1
|
Yadalam PK, Arumuganainar D, Ronsivalle V, Di Blasio M, Badnjevic A, Marrapodi MM, Cervino G, Minervini G. Prediction of interactomic hub genes in PBMC cells in type 2 diabetes mellitus, dyslipidemia, and periodontitis. BMC Oral Health 2024; 24:385. [PMID: 38532421 DOI: 10.1186/s12903-024-04041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/17/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND AND OBJECTIVE In recent years, the complex interplay between systemic health and oral well-being has emerged as a focal point for researchers and healthcare practitioners. Among the several important connections, the convergence of Type 2 Diabetes Mellitus (T2DM), dyslipidemia, chronic periodontitis, and peripheral blood mononuclear cells (PBMCs) is a remarkable example. These components collectively contribute to a network of interactions that extends beyond their domains, underscoring the intricate nature of human health. In the current study, bioinformatics analysis was utilized to predict the interactomic hub genes involved in type 2 diabetes mellitus (T2DM), dyslipidemia, and periodontitis and their relationships to peripheral blood mononuclear cells (PBMC) by machine learning algorithms. MATERIALS AND METHODS Gene Expression Omnibus datasets were utilized to identify the genes linked to type 2 diabetes mellitus(T2DM), dyslipidemia, and Periodontitis (GSE156993).Gene Ontology (G.O.) Enrichr, Genemania, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were used for analysis for identification and functionalities of hub genes. The expression of hub D.E.G.s was confirmed, and an orange machine learning tool was used to predict the hub genes. RESULT The decision tree, AdaBoost, and Random Forest had an A.U.C. of 0.982, 1.000, and 0.991 in the R.O.C. curve. The AdaBoost model showed an accuracy of (1.000). The findings imply that the AdaBoost model showed a good predictive value and may support the clinical evaluation and assist in accurately detecting periodontitis associated with T2DM and dyslipidemia. Moreover, the genes with p-value < 0.05 and A.U.C.>0.90, which showed excellent predictive value, were thus considered hub genes. CONCLUSION The hub genes and the D.E.G.s identified in the present study contribute immensely to the fundamentals of the molecular mechanisms occurring in the PBMC associated with the progression of periodontitis in the presence of T2DM and dyslipidemia. They may be considered potential biomarkers and offer novel therapeutic strategies for chronic inflammatory diseases.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of periodontics, Saveetha Institute Of Medical And Technical Science (SIMATS), Saveetha Dental College and Hospital, Saveetha University, Chennai, India.
| | | | - Vincenzo Ronsivalle
- Department of Biomedical and Surgical and Biomedical Sciences, Catania University, Catania, 95123, Italy
| | - Marco Di Blasio
- Department of Medicine and Surgery, University Center of Dentistry, University of Parma, Parma, 43126, Italy.
| | - Almir Badnjevic
- Verlab Research Institute for Biomedical Engineering, Medical Devices, and Artificial Intelligence, Bosnia and Herzegovina, Sarajevo, 71000, Bosnia-Herzegovina
| | - Maria Maddalena Marrapodi
- Department of Woman, Child and General and Specialist Surgery, University of Campania "Luigi Vanvitelli", Naples, 80121, Italy
| | - Gabriele Cervino
- School of Dentistry, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, via Consolare Valeria, 1, Messina, 98125, Italy
| | - Giuseppe Minervini
- Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
- Multidisciplinary Department of Medical-Surgical and Dental Specialties, University of Campania "Luigi Vanvitelli", Caserta, 80121, Italy
| |
Collapse
|
2
|
Kulak K, Kuska K, Colineau L, Mckay M, Maziarz K, Slaby J, Blom AM, King BC. Intracellular C3 protects β-cells from IL-1β-driven cytotoxicity via interaction with Fyn-related kinase. Proc Natl Acad Sci U S A 2024; 121:e2312621121. [PMID: 38346191 PMCID: PMC10895342 DOI: 10.1073/pnas.2312621121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
One of the hallmarks of type 1 but also type 2 diabetes is pancreatic islet inflammation, associated with altered pancreatic islet function and structure, if unresolved. IL-1β is a proinflammatory cytokine which detrimentally affects β-cell function. In the course of diabetes, complement components, including the central complement protein C3, are deregulated. Previously, we reported high C3 expression in human pancreatic islets, with upregulation after IL-1β treatment. In the current investigation, using primary human and rodent material and CRISPR/Cas9 gene-edited β-cells deficient in C3, or producing only cytosolic C3 from a noncanonical in-frame start codon, we report a protective effect of C3 against IL-1β-induced β-cell death, that is attributed to the cytosolic fraction of C3. Further investigation revealed that intracellular C3 alleviates IL-1β-induced β-cell death, by interaction with and inhibition of Fyn-related kinase (FRK), which is involved in the response of β-cells to cytokines. Furthermore, these data were supported by increased β-cell death in vivo in a β-cell-specific C3 knockout mouse. Our data indicate that a functional, cytoprotective association exists between FRK and cytosolic C3.
Collapse
Affiliation(s)
- Klaudia Kulak
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Katarzyna Kuska
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Lucie Colineau
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Marina Mckay
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Karolina Maziarz
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Julia Slaby
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Anna M Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| | - Ben C King
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö 214-28, Sweden
| |
Collapse
|
3
|
Alcazar O, Chuang ST, Ren G, Ogihara M, Webb-Robertson BJM, Nakayasu ES, Buchwald P, Abdulreda MH. A Composite Biomarker Signature of Type 1 Diabetes Risk Identified via Augmentation of Parallel Multi-Omics Data from a Small Cohort. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579673. [PMID: 38405796 PMCID: PMC10888829 DOI: 10.1101/2024.02.09.579673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Biomarkers of early pathogenesis of type 1 diabetes (T1D) are crucial to enable effective prevention measures in at-risk populations before significant damage occurs to their insulin producing beta-cell mass. We recently introduced the concept of integrated parallel multi-omics and employed a novel data augmentation approach which identified promising candidate biomarkers from a small cohort of high-risk T1D subjects. We now validate selected biomarkers to generate a potential composite signature of T1D risk. Methods Twelve candidate biomarkers, which were identified in the augmented data and selected based on their fold-change relative to healthy controls and cross-reference to proteomics data previously obtained in the expansive TEDDY and DAISY cohorts, were measured in the original samples by ELISA. Results All 12 biomarkers had established connections with lipid/lipoprotein metabolism, immune function, inflammation, and diabetes, but only 7 were found to be markedly changed in the high-risk subjects compared to the healthy controls: ApoC1 and PON1 were reduced while CETP, CD36, FGFR1, IGHM, PCSK9, SOD1, and VCAM1 were elevated. Conclusions Results further highlight the promise of our data augmentation approach in unmasking important patterns and pathologically significant features in parallel multi-omics datasets obtained from small sample cohorts to facilitate the identification of promising candidate T1D biomarkers for downstream validation. They also support the potential utility of a composite biomarker signature of T1D risk characterized by the changes in the above markers.
Collapse
|
4
|
New JS, Dizon BL, King RG, Greenspan NS, Kearney JF. B-1 B Cell-Derived Natural Antibodies against N-Acetyl-d-Glucosamine Suppress Autoimmune Diabetes Pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1320-1331. [PMID: 37747293 PMCID: PMC10592000 DOI: 10.4049/jimmunol.2300264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023]
Abstract
Environmental factors and host microbiota strongly influence type 1 diabetes (T1D) progression. We report that neonatal immunization with group A Streptococcus suppresses T1D development in NOD mice by promoting clonal expansion of N-acetyl-d-glucosamine (GlcNAc)-specific B-1 B cells that recognize pancreatic β cell-derived Ags bearing GlcNAc-containing posttranslational modifications. Early exposure to Lancefield group A cell-wall carbohydrate Ags increased production of GlcNAc-reactive serum Abs and enhanced localization of innate-like GlcNAc-specific B cells to pancreatic tissue during T1D pathogenesis. We show that B-1 B cell-derived GlcNAc-specific IgM engages apoptosis-associated β cell Ags, thereby suppressing diabetogenic T cell activation. Likewise, adoptively transferring GlcNAc-reactive B-1 B cells significantly delayed T1D development in naive recipients. Collectively, these data underscore potentially protective involvement of innate-like B cells and natural Abs in T1D progression. These findings suggest that previously reported associations of reduced T1D risk after GAS infection are B cell dependent and demonstrate the potential for targeting the natural Ab repertoire in considering therapeutic strategies for T1D.
Collapse
Affiliation(s)
- J. Stewart New
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Brian L.P. Dizon
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - R. Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Neil. S. Greenspan
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106
| | - John F. Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
5
|
Sarkar S, Elliott EC, Henry HR, Ludovico ID, Melchior JT, Frazer-Abel A, Webb-Robertson BJ, Davidson WS, Holers VM, Rewers MJ, Metz TO, Nakayasu ES. Systematic review of type 1 diabetes biomarkers reveals regulation in circulating proteins related to complement, lipid metabolism, and immune response. Clin Proteomics 2023; 20:38. [PMID: 37735622 PMCID: PMC10512508 DOI: 10.1186/s12014-023-09429-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic β cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. METHODS This systematic review was registered with Open Science Framework ( https://doi.org/10.17605/OSF.IO/N8TSA ). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. RESULTS A total of 13 studies met our inclusion criteria, resulting in the identification of 266 unique proteins, with 31 (11.6%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found 2 subsets: 17 proteins (C3, C1R, C8G, C4B, IBP2, IBP3, ITIH1, ITIH2, BTD, APOE, TETN, C1S, C6A3, SAA4, ALS, SEPP1 and PI16) and 3 proteins (C3, CLUS and C4A) have consistent regulation in at least 2 independent studies at post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. CONCLUSIONS Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.
Collapse
Affiliation(s)
- Soumyadeep Sarkar
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Emily C Elliott
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hayden R Henry
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ivo Díaz Ludovico
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - John T Melchior
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - V Michael Holers
- Division of Rheumatology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Marian J Rewers
- Barbara Davis Center for Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
6
|
Infante M, Vitiello L, Fabbri A, Ricordi C, Padilla N, Pacifici F, Perna PD, Passeri M, Della-Morte D, Caprio M, Uccioli L. Prolonged clinical remission of type 1 diabetes sustained by calcifediol and low-dose basal insulin: a case report. Immunotherapy 2023; 15:1009-1019. [PMID: 37401348 DOI: 10.2217/imt-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/15/2023] [Indexed: 07/05/2023] Open
Abstract
Herein, we describe an unusually prolonged duration (31 months) of the clinical remission phase in a 22-year-old Italian man with new-onset type 1 diabetes. Shortly after the disease diagnosis, the patient was treated with calcifediol (also known as 25-hydroxyvitamin D3 or calcidiol), coupled with low-dose basal insulin, to correct hypovitaminosis D and to exploit the anti-inflammatory and immunomodulatory properties of vitamin D. During the follow-up period, the patient retained a substantial residual β-cell function and remained within the clinical remission phase, as evidenced by an insulin dose-adjusted glycated hemoglobin value <9. At 24 months, we detected a peculiar immunoregulatory profile of peripheral blood cells, which may explain the prolonged duration of the clinical remission sustained by calcifediol as add-on treatment to insulin.
Collapse
Affiliation(s)
- Marco Infante
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
- Section of Diabetes & Metabolic Disorders, UniCamillus, Saint Camillus International University of Health Sciences, Via di Sant'Alessandro 8, Rome, 00131, Italy
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Via Cola di Rienzo 28, Rome, 00192, Italy
| | - Laura Vitiello
- Laboratory of Flow Cytometry, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Andrea Fabbri
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Camillo Ricordi
- Division of Cellular Transplantation, Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, 1450 NW 10th Ave, Miami, FL 33136, USA
| | - Nathalia Padilla
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Colonia Centroamérica L-823, Managua, 14048, Nicaragua
| | - Francesca Pacifici
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
| | - Pasquale Di Perna
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - Marina Passeri
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, 1120 NW 14th St, Miami, FL 33136, USA
| | - Massimiliano Caprio
- Department of Human Sciences & Promotion of the Quality of Life, San Raffaele Roma Open University, Via di Val Cannuta 247, Rome, 00166, Italy
- Laboratory of Cardiovascular Endocrinology, IRCCS San Raffaele, Via di Val Cannuta 247, Rome, 00166, Italy
| | - Luigi Uccioli
- CTO Andrea Alesini Hospital, Division of Endocrinology & Diabetes, Department of Systems Medicine, University of Rome Tor Vergata, Via San Nemesio 21, Rome, 00145, Italy
| |
Collapse
|
7
|
Sarkar S, Elliott EC, Henry HR, Ludovico ID, Melchior JT, Frazer-Abel A, Webb-Robertson BJ, Davidson WS, Holers VM, Rewers MJ, Metz TO, Nakayasu ES. Systematic review of type 1 diabetes biomarkers reveals regulation in circulating proteins related to complement, lipid metabolism, and immune response. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.21.23286132. [PMID: 36865103 PMCID: PMC9980237 DOI: 10.1101/2023.02.21.23286132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Aims Type 1 diabetes (T1D) results from an autoimmune attack of the pancreatic β cells that progresses to dysglycemia and symptomatic hyperglycemia. Current biomarkers to track this evolution are limited, with development of islet autoantibodies marking the onset of autoimmunity and metabolic tests used to detect dysglycemia. Therefore, additional biomarkers are needed to better track disease initiation and progression. Multiple clinical studies have used proteomics to identify biomarker candidates. However, most of the studies were limited to the initial candidate identification, which needs to be further validated and have assays developed for clinical use. Here we curate these studies to help prioritize biomarker candidates for validation studies and to obtain a broader view of processes regulated during disease development. Methods This systematic review was registered with Open Science Framework (DOI 10.17605/OSF.IO/N8TSA). Using PRISMA guidelines, we conducted a systematic search of proteomics studies of T1D in the PubMed to identify putative protein biomarkers of the disease. Studies that performed mass spectrometry-based untargeted/targeted proteomic analysis of human serum/plasma of control, pre-seroconversion, post-seroconversion, and/or T1D-diagnosed subjects were included. For unbiased screening, 3 reviewers screened all the articles independently using the pre-determined criteria. Results A total of 13 studies met our inclusion criteria, resulting in the identification of 251 unique proteins, with 27 (11%) being identified across 3 or more studies. The circulating protein biomarkers were found to be enriched in complement, lipid metabolism, and immune response pathways, all of which are found to be dysregulated in different phases of T1D development. We found a subset of 3 proteins (C3, KNG1 & CFAH), 6 proteins (C3, C4A, APOA4, C4B, A2AP & BTD) and 7 proteins (C3, CLUS, APOA4, C6, A2AP, C1R & CFAI) have consistent regulation between multiple studies in samples from individuals at pre-seroconversion, post-seroconversion and post-diagnosis compared to controls, respectively, making them strong candidates for clinical assay development. Conclusions Biomarkers analyzed in this systematic review highlight alterations in specific biological processes in T1D, including complement, lipid metabolism, and immune response pathways, and may have potential for further use in the clinic as prognostic or diagnostic assays.
Collapse
|
8
|
Alcazar O, Ogihara M, Ren G, Buchwald P, Abdulreda MH. Exploring Computational Data Amplification and Imputation for the Discovery of Type 1 Diabetes (T1D) Biomarkers from Limited Human Datasets. Biomolecules 2022; 12:1444. [PMID: 36291653 PMCID: PMC9599756 DOI: 10.3390/biom12101444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Type 1 diabetes (T1D) is a devastating disease with serious health complications. Early T1D biomarkers that could enable timely detection and prevention before the onset of clinical symptoms are paramount but currently unavailable. Despite their promise, omics approaches have so far failed to deliver such biomarkers, likely due to the fragmented nature of information obtained through the single omics approach. We recently demonstrated the utility of parallel multi-omics for the identification of T1D biomarker signatures. Our studies also identified challenges. METHODS Here, we evaluated a novel computational approach of data imputation and amplification as one way to overcome challenges associated with the relatively small number of subjects in these studies. RESULTS Using proprietary algorithms, we amplified our quadra-omics (proteomics, metabolomics, lipidomics, and transcriptomics) dataset from nine subjects a thousand-fold and analyzed the data using Ingenuity Pathway Analysis (IPA) software to assess the change in its analytical capabilities and biomarker prediction power in the amplified datasets compared to the original. These studies showed the ability to identify an increased number of T1D-relevant pathways and biomarkers in such computationally amplified datasets, especially, at imputation ratios close to the "golden ratio" of 38.2%:61.8%. Specifically, the Canonical Pathway and Diseases and Functions modules identified higher numbers of inflammatory pathways and functions relevant to autoimmune T1D, including novel ones not identified in the original data. The Biomarker Prediction module also predicted in the amplified data several unique biomarker candidates with direct links to T1D pathogenesis. CONCLUSIONS These preliminary findings indicate that such large-scale data imputation and amplification approaches are useful in facilitating the discovery of candidate integrated biomarker signatures of T1D or other diseases by increasing the predictive range of existing data mining tools, especially when the size of the input data is inherently limited.
Collapse
Affiliation(s)
- Oscar Alcazar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mitsunori Ogihara
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
| | - Gang Ren
- Institute for Data Science and Computing, University of Miami, Coral Gables, FL 33146, USA
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
| | - Peter Buchwald
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Midhat H. Abdulreda
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
9
|
Majumdar S, Lin Y, Bettini ML. Host-microbiota interactions shaping T-cell response and tolerance in type 1 diabetes. Front Immunol 2022; 13:974178. [PMID: 36059452 PMCID: PMC9434376 DOI: 10.3389/fimmu.2022.974178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/25/2022] [Indexed: 11/29/2022] Open
Abstract
Type-1 Diabetes (T1D) is a complex polygenic autoimmune disorder involving T-cell driven beta-cell destruction leading to hyperglycemia. There is no cure for T1D and patients rely on exogenous insulin administration for disease management. T1D is associated with specific disease susceptible alleles. However, the predisposition to disease development is not solely predicted by them. This is best exemplified by the observation that a monozygotic twin has just a 35% chance of developing T1D after their twin's diagnosis. This makes a strong case for environmental triggers playing an important role in T1D incidence. Multiple studies indicate that commensal gut microbiota and environmental factors that alter their composition might exacerbate or protect against T1D onset. In this review, we discuss recent literature highlighting microbial species associated with T1D. We explore mechanistic studies which propose how some of these microbial species can modulate adaptive immune responses in T1D, with an emphasis on T-cell responses. We cover topics ranging from gut-thymus and gut-pancreas communication, microbial regulation of peripheral tolerance, to molecular mimicry of islet antigens by microbial peptides. In light of the accumulating evidence on commensal influences in neonatal thymocyte development, we also speculate on the link between molecular mimicry and thymic selection in the context of T1D pathogenesis. Finally, we explore how these observations could inform future therapeutic approaches in this disease.
Collapse
Affiliation(s)
- Shubhabrata Majumdar
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Yong Lin
- Immunology Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Matthew L. Bettini
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Chu X, Janssen AWM, Koenen H, Chang L, He X, Joosten I, Stienstra R, Kuijpers Y, Wijmenga C, Xu CJ, Netea MG, Tack CJ, Li Y. A genome-wide functional genomics approach uncovers genetic determinants of immune phenotypes in type 1 diabetes. eLife 2022; 11:73709. [PMID: 35638288 PMCID: PMC9205632 DOI: 10.7554/elife.73709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background: The large inter-individual variability in immune-cell composition and function determines immune responses in general and susceptibility o immune-mediated diseases in particular. While much has been learned about the genetic variants relevant for type 1 diabetes (T1D), the pathophysiological mechanisms through which these variations exert their effects remain unknown. Methods: Blood samples were collected from 243 patients with T1D of Dutch descent. We applied genetic association analysis on >200 immune-cell traits and >100 cytokine production profiles in response to stimuli measured to identify genetic determinants of immune function, and compared the results obtained in T1D to healthy controls. Results: Genetic variants that determine susceptibility to T1D significantly affect T cell composition. Specifically, the CCR5+ regulatory T cells associate with T1D through the CCR region, suggesting a shared genetic regulation. Genome-wide quantitative trait loci (QTLs) mapping analysis of immune traits revealed 15 genetic loci that influence immune responses in T1D, including 12 that have never been reported in healthy population studies, implying a disease-specific genetic regulation. Conclusions: This study provides new insights into the genetic factors that affect immunological responses in T1D. Funding: This work was supported by an ERC starting grant (no. 948207) and a Radboud University Medical Centre Hypatia grant (2018) to YL and an ERC advanced grant (no. 833247) and a Spinoza grant of the Netherlands Association for Scientific Research to MGN CT received funding from the Perspectief Biomarker Development Center Research Programme, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO). AJ was funded by a grant from the European Foundation for the Study of Diabetes (EFSD/AZ Macrovascular Programme 2015). XC was supported by the China Scholarship Council (201706040081). Every year around the world, over 100,000 people are diagnosed with type 1 diabetes. This disease develops when the immune system mistakenly destroys the cells that produce a hormone called insulin, leaving affected individuals unable to regulate their blood sugar levels. Type 1 diabetes patients must rely on regular injections of manufactured insulin to survive. The composition and activity of the human immune system is under genetic control, and people with certain changes in their genes are more susceptible than others to develop type 1 diabetes. Previous studies have identified around 60 locations in the human DNA (known as loci) associated with the condition, but it remains unclear how these loci influence the immune system and whether diabetes will emerge. Chu, Janssen, Koenen et al. explored how variations in genetic information can influence the composition of the immune system, and the type of molecules it releases to perform its role. To do so, blood samples from 243 individuals of Dutch descent with type 1 diabetes were collected, and genetic associations were investigated. The results revealed that a major type of immune actors known as T cells are under the control of genetic factors associated with type 1 diabetes susceptibility. For instance, a specific type of T cells showed shared genetic control with type 1 diabetes. In addition, 15 loci were identified that influenced immune responses in the patients. Among those, 12 have never been reported to be involved in immune responses in healthy people, implying that these regions might only regulate the immune system of individuals with type 1 diabetes and other similar disorders. Finally, Chu, Janssen, Koenen et al. propose 11 genes within the identified loci as potential targets for new diabetes medication. These results represent an important resource for researchers exploring the genetic and immune basis of type 1 diabetes, and they could open new avenues for drug development.
Collapse
Affiliation(s)
- Xiaojing Chu
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Anna W M Janssen
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Hans Koenen
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Linzhung Chang
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| | - Xuehui He
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Rinke Stienstra
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Yunus Kuijpers
- Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, Groningen, Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Yang Li
- Department of Computational Biology for Individualised Infection Medicine, Helmholtz Centre for Infection Research, Hannover, Germany
| |
Collapse
|
11
|
Gomez-Muñoz L, Perna-Barrull D, Caroz-Armayones JM, Murillo M, Rodriguez-Fernandez S, Valls A, Vazquez F, Perez J, Corripio R, Castaño L, Bel J, Vives-Pi M. Candidate Biomarkers for the Prediction and Monitoring of Partial Remission in Pediatric Type 1 Diabetes. Front Immunol 2022; 13:825426. [PMID: 35280980 PMCID: PMC8904370 DOI: 10.3389/fimmu.2022.825426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 01/10/2023] Open
Abstract
The partial remission (PR) phase, a period experienced by most patients with type 1 diabetes (T1D) soon after diagnosis, is characterized by low insulin requirements and improved glycemic control. Given the great potential of this phase as a therapeutic window for immunotherapies because of its association with immunoregulatory mechanisms and β-cell protection, our objective was to find peripheral immunological biomarkers for its better characterization, monitoring, and prediction. The longitudinal follow-up of 17 pediatric patients with new-onset T1D over one year revealed that, during the PR phase, remitter patients show increased percentages of effector memory (EM) T lymphocytes, terminally differentiated EM T lymphocytes, and neutrophils in comparison to non-remitter patients. On the contrary, remitter patients showed lower percentages of naïve T lymphocytes, regulatory T cells (TREG), and dendritic cells (DCs). After a year of follow-up, these patients also presented increased levels of regulatory B cells and transitional T1 B lymphocytes. On the other hand, although none of the analyzed cytokines (IL-2, IL-6, TGF-β1, IL-17A, and IL-10) could distinguish or predict remission, IL-17A was increased at T1D diagnosis in comparison to control subjects, and remitter patients tended to maintain lower levels of this cytokine than non-remitters. Therefore, these potential monitoring immunological biomarkers of PR support that this stage is governed by both metabolic and immunological factors and suggest immunoregulatory attempts during this phase. Furthermore, since the percentage of TREG, monocytes, and DCs, and the total daily insulin dose at diagnosis were found to be predictors of the PR phase, we next created an index-based predictive model comprising those immune cell percentages that could potentially predict remission at T1D onset. Although our preliminary study needs further validation, these candidate biomarkers could be useful for the immunological characterization of the PR phase, the stratification of patients with better disease prognosis, and a more personalized therapeutic management.
Collapse
Affiliation(s)
- Laia Gomez-Muñoz
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - David Perna-Barrull
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Josep M. Caroz-Armayones
- Department of Political and Social Sciences, Health Inequalities Research Group (GREDS-EMCONET), Pompeu Fabra University, Barcelona, Spain
- Johns Hopkins University–Pompeu Fabra University Public Policy Center, Barcelona, Spain
| | - Marta Murillo
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Aina Valls
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Jacobo Perez
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Raquel Corripio
- Pediatric Endocrinology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Autonomous University of Barcelona, Sabadell, Spain
| | - Luis Castaño
- Cruces University Hospital, Biocruces Bizkaia Research Institute, UPV/EHU, CIBERDEM, CIBERER, Endo-ERN, Bilbao, Spain
| | - Joan Bel
- Pediatrics Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Department, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| |
Collapse
|
12
|
Ahmed SS, Al Nohair SF, Abdulmonem WA, Alhomaidan HT, Rasheed N, Ismail MS, Albatanony MA, Rasheed Z. Honey polyphenolic fraction inhibits cyclooxygenase-2 expression via upregulation of microRNA-26a-5p expression in pancreatic islets. EUR J INFLAMM 2022. [DOI: 10.1177/20587392221076473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives Honey total polyphenolic fraction (HTPF) is reported to have anti-disease potential, however the role of HTPF in the regulation of microRNAs (miRNAs) has never been investigated. This study was undertaken to investigate the potential of HTPF against inflammation via regulation of miRNAs in pancreatic islets of Langerhans. Methods Pancreatic islets were isolated from C57BL/6 mice and HTPF was purified from honey. Bioinformatics algorithms were used to determine miRNA target genes. Expression of miRNA and mRNA was determined using their specific taqman assays. Pairing between miRNA and 3′ untranslated region (3′UTR) of mRNA was confirmed using luciferase reporter clone containing the 3′UTR of mRNA sequences and results were verified by transfection of mouse pancreatic β-cell line Min6 with miRNA inhibitors. Results The data showed that mmu-miR-26a-5p is a direct regulator of cyclooxygenase-2 (COX-2) expression and HTPF inhibits COX-2 expression or prostaglandin E2 (PGE2) production via up-regulating mmu-miR-26a-5p expression. Transfection of islets with anti-miR-26a-5p significantly enhanced COX-2 expression and PGE2 production ( p < .01), while HTPF treatment significantly inhibited anti-miR-26a-5p transfection-induced COX-2 expression or PGE2 production ( p < .05). These findings were further verified in pancreatic β-cells Min6. Moreover, the data also determined that HTPF also inhibits glucose-induced nuclear transcription factor (NF)-κB activity. Conclusion HTPF suppresses glucose-induced PGE2 production and activation of NF-κB via negative regulation of COX-2 and mmu-miR26a-5p. These novel pharmacological actions of HTPF on glucose-stimulated pancreatic islets provide new suggestions that HTPF or HTPF-derived compounds inhibit glucose induced inflammation in pancreas by up-regulating the expression of microRNAs.
Collapse
Affiliation(s)
- Syed Suhail Ahmed
- Department of Medical Microbiology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Sultan Fahad Al Nohair
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Homaidan T Alhomaidan
- Department of Family and Community Medicine, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naila Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Mohamed S Ismail
- Department of Nutrition and Food Sciences, Menoufia University, Shebin El-Kom, Egypt
| | - Manal A Albatanony
- Department of Family Medicine, College of Medicine, Qassim University, Unaizah, Saudi Arabia
| | - Zafar Rasheed
- Department of Medical Biochemistry, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| |
Collapse
|
13
|
Sargin P, Roethle MF, Jia S, Pant T, Ciecko AE, Atkinson SN, Salzman NH, Teng RJ, Chen YG, Cabrera SM, Hessner MJ. Lactiplantibacillus plantarum 299v supplementation modulates β-cell ER stress and antioxidative defense pathways and prevents type 1 diabetes in gluten-free BioBreeding rats. Gut Microbes 2022; 14:2136467. [PMID: 36261888 PMCID: PMC9586621 DOI: 10.1080/19490976.2022.2136467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 02/04/2023] Open
Abstract
The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in β-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.
Collapse
Affiliation(s)
- Pinar Sargin
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mark F. Roethle
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shuang Jia
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tarun Pant
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ashley E. Ciecko
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Samantha N. Atkinson
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Nita H. Salzman
- Center for Microbiome Research, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Gastroenterology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Department of Pediatrics, Division of Neonatology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Susanne M. Cabrera
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| | - Martin J. Hessner
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, WI, USA
- Department of Pediatrics, Division of Endocrinology, the Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
14
|
The analysis of a subset of HLA region associations in type 1 diabetes and multiple sclerosis suggests the involvement mechanisms other than antigen presentation in the pathogenesis. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2021.100831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Rahman MR, Islam T, Shahjaman M, Islam MR, Lombardo SD, Bramanti P, Ciurleo R, Bramanti A, Tchorbanov A, Fisicaro F, Fagone P, Nicoletti F, Pennisi M. Discovering common pathogenetic processes between COVID-19 and diabetes mellitus by differential gene expression pattern analysis. Brief Bioinform 2021; 22:bbab262. [PMID: 34260684 PMCID: PMC8344483 DOI: 10.1093/bib/bbab262] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/28/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the newly discovered coronavirus, SARS-CoV-2. Increased severity of COVID-19 has been observed in patients with diabetes mellitus (DM). This study aimed to identify common transcriptional signatures, regulators and pathways between COVID-19 and DM. We have integrated human whole-genome transcriptomic datasets from COVID-19 and DM, followed by functional assessment with gene ontology (GO) and pathway analyses. In peripheral blood mononuclear cells (PBMCs), among the upregulated differentially expressed genes (DEGs), 32 were found to be commonly modulated in COVID-19 and type 2 diabetes (T2D), while 10 DEGs were commonly downregulated. As regards type 1 diabetes (T1D), 21 DEGs were commonly upregulated, and 29 DEGs were commonly downregulated in COVID-19 and T1D. Moreover, 35 DEGs were commonly upregulated in SARS-CoV-2 infected pancreas organoids and T2D islets, while 14 were commonly downregulated. Several GO terms were found in common between COVID-19 and DM. Prediction of the putative transcription factors involved in the upregulation of genes in COVID-19 and DM identified RELA to be implicated in both PBMCs and pancreas. Here, for the first time, we have characterized the biological processes and pathways commonly dysregulated in COVID-19 and DM, which could be in the next future used for the design of personalized treatment of COVID-19 patients suffering from DM as comorbidity.
Collapse
Affiliation(s)
- Md Rezanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
- Department of Biochemistry and Biotechnology, Khwaja Yunus Ali University, Enayetpur, Sirajganj, Bangladesh
| | - Tania Islam
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, Bangladesh
| | - Md Shahjaman
- Department of Statistics, Begum Rokeya University, Rangpur, Bangladesh
| | - Md Rafiqul Islam
- Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia
- Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, A-1090 Vienna, Austria
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Rosella Ciurleo
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy
| | - Andrey Tchorbanov
- Laboratory of Experimental Immunology, Institute of Microbiology , Bulgarian Academy of Sciences, Sofia, Bulgaria
- National Institute of Immunology, Sofia, Bulgaria
| | - Francesco Fisicaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania CT, Italy
| |
Collapse
|
16
|
Ben Guebila M, Thiele I. Dynamic flux balance analysis of whole-body metabolism for type 1 diabetes. NATURE COMPUTATIONAL SCIENCE 2021; 1:348-361. [PMID: 38217214 DOI: 10.1038/s43588-021-00074-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/21/2021] [Indexed: 01/15/2024]
Abstract
Type 1 diabetes (T1D) mellitus is a systemic disease triggered by a local autoimmune inflammatory reaction in insulin-producing cells that induce organ-wide, long-term metabolic effects. Mathematical modeling of the whole-body regulatory bihormonal system has helped to identify therapeutic interventions but is limited to a coarse-grained representation of metabolism. To extend the depiction of T1D, we developed a whole-body model of organ-specific regulation and metabolism that highlighted chronic inflammation as a hallmark of the disease, identified processes related to neurodegenerative disorders and suggested calcium channel blockers as adjuvants for diabetes control. In addition, whole-body modeling of a patient population allowed for the assessment of between-individual variability to insulin and suggested that peripheral glucose levels are degenerate biomarkers of the internal metabolic state. Taken together, the organ-resolved, dynamic modeling approach enables modeling and simulation of metabolic disease at greater levels of coverage and precision and the generation of hypothesis from a molecular level up to the population level.
Collapse
Affiliation(s)
- Marouen Ben Guebila
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ines Thiele
- School of Medicine, National University of Ireland, Galway, Ireland.
- Discipline of Microbiology, School of Natural Sciences, National University of Ireland, Galway, Galway, Ireland.
- APC Microbiome, Cork, Ireland.
- Ryan Institute, National University of Ireland, Galway, Ireland.
| |
Collapse
|
17
|
Type I interferons as key players in pancreatic β-cell dysfunction in type 1 diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:1-80. [PMID: 33832648 DOI: 10.1016/bs.ircmb.2021.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by pancreatic islet inflammation (insulitis) and specific pancreatic β-cell destruction by an immune attack. Although the precise underlying mechanisms leading to the autoimmune assault remain poorly understood, it is well accepted that insulitis takes place in the context of a conflicting dialogue between pancreatic β-cells and the immune cells. Moreover, both host genetic background (i.e., candidate genes) and environmental factors (e.g., viral infections) contribute to this inadequate dialogue. Accumulating evidence indicates that type I interferons (IFNs), cytokines that are crucial for both innate and adaptive immune responses, act as key links between environmental and genetic risk factors in the development of T1D. This chapter summarizes some relevant pathways involved in β-cell dysfunction and death, and briefly reviews how enteroviral infections and genetic susceptibility can impact insulitis. Moreover, we present the current evidence showing that, in β-cells, type I IFN signaling pathway activation leads to several outcomes, such as long-lasting major histocompatibility complex (MHC) class I hyperexpression, endoplasmic reticulum (ER) stress, epigenetic changes, and induction of posttranscriptional as well as posttranslational modifications. MHC class I overexpression, when combined with ER stress and posttranscriptional/posttranslational modifications, might lead to sustained neoantigen presentation to immune system and β-cell apoptosis. This knowledge supports the concept that type I IFNs are implicated in the early stages of T1D pathogenesis. Finally, we highlight the promising therapeutic avenues for T1D treatment directed at type I IFN signaling pathway.
Collapse
|
18
|
Identification of the Key Genes Involved in the Effect of Folic Acid on Endothelial Progenitor Cell Transcriptome of Patients with Type 1 Diabetes. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:4542689. [PMID: 33029194 PMCID: PMC7532406 DOI: 10.1155/2020/4542689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/19/2020] [Accepted: 09/11/2020] [Indexed: 11/18/2022]
Abstract
Type 1 diabetes (T1D) is one of the most common autoimmune diseases in children. Previous studies have suggested that endothelial progenitor cells (EPCs) might be engaged in the regulating of the biological processes in T1D and folic acid (FA) might be engaged in regulating EPC function. The present study has identified 716 downregulated genes and 617 upregulated genes in T1D EPC cases after treated with FA. Bioinformatics analysis has shown that these DEGs were engaged in regulating metabolic processes, cell proliferation-related processes, bone marrow development, cell adhesion, platelet degranulation, and cellular response to growth factor stimulus. Furthermore, we have conducted and identified hub PPI networks. Importantly, we have identified 6 upregulated genes (POLR2A, BDNF, CDC27, LTN1, RAB1A, and CUL2) and 8 downregulated genes (SHC1, GRIN2B, TTN, GNAL, GNB2, PTK2, TF, and TLR9) as key regulators involved in the effect of FA on endothelial progenitor cell transcriptome of patients with T1D. We think that this study could provide novel information to understand the roles of FA in regulating EPCs of T1D patients.
Collapse
|
19
|
Yip L, Fuhlbrigge R, Alkhataybeh R, Fathman CG. Gene Expression Analysis of the Pre-Diabetic Pancreas to Identify Pathogenic Mechanisms and Biomarkers of Type 1 Diabetes. Front Endocrinol (Lausanne) 2020; 11:609271. [PMID: 33424774 PMCID: PMC7793767 DOI: 10.3389/fendo.2020.609271] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 Diabetes (T1D) occurs as a result of the autoimmune destruction of pancreatic β-cells by self-reactive T cells. The etiology of this disease is complex and difficult to study due to a lack of disease-relevant tissues from pre-diabetic individuals. In this study, we performed gene expression analysis on human pancreas tissues obtained from the Network of Pancreatic Organ Donors with Diabetes (nPOD), and showed that 155 genes were differentially expressed by ≥2-fold in the pancreata of autoantibody-positive (AA+) at-risk individuals compared to healthy controls. Only 48 of these genes remained changed by ≥2-fold in the pancreata of established T1D patients. Pathway analysis of these genes showed a significant association with various immune pathways. We were able to validate the differential expression of eight disease-relevant genes by QPCR analysis: A significant upregulation of CADM2, and downregulation of TRPM5, CRH, PDK4, ANGPL4, CLEC4D, RSG16, and FCGR2B was confirmed in the pancreata of AA+ individuals versus controls. Studies have already implicated FCGR2B in the pathogenesis of disease in non-obese diabetic (NOD) mice. Here we showed that CADM2, TRPM5, PDK4, and ANGPL4 were similarly changed in the pancreata of pre-diabetic 12-week-old NOD mice compared to NOD.B10 controls, suggesting a possible role for these genes in the pathogenesis of both T1D and NOD disease. The loss of the leukocyte-specific gene, FCGR2B, in the pancreata of AA+ individuals, is particularly interesting, as it may serve as a potential whole blood biomarker of disease progression. To test this, we quantified FCGR2B expression in peripheral blood samples of T1D patients, and AA+ and AA- first-degree relatives of T1D patients enrolled in the TrialNet Pathway to Prevention study. We showed that FCGR2B was significantly reduced in the peripheral blood of AA+ individuals compared to AA- controls. Together, these findings demonstrate that gene expression analysis of pancreatic tissue and peripheral blood samples can be used to identify disease-relevant genes and pathways and potential biomarkers of disease progression in T1D.
Collapse
|
20
|
Wyatt RC, Lanzoni G, Russell MA, Gerling I, Richardson SJ. What the HLA-I!-Classical and Non-classical HLA Class I and Their Potential Roles in Type 1 Diabetes. Curr Diab Rep 2019; 19:159. [PMID: 31820163 PMCID: PMC6901423 DOI: 10.1007/s11892-019-1245-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role of non-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on disease etiology. RECENT FINDINGS Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed β cells (potentially driven by viral infection) and exacerbated by release of cytokines from infiltrating immune cells. Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infiltrating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time still allowing the targeted destruction of β cells by specific islet-reactive CD8+ T cells.
Collapse
Affiliation(s)
- Rebecca C. Wyatt
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Giacomo Lanzoni
- Diabetes Research Institute, University of Miami – Miller School of Medicine, 1450 NW 10th Avenue, Miami, FL 33136 USA
- Department of Biochemistry and Molecular Biology, University of Miami – Miller School of Medicine, 1011 NW 15th Street, Miami, FL 33136 USA
| | - Mark A. Russell
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| | - Ivan Gerling
- Department of Medicine University of Tennessee Health Science Center and VA Medical Center Research Service, 1030 Jefferson Avenue, Memphis, TN 38128 USA
| | - Sarah J. Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, RILD Building, Barrack Road, Exeter, EX2 5DW UK
| |
Collapse
|
21
|
Sandor AM, Jacobelli J, Friedman RS. Immune cell trafficking to the islets during type 1 diabetes. Clin Exp Immunol 2019; 198:314-325. [PMID: 31343073 PMCID: PMC6857188 DOI: 10.1111/cei.13353] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2019] [Indexed: 01/01/2023] Open
Abstract
Inhibition of immune cell trafficking to the pancreatic islets during type 1 diabetes (T1D) has therapeutic potential, since targeting of T cell and B cell trafficking has been clinically effective in other autoimmune diseases. Trafficking to the islets is characterized by redundancy in adhesion molecule and chemokine usage, which has not enabled effective targeting to date. Additionally, cognate antigen is not consistently required for T cell entry into the islets throughout the progression of disease. However, myeloid cells are required to enable T cell and B cell entry into the islets, and may serve as a convergence point in the pathways controlling this process. In this review we describe current knowledge of the factors that mediate immune cell trafficking to pancreatic islets during T1D progression.
Collapse
Affiliation(s)
- A. M. Sandor
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - J. Jacobelli
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| | - R. S. Friedman
- Department of Immunology and MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
- Department of Biomedical ResearchNational Jewish HealthDenverCOUSA
| |
Collapse
|
22
|
Abdellatif AM, Jensen Smith H, Harms RZ, Sarvetnick NE. Human Islet Response to Selected Type 1 Diabetes-Associated Bacteria: A Transcriptome-Based Study. Front Immunol 2019; 10:2623. [PMID: 31781116 PMCID: PMC6857727 DOI: 10.3389/fimmu.2019.02623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from destruction of pancreatic β-cells. T1D subjects were recently shown to harbor distinct intestinal microbiome profiles. Based on these findings, the role of gut bacteria in T1D is being intensively investigated. The mechanism connecting intestinal microbial homeostasis with the development of T1D is unknown. Specific gut bacteria such as Bacteroides dorei (BD) and Ruminococcus gnavus (RG) show markedly increased abundance prior to the development of autoimmunity. One hypothesis is that these bacteria might traverse the damaged gut barrier, and their constituents elicit a response from human islets that causes metabolic abnormalities and inflammation. We have tested this hypothesis by exposing human islets to BD and RG in vitro, after which RNA-Seq analysis was performed. The bacteria altered expression of many islet genes. The commonly upregulated genes by these bacteria were cytokines, chemokines and enzymes, suggesting a significant effect of gut bacteria on islet antimicrobial and biosynthetic pathways. Additionally, each bacteria displayed a unique set of differentially expressed genes (DEGs). Ingenuity pathway analysis of DEGs revealed that top activated pathways and diseases included TREM1 signaling and inflammatory response, illustrating the ability of bacteria to induce islet inflammation. The increased levels of selected factors were confirmed using immunoblotting and ELISA methods. Our data demonstrate that islets produce a complex anti-bacterial response. The response includes both symbiotic and pathogenic aspects. Both oxidative damage and leukocyte recruitment factors were prominent, which could induce beta cell damage and subsequent autoimmunity.
Collapse
Affiliation(s)
- Ahmed M. Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Heather Jensen Smith
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert Z. Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora E. Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
23
|
Kanevskiy L, Erokhina S, Kobyzeva P, Streltsova M, Sapozhnikov A, Kovalenko E. Dimorphism of HLA-E and its Disease Association. Int J Mol Sci 2019; 20:ijms20215496. [PMID: 31690066 PMCID: PMC6862560 DOI: 10.3390/ijms20215496] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 02/07/2023] Open
Abstract
HLA-E is a nonclassical member of the major histocompatibility complex class I gene locus. HLA-E protein shares a high level of homology with MHC Ia classical proteins: it has similar tertiary structure, associates with β2-microglobulin, and is able to present peptides to cytotoxic lymphocytes. The main function of HLA-E under normal conditions is to present peptides derived from the leader sequences of classical HLA class I proteins, thus serving for monitoring of expression of these molecules performed by cytotoxic lymphocytes. However, opposite to multiallelic classical MHC I genes, HLA-E in fact has only two alleles—HLA-E*01:01 and HLA-E*01:03—which differ by one nonsynonymous amino acid substitution at position 107, resulting in an arginine in HLA-E*01:01 (HLA-ER) and glycine in HLA-E*01:03 (HLA-EG). In contrast to HLA-ER,HLA-EG has higher affinity to peptide, higher surface expression, and higher thermal stability of the corresponding protein, and it is more ancient than HLA-ER, though both alleles are presented in human populations in nearly equal frequencies. In the current review, we aimed to uncover the reason of the expansion of the younger allele, HLA-ER, by analysis of associations of both HLA-E alleles with a number of diseases, including viral and bacterial infections, cancer, and autoimmune disorders.
Collapse
Affiliation(s)
- Leonid Kanevskiy
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Sofya Erokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Polina Kobyzeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Maria Streltsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Alexander Sapozhnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| | - Elena Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10, Miklukho-Maklaya St., Moscow 117997, Russia.
| |
Collapse
|
24
|
Bertol BC, Dias FC, da Silva DM, Zambelli Ramalho LN, Donadi EA. Human Antigen Leucocyte (HLA)-G and HLA-E are differentially expressed in pancreatic disorders. Hum Immunol 2019; 80:948-954. [PMID: 31561913 DOI: 10.1016/j.humimm.2019.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Little information is available regarding the expression of the immunomodulatory Human Leukocyte Antigen (HLA)-G and -E molecules in pancreatic disorders. AIM To analyze HLA-G and -E expression in specimens of alcoholic chronic pancreatitis (ACP), idiopathic chronic pancreatitis (ICP), type 1 (T1D) and type 2 diabetes (T2D) and in histologically normal pancreas (HNP). METHODS HLA-G and -E expression (ACP = 30, ICP = 10, T1D = 10, T2D = 30 and HNP = 20) was evaluated by immunohistochemistry in three different areas (acini, islets and inflammatory infiltrate). RESULTS Acini and islets from HNP specimens exhibited higher HLA-G and -E expression compared to corresponding areas from all other patient groups. In inflammatory infiltrate, HLA-G and -E expression was observed only among the pancreatic disorders. We observed higher HLA-G and -E expression in acini from T2D compared to ACP, as well as higher HLA-G expression compared to ICP. CONCLUSION The decreased expression of HLA-G and -E in islets and acini together with the expression of these molecules in the inflammatory infiltrating cells were shared features among chronic inflammatory and autoimmune pancreatic disorders evaluated in this study, possibly reflecting tissue damage.
Collapse
Affiliation(s)
- Bruna Cristina Bertol
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Fabrício César Dias
- Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Deisy Mara da Silva
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Leandra Náira Zambelli Ramalho
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| | - Eduardo Antônio Donadi
- Postgraduate Program of Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil; Department of Medicine, Division of Clinical Immunology, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, ZIP Code: 14049-900 Ribeirão Preto, Brazil.
| |
Collapse
|
25
|
Villalba A, Fonolleda M, Murillo M, Rodriguez-Fernandez S, Ampudia RM, Perna-Barrull D, Raina MB, Quirant-Sanchez B, Planas R, Teniente-Serra A, Bel J, Vives-Pi M. Partial remission and early stages of pediatric type 1 diabetes display immunoregulatory changes. A pilot study. Transl Res 2019; 210:8-25. [PMID: 30953609 DOI: 10.1016/j.trsl.2019.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/04/2019] [Accepted: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is a chronic metabolic disease of unknown etiology that results from β-cell destruction. The onset of the disease, which arises after a long asymptomatic period of autoimmune attack, may be followed by a relapsing and remitting progression, a phenomenon that is most evident during the partial remission phase (PR). This stage lasts for a few months, shows minor requirements of exogenous insulin and could be explained by a recovery of immunological tolerance. This study aims to identify new biomarkers at early stages of pediatric T1D that reflect immunoregulatory changes. To that end, pediatric patients with T1D (n = 52) and age-related control subjects (n = 30) were recruited. Immune response-related molecules and lymphocyte subsets were determined starting at T1D onset and until the second year of progression. Results showed that circulating TGF-β levels decreased during PR, and that betatrophin concentration was increased in all the considered stages without differing among studied checkpoints. Moreover, an increase of regulatory T, B and NK subsets was found during T1D progression, probably reflecting an attempt to restore self-tolerance. By contrast, a reduction in monocyte levels was observed at the early stages of diabetes. The results reveal significant changes in immunological parameters during the different early stages of T1D in children, which could ultimately serve as potential biomarkers to characterize the progression of T1D.
Collapse
Affiliation(s)
- Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Mireia Fonolleda
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Marta Murillo
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | | | - Rosa-Maria Ampudia
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Maria Belen Raina
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | | | - Raquel Planas
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Aina Teniente-Serra
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain
| | - Joan Bel
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Autonomous University of Barcelona, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Badalona, Spain; CIBER of Diabetes and Associated Metabolic Disease (CIBERDEM). ISCIII, Barcelona, Spain.
| |
Collapse
|
26
|
Qian L, Shi H, Ding M. Comparative analysis of gene expression profiles in children with type 1 diabetes mellitus. Mol Med Rep 2019; 19:3989-4000. [PMID: 30942443 PMCID: PMC6472094 DOI: 10.3892/mmr.2019.10099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/22/2018] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that is typically diagnosed in children. The aim of the present study was to identify potential genes involved in the pathogenesis of childhood T1D. Two datasets of mRNA expression in children with T1D were obtained from the Gene Expression Omnibus (GEO). Differentially expressed genes (DEGs) in children with T1D were identified. Functional analysis was performed and a protein‑protein interaction (PPI) network was constructed, as was a transcription factor (TF)‑target network. The expression of selected DEGs was further assessed using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis. Electronic validation and diagnostic value analysis of the identified DEGs [cytokine inducible SH2 containing protein (CISH), SR‑related CTD associated factor 11 (SCAF11), estrogen receptor 1 (ESR1), Rho GTPase activating protein 25 (ARHGAP25), major histocompatibility complex, class II, DR β4 (HLA‑DRB4) and interleukin 23 subunit α (IL23A)] was performed in the GEO dataset. Compared with the normal control group, a total of 1,467 DEGs with P<0.05 were identified in children with T1D. CISH and SCAF11 were determined to be the most up‑ and downregulated genes, respectively. Heterogeneous nuclear ribonucleoprotein D (HNRNPD; degree=33), protein kinase AMP‑activated catalytic subunit α1 (PRKAA1; degree=11), integrin subunit α4 (ITGA4; degree=8) and ESR1 (degree=8) were identified in the PPI network as high‑degree genes. ARHGAP25 (degree=12), HNRNPD (degree=10), HLA‑DRB4 (degree=10) and IL23A (degree=9) were high‑degree genes identified in the TF‑target network. RT‑qPCR revealed that the expression of HNRNPD, PRKAA1, ITGA4 and transporter 2, ATP binding cassette subfamily B member was consistent with the results of the integrated analysis. Furthermore, the results of the electronic validation were consistent with the bioinformatics analysis. SCAF11, CISH and ARHGAP25 were identified to possess value as potential diagnostic markers for children with T1D. In conclusion, identifying DEGs in children with T1D may contribute to our understanding of its pathogenesis, and such DEGs may be used as diagnostic biomarkers for children with T1D.
Collapse
Affiliation(s)
- Liwei Qian
- Department of Pediatrics, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252000, P.R. China
| | - Honglei Shi
- Department of Pediatrics, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252000, P.R. China
| | - Meili Ding
- Department of Pediatrics, Shandong Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
27
|
METTL14 is essential for β-cell survival and insulin secretion. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2138-2148. [PMID: 31029827 DOI: 10.1016/j.bbadis.2019.04.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/14/2022]
Abstract
Defects in the development, maintenance or expansion of β-cell mass can result in impaired glucose metabolism and diabetes. N6-methyladenosine affects mRNA stability and translation efficiency, and impacts cell differentiation and stress response. To determine if there is a role for m6A in β-cells, we investigated the effect of Mettl14, a key component of the m6A methyltransferase complex, on β-cell survival and function using rat insulin-2 promoter-Cre-mediated deletion of Mettl14 mouse line (βKO). We found that βKO mice with normal chow exhibited glucose intolerance, lower levels of glucose-stimulated insulin secretion, increased β-cell death and decreased β-cell mass. In addition, HFD-fed βKO mice developed glucose intolerance, decreased β-cell mass and proliferation, exhibited lower body weight, increased adipose tissue mass, and enhanced insulin sensitivity due to enhanced AKT signaling and decreased gluconeogenesis in the liver. HFD-fed βKO mice also showed a decrease in de novo lipogenesis, and an increase in lipolysis in the liver. RNA sequencing in islets revealed that Mettl14 deficiency in β-cells altered mRNA expression levels of some genes related to cell death and inflammation. Together, we showed that Mettl14 in β-cells plays a key role in β-cell survival, insulin secretion and glucose homeostasis.
Collapse
|
28
|
Stefan-Lifshitz M, Karakose E, Cui L, Ettela A, Yi Z, Zhang W, Tomer Y. Epigenetic modulation of β cells by interferon-α via PNPT1/mir-26a/TET2 triggers autoimmune diabetes. JCI Insight 2019; 4:126663. [PMID: 30721151 DOI: 10.1172/jci.insight.126663] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Type 1 diabetes (T1D) is caused by autoimmune destruction of pancreatic β cells. Mounting evidence supports a central role for β cell alterations in triggering the activation of self-reactive T cells in T1D. However, the early deleterious events that occur in β cells, underpinning islet autoimmunity, are not known. We hypothesized that epigenetic modifications induced in β cells by inflammatory mediators play a key role in initiating the autoimmune response. We analyzed DNA methylation (DNAm) patterns and gene expression in human islets exposed to IFN-α, a cytokine associated with T1D development. We found that IFN-α triggers DNA demethylation and increases expression of genes controlling inflammatory and immune pathways. We then demonstrated that DNA demethylation was caused by upregulation of the exoribonuclease, PNPase old-35 (PNPT1), which caused degradation of miR-26a. This in turn promoted the upregulation of ten-eleven translocation 2 (TET2) enzyme and increased 5-hydroxymethylcytosine levels in human islets and pancreatic β cells. Moreover, we showed that specific IFN-α expression in the β cells of IFNα-INS1CreERT2 transgenic mice led to development of T1D that was preceded by increased islet DNA hydroxymethylation through a PNPT1/TET2-dependent mechanism. Our results suggest a new mechanism through which IFN-α regulates DNAm in β cells, leading to changes in expression of genes in inflammatory and immune pathways that can initiate islet autoimmunity in T1D.
Collapse
Affiliation(s)
- Mihaela Stefan-Lifshitz
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | | | - Lingguang Cui
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Abora Ettela
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| | - Zhengzi Yi
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Weijia Zhang
- Department of Medicine Bioinformatics Core, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yaron Tomer
- Division of Endocrinology and the Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
29
|
Perna-Barrull D, Rodriguez-Fernandez S, Pujol-Autonell I, Gieras A, Ampudia-Carrasco RM, Villalba A, Glau L, Tolosa E, Vives-Pi M. Prenatal Betamethasone interferes with immune system development and alters target cells in autoimmune diabetes. Sci Rep 2019; 9:1235. [PMID: 30718757 PMCID: PMC6362293 DOI: 10.1038/s41598-018-37878-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 12/17/2018] [Indexed: 01/03/2023] Open
Abstract
Non-genetic factors are crucial in the pathogenesis of type 1 diabetes (T1D), a disease caused by autoimmunity against insulin-producing β-cells. Exposure to medications in the prenatal period may influence the immune system maturation, thus altering self-tolerance. Prenatal administration of betamethasone –a synthetic glucocorticoid given to women at risk of preterm delivery– may affect the development of T1D. It has been previously demonstrated that prenatal betamethasone administration protects offspring from T1D development in nonobese diabetic (NOD) mice. The direct effect of betamethasone on the immature and mature immune system of NOD mice and on target β-cells is analysed in this paper. In vitro, betamethasone decreased lymphocyte viability and induced maturation-resistant dendritic cells, which in turn impaired γδ T cell proliferation and decreased IL-17 production. Prenatal betamethasone exposure caused thymus hypotrophy in newborn mice as well as alterations in immune cells subsets. Furthermore, betamethasone decreased β-cell growth, reduced C-peptide secretion and altered the expression of genes related to autoimmunity, metabolism and islet mass in T1D target tissue. These results support the protection against T1D in the betamethasone-treated offspring and demonstrate that this drug alters the developing immune system and β-cells. Understanding how betamethasone generates self-tolerance could have potential clinical relevance in T1D.
Collapse
Affiliation(s)
- David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Anna Gieras
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rosa M Ampudia-Carrasco
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Laura Glau
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain. .,CIBERDEM, Barcelona, Spain.
| |
Collapse
|
30
|
Casasnovas J, Jo Y, Rao X, Xuei X, Brown ME, Kua KL. High glucose alters fetal rat islet transcriptome and induces progeny islet dysfunction. J Endocrinol 2019; 240:309-323. [PMID: 30508415 DOI: 10.1530/joe-18-0493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
Offspring of diabetic mothers are susceptible to developing type 2 diabetes due to pancreatic islet dysfunction. However, the initiating molecular pathways leading to offspring pancreatic islet dysfunction are unknown. We hypothesized that maternal hyperglycemia alters offspring pancreatic islet transcriptome and negatively impacts offspring islet function. We employed an infusion model capable of inducing localized hyperglycemia in fetal rats residing in the left uterine horn, thus avoiding other factors involved in programming offspring pancreatic islet health. While maintaining euglycemia in maternal dams and right uterine horn control fetuses, hyperglycemic fetuses in the left uterine horn had higher serum insulin and pancreatic beta cell area. Upon completing infusion from GD20 to 22, RNA sequencing was performed on GD22 islets to identify the hyperglycemia-induced altered gene expression. Ingenuity pathway analysis of the altered transcriptome found that diabetes mellitus and inflammation/cell death pathways were enriched. Interestingly, the downregulated genes modulate more diverse biological processes, which includes responses to stimuli and developmental processes. Next, we performed ex and in vivo studies to evaluate islet cell viability and insulin secretory function in weanling and adult offspring. Pancreatic islets of weanlings exposed to late gestation hyperglycemia had decreased cell viability in basal state and glucose-induced insulin secretion. Lastly, adult offspring exposed to in utero hyperglycemia also exhibited glucose intolerance and insulin secretory dysfunction. Together, our results demonstrate that late gestational hyperglycemia alters the fetal pancreatic islet transcriptome and increases offspring susceptibility to developing pancreatic islet dysfunction.
Collapse
Affiliation(s)
- Jose Casasnovas
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yunhee Jo
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xi Rao
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xiaoling Xuei
- Center for Medical Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mary E Brown
- The Indiana Center for Biological Microscopy, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kok Lim Kua
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Fonolleda M, Murillo M, Vázquez F, Bel J, Vives-Pi M. Remission Phase in Paediatric Type 1 Diabetes: New Understanding and Emerging Biomarkers. Horm Res Paediatr 2018; 88:307-315. [PMID: 28772271 DOI: 10.1159/000479030] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease of unknown aetiology that results from the autoimmune destruction of the β-cells. Clinical onset with classic hyperglycaemic symptoms occurs much more frequently in children and young adults, when less than 30% of β-cells remain. Exogenous insulin administration is the only treatment for patients. However, due to glucose dysregulation, severe complications develop gradually. Recently, an increase in T1D incidence has been reported worldwide, especially in children. Shortly after diagnosis, T1D patients often experience partial remission called "honeymoon phase," which lasts a few months, with minor requirements of exogenous insulin. In this stage, the remaining β-cells are still able to produce enough insulin to reduce the administration of exogenous insulin. A recovery of immunological tolerance to β-cell autoantigens could explain the regeneration attempt in this remission phase. This mini-review focuses on the remission phase in childhood T1D. Understanding this period and finding those peripheral biomarkers that are signs of immunoregulation or islet regeneration could contribute to the identification of patients with a better glycaemic prognosis and a lower risk of secondary complications. This remission phase could be a good checkpoint for the administration of future immunotherapies.
Collapse
Affiliation(s)
- Mireia Fonolleda
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Murillo
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Federico Vázquez
- Endocrinology and Nutrition and Clinical Trials Unit, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Joan Bel
- Pediatrics Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute and University Hospital, Badalona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Reichhardt MP, Meri S. Intracellular complement activation-An alarm raising mechanism? Semin Immunol 2018; 38:54-62. [PMID: 29631809 DOI: 10.1016/j.smim.2018.03.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
Abstract
It has become increasingly apparent that the complement system, being an ancient defense mechanism, is not operative only in the extracellular milieu but also intracellularly. In addition to the known synthetic machinery in the liver and by macrophages, many other cell types, including lymphocytes, adipocytes and epithelial cells produce selected complement components. Activation of e.g. C3 and C5 inside cells may have multiple effects ranging from direct antimicrobial defense to cell differentiation and possible influence on metabolism. Intracellular activation of C3 and C5 in T cells is involved in the maintenance of immunological tolerance and promotes differentiation of T helper cells into Th1-type cells that activate cell-mediated immune responses. Adipocytes are unique in producing many complement sensor proteins (like C1q) and Factor D (adipsin), the key enzyme in promoting alternative pathway amplification. The effects of complement activation products are mediated by intracellular and cell membrane receptors, like C3aR, C5aR1, C5aR2 and the complement regulator MCP/CD46, often jointly with other receptors like the T cell receptor, Toll-like receptors and those of the inflammasomes. These recent observations link complement activation to cellular metabolic processes, intracellular defense reactions and to diverse adaptive immune responses. The complement components may thus be viewed as intracellular alarm molecules involved in the cellular danger response.
Collapse
Affiliation(s)
- M P Reichhardt
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom.
| | - S Meri
- Department of Bacteriology and Immunology, Haartman Institute, Immunobiology Research Program, University of Helsinki, Helsinki, Finland; Helsinki University Central Hospital Laboratory (HUSLAB), Helsinki, Finland.
| |
Collapse
|
33
|
Liu M, Lu W, Hou Q, Wang B, Sheng Y, Wu Q, Li B, Liu X, Zhang X, Li A, Zhang H, Xiu R. Gene expression profiles of glucose toxicity-exposed islet microvascular endothelial cells. Microcirculation 2018; 25:e12450. [PMID: 29575333 DOI: 10.1111/micc.12450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/10/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Islet microcirculation is mainly composed by IMECs. The aim of the study was to investigate the differences in gene expression profiles of IMECs upon glucose toxicity exposure and insulin treatment. METHODS IMECs were treated with 5.6 mmol L-1 glucose, 35 mmol L-1 glucose, and 35 mmol L-1 glucose plus 10-8 mol L-1 insulin, respectively. Gene expression profiles were determined by microarray and verified by qPCR. GO terms and KEGG analysis were performed to assess the potential roles of differentially expressed genes. The interaction and expression tendency of differentially expressed genes were analyzed by Path-Net algorithm. RESULTS Compared with glucose toxicity-exposed IMECs, 1574 mRNAs in control group and 2870 mRNAs in insulin-treated IMECs were identified with differential expression, respectively. GO and KEGG pathway analysis revealed that these genes conferred roles in regulation of apoptosis, proliferation, migration, adhesion, and metabolic process etc. Additionally, MAPK signaling pathway and apoptosis were the dominant nodes in Path-Net. IMECs survival and function pathways were significantly changed, and the expression tendency of genes from euglycemia and glucose toxicity exposure to insulin treatment was revealed and enriched in 7 patterns. CONCLUSIONS Our study provides a microcirculatory framework for gene expression profiles of glucose toxicity-exposed IMECs.
Collapse
Affiliation(s)
- Mingming Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenbao Lu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Bing Wang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youming Sheng
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qingbin Wu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bingwei Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueting Liu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiaoyan Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ailing Li
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Honggang Zhang
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ruijuan Xiu
- Institute of Microcirculation, Key Laboratory of Microcirculation, Ministry of Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
34
|
Kaminitz A, Ash S, Askenasy N. Neutralization Versus Reinforcement of Proinflammatory Cytokines to Arrest Autoimmunity in Type 1 Diabetes. Clin Rev Allergy Immunol 2018; 52:460-472. [PMID: 27677500 DOI: 10.1007/s12016-016-8587-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
As physiological pathways of intercellular communication produced by all cells, cytokines are involved in the pathogenesis of inflammatory insulitis as well as pivotal mediators of immune homeostasis. Proinflammatory cytokines including interleukins, interferons, transforming growth factor-β, tumor necrosis factor-α, and nitric oxide promote destructive insulitis in type 1 diabetes through amplification of the autoimmune reaction, direct toxicity to β-cells, and sensitization of islets to apoptosis. The concept that neutralization of cytokines may be of therapeutic benefit has been tested in few clinical studies, which fell short of inducing sustained remission or achieving disease arrest. Therapeutic failure is explained by the redundant activities of individual cytokines and their combinations, which are rather dispensable in the process of destructive insulitis because other cytolytic pathways efficiently compensate their deficiency. Proinflammatory cytokines are less redundant in regulation of the inflammatory reaction, displaying protective effects through restriction of effector cell activity, reinforcement of suppressor cell function, and participation in islet recovery from injury. Our analysis suggests that the role of cytokines in immune homeostasis overrides their contribution to β-cell death and may be used as potent immunomodulatory agents for therapeutic purposes rather than neutralized.
Collapse
Affiliation(s)
- Ayelet Kaminitz
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Shifra Ash
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202
| | - Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, 14 Kaplan Street, Petach Tikva, Israel, 49202.
| |
Collapse
|
35
|
Rodriguez-Fernandez S, Pujol-Autonell I, Brianso F, Perna-Barrull D, Cano-Sarabia M, Garcia-Jimeno S, Villalba A, Sanchez A, Aguilera E, Vazquez F, Verdaguer J, Maspoch D, Vives-Pi M. Phosphatidylserine-Liposomes Promote Tolerogenic Features on Dendritic Cells in Human Type 1 Diabetes by Apoptotic Mimicry. Front Immunol 2018; 9:253. [PMID: 29491866 PMCID: PMC5817077 DOI: 10.3389/fimmu.2018.00253] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation. These liposomes contained phosphatidylserine (PS)—the main signal of the apoptotic cell membrane—and β-cell autoantigens. To move toward a clinical application, PS-liposomes with optimum size and composition for phagocytosis were loaded with human insulin peptides and tested on DCs from patients with T1D and control age-related subjects. PS accelerated phagocytosis of liposomes with a dynamic typical of apoptotic cell clearance, preserving DCs viability. After PS-liposomes phagocytosis, the expression pattern of molecules involved in efferocytosis, antigen presentation, immunoregulation, and activation in DCs concurred with a tolerogenic functionality, both in patients and control subjects. Furthermore, DCs exposed to PS-liposomes displayed decreased ability to stimulate autologous T cell proliferation. Moreover, transcriptional changes in DCs from patients with T1D after PS-liposomes phagocytosis pointed to an immunoregulatory prolife. Bioinformatics analysis showed 233 differentially expressed genes. Genes involved in antigen presentation were downregulated, whereas genes pertaining to tolerogenic/anti-inflammatory pathways were mostly upregulated. In conclusion, PS-liposomes phagocytosis mimics efferocytosis and leads to phenotypic and functional changes in human DCs, which are accountable for tolerance induction. The herein reported results reinforce the potential of this novel immunotherapy to re-establish immunological tolerance, opening the door to new therapeutic approaches in the field of autoimmunity.
Collapse
Affiliation(s)
- Silvia Rodriguez-Fernandez
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Irma Pujol-Autonell
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Brianso
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - David Perna-Barrull
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Mary Cano-Sarabia
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Sonia Garcia-Jimeno
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain
| | - Adrian Villalba
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain
| | - Alex Sanchez
- Statistics and Bioinformatics Unit, Vall d'Hebron Research Institute, Barcelona, Spain.,Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Eva Aguilera
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Federico Vazquez
- Endocrinology Section, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Joan Verdaguer
- Department of Experimental Medicine, University of Lleida & IRBLleida, Lleida, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Bellaterra, Spain.,ICREA, Barcelona, Spain
| | - Marta Vives-Pi
- Immunology Section, Germans Trias i Pujol Research Institute, Autonomous University of Barcelona, Badalona, Spain.,CIBERDEM, ISCiii, Madrid, Spain
| |
Collapse
|
36
|
Henschel AM, Cabrera SM, Kaldunski ML, Jia S, Geoffrey R, Roethle MF, Lam V, Chen YG, Wang X, Salzman NH, Hessner MJ. Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and β-cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS One 2018; 13:e0190351. [PMID: 29293587 PMCID: PMC5749787 DOI: 10.1371/journal.pone.0190351] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and β-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by β-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.
Collapse
Affiliation(s)
- Angela M. Henschel
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Susanne M. Cabrera
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mary L. Kaldunski
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shuang Jia
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Rhonda Geoffrey
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mark F. Roethle
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Vy Lam
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Yi-Guang Chen
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- National Institute of Diabetes and Digestive and Kidney Diseases, the National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nita H. Salzman
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin J. Hessner
- The Max McGee National Research Center for Juvenile Diabetes at the Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- The Department of Pediatrics at the Medical College of Wisconsin, and The Children’s Research Institute of Children’s Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
37
|
Dos Santos RS, Marroqui L, Grieco FA, Marselli L, Suleiman M, Henz SR, Marchetti P, Wernersson R, Eizirik DL. Protective Role of Complement C3 Against Cytokine-Mediated β-Cell Apoptosis. Endocrinology 2017; 158:2503-2521. [PMID: 28582497 PMCID: PMC5551554 DOI: 10.1210/en.2017-00104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/31/2017] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes is a chronic autoimmune disease characterized by pancreatic islet inflammation and β-cell destruction by proinflammatory cytokines and other mediators. Based on RNA sequencing and protein-protein interaction analyses of human islets exposed to proinflammatory cytokines, we identified complement C3 as a hub for some of the effects of cytokines. The proinflammatory cytokines interleukin-1β plus interferon-γ increase C3 expression in rodent and human pancreatic β-cells, and C3 is detected by histology in and around the islets of diabetic patients. Surprisingly, C3 silencing exacerbates apoptosis under both basal condition and following exposure to cytokines, and it increases chemokine expression upon cytokine treatment. C3 exerts its prosurvival effects via AKT activation and c-Jun N-terminal kinase inhibition. Exogenously added C3 also protects against cytokine-induced β-cell death and partially rescues the deleterious effects of inhibition of endogenous C3. These data suggest that locally produced C3 is an important prosurvival mechanism in pancreatic β-cells under a proinflammatory assault.
Collapse
Affiliation(s)
- Reinaldo S. Dos Santos
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Laura Marroqui
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Fabio A. Grieco
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | | | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Rasmus Wernersson
- Intomics A/S, 2800 Lyngby, Denmark
- Department of Bio and Health Informatics, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Decio L. Eizirik
- Université Libre de Bruxelles Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Welbio, Medical Faculty, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
38
|
Jean-Baptiste VSE, Xia CQ, Clare-Salzler MJ, Horwitz MS. Type 1 Diabetes and Type 1 Interferonopathies: Localization of a Type 1 Common Thread of Virus Infection in the Pancreas. EBioMedicine 2017; 22:10-17. [PMID: 28663145 PMCID: PMC5552106 DOI: 10.1016/j.ebiom.2017.06.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 02/08/2023] Open
Abstract
Type 1 diabetes (T1D) has been associated with both genetic and environmental factors. Increasing incidence of T1D worldwide is prompting researchers to adopt different approaches to explain the biology of T1D, beyond the presence and activity of autoreactive lymphocytes. In this review, we propose inflammatory pathways as triggers for T1D. Within the scope of those inflammatory pathways and in understanding the pathogenesis of disease, we suggest that viruses, in particular Coxsackieviruses, act by causing a type 1 interferonopathy within the pancreas and the microenvironment of the islet. As such, this connection and common thread represents an exciting platform for the development of new diagnostic, treatment and/or prevention options.
Collapse
Affiliation(s)
- Virginie S E Jean-Baptiste
- Department of Microbiology and Immunology, Infection, Inflammation, and Immunity (I3) Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Chang-Qing Xia
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | - Michael J Clare-Salzler
- Department of Endocrinology, Diabetes and Metabolism, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Marc S Horwitz
- Department of Microbiology and Immunology, Infection, Inflammation, and Immunity (I3) Research Group, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
39
|
Plasma-derived exosome characterization reveals a distinct microRNA signature in long duration Type 1 diabetes. Sci Rep 2017; 7:5998. [PMID: 28729721 PMCID: PMC5519761 DOI: 10.1038/s41598-017-05787-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/05/2017] [Indexed: 12/22/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from an autoimmune attack against the insulin-producing ß cells which leads to chronic hyperglycemia. Exosomes are lipid vesicles derived from cellular multivesicular bodies that are enriched in specific miRNAs, potentially providing a disease-specific diagnostic signature. To assess the value of exosome miRNAs as biomarkers for T1DM, miRNA expression in plasma-derived exosomes was measured. Nanoparticle tracking analysis and transmission electron microscopy confirmed the presence of plasma-derived exosomes (EXOs) isolated by differential centrifugation. Total RNA extracted from plasma-derived EXOs of 12 T1DM and 12 control subjects was hybridized onto Nanostring human v2 miRNA microarray array and expression data were analyzed on nSolver analysis software. We found 7 different miRNAs (1 up-regulated and 6 down-regulated), that were differentially expressed in T1DM. The selected candidate miRNAs were validated by qRT-PCR analysis of cohorts of 24 T1DM and 24 control subjects. Most of the deregulated miRNAs are involved in progression of T1DM. These findings highlight the potential of EXOs miRNA profiling in the diagnosis as well as new insights into the molecular mechanisms involved in T1DM.
Collapse
|
40
|
Singh H, Yu Y, Suh MJ, Torralba MG, Stenzel RD, Tovchigrechko A, Thovarai V, Harkins DM, Rajagopala SV, Osborne W, Cogen FR, Kaplowitz PB, Nelson KE, Madupu R, Pieper R. Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function. Theranostics 2017; 7:2704-2717. [PMID: 28819457 PMCID: PMC5558563 DOI: 10.7150/thno.19679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.
Collapse
|
41
|
Jia X, Yu H, Zhang H, Si Y, Tian D, Zhao X, Luan J, Jia H. Integrated analysis of different microarray studies to identify candidate genes in type 1 diabetes. J Diabetes 2017; 9:149-157. [PMID: 26930153 DOI: 10.1111/1753-0407.12391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Type 1 diabetes (T1D), an autoimmune disease, occurs most commonly in children. Identifying altered gene expression in peripheral blood mononuclear cells (PBMCs) of T1D may lead to new strategies for preserving or improving β-ell function in patients with T1D. METHODS The Gene Expression Omnibus database was searched for microarray studies in PBMCs of T1D. Subsequently, gene expression datasets from multiple microarray studies were integrated to obtain differentially expressed genes (DEGs) between T1D and normal controls (NC). Gene function analysis was performed to determine the functions of the DEGs identified. RESULTS Four microarray studies were available for analysis, including 199 T1D samples and 74 NC samples. Analysis revealed 695 genes that were significantly differentially expressed in PBMCs from T1D compared with NC samples, with 450 upregulated and 245 downregulated. Signal transduction (gene ontology [GO]: 0007165; false discovery rate [FDR] = 1.54 × 10-7 ) and protein binding (GO: 0005515; FDR = 2.93 × 10-24 ) were significantly enriched for the GO categories of biological processes and molecular functions, respectively. The most significant pathway in the Kyoto Encyclopedia of Genes and Genomes analysis was arachidonic acid metabolism (FDR = 1.44 × 10-3 ). Protein-protein interaction network analysis showed that the significant hub proteins contained immature colon carcinoma transcript 1 (ICT1; degree = 214; clustering coefficient [C] = 4.39 × 10-5 ), zinc finger and BTB domain containing 16 (ZBTB16; degree = 112; C = 8.04 × 10-4 ), and SERTA domain containing 1 (SERTAD1; degree = 38; C = 0.0014). CONCLUSIONS This integrated analysis will help develop improved therapies and interventions for T1D by identifying novel drug targets.
Collapse
Affiliation(s)
- Xiaowei Jia
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Haotian Yu
- Department of Medicine, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hui Zhang
- Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, China
| | - Yanfang Si
- Department of Ophthalmology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Dengmei Tian
- Department of Hematology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xin Zhao
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| | - Jin Luan
- Department of Disease Control, Center for Disease Control and Prevention of the Chinese Armed Police Force (CAPF), Beijing, China
| | - Hetang Jia
- Department of Endocrinology, The 309 Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
42
|
Huang C, Gu G. Effective Isolation of Functional Islets from Neonatal Mouse Pancreas. J Vis Exp 2017. [PMID: 28117808 DOI: 10.3791/55160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Perfusion-based islet-isolation protocols from large mammalian pancreata are well established. Such protocols are readily conducted in many laboratories due to the large size of the pancreatic duct that allows for ready collagenase injection and subsequent tissue perfusion. In contrast, islet isolation from small pancreata, like that of neonatal mice, is challenging because perfusion is not readily achievable in the small pancreata. Here we describe a detailed simple procedure that recovers substantial numbers of islets from newly born mice with visual assistance. Freshly dissected whole pancreata were digested with 0.5 mg/mL collagenase IV dissolved in Hanks' Balanced Salt Solution (HBSS) at 37 °C, in microcentrifuge tubes. Tubes were tapped regularly to aid tissue dispersal. When most of the tissue was dispersed to small clusters around 1 mm, lysates were washed three to four times with culture media with 10% fetal bovine serum (FBS). Islet clusters, devoid of recognizable acinar tissues, can then be recovered under dissecting stereoscope. This method recovers 20 - 80 small- to large-sized islets per pancreas of newly born mouse. These islets are suitable for most conceivable downstream assays, including insulin secretion, gene expression, and culture. An example of insulin secretion assay is presented to validate the isolation process. The genetic background and degree of digestion are the largest factors determining the yield. Freshly made collagenase solution with high activity is preferred, as it aids in endocrine-exocrine isolation. The presence of cations [calcium (Ca2+) and magnesium (Mg2+)] in all solutions and fetal bovine serum in the wash/picking media are necessary for good yield of islets with proper integrity. A dissecting scope with good contrast and magnification will also help.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cell and Development Biology, Vanderbilt University Medical School
| | - Guoqiang Gu
- Department of Cell and Development Biology, Vanderbilt University Medical School;
| |
Collapse
|
43
|
T Cell Repertoire Diversity Is Decreased in Type 1 Diabetes Patients. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:338-348. [PMID: 28024918 PMCID: PMC5200939 DOI: 10.1016/j.gpb.2016.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 02/01/2023]
Abstract
Type 1 diabetes mellitus (T1D) is an immune-mediated disease. The autoreactive T cells in T1D patients attack and destroy their own pancreatic cells. In order to systematically investigate the potential autoreactive T cell receptors (TCRs), we used a high-throughput immune repertoire sequencing technique to profile the spectrum of TCRs in individual T1D patients and controls. We sequenced the T cell repertoire of nine T1D patients, four type 2 diabetes (T2D) patients, and six nondiabetic controls. The diversity of the T cell repertoire in T1D patients was significantly decreased in comparison with T2D patients (P=7.0E-08 for CD4+ T cells, P=1.4E-04 for CD8+ T cells) and nondiabetic controls (P=2.7E-09 for CD4+ T cells, P=7.6E-06 for CD8+ T cells). Moreover, T1D patients had significantly more highly-expanded T cell clones than T2D patients (P=5.2E-06 for CD4+ T cells, P=1.9E-07 for CD8+ T cells) and nondiabetic controls (P=1.7E-07 for CD4+ T cells, P=3.3E-03 for CD8+ T cells). Furthermore, we identified a group of highly-expanded T cell receptor clones that are shared by more than two T1D patients. Although further validation in larger cohorts is needed, our data suggest that T cell receptor diversity measurements may become a valuable tool in investigating diabetes, such as using the diversity as an index to distinguish different types of diabetes.
Collapse
|
44
|
Lundberg M, Krogvold L, Kuric E, Dahl-Jørgensen K, Skog O. Expression of Interferon-Stimulated Genes in Insulitic Pancreatic Islets of Patients Recently Diagnosed With Type 1 Diabetes. Diabetes 2016; 65:3104-10. [PMID: 27422384 DOI: 10.2337/db16-0616] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/08/2016] [Indexed: 11/13/2022]
Abstract
A primary insult to the pancreatic islets of Langerhans, leading to the activation of innate immunity, has been suggested as an important step in the inflammatory process in type 1 diabetes (T1D). The aim of this study was to examine whether interferon (IFN)-stimulated genes (ISGs) are overexpressed in human T1D islets affected with insulitis. By using laser capture microdissection and a quantitative PCR array, 23 of 84 examined ISGs were found to be overexpressed by at least fivefold in insulitic islets from living patients with recent-onset T1D, participating in the Diabetes Virus Detection (DiViD) study, compared with islets from organ donors without diabetes. Most of the overexpressed ISGs, including GBP1, TLR3, OAS1, EIF2AK2, HLA-E, IFI6, and STAT1, showed higher expression in the islet core compared with the peri-islet area containing the surrounding immune cells. In contrast, the T-cell attractant chemokine CXCL10 showed an almost 10-fold higher expression in the peri-islet area than in the islet, possibly partly explaining the localization of T cells mainly to this region. In conclusion, insulitic islets from recent-onset T1D subjects show overexpression of ISGs, with an expression pattern similar to that seen in islets infected with virus or exposed to IFN-γ/interleukin-1β or IFN-α.
Collapse
Affiliation(s)
- Marcus Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Lars Krogvold
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Enida Kuric
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Knut Dahl-Jørgensen
- Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Oskar Skog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
45
|
Johnston-Carey HK, Pomatto LCD, Davies KJA. The Immunoproteasome in oxidative stress, aging, and disease. Crit Rev Biochem Mol Biol 2016; 51:268-81. [PMID: 27098648 DOI: 10.3109/10409238.2016.1172554] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Immunoproteasome has traditionally been viewed primarily for its role in peptide production for antigen presentation by the major histocompatibility complex, which is critical for immunity. However, recent research has shown that the Immunoproteasome is also very important for the clearance of oxidatively damaged proteins in homeostasis, and especially during stress and disease. The importance of the Immunoproteasome in protein degradation has become more evident as diseases characterized by protein aggregates have also been linked to deficiencies of the Immunoproteasome. Additionally, there are now diseases defined by mutations or polymorphisms within Immunoproteasome-specific subunit genes, further suggesting its crucial role in cytokine signaling and protein homeostasis (or "proteostasis"). The purpose of this review is to highlight our growing understanding of the importance of the Immunoproteasome in the management of protein quality control, and the detrimental impact of its dysregulation during disease and aging.
Collapse
Affiliation(s)
- Helen K Johnston-Carey
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Laura C D Pomatto
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA
| | - Kelvin J A Davies
- a Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center , The University of Southern California , Los Angeles , CA , USA ;,b Division of Molecular & Computational Biology, Department of Biological Sciences, Dornsife College of Letters, Arts, & Sciences , Los Angeles , CA , USA
| |
Collapse
|
46
|
Kosinová L, Cahová M, Fábryová E, Týcová I, Koblas T, Leontovyč I, Saudek F, Kříž J. Unstable Expression of Commonly Used Reference Genes in Rat Pancreatic Islets Early after Isolation Affects Results of Gene Expression Studies. PLoS One 2016; 11:e0152664. [PMID: 27035827 PMCID: PMC4817981 DOI: 10.1371/journal.pone.0152664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/17/2016] [Indexed: 12/15/2022] Open
Abstract
The use of RT-qPCR provides a powerful tool for gene expression studies; however, the proper interpretation of the obtained data is crucially dependent on accurate normalization based on stable reference genes. Recently, strong evidence has been shown indicating that the expression of many commonly used reference genes may vary significantly due to diverse experimental conditions. The isolation of pancreatic islets is a complicated procedure which creates severe mechanical and metabolic stress leading possibly to cellular damage and alteration of gene expression. Despite of this, freshly isolated islets frequently serve as a control in various gene expression and intervention studies. The aim of our study was to determine expression of 16 candidate reference genes and one gene of interest (F3) in isolated rat pancreatic islets during short-term cultivation in order to find a suitable endogenous control for gene expression studies. We compared the expression stability of the most commonly used reference genes and evaluated the reliability of relative and absolute quantification using RT-qPCR during 0-120 hrs after isolation. In freshly isolated islets, the expression of all tested genes was markedly depressed and it increased several times throughout the first 48 hrs of cultivation. We observed significant variability among samples at 0 and 24 hrs but substantial stabilization from 48 hrs onwards. During the first 48 hrs, relative quantification failed to reflect the real changes in respective mRNA concentrations while in the interval 48-120 hrs, the relative expression generally paralleled the results determined by absolute quantification. Thus, our data call into question the suitability of relative quantification for gene expression analysis in pancreatic islets during the first 48 hrs of cultivation, as the results may be significantly affected by unstable expression of reference genes. However, this method could provide reliable information from 48 hrs onwards.
Collapse
Affiliation(s)
- Lucie Kosinová
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Monika Cahová
- Department of Metabolism and Diabetes, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Fábryová
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Irena Týcová
- Transplant Laboratory, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tomáš Koblas
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Ivan Leontovyč
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Saudek
- Laboratory of Pancreatic Islets, Center of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- Department of Diabetes, Center of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jan Kříž
- Department of Diabetes, Center of Diabetes, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
47
|
Lyon J, Manning Fox JE, Spigelman AF, Kim R, Smith N, O'Gorman D, Kin T, Shapiro AMJ, Rajotte RV, MacDonald PE. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore. Endocrinology 2016; 157:560-569. [PMID: 26653569 DOI: 10.1210/en.2015-1562] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.
Collapse
Affiliation(s)
- James Lyon
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Jocelyn E Manning Fox
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Aliya F Spigelman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Ryekjang Kim
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Nancy Smith
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Doug O'Gorman
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Tatsuya Kin
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - A M James Shapiro
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Raymond V Rajotte
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| | - Patrick E MacDonald
- Alberta Diabetes Institute IsletCore (J.L., J.E.M.F., P.E.M.) and Departments of Pharmacology (J.E.M.F., A.F.S., R.K., N.S., P.E.M.) and Surgery (D.O., T.K., A.M.J.S., R.V.R.), University of Alberta, Edmonton, Canada T6G 2E1
| |
Collapse
|
48
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|
49
|
Abstract
There is an increasing requirement for genetic analysis of individual cells from tissue sections. This is particularly the case for analysis of tumor cells but is also a requirement for analysis of cells in pancreas from individuals with type 1 diabetes where there is evidence of viral infection or in the analysis of chimerism in pancreas; either post-transplant or as a result of feto-maternal cell transfer.This protocol describes a strategy to isolate cells using laser microdissection and to run a 17plex PCR to discriminate between cells of haplo-identical origin (i.e., fetal and maternal cells) in pancreas tissue but other robust DNA tests could be used. In short, snap-frozen tissues are cryo-sectioned and mounted onto membrane-coated slides. Target cells are harvested from the tissue sections by laser microdissection and pressure catapulting (LMPC) prior to DNA profiling. This is based on amplification of highly repetitive yet stably inherited loci (short tandem repeats, STR) as well as the amelogenin locus for sex determination and separation of PCR products by capillary electrophoresis.
Collapse
|
50
|
Abstract
Type 1 diabetes (T1D) is a metabolic disease that results from the autoimmune attack against insulin-producing β-cells in the pancreatic islets of Langerhans. Currently, there is no treatment to restore endogenous insulin secretion in patients with autoimmune diabetes. In the last years, the development of new therapies to induce long-term tolerance has been an important medical health challenge. Apoptosis is a physiological mechanism that contributes to the maintenance of immune tolerance. Apoptotic cells are a source of autoantigens that induce tolerance after their removal by antigen presenting cells (APCs) through a process called efferocytosis. Efferocytosis will not cause maturation in dendritic cells, one of the most powerful APCs, and this process could induce tolerance rather than autoimmunity. However, failure of this mechanism due to an increase in the rate of β-cells apoptosis and/or defects in efferocytosis results in activation of APCs, contributing to inflammation and to the loss of tolerance to self. In fact, T1D and other autoimmune diseases are associated to enhanced apoptosis of target cells and defective apoptotic cell clearance. Although further research is needed, the clinical relevance of immunotherapies based on apoptosis could prove to be very important, as it has translational potential in situations that require the reestablishment of immunological tolerance, such as autoimmune diseases. This review summarizes the effects of apoptosis of β-cells towards autoimmunity or tolerance and its application in the field of emerging immunotherapies.
Collapse
|