central signaling mechanisms that respond to UVR and the subsequent cellular changes. Given the prevalence of NMSC and the resulting health care burden, many of these pathways provide promising targets for continued study aimed at both chemoprevention and chemotherapy.
Collapse
|
11
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
12
|
Yang YW, Zhang CM, Huang XJ, Zhang XX, Zhang LK, Li JH, Hua ZC. Tumor-targeted delivery of a C-terminally truncated FADD (N-FADD) significantly suppresses the B16F10 melanoma via enhancing apoptosis. Sci Rep 2016; 6:34178. [PMID: 27767039 PMCID: PMC5073321 DOI: 10.1038/srep34178] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/08/2016] [Indexed: 01/21/2023] Open
Abstract
Fas-associated protein with death domain (FADD), a pivotal adaptor protein transmitting apoptotic signals, is indispensable for the induction of extrinsic apoptosis. However, overexpression of FADD can form large, filamentous aggregates, termed death effector filaments (DEFs) by self-association and initiate apoptosis independent of receptor cross-linking. A mutant of FADD, which is truncated of the C-terminal tail (m-FADD, 182–205 aa) named N-FADD (m-FADD, 1–181 aa), can dramatically up-regulate the strength of FADD self-association and increase apoptosis. In this study, it was found that over-expression of FADD or N-FADD caused apoptosis of B16F10 cells in vitro, even more, N-FADD showed a more potent apoptotic effect than FADD. Meanwhile, Attenuated Salmonella Typhimurium strain VNP20009 was engineered to express FADD or N-FADD under the control of a hypoxia-induced NirB promoter and each named VNP-pN-FADD and VNP-pN-N-FADD. The results showed both VNP-pN-FADD and VNP-pN-N-FADD delayed tumor growth in B16F10 mice model, while VNP-pN-N-FADD suppressed melanoma growth more significantly than VNP-pN-FADD. Additionally, VNP-pN-FADD and VNP-pN-N-FADD induced apoptosis of tumor cells by activating caspase-dependent apoptotic pathway. Our results show that N-FADD is a more potent apoptotic inducer and VNP20009-mediated targeted expression of N-FADD provides a possible cancer gene therapeutic approach for the treatment of melanoma.
Collapse
Affiliation(s)
- Yun-Wen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Chun-Mei Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xian-Jie Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Xiao-Xin Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Lin-Kai Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China
| | - Jia-Huang Li
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.,Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, 213164, Jiangsu, China
| |
Collapse
|
13
|
Lin X, Huang H, You Y, Tang C, Gu X, Huang M, Tan J, Wang J. Activation of TLR5 induces podocyte apoptosis. Cell Biochem Funct 2016; 34:63-8. [PMID: 26914743 DOI: 10.1002/cbf.3165] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/27/2015] [Accepted: 01/07/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Xu Lin
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Haiting Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Yanwu You
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Chunrong Tang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Xiangjun Gu
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Meiying Huang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Junhua Tan
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| | - Jie Wang
- Department of Nephrology; the Affiliated Hospital of Youjiang Medical University for Nationalities; Baise China
| |
Collapse
|
14
|
Kim SW, Park SY. Hypoxia‑mediated activation of autophagic flux inhibits apoptosis of keratinocytes via blocking tumor necrosis factor‑related apoptosis‑inducing ligand. Mol Med Rep 2015; 13:805-10. [PMID: 26648440 DOI: 10.3892/mmr.2015.4592] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/30/2015] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑related apoptosis‑inducing ligand (TRAIL) is toxic against transformed tumor cells. Cornification is the terminal differentiation of keratinocytes and a specific form of programmed cell death caused by TRAIL that occurs in keratinocytes. Apoptosis can also be triggered when TRAIL induces expression of keratinocyte differentiation markers. The present study reported that hypoxia inhibits TRAIL‑induced apoptosis due to autophagic flux. It is well known that hypoxia activates autophagy in keratinocytes and reduces p62 protein levels. The present study demonstrated that hypoxia inhibited TRAIL‑mediated apoptosis and induced autophagic flux in HaCaT cells. In addition, autophagic flux‑inactivating reagents, including 3‑methyladenine and chloroquine, increased the TRAIL sensitivity of HaCaT cells exposed to hypoxia. In conclusion, these results indicated that inactivating autophagy increased TRAIL sensitivity in hypoxic HaCaT cells. Autophagy inhibitors may be beneficial in therapies using TRAIL against skin cancers.
Collapse
Affiliation(s)
- Sung-Wook Kim
- Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| | - Sang-Youel Park
- Department of Biochemistry, Biosafety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561‑756, Republic of Korea
| |
Collapse
|
15
|
Schipper H, Alla V, Meier C, Nettelbeck DM, Herchenröder O, Pützer BM. Eradication of metastatic melanoma through cooperative expression of RNA-based HDAC1 inhibitor and p73 by oncolytic adenovirus. Oncotarget 2015; 5:5893-907. [PMID: 25071017 PMCID: PMC4171600 DOI: 10.18632/oncotarget.1839] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Malignant melanoma is a highly aggressive cancer that retains functional p53 and p73, and drug unresponsiveness largely depends on defects in death pathways after epigenetic gene silencing in conjunction with an imbalanced p73/DNp73 ratio. We constructed oncolytic viruses armed with an inhibitor of deacetylation and/or p73 to specifically target metastatic cancer. Arming of the viruses is aimed at lifting epigenetic blockage and re-opening apoptotic programs in a staggered manner enabling both, efficient virus replication and balanced destruction of target cells through apoptosis. Our results showed that cooperative expression of shHDAC1 and p73 efficiently enhances apoptosis induction and autophagy of infected cells which reinforces progeny production. In vitro analyses revealed 100% cytotoxicity after infecting cells with OV.shHDAC1.p73 at a lower virus dose compared to control viruses. Intriguingly, OV.shHDAC1.p73 acts as a potent inhibitor of highly metastatic xenograft tumors in vivo. Tumor expansion was significantly reduced after intratumoral injection of 3 × 108 PFU of either OV.shHDAC1 or OV.p73 and, most important, complete regression could be achieved in 100% of tumors treated with OV.shHDAC1.p73. Our results point out that the combination of high replication capacity and simultaneous restoration of cell death routes significantly enhance antitumor activity.
Collapse
Affiliation(s)
- Holger Schipper
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Vijay Alla
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany; These authors contributed equally to the work
| | - Claudia Meier
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Dirk M Nettelbeck
- Helmholtz University Group Oncolytic Adenoviruses, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ottmar Herchenröder
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| | - Brigitte M Pützer
- Institute of Experimental Gene Therapy and Cancer Research, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
16
|
Wang YJ, Li Q, Xiao HB, Li YJ, Yang Q, Kan XX, Chen Y, Liu XN, Weng XG, Chen X, Cai WY, Guo Y, Huang HF, Zhu XX. Chamaejasmin B exerts anti-MDR effect in vitro and in vivo via initiating mitochondria-dependant intrinsic apoptosis pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:5301-13. [PMID: 26445529 PMCID: PMC4590417 DOI: 10.2147/dddt.s89392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle limiting the efficacy of cancer chemotherapy. Looking for novel anti-MDR agents is an important way to conquer cancer drug resistance. We recently established that chamaejasmin B (CHB), a natural biflavone from Stellera chamaejasme L., is the major active component. However, its anti-MDR activity is still unknown. This study investigated the anti-MDR effect of CHB and the underlying mechanisms. First, it was found that CHB inhibited the growth of both sensitive and resistant cell lines in vitro, and the average resistant factor (RF) of CHB was only 1.26. Furthermore, CHB also displayed favorable anti-MDR activity in KB and KBV200 cancer cells xenograft mice. Subsequent study showed that CHB induced G0/G1 cell cycle arrest as well as apoptosis both in KB and in resistant KBV200 cancer cells. Further studies showed that CHB had no influence on the level of Fas/FasL and activation of procaspase 8. However, CHB-induced apoptosis was dependent on the activation of caspase 9 and caspase 3. Moreover, CHB treatment resulted in the elevation of the Bax/Bcl-2 ratio, attenuation of mitochondrial membrane potential (ΔΨm), and release of cytochrome c and apoptosis-inducing factor from mitochondria into cytoplasm both in KB and KBV200 cells. In conclusion, CHB exhibited good anti-MDR activity in vitro and in vivo, and the underlying mechanisms may be related to the activation of mitochondrial-dependant intrinsic apoptosis pathway. These findings provide a new leading compound for MDR therapy and supply a new evidence for the potential of CHB to be employed in clinical trial of MDR therapy in cancers.
Collapse
Affiliation(s)
- Ya Jie Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qi Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Hong Bin Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yu Jie Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Qing Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Xi Kan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Ni Liu
- Beijing Institute of Hepatology and Beijing Youan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Gang Weng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xi Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Wei Yan Cai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Yan Guo
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - He Fei Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Xin Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
17
|
Kim SL, Liu YC, Park YR, Seo SY, Kim SH, Kim IH, Lee SO, Lee ST, Kim DG, Kim SW. Parthenolide enhances sensitivity of colorectal cancer cells to TRAIL by inducing death receptor 5 and promotes TRAIL-induced apoptosis. Int J Oncol 2015; 46:1121-1130. [PMID: 25502339 DOI: 10.3892/ijo.2014.2795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/26/2014] [Indexed: 11/05/2022] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising cancer therapeutic agent. Recombinant human TRAIL has been evaluated in clinical trials, however, various malignant tumors are resistant to TRAIL. Parthenolide (PT) has recently been demonstrated as a highly effective anticancer agent and has been suggested to be used for combination therapy with other anticancer agents. In this study, we investigate the molecular mechanisms by which PT sensitizes colorectal cancer (CRC) cells to TRAIL-induced apoptosis. HT-29 (TRAIL-resistant) and HCT116 (TRAIL-sensitive) cells were treated with PT and/or TRAIL. The results demonstrated that combined treatment induced apoptosis which was determined using MTT, cell cycle analysis, Annexin V assay and Hoechst 33258 staining. Interestingly, we confirmed that HCT116 cells have much higher death receptor (DR) 5 than HT-29 cells and PT upregulates DR5 protein level and surface expression in both cell lines. Apoptosis through the mitochondrial pathway was confirmed by detecting regulation of Bcl-2 family members, p53 cytochrome C release, and caspase cascades. These results suggest that PT sensitizes TRAIL-induced apoptosis via upregulation of DR5 and mitochondria-dependent pathway. Combination treatment using PT and TRAIL may offer an effective strategy to overcome TRAIL resistance of certain CRC cells.
Collapse
Affiliation(s)
- Se-Lim Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Yu-Chuan Liu
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Young Ran Park
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Young Seo
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Dae-Ghon Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
18
|
Chen YF, Lin YC, Morris-Natschke SL, Wei CF, Shen TC, Lin HY, Hsu MH, Chou LC, Zhao Y, Kuo SC, Lee KH, Huang LJ. Synthesis and SAR studies of novel 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives for anticancer activity. Br J Pharmacol 2015; 172:1195-221. [PMID: 25363404 DOI: 10.1111/bph.12992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE 4-Phenylquinolin-2(1H)-one (4-PQ) derivatives can induce cancer cell apoptosis. Additional new 4-PQ analogs were investigated as more effective, less toxic antitumour agents. EXPERIMENTAL APPROACH Forty-five 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives were synthesized. Antiproliferative activities were evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliun bromide assay and structure-activity relationship correlations were established. Compounds 9b, 9c, 9e and 11e were also evaluated against the National Cancer Institute-60 human cancer cell line panel. Hoechst 33258 and Annexin V-FITC/PI staining assays were used to detect apoptosis, while inhibition of microtubule polymerization was assayed by fluorescence microscopy. Effects on the cell cycle were assessed by flow cytometry and on apoptosis-related proteins (active caspase-3, -8 and -9, procaspase-3, -8, -9, PARP, Bid, Bcl-xL and Bcl-2) by Western blotting. KEY RESULTS Nine 6,7,8-substituted 4-substituted benzyloxyquinolin-2(1H)-one derivatives (7e, 8e, 9b, 9c, 9e, 10c, 10e, 11c and 11e) displayed high potency against HL-60, Hep3B, H460, and COLO 205 cancer cells (IC₅₀ < 1 μM) without affecting Detroit 551 normal human cells (IC₅₀ > 50 μM). Particularly, compound 11e exhibited nanomolar potency against COLO 205 cancer cells. Mechanistic studies indicated that compound 11e disrupted microtubule assembly and induced G2/M arrest, polyploidy and apoptosis via the intrinsic and extrinsic signalling pathways. Activation of JNK could play a role in TRAIL-induced COLO 205 apoptosis. CONCLUSION AND IMPLICATIONS New quinolone derivatives were identified as potential pro-apoptotic agents. Compound 11e could be a promising lead compound for future antitumour agent development.
Collapse
Affiliation(s)
- Yi-Fong Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan; School of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Beesoo R, Neergheen-Bhujun V, Bhagooli R, Bahorun T. Apoptosis inducing lead compounds isolated from marine organisms of potential relevance in cancer treatment. Mutat Res 2014; 768:84-97. [PMID: 24685981 DOI: 10.1016/j.mrfmmm.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents particularly if the process is selective to cancer cells. Marine natural products have become important sources in the discovery of antitumour drugs, especially when recent technological and methodological advances have increased the scope of investigations of marine organisms. A high number of individual compounds from diverse organisms have induced apoptosis in several tumour cell lines via a number of mechanisms. Here, we review the effects of selected marine natural products and their synthetic derivatives on apoptosis signalling pathways in association with their pharmacological properties. Providing an outlook into the future, we also examine the factors that contribute to new discoveries and the difficulties associated with translating marine-derived compounds into clinical trials.
Collapse
Affiliation(s)
- Rima Beesoo
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius; Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Vidushi Neergheen-Bhujun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius; Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Ranjeet Bhagooli
- Department of Biosciences, Faculty of Science, University of Mauritius, Reduit, Mauritius
| | - Theeshan Bahorun
- ANDI Centre of Excellence for Biomedical and Biomaterials Research, University of Mauritius, Reduit, Mauritius.
| |
Collapse
|
20
|
Adamkov M, Furjelová M, Horáček J, Benčat M, Kružliak P. Relationship of mismatch repair proteins and survivin in colon polyps and carcinomas. Acta Histochem 2014; 116:1007-14. [PMID: 24852932 DOI: 10.1016/j.acthis.2014.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/24/2022]
Abstract
Mismatch repair genes (MMR) play an essential role in DNA repair. MMR mutations predominantly in MLH1, MSH2, MSH6, PMS2, and rarely in PMS1, may cause the production of abnormally short or inactivated proteins. The antiapoptotic protein survivin functions in the inhibition of apoptosis, regulation of cell division and also enhances angiogenesis. Both MMRP and survivin are considered to be powerful prognostic parameters. This study was designed to determine the relationship between MMRP and survivin in colon lesions. The study included 113 cases of colon carcinoma and 51 cases of colon polyps. Survivin expression and MMRP status were assessed by immunohistochemistry. In each section, expression, intensity of immunostaining and percentage of labeled cells were analyzed. In carcinomas, immunoreaction was detected in 100/113 cases for MLH1 (88.5%), 112/113 cases for MSH2 (99.1%), 110/113 cases for MSH6 (97.3%), and 103/113 cases for PMS2 (91.2%). Survivin was shown in 47/113 cases (41.6%). The statistical analysis confirmed a significant correlation between the expression of MMRP and survivin in the assessed parameters. All 51 polyp samples were positive for MLH1, MSH2, MSH6 and PMS2. Only 8 of those (15.7%) were positive for survivin. Statistically significant differences were observed between the expression of MMRP and survivin. In conclusion, this study revealed that MMRP may suppress the antiapoptotic function of survivin through p53 inactivation of its promoter in grade 1 and grade 2 colon carcinomas.
Collapse
|
21
|
Ferrándiz C, Fonseca-Capdevila E, García-Diez A, Guillén-Barona C, Belinchón-Romero I, Redondo-Bellón P, Moreno-Giménez J, Senán R. Adaptación española de la Guía europea para la evaluación y tratamiento de la queratosis actínica. ACTAS DERMO-SIFILIOGRAFICAS 2014. [DOI: 10.1016/j.ad.2013.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Ferrándiz C, Fonseca-Capdevila E, García-Diez A, Guillén-Barona C, Belinchón-Romero I, Redondo-Bellón P, Moreno-Giménez JC, Senán R. Spanish adaptation of the European guidelines for the evaluation and treatment of actinic keratosis. ACTAS DERMO-SIFILIOGRAFICAS 2014; 105:378-93. [PMID: 24725552 DOI: 10.1016/j.adengl.2013.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/29/2013] [Indexed: 11/19/2022] Open
Abstract
Current trends in our setting indicate that the prevalence of actinic keratosis and similar diseases will increase in coming years and impose a greater burden on health care resources. A long list of clinical features must be taken into account when approaching the treatment of actinic keratosis. Until recently, therapeutic approaches focused solely on ablative procedures and the treatment of individual lesions and did not take into account areas of field cancerization. Now that the therapeutic arsenal has grown, standardized criteria are needed to guide the optimal choice of treatment for each patient. The elaboration of evidence-based consensus recommendations for the diagnosis and treatment of actinic keratosis generates knowledge that will help clinicians to deliver the highest level of care possible, standardizing decision-making processes and enhancing awareness among all the health professionals involved in the care pathway.
Collapse
Affiliation(s)
- C Ferrándiz
- Servicio de Dermatología, Hospital Universitario Germans Trías i Pujol, Badalona, Universidad Autónoma de Barcelona, Barcelona, Spain.
| | - E Fonseca-Capdevila
- Servicio de Dermatología, Complejo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - A García-Diez
- Servicio de Dermatología, Hospital Universitario de la Princesa, Madrid, Spain
| | - C Guillén-Barona
- Servicio de Dermatología, Instituto Valenciano de Oncología, Valencia, Spain
| | - I Belinchón-Romero
- Servicio de Dermatología, Hospital General Universitario de Alicante, Alicante, Spain
| | - P Redondo-Bellón
- Servicio de Dermatología, Clínica Universidad de Navarra, Pamplona, Spain
| | - J C Moreno-Giménez
- Servicio de Dermatología, Hospital Universitario Reina Sofía de Córdoba, Córdoba, Spain
| | - R Senán
- Centro de Atención Primaria El Clot, Barcelona, Spain
| |
Collapse
|
23
|
Dessinioti C, Antoniou C, Stratigos AJ. New targeted approaches for the treatment and prevention of nonmelanoma skin cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.11.70] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
LIN YICHIEN, TSAI JUIYING, YANG JAISING, LEE YUEHHSUAN, HAMEL ERNEST, LEE KUOHSIUNG, KUO SHENGCHU, HUANG LIJIAU. The novel synthetic compound 6-acetyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b]indole induces mitotic arrest and apoptosis in human COLO 205 cells. Int J Oncol 2013; 43:1596-606. [DOI: 10.3892/ijo.2013.2069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/29/2013] [Indexed: 11/06/2022] Open
|
25
|
|
26
|
Zheng L, Lin X, Wu N, Liu M, Zheng Y, Sheng J, Ji X, Sun M. Targeting cellular apoptotic pathway with peptides from marine organisms. Biochim Biophys Acta Rev Cancer 2013; 1836:42-8. [PMID: 23470652 DOI: 10.1016/j.bbcan.2013.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 02/17/2013] [Accepted: 02/19/2013] [Indexed: 01/15/2023]
Abstract
Apoptosis is a critical defense mechanism against the formation and progression of cancer and exhibits distinct morphological and biochemical traits. Targeting apoptotic pathways becomes an intriguing strategy for the development of chemotherapeutic agents. Peptides from marine organisms have become important sources in the discovery of antitumor drugs, especially when modern technology makes it more and more feasible to collect organisms from seas. This primer summarizes several marine peptides, based on their effects on apoptotic signaling pathways, although most of these peptides have not yet been studied in depth for their mechanisms of action. Novel peptides that induce an apoptosis signal pathway are presented in association with their pharmacological properties.
Collapse
Affiliation(s)
- Lanhong Zheng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Rodust PM, Fecker LF, Stockfleth E, Eberle J. Activation of mitochondrial apoptosis pathways in cutaneous squamous cell carcinoma cells by diclofenac/hyaluronic acid is related to upregulation of Bad as well as downregulation of Mcl-1 and Bcl-w. Exp Dermatol 2012; 21:520-5. [PMID: 22716247 DOI: 10.1111/j.1600-0625.2012.01516.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Actinic keratosis (AK) is characterized by high prevalence and the risk to proceed to squamous cell carcinoma (SCC). Cyclooxygenase-2 (COX-2)-mediated prostaglandin E2 (PGE (2) ) synthesis has been reported in AK and SCC, and the COX inhibitor diclofenac in hyaluronic acid (diclofenac/HA) was approved for AK therapy. Its mode of action, however, remained to be unravelled. In the present study, diclofenac resulted in reduced PGE (2) levels in apoptosis-sensitive cutaneous SCC cell lines (SCL-II, SCC-12, SCC-13) whereas no PGE (2) and no COX-2 expression was detectable in a SCC cell line resistant to apoptosis induction (SCL-I). Activation of mitochondrial apoptosis pathways was evident in SCC cells owing to loss of the mitochondrial membrane potential and release of the mitochondrial factors cytochrome c and apoptosis-inducing factor. Characteristic proapoptotic changes at the level of Bcl-2 proteins occurred in sensitive cells, as upregulation of Bad and downregulation of Mcl-1 and Bcl-w. In contrast, Bad was already high, and Mcl-1 and Bcl-w were already low in resistant SCL-I, even without treatment, which may be explained by the lack of PGE (2) . An antiapoptotic downregulation of proapoptotic Bcl-2 proteins Noxa and Puma was, however, also seen in SCL-I, suggesting here pathways independent of COX-2. The regulations of Mcl-1 and Bad were also reproduced in SCC cells by the more selective COX-2 inhibitor celecoxib, thus further underlining the specific role of COX-2. The findings illuminate the mode of action of diclofenac/HA in SCC cells as well as principles of their resistance, which may allow further adaptation and improvement of the new therapy.
Collapse
Affiliation(s)
- Paul M Rodust
- Department of Dermatology and Allergy, Skin Cancer Center, University Medical Center Charité, Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Park MH, Jo M, Won D, Song HS, Song MJ, Hong JT. Snake venom toxin from Vipera lebetina turanica sensitizes cancer cells to TRAIL through ROS- and JNK-mediated upregulation of death receptors and downregulation of survival proteins. Apoptosis 2012; 17:1316-26. [DOI: 10.1007/s10495-012-0759-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Montinaro A, Forte G, Sorrentino R, Luciano A, Palma G, Arra C, Adcock IM, Pinto A, Morello S. Adoptive immunotherapy with Cl-IB-MECA-treated CD8+ T cells reduces melanoma growth in mice. PLoS One 2012; 7:e45401. [PMID: 23028986 PMCID: PMC3454429 DOI: 10.1371/journal.pone.0045401] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 08/22/2012] [Indexed: 12/17/2022] Open
Abstract
Cl-IB-MECA is a selective A3 adenosine receptor agonist, which plays a crucial role in limiting tumor progression. In mice, Cl-IB-MECA administration enhances the anti-tumor T cell-mediated response. However, little is known about the activity of Cl-IB-MECA on CD8+ T cells. The aim of this study was to investigate the effect of ex vivo Cl-IB-MECA treatment of CD8+ T cells, adoptively transferred in melanoma-bearing mice. Adoptive transfer of Cl-IB-MECA-treated CD8+ T cells or a single administration of Cl-IB-MECA (20 ng/mouse) inhibited tumor growth compared with the control group and significantly improved mouse survival. This was associated with the release of Th1-type cytokines and a greater influx of mature Langerin+ dendritic cells (LCs) into the tumor microenvironment. CD8+ T cells treated with Cl-IB-MECA released TNF-α which plays a critical role in the therapeutic efficacy of these cells when injected to mice. Indeed, neutralization of TNF-α by a specific monoclonal Ab significantly blocked the anti-tumor activity of Cl-IB-MECA-treated T cells. This was due to the reduction in levels of cytotoxic cytokines and the presence of fewer LCs. In conclusion, these studies reveal that ex vivo treatment with Cl-IB-MECA improves CD8+ T cell adoptive immunotherapy for melanoma in a TNF-α-dependent manner.
Collapse
Affiliation(s)
- Antonella Montinaro
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Giovanni Forte
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Rosalinda Sorrentino
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Antonio Luciano
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Giuseppe Palma
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Claudio Arra
- National Cancer Institute “G. Pascale” Naples, Naples, Italy
| | - Ian M. Adcock
- NHLI, Imperial College of London, London, United Kingdom
| | - Aldo Pinto
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| | - Silvana Morello
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Salerno, Italy
| |
Collapse
|
30
|
Wang HC, Hsieh SC, Yang JH, Lin SY, Sheen LY. Diallyl Trisulfide Induces Apoptosis of Human Basal Cell Carcinoma Cells via Endoplasmic Reticulum Stress and the Mitochondrial Pathway. Nutr Cancer 2012; 64:770-80. [DOI: 10.1080/01635581.2012.676142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
31
|
Simionescu O, Popescu BO, Costache M, Manole E, Spulber S, Gherghiceanu M, Blum A. Apoptosis in seborrheic keratoses: an open door to a new dermoscopic score. J Cell Mol Med 2012; 16:1223-31. [PMID: 22404841 PMCID: PMC3494979 DOI: 10.1111/j.1582-4934.2012.01558.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 03/09/2012] [Indexed: 12/18/2022] Open
Abstract
The aetiology of seborrheic keratoses (SK), the most common benign epithelial tumours, and any relationship with malignancy are not yet known. As a protective anti-cancer mechanism, apoptosis reflects cellular loss as a reaction to proliferative activity. The objective of this study was to quantify apoptosis in different SK types (acanthotic, hyperkeratotic, reticulated, irritated and clonal) and correlate the dermoscopic picture with apoptosis rate. After a qualitative and quantitative analysis of dermoscopic images, we defined a new quantitative dermoscopic score (C3V2F, crypts, millia cysts, colours, hairpin vessels, irregular vessels, fissures) from 0 to 22, which enabled us to establish cut-offs correlating with apoptosis rates. All five SK forms were associated with lower apoptosis rates compared with normal skin. A C3V2F score >10 and greater number of crypts and colours reflected a higher apoptosis rate, which implies a benign character of evolution. In contrast, the presence of irregular vessels on more than 50% of the lesion surface implied a lower rate of apoptosis and probably associated with a risk of malignant transformation. On the basis of dermoscopic information, we used multiple regression to establish a model for estimating the rate of apoptosis with a 0.7 prediction interval (approximately 1S.D.). The new C3V2F score could be valuable for the clinical evaluation of possible SK prognosis and decisions regarding excision.
Collapse
Affiliation(s)
- Olga Simionescu
- Department of Dermatology, Colentina University Hospital, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| | | | | | | | | | | | | |
Collapse
|
32
|
Hazar-Rethinam M, Endo-Munoz L, Gannon O, Saunders N. The role of the E2F transcription factor family in UV-induced apoptosis. Int J Mol Sci 2011; 12:8947-60. [PMID: 22272113 PMCID: PMC3257110 DOI: 10.3390/ijms12128947] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/15/2011] [Accepted: 11/30/2011] [Indexed: 11/16/2022] Open
Abstract
The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a) are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8) appear to antagonize E2F-induced cell death. In this review we will discuss (i) the potential role of E2Fs in UV-induced cell death and (ii) the implications of this to the development of UV-induced cutaneous malignancies.
Collapse
Affiliation(s)
- Mehlika Hazar-Rethinam
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Liliana Endo-Munoz
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Orla Gannon
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
| | - Nicholas Saunders
- Epithelial Pathobiology Group, University of Queensland Diamantina Institute, Princess Alexandra Hospital, Queensland 4102, Australia; E-Mails: (M.H.-R.); (L.E.-M.); (O.G.)
- School of Biomedical Sciences, University of Queensland, Queensland 4072, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3176-5894; Fax: +61-7-3176-5946
| |
Collapse
|
33
|
Braun FK, Al-Yacoub N, Plötz M, Möbs M, Sterry W, Eberle J. Nonsteroidal anti-inflammatory drugs induce apoptosis in cutaneous T-cell lymphoma cells and enhance their sensitivity for TNF-related apoptosis-inducing ligand. J Invest Dermatol 2011; 132:429-39. [PMID: 22011910 DOI: 10.1038/jid.2011.316] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cutaneous T-cell lymphomas (CTCL) form a heterogeneous group of non-Hodgkin's lymphomas of the skin. In previous studies, we had characterized CTCL cells as resistant to the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), which correlated to pronounced expression of the caspase-8/-10 inhibitor c-FLIP. For identification of proapoptotic strategies in CTCL cells and for overcoming their death ligand resistance, we investigated the effects of nonsteroidal anti-inflammatory drugs (NSAIDs) such as acetylsalicylic acid, sodium salicylate, and diclofenac (DF). These drugs strongly enhanced apoptosis, as well as decreased CTCL cell proliferation and vitality, and DF furthermore sensitized for TRAIL-induced apoptosis. Full activation of the caspase cascade (caspase-3, -8, -9) and decreased mitochondrial membrane potential were characteristic for NSAID treatment, whereas cytochrome c release was seen only for DF. Downregulation of Mcl-1 and enhanced surface expression of TRAIL were seen in response to NSAIDs. Most characteristic for apoptosis induction was the downregulation of c-FLIP. In agreement with the critical role of c-FLIP for apoptosis deficiency of CTCL cells, its overexpression decreased NSAID-mediated apoptosis and its downregulation by small hairpin RNA-enhanced apoptosis. The study provides a rationale for the use of NSAIDs as a new therapeutic option for CTCL patients. Supporting this concept, ex vivo lymphoma cells of CTCL patients also revealed significant sensitivity for NSAID treatment.
Collapse
Affiliation(s)
- Frank K Braun
- Department of Dermatology and Allergy, Skin Cancer Center Charité (HTCC), Charité-University Medical Center Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Antitumor peptides from marine organisms. Mar Drugs 2011; 9:1840-1859. [PMID: 22072999 PMCID: PMC3210608 DOI: 10.3390/md9101840] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 12/24/2022] Open
Abstract
The biodiversity of the marine environment and the associated chemical diversity constitute a practically unlimited resource of new antitumor agents in the field of the development of marine bioactive substances. In this review, the progress on studies of antitumor peptides from marine sources is provided. The biological properties and mechanisms of action of different marine peptides are described; information about their molecular diversity is also presented. Novel peptides that induce apoptosis signal pathway, affect the tubulin-microtubule equilibrium and inhibit angiogenesis are presented in association with their pharmacological properties. It is intended to provide useful information for further research in the fields of marine antitumor peptides.
Collapse
|
35
|
Wang JJ, Sanderson BJ, Zhang W. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garcinia mangostana Linn.) on human melanoma cells. Food Chem Toxicol 2011; 49:2385-91. [DOI: 10.1016/j.fct.2011.06.051] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/27/2011] [Accepted: 06/06/2011] [Indexed: 11/16/2022]
|
36
|
Ulrich M, González S, Lange-Asschenfeldt B, Roewert-Huber J, Sterry W, Stockfleth E, Astner S. Non-invasive diagnosis and monitoring of actinic cheilitis with reflectance confocal microscopy. J Eur Acad Dermatol Venereol 2011; 25:276-84. [PMID: 20626536 DOI: 10.1111/j.1468-3083.2010.03777.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Actinic cheilitis (AC) represents the equivalent of actinic keratosis on the lip. Various treatment modalities are available and the efficacy of diclofenac in hyaluronic acid has recently been described. Reflectance confocal microscopy (RCM) is a non-invasive imaging technique which has recently been applied for the diagnosis of actinic keratoses. Herein, we describe the applicability of RCM for the diagnosis of AC and for monitoring of treatment response of AC to diclofenac in hyaluronic acid. METHODS Ten Caucasian patients with clinical suspicion for AC were included in this study. To obtain a non-invasive diagnosis, RCM was performed at baseline, followed by biopsy and respective confocal-histopathological correlation. Six patients with a histological diagnosis of AC were treated with diclofenac in hyaluronic acid, whereby monitoring was performed by RCM. RESULTS Reflectance confocal microscopy was able to correctly identify 6/7 cases of AC and 3/3 cases of benign lesions. The most important RCM criteria for diagnosis of AC were cellular atypia at the stratum spinosum and granulosum with atypical honeycomb pattern. One patient with AC was misclassified as inflammatory cheilitis by RCM as it showed marked inflammatory response and lacked clear signs of cellular atypia on RCM imaging. Following topical treatment with diclofenac gel, 5/6 patients (83%) showed a good treatment response with regression of dysplasia on consecutive RCM examination. CONCLUSIONS Reflectance confocal microscopy is a promising tool for the non-invasive diagnosis and monitoring of actinic cheilitis. However, marked inflammation represents a potential diagnostic pitfall. In this regard, biopsy should be performed in doubtful cases.
Collapse
Affiliation(s)
- M Ulrich
- Skin Cancer Center Charité, Department of Dermatology, Charité University Medicine Berlin.
| | | | | | | | | | | | | |
Collapse
|
37
|
Pflugfelder A, Welter AK, Leiter U, Weide B, Held L, Eigentler TK, Dirschka T, Stockfleth E, Nashan D, Garbe C. Open label randomized study comparing 3 months vs. 6 months treatment of actinic keratoses with 3% diclofenac in 2.5% hyaluronic acid gel: a trial of the German Dermatologic Cooperative Oncology Group. J Eur Acad Dermatol Venereol 2011; 26:48-53. [PMID: 21414035 DOI: 10.1111/j.1468-3083.2011.04005.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Actinic keratoses (AK) are carcinomata in situ with the potential to develop into invasive carcinoma. Several studies have demonstrated that 3% diclofenac in 2.5% hyaluronic acid gel (HA) is effective and well tolerated in the treatment of AK. To date there are no large randomized multicentre trials with treatment durations longer than 90 days and histopathological control of treatment outcome. OBJECTIVE The aim of this study was to investigate whether a prolonged treatment with diclofenac in HA of 6 vs. 3 months adds to the efficacy in treatment for AK and if this will influence tolerability and quality of life (QoL). METHODS This was a multicentre, randomized open-label study in which 418 patients with mild to moderate AKs were randomized into two treatment groups. Group A received diclofenac in HA for 3 months and group B for 6 months. Treatment efficacy was assessed by size measurement and a final biopsy of a defined marker AK. Quality of life was measured using the Dermatology Life Quality Index questionnaire. RESULTS Clinical complete clearance was observed in 40% in group A and in 45% in group B (P = 0.38). Histopathological clearance was confirmed in 30% in group A and in 40% in group B (P = 0.16). Treatment was well tolerated and QoL was significantly improved after treatment in both treatment groups. CONCLUSION Treatment with diclofenac in HA is effective and well tolerated during a treatment period of 3 months as well as 6 months. Prolongation of the treatment duration did not significantly affect treatment outcome.
Collapse
Affiliation(s)
- A Pflugfelder
- Centre for Dermatooncology, Department of Dermatology, University Hospital Tuebingen, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Skyrlas A, Hantschke M, Passa V, Gaitanis G, Malamou-Mitsi V, Bassukas ID. Expression of apoptosis-inducing factor (AIF) in keratoacanthomas and squamous cell carcinomas of the skin. Exp Dermatol 2011; 20:674-6. [DOI: 10.1111/j.1600-0625.2011.01249.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
39
|
Adamkov M, Halasova E, Rajcani J, Bencat M, Vybohova D, Rybarova S, Galbavy S. Relation between expression pattern of p53 and survivin in cutaneous basal cell carcinomas. Med Sci Monit 2011; 17:BR74-BR80. [PMID: 21358596 PMCID: PMC3524735 DOI: 10.12659/msm.881442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 07/23/2010] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The tumor suppressor gene p53 is a key regulator of cell division and/or apoptosis. Survivin is a multifunctional member of the inhibitor of apoptosis family. Survivin and p53 represent diametrically opposed signals that influence the apoptotic pathway. MATERIAL/METHODS To determine the role of p53 and survivin in basal cell carcinoma (BCC), we evaluated the expression pattern of both proteins with regard to the percentage of positively immunostained tumor cells, the intensity of staining, and subcellular localization among 31 subjects with BCC. RESULTS Overexpression of p53 protein was found in 28 of 31 cases (90.3%), whereas survivin accumulation was seen in 27 (87.1%). For p53, moderate and/or strong immunoreactivity was seen in 20 of 28 cases (71.4%), and 26 of 28 cases (92.9%) showed more than 25% reactive tumor cells. Nuclear p53 staining was detected in 23 of 28 cases (82.1%), whereas combined nuclear and cytoplasmic localization was found in only 5 of 28 cases (17.9%). Survivin revealed mild intensity of immunoreaction in 22 of 27 cases (71%), and 25 of 27 cases (92.6%) showed less than 25% labeled tumor cells. Combined nuclear and cytoplasmic survivin localization was present in 26 of 27 cases (96.3%). Statistically significant differences were detected in the assessed expression parameters between those proteins. CONCLUSIONS Our results suggest that overexpression of wild type p53 protein may suppress the expression of survivin and its antiapoptotic activity in BCC cells.
Collapse
Affiliation(s)
- Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine Martin, Comenius University, Martin, Slovak Republic
| | - Erika Halasova
- Department of Medical Biology, Jessenius Faculty of Medicine Martin, Comenius University, Martin, Slovak Republic
| | - Julius Rajcani
- Laboratory of Pathological anatomy, Alpha medical, a.s., Martin, Slovak Republic
| | - Marian Bencat
- Laboratory of Pathological anatomy, Alpha medical, a.s., Martin, Slovak Republic
| | - Desanka Vybohova
- Department of Anatomy, Jessenius Faculty of Medicine Martin, Comenius University, Martin, Slovak Republic
| | - Silvia Rybarova
- Department of Anatomy, P. J. Safarik Univerzity, Faculty of Medicine, Kosice, Kosice, Slovak Republic
| | - Stefan Galbavy
- Institute of Laboratory Medicine, St. Elizabeth University of Health and Social Sciences, Bratislava, Slovak Republic
- Institute of Forensic Medicine, Faculty of Medicine Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
40
|
Liu XD, Sun H, Liu GT. 5-Bromotetrandrine enhances the sensitivity of doxorubicin-induced apoptosis in intrinsic resistant human hepatic cancer Bel7402 cells. Cancer Lett 2010; 292:24-31. [DOI: 10.1016/j.canlet.2009.11.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Revised: 10/27/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
|
41
|
Micali G, Lacarrubba F, Dinotta F, Massimino D, Nasca MR. Treating skin cancer with topical cream. Expert Opin Pharmacother 2010; 11:1515-27. [DOI: 10.1517/14656566.2010.481284] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Fecker LF, Stockfleth E, Braun FK, Rodust PM, Schwarz C, Köhler A, Leverkus M, Eberle J. Enhanced death ligand-induced apoptosis in cutaneous SCC cells by treatment with diclofenac/hyaluronic acid correlates with downregulation of c-FLIP. J Invest Dermatol 2010; 130:2098-109. [PMID: 20237495 DOI: 10.1038/jid.2010.40] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Actinic keratosis (AK) occurs on sun-exposed skin and may progress to invasive squamous cell carcinoma (SCC). As for its topical treatment, diclofenac/hyaluronic acid (HA) has been recently approved. The NSAID diclofenac is an inhibitor of COX-2; however, its mode of action in cutaneous epithelial cancer cells is largely unknown. Here, the effects of diclofenac/HA were investigated in relation to death ligand-mediated apoptosis (TNF-alpha, TRAIL, and CD95 activation). Whereas diclofenac/HA only moderately induced apoptosis by itself, it resulted in pronounced enhancement of death ligand-mediated apoptosis in sensitive SCC cell lines (3/4). Apoptosis was associated with activation of initiator caspases of the extrinsic pathway (caspase-8/caspase-10). Furthermore, death ligand and diclofenac/HA-mediated apoptosis were blocked by the same caspase inhibitors, indicating related pathways. The proapoptotic effects of diclofenac/HA appeared independent of the p53 pathway. Also, upregulation of death receptors appeared less important; however, strong downregulation of c-FLIP isoforms was seen after diclofenac/HA treatment. The crucial role of c-FLIP was proven through overexpression and knockdown experiments. Thus, induction of apoptosis appears to be highly characteristic of the mode of action of diclofenac/HA, and the therapeutic effect may be related to sensitization of neoplastic keratinocytes for death ligand-induced apoptosis.
Collapse
Affiliation(s)
- Lothar F Fecker
- Department of Dermatology and Allergy, HTCC Skin Cancer Center Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodust PM, Stockfleth E, Ulrich C, Leverkus M, Eberle J. UV-induced squamous cell carcinoma--a role for antiapoptotic signalling pathways. Br J Dermatol 2010; 161 Suppl 3:107-15. [PMID: 19775366 DOI: 10.1111/j.1365-2133.2009.09458.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The incidence of nonmelanoma skin cancer including squamous cell carcinoma (SCC) and basal cell carcinoma (BCC) has dramatically increased in the last decades, and chronic sun exposure was identified as a main etiologic agent. UV radiation may produce DNA damage either directly or through reactive oxygen species (ROS). As mutations caused by UV may lead to skin cancer due to oncogene activation and tumor suppressor gene inactivation, efficient safeguard mechanisms have been developed during evolution. These enclose induction of apoptosis and formation sunburn cells aiming at the removal of premalignant cells. The keratinocyte apoptotic machinery in response to UV consists of both intrinsic/mitochondrial and extrinsic/death receptor-mediated cell-death pathways, which are particularly regulated by mitogen-activated protein kinases (MAPKs, JNK and p38) and the tumor-suppressor protein p53. For development of skin cancer, it appears that critical steps in apoptosis control are dysregulated leading to resistance both to death ligand-mediated and intrinsic proapoptotic pathways. These particularly include inactivation of p53, as well as activation of EGFR, COX-2 and MAPKs, which result in specific regulation of Bcl-2 proteins, death ligands and death receptors. The final unravelling of apoptosis regulation in epithelial skin cancer may allow the development of new targeted therapeutic strategies.
Collapse
Affiliation(s)
- P M Rodust
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, HTCC Skin Cancer Center Charité, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
44
|
Franke JC, Plötz M, Prokop A, Geilen CC, Schmalz HG, Eberle J. New caspase-independent but ROS-dependent apoptosis pathways are targeted in melanoma cells by an iron-containing cytosine analogue. Biochem Pharmacol 2010; 79:575-86. [DOI: 10.1016/j.bcp.2009.09.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 09/06/2009] [Accepted: 09/21/2009] [Indexed: 12/17/2022]
|
45
|
Field Treatment of Actinic Keratoses – Focus on COX-2-Inhibitors. ACTAS DERMO-SIFILIOGRAFICAS 2009; 100 Suppl 2:55-8. [DOI: 10.1016/s0001-7310(09)73379-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
46
|
Adamkov M, Lauko L, Rajčáni J, Bálentová S, Rybárová S, Mištuna D, Statelová D. Expression of antiapoptotic protein survivin in malignant melanoma. Biologia (Bratisl) 2009; 64:840-844. [DOI: 10.2478/s11756-009-0134-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 03/12/2009] [Indexed: 11/20/2022]
|
47
|
Su DM, Zhang Q, Wang X, He P, Zhu YJ, Zhao J, Rennert OM, Su YA. Two types of human malignant melanoma cell lines revealed by expression patterns of mitochondrial and survival-apoptosis genes: implications for malignant melanoma therapy. Mol Cancer Ther 2009; 8:1292-304. [PMID: 19383853 PMCID: PMC3128982 DOI: 10.1158/1535-7163.mct-08-1030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human malignant melanoma has poor prognosis because of resistance to apoptosis and therapy. We describe identification of the expression profile of 1,037 mitochondria-focused genes and 84 survival-apoptosis genes in 21 malignant melanoma cell lines and 3 normal melanocyte controls using recently developed hMitChip3 cDNA microarrays. Unsupervised hierarchical clustering analysis of 1,037 informative genes, and 84 survival-apoptosis genes, classified these malignant melanoma cell lines into type A (n = 12) and type B (n = 9). Three hundred fifty-five of 1,037 (34.2%) genes displayed significant (P ≤ 0.030; false discovery rate ≤ 3.68%) differences (± ≥ 2.0-fold) in average expression, with 197 genes higher and 158 genes lower in type A than in type B. Of 84 genes with known survival-apoptosis functions, 38 (45.2%) displayed the significant (P < 0.001; false discovery rate < 0.15%) difference. Antiapoptotic (BCL2, BCL2A1, PPARD, and RAF1), antioxidant (MT3, PRDX5, PRDX3, GPX4, GLRX2, and GSR), and proapoptotic (BAD, BNIP1, APAF1, BNIP3L, CASP7, CYCS, CASP1, and VDAC1) genes expressed at higher levels in type A than in type B, whereas the different set of antiapoptotic (PSEN1, PPP2CA, API5, PPP2R1B, PPP2R1A, and FIS1), antioxidant (HSPD1, GSS, SOD1, ATOX1, and CAT), and proapoptotic (ENDOG, BAK1, CASP2, CASP4, PDCD5, HTRA2, SEPT4, TNFSF10, and PRODH) genes expressed at lower levels in type A than in type B. Microarray data were validated by quantitative reverse transcription-PCR. These results showed the presence of two types of malignant melanoma, each with a specific set of dysregulated survival-apoptosis genes, which may prove useful for development of new molecular targets for therapeutic intervention and novel diagnostic biomarkers for treatment and prognosis of malignant melanoma.
Collapse
Affiliation(s)
- David M. Su
- Department of Biochemistry and Molecular Biology and the Catherine Birch McCormick Genomics Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Qiuyang Zhang
- Department of Biochemistry and Molecular Biology and the Catherine Birch McCormick Genomics Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Xuexi Wang
- Department of Biochemistry and Molecular Biology and the Catherine Birch McCormick Genomics Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
- The Institution of Chinese-Western Integrative Medicine, Lanzhou University School of Medical Science, Lanzhou, Gansu, China
| | - Ping He
- Laboratory of Cellular Hemostasis, Division of Hematology, Center for Biological Evaluation and Research, Food and Drug Administration, Bethesda, Maryland
| | - Yuelin Jack Zhu
- Advanced Biomedical Computing Center, National Cancer Institute-Frederick/Science Applications International Corporation-Frederick, Inc., Frederick, Maryland
| | - Jianxiong Zhao
- The Institution of Chinese-Western Integrative Medicine, Lanzhou University School of Medical Science, Lanzhou, Gansu, China
| | - Owen M. Rennert
- Laboratory of Clinical Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Yan A. Su
- Department of Biochemistry and Molecular Biology and the Catherine Birch McCormick Genomics Center, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| |
Collapse
|
48
|
Apoptosis induction by Bcl-2 proteins independent of the BH3 domain. Biochem Pharmacol 2008; 76:1612-9. [DOI: 10.1016/j.bcp.2008.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2008] [Revised: 08/08/2008] [Accepted: 08/13/2008] [Indexed: 02/02/2023]
|
49
|
Eberle J, Kurbanov BM, Hossini AM, Trefzer U, Fecker LF. Overcoming apoptosis deficiency of melanoma-hope for new therapeutic approaches. Drug Resist Updat 2007; 10:218-34. [PMID: 18054518 DOI: 10.1016/j.drup.2007.09.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Revised: 09/02/2007] [Accepted: 09/07/2007] [Indexed: 11/16/2022]
Abstract
The increased incidence of malignant melanoma in the last decades, its high mortality and pronounced therapy resistance pose an enormous challenge. Important therapeutic targets for melanoma are the induction of apoptosis and suppression of survival pathways. Preclinical studies have demonstrated the efficacy of pro-apoptotic Bcl-2 proteins and of death receptor ligands to trigger apoptosis in melanoma cells. In the clinical setting, BH3 domain mimics and death receptor agonists are therefore considered as promising, specific novel treatments to add to the conventional pro-apoptotic strategies such as chemo- or radiotherapy. However, constitutively activated survival pathways, in particular the mitogen-activated protein kinases, protein kinase B/Akt and nuclear factor (NF)-kappaB, all may work in concert to prevent effective therapy. Thus, selective biologicals developed with the aim to inhibit pro-survival signaling are currently tested in melanoma. For highly therapy-resistant tumors such as melanoma, development of novel drug combinations will be essential, and combinations of survival inhibitors and pro-apoptotic mediators appear most promising. The challenge of the near future will be to make a rational choice of the multiple possible combinations and protocols. This review gives a critical overview of proteins involved in melanoma chemoresistance, which are targets for current drug development leading to the best choice for future trials.
Collapse
Affiliation(s)
- Jürgen Eberle
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Skin Cancer Center Charité, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|