1
|
Ding Y, Deng A, Yu H, Zhang H, Qi T, He J, He C, Jie H, Wang Z, Wu L. Integrative multi-omics analysis of Crohn's disease and metabolic syndrome: Unveiling the underlying molecular mechanisms of comorbidity. Comput Biol Med 2025; 184:109365. [PMID: 39541897 DOI: 10.1016/j.compbiomed.2024.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVES The focus of this study is on identifying a potential association between Crohn's disease (CD), a chronic inflammatory bowel condition, and metabolic syndrome (Mets), characterized by a cluster of metabolic abnormalities, including high blood pressure, abnormal lipid levels, and overweight. While the link between CD and MetS has been suggested in the medical community, the underlying molecular mechanisms remain largely unexplored. METHODS Using microarray data from the Gene Expression Omnibus (GEO) database, we conducted a differential gene expression analysis and applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify genes shared between CD and MetS. To further elucidate the functions of these shared genes, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and constructed protein-protein interaction (PPI) networks. For key gene screening, we used Random Forest and Least Absolute Shrinkage and Selection Operator (LASSO) regression and constructed a diagnostic prediction model with the Extreme Gradient Boosting (XGBoost) algorithm. Additionally, CIBERSORT and Gene Set Variation Analysis (GSVA) were employed to examine the relationships between these genes and immune cell infiltration, as well as metabolic pathways. Mendelian randomization and colocalization analyses were also conducted to explore causal links between genes and disease. Lastly, single-cell RNA sequencing (scRNA-seq) was used to validate the functionality of these key genes. RESULTS Through the use of the limma R package and WGCNA, we identified 1767 co-expressed genes common to both CD and MetS, which are notably enriched in pathways related to immune responses and metabolic regulation. After thorough analysis, 34 key genes were highlighted, demonstrating their potential utility in prognostic models. These genes were closely linked to tissue immune responses and metabolic functions. Subsequent scRNA-seq analysis confirmed the strong diagnostic potential of PIM2 and PBX2, with especially prominent expression in T and B cells. CONCLUSION This study identifies shared regulatory genes between CD and MetS, advancing the development of precise diagnostic tools. In particular, PIM2 and PBX2 were found to be positively associated with hypoxia and hemoglobin metabolism pathways, suggesting their involvement in the modulation of cellular processes. These findings improve our understanding of the molecular mechanisms underlying the comorbidity of CD and MetS, offering novel targets for integrated therapeutic interventions.
Collapse
Affiliation(s)
- Yunfa Ding
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Anxia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, Urumqi, China; Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Hao Yu
- Department of Thyroid Surgery, Zhu Jiang Hospital of Southern Medical University, Guangzhou, China
| | - Hongbing Zhang
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Tengfei Qi
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jipei He
- Department of Basic Medical Research, General Hospital of Southern Theater Command of PLA, Guangzhou, China
| | - Chenjun He
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hou Jie
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zihao Wang
- Key Laboratory of the Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Liangpin Wu
- Jinsha Zhou Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
2
|
Rathi A, Noor S, Khan S, Khan F, Anjum F, Ashraf A, Taiyab A, Islam A, Imtaiyaz Hassan M, Haque MM. Investigating pH-induced conformational switch in PIM-1: An integrated multi spectroscopic and MD simulation study. Comput Biol Chem 2024; 113:108265. [PMID: 39488934 DOI: 10.1016/j.compbiolchem.2024.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
PIM-1 is a Ser/Thr kinase, which has been extensively studied as a potential target for cancer therapy due to its significant roles in various cancers, including prostate and breast cancers. Given its importance in cancer, researchers are investigating the structure of PIM-1 for pharmacological inhibition to discover therapeutic intervention. This study examines structural and conformational changes in PIM-1 across different pH using various spectroscopic and computational techniques. Spectroscopic results indicate that PIM-1 maintains its secondary and tertiary structure within the pH range of 7.0-9.0. However, protein aggregation occurs in the acidic pH range of 5.0-6.0. Additionally, kinase assays suggested that PIM-1 activity is optimal within the pH range of 7.0-9.0. Subsequently, we performed a 100 ns all-atom molecular dynamics (MD) simulation to see the effect of pH on PIM-1 structural stability at the molecular level. MD simulation analysis revealed that PIM-1 retains its native conformation in alkaline conditions, with some residual fluctuations in acidic conditions as well. A strong correlation was observed between our MD simulation, spectroscopic, and enzymatic activity studies. Understanding the pH-dependent structural changes of PIM-1 can provide insights into its role in disease conditions and cellular homeostasis, particularly regarding protein function under varying pH conditions.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Faizya Khan
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
3
|
Yang X, Liu C, Lei Y, Liu Z, Zhu B, Zhao D. PIM1 signaling in immunoinflammatory diseases: an emerging therapeutic target. Front Immunol 2024; 15:1443784. [PMID: 39372407 PMCID: PMC11449710 DOI: 10.3389/fimmu.2024.1443784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
PIM1, the proviral integration site for Moloney murine leukemia virus, is a member of the serine/threonine protein kinase family. It is involved in many biological events, such as cell survival, cell cycle progression, cell proliferation, and cell migration, and has been widely studied in malignant diseases. However, recent studies have shown that PIM1 plays a prominent role in immunoinflammatory diseases, including autoimmune uveitis, inflammatory bowel disease, asthma, and rheumatoid arthritis. PIM1 can function in inflammatory signal transduction by phosphorylating multiple inflammatory protein substrates and mediating macrophage activation and T lymphocyte cell specification, thus participating in the development of multiple immunoinflammatory diseases. Moreover, the inhibition of PIM1 has been demonstrated to ameliorate certain immunoinflammatory disorders. Based on these studies, we suggest PIM1 as a potential therapeutic target for immunoinflammatory diseases and a valid candidate for future research. Herein, for the first time, we provide a detailed review that focuses on the roles of PIM1 in the pathogenesis of immunoinflammatory diseases.
Collapse
Affiliation(s)
- Xue Yang
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunming Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuxi Lei
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Liu
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bin Zhu
- Department of Pediatrics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Dongchi Zhao
- Department of Pediatrics, Children’s Digital Health and Data Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
4
|
Chen X, Zhou J, Wang Y, Wang X, Chen K, Chen Q, Huang D, Jiang R. PIM1/NF-κB/CCL2 blockade enhances anti-PD-1 therapy response by modulating macrophage infiltration and polarization in tumor microenvironment of NSCLC. Oncogene 2024; 43:2517-2530. [PMID: 39004633 DOI: 10.1038/s41388-024-03100-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Elevated infiltration of tumor-associated macrophages (TAMs) drives tumor progression and correlates with poor prognosis for various tumor types. Our research identifies that the ablation of the Pim-1 proto-oncogene (PIM1) in non-small cell lung cancer (NSCLC) suppresses TAM infiltration and prevents them from polarizing toward the M2 phenotype, thereby reshaping the tumor immune microenvironment (TME). The predominant mechanism through which PIM1 exerts its impact on macrophage chemotaxis and polarization involves CC motif chemokine ligand 2 (CCL2). The expression level of PIM1 is positively correlated with high CCL2 expression in NSCLC, conferring a worse overall patient survival. Mechanistically, PIM1 deficiency facilitates the reprogramming of TAMs by targeting nuclear factor kappa beta (NF-κB) signaling and inhibits CCL2 transactivation by NSCLC cells. The decreased secretion of CCL2 impedes TAM accumulation and their polarization toward a pro-tumoral phenotype. Furthermore, Dual blockade of Pim1 and PD-1 collaboratively suppressed tumor growth, repolarized macrophages, and boosted the efficacy of anti-PD-1 antibody. Collectively, our findings elucidate the pivotal role of PIM1 in orchestrating TAMs within the TME of NSCLC and highlight the potential of PIM1 inhibition as a strategy for enhancing the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Xiuqiong Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Jing Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Youhui Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xinyue Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Kaidi Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Qin Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
- Department of Respiratory and Critical Medicine, Tianjin Chest Hospital, Tianjin, PR China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
| | - Richeng Jiang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention on and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Department of Thoracic Oncology, Tianjin Lung Cancer Center, Tianjin Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China.
- Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin, 300000, China.
| |
Collapse
|
5
|
Anwar A, Lepore C, Czerniecki BJ, Koski GK, Showalter LE. PIM kinase inhibitor AZD1208 in conjunction with Th1 cytokines potentiate death of breast cancer cellsin vitrowhile also maximizing suppression of tumor growthin vivo when combined with immunotherapy. Cell Immunol 2024; 397-398:104805. [PMID: 38244265 DOI: 10.1016/j.cellimm.2024.104805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2pos/ERneg, HER-2pos/ERpos and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2pos breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.
Collapse
Affiliation(s)
- Ariel Anwar
- Department of Biological Sciences, Kent State University, Kent OH 44242, USA
| | - Carissa Lepore
- Department of Biological Sciences, Kent State University, Kent OH 44242, USA
| | | | - Gary K Koski
- Department of Biological Sciences, Kent State University, Kent OH 44242, USA.
| | - Loral E Showalter
- Department of Biological Sciences, Kent State University, Kent OH 44242, USA
| |
Collapse
|
6
|
Gao S, Song H. Integrated comparison of the mRNAome in cartilage, synovium, and macrophages in osteoarthritis. Z Rheumatol 2024; 83:62-70. [PMID: 35178608 DOI: 10.1007/s00393-022-01171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The precise molecular mechanisms associated with osteoarthritis (OA), the most common musculoskeletal disorder, are poorly understood. There are currently no effective treatments to prevent the initiation and progression of the disease. In recent years, the development of mRNAome has made it possible to identify new mechanisms and therapeutic targets. However, the differentially expressed genes screened by different microarrays are not completely the same. In order to avoid this shortcoming, we integrate the different genes from different tissues and data sets, and select the commonly expressed genes for further studies.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Beijing Jishuitan Hospital, No. 31, Xin Jie Kou East Street, Xicheng District, 100035, Beijing, China
| | - Hui Song
- Department of Rheumatology, Beijing Jishuitan Hospital, No. 31, Xin Jie Kou East Street, Xicheng District, 100035, Beijing, China.
| |
Collapse
|
7
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
8
|
Clements AN, Warfel NA. Targeting PIM Kinases to Improve the Efficacy of Immunotherapy. Cells 2022; 11:3700. [PMID: 36429128 PMCID: PMC9688203 DOI: 10.3390/cells11223700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022] Open
Abstract
The Proviral Integration site for Moloney murine leukemia virus (PIM) kinases is a family of serine/threonine kinases that regulates numerous signaling networks that promote cell growth, proliferation, and survival. PIM kinases are commonly upregulated in both solid tumors and hematological malignancies. Recent studies have demonstrated that PIM facilitates immune evasion in cancer by promoting an immunosuppressive tumor microenvironment that suppresses the innate anti-tumor response. The role of PIM in immune evasion has sparked interest in examining the effect of PIM inhibition in combination with immunotherapy. This review focuses on the role of PIM kinases in regulating immune cell populations, how PIM modulates the immune tumor microenvironment to promote immune evasion, and how PIM inhibitors may be used to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Amber N. Clements
- Cancer Biology Graduate Program, University of Arizona, Tucson, AZ 85724, USA
| | - Noel A. Warfel
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Julson JR, Marayati R, Beierle EA, Stafman LL. The Role of PIM Kinases in Pediatric Solid Tumors. Cancers (Basel) 2022; 14:3565. [PMID: 35892829 PMCID: PMC9332273 DOI: 10.3390/cancers14153565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
PIM kinases have been identified as potential therapeutic targets in several malignancies. Here, we provide an in-depth review of PIM kinases, including their structure, expression, activity, regulation, and role in pediatric carcinogenesis. Also included is a brief summary of the currently available pharmaceutical agents targeting PIM kinases and existing clinical trials.
Collapse
Affiliation(s)
- Janet Rae Julson
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Elizabeth Ann Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (J.R.J.); (R.M.)
| | - Laura Lee Stafman
- Division of Pediatric Surgery, Department of Surgery, Vanderbilt University, Nashville, TN 37240, USA;
| |
Collapse
|
10
|
Farhadian SF, Lindenbaum O, Zhao J, Corley MJ, Im Y, Walsh H, Vecchio A, Garcia-Milian R, Chiarella J, Chintanaphol M, Calvi R, Wang G, Ndhlovu LC, Yoon J, Trotta D, Ma S, Kluger Y, Spudich S. HIV viral transcription and immune perturbations in the CNS of people with HIV despite ART. JCI Insight 2022; 7:e160267. [PMID: 35801589 PMCID: PMC9310520 DOI: 10.1172/jci.insight.160267] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/13/2022] [Indexed: 01/12/2023] Open
Abstract
People with HIV (PWH) on antiretroviral therapy (ART) experience elevated rates of neurological impairment, despite controlling for demographic factors and comorbidities, suggesting viral or neuroimmune etiologies for these deficits. Here, we apply multimodal and cross-compartmental single-cell analyses of paired cerebrospinal fluid (CSF) and peripheral blood in PWH and uninfected controls. We demonstrate that a subset of central memory CD4+ T cells in the CSF produced HIV-1 RNA, despite apparent systemic viral suppression, and that HIV-1-infected cells were more frequently found in the CSF than in the blood. Using cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), we show that the cell surface marker CD204 is a reliable marker for rare microglia-like cells in the CSF, which have been implicated in HIV neuropathogenesis, but which we did not find to contain HIV transcripts. Through a feature selection method for supervised deep learning of single-cell transcriptomes, we find that abnormal CD8+ T cell activation, rather than CD4+ T cell abnormalities, predominated in the CSF of PWH compared with controls. Overall, these findings suggest ongoing CNS viral persistence and compartmentalized CNS neuroimmune effects of HIV infection during ART and demonstrate the power of single-cell studies of CSF to better understand the CNS reservoir during HIV infection.
Collapse
Affiliation(s)
- Shelli F. Farhadian
- Department of Medicine, Section of Infectious Diseases, and
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Ofir Lindenbaum
- Program in Applied Mathematics, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Jun Zhao
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Michael J. Corley
- Department of Medicine, Division of Infectious Diseases, and
- Feil Family Brain & Mind Institute, Weill Cornell Medicine, New York, New York, USA
| | - Yunju Im
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Hannah Walsh
- Department of Medicine, Section of Infectious Diseases, and
| | - Alyssa Vecchio
- University of North Carolina-Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jennifer Chiarella
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachela Calvi
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Guilin Wang
- Yale Center for Genome Analysis, Yale University, New Haven, Connecticut, USA
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Diseases, and
- Feil Family Brain & Mind Institute, Weill Cornell Medicine, New York, New York, USA
| | - Jennifer Yoon
- Department of Medicine, Section of Infectious Diseases, and
| | - Diane Trotta
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shuangge Ma
- Department of Biostatistics, Yale School of Public Health, New Haven, Connecticut, USA
| | - Yuval Kluger
- Program in Applied Mathematics, and
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Serena Spudich
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
11
|
Pham TX, Lee J, Guan J, Caporarello N, Meridew JA, Jones DL, Tan Q, Huang SK, Tschumperlin DJ, Ligresti G. Transcriptional analysis of lung fibroblasts identifies PIM1 signaling as a driver of aging-associated persistent fibrosis. JCI Insight 2022; 7:153672. [PMID: 35167499 PMCID: PMC8986080 DOI: 10.1172/jci.insight.153672] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/09/2022] [Indexed: 01/18/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an aging-associated disease characterized by myofibroblast accumulation and progressive lung scarring. To identify transcriptional gene programs driving persistent lung fibrosis in aging, we performed RNA-Seq on lung fibroblasts isolated from young and aged mice during the early resolution phase after bleomycin injury. We discovered that, relative to injured young fibroblasts, injured aged fibroblasts exhibited a profibrotic state characterized by elevated expression of genes implicated in inflammation, matrix remodeling, and cell survival. We identified the proviral integration site for Moloney murine leukemia virus 1 (PIM1) and its target nuclear factor of activated T cells-1 (NFATc1) as putative drivers of the sustained profibrotic gene signatures in injured aged fibroblasts. PIM1 and NFATc1 transcripts were enriched in a pathogenic fibroblast population recently discovered in IPF lungs, and their protein expression was abundant in fibroblastic foci. Overexpression of PIM1 in normal human lung fibroblasts potentiated their fibrogenic activation, and this effect was attenuated by NFATc1 inhibition. Pharmacological inhibition of PIM1 attenuated IPF fibroblast activation and sensitized them to apoptotic stimuli. Interruption of PIM1 signaling in IPF lung explants ex vivo inhibited prosurvival gene expression and collagen secretion, suggesting that targeting this pathway may represent a therapeutic strategy to block IPF progression.
Collapse
Affiliation(s)
- Tho X. Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jisu Lee
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiazhen Guan
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Jeffrey A. Meridew
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Dakota L. Jones
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Qi Tan
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Steven K. Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel J. Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Feedback Loop Regulation Between Pim Kinases and Tax Keeps HTLV-I Viral Replication in Check. J Virol 2021; 96:e0196021. [PMID: 34818069 DOI: 10.1128/jvi.01960-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Pim family of serine/threonine kinases promote tumorigenesis by enhancing cell survival and inhibiting apoptosis. Three isoforms exist, Pim-1, -2, and -3 that are highly expressed in hematological cancers, including Pim-1 in Adult T-cell leukemia (ATL). Human T-cell leukemia virus type-1 (HTLV-I) is the etiological agent of ATL, a dismal lymphoproliferative disease known as adult T-cell leukemia. The HTLV-I virally encoded oncogene Tax promotes CD4+ T-cell transformation through disruption of DNA repair pathways and activation of survival and cellular proliferation pathways. In this study, we found Tax increases the expression of Pim-1 and Pim-3, while decreasing Pim-2 expression. Furthermore, we discovered that Pim-1, -2, and -3 bind Tax protein to reduce its expression thereby creating a feedback regulatory loop between these two oncogenes. The loss of Tax expression triggered by Pim kinases led to loss in Tax-mediated transactivation of the HTLV-I LTR and reductions in HTLV-I virus replication. Since Tax is also the immunodominant cytotoxic T cell lymphocytes (CTL) target, our data suggest that Pim kinases may play an important role in immune escape of HTLV-1-infected cells. IMPORTANCE The Pim family of protein kinases have established pro-oncogenic functions. They are often up regulated in cancer; especially leukemias and lymphomas. In addition, a role for Pim kinases in control of virus expression and viral latency is important for KSHV and HIV-1. Our data demonstrate that HTLV-I encodes viral genes that promote and maintain Pim kinase activation, which in turn may stimulate T-cell transformation and maintain ATL leukemic cell growth. HTLV-I Tax increases expression of Pim-1 and Pim-3, while decreasing expression of Pim-2. In ATL cells, Pim expression is maintained through extended protein half-life and heat shock protection. In addition, we found that Pim kinases have a new role during HTLV-I infection. Pim-1, -2, and -3 can subvert Tax expression and HTLV-I virus production. This may lead to partial suppression of the host immunogenic responses to Tax and favor immune escape of HTLV-1-infected cells. Therefore, Pim kinases have not only pro-oncogenic roles but also favor persistence of the virus-infected cell.
Collapse
|
13
|
PIM Kinases in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13174304. [PMID: 34503111 PMCID: PMC8428354 DOI: 10.3390/cancers13174304] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable disease and novel therapeutic agents/approaches are urgently needed. The PIM (Proviral insertion in murine malignancies) serine/threonine kinases have 3 isoforms: PIM1, PIM2, and PIM3. PIM kinases are engaged with an expansive scope of biological activities including cell growth, apoptosis, drug resistance, and immune response. An assortment of molecules and pathways that are critical to myeloma tumorigenesis has been recognized as the downstream targets of PIM kinases. The inhibition of PIM kinases has become an emerging scientific interest for the treatment of multiple myeloma and several PIM kinase inhibitors, such as SGI-1776, AZD1208, and PIM447 (formerly LGH447), have been developed and are under different phases of clinical trials. Current research has been focused on the development of a new generation of potent PIM kinase inhibitors with appropriate pharmacological profiles reasonable for human malignancy treatment. Combination therapy of PIM kinase inhibitors with chemotherapeutic appears to create an additive cytotoxic impact in cancer cells. Notwithstanding, the mechanisms by which PIM kinases modulate the immune microenvironment and synergize with the immunomodulatory agents such as lenalidomide have not been deliberately depicted. This review provides a comprehensive overview of the PIM kinase pathways and the current research status of the development of PIM kinase inhibitors for the treatment of MM. Additionally, the combinatorial effects of the PIM kinase inhibitors with other targeted agents and the promising strategies to exploit PIM as a therapeutic target in malignancy are highlighted.
Collapse
|
14
|
Maney NJ, Lemos H, Barron‐Millar B, Carey C, Herron I, Anderson AE, Mellor AL, Isaacs JD, Pratt AG. Pim Kinases as Therapeutic Targets in Early Rheumatoid Arthritis. Arthritis Rheumatol 2021; 73:1820-1830. [DOI: 10.1002/art.41744] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Nicola J. Maney
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Henrique Lemos
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Ben Barron‐Millar
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Christopher Carey
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Ian Herron
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Amy E. Anderson
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - Andrew L. Mellor
- Newcastle University Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne UK
| | - John D. Isaacs
- Newcastle University Translational and Clinical Research Institute Newcastle University, and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Arthur G. Pratt
- Newcastle University Translational and Clinical Research Institute Newcastle University, and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| |
Collapse
|
15
|
Liu Z, Han M, Ding K, Fu R. The role of Pim kinase in immunomodulation. Am J Cancer Res 2020; 10:4085-4097. [PMID: 33414987 PMCID: PMC7783746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023] Open
Abstract
Pim kinase, which has three isozymes (Pim-1, Pim-2 and Pim-3), is a serine/threonine kinase abnormally expressed in many cancers. High Pim kinase expression has been recognized to be associated with disease progression and prognosis. It is well accepted that Pim kinase is considered a clinical biomarker and potential therapeutic target for tumor cell. In recent years, researches verified the role of Pim kinase in immunomodulation. The mechanisms by which Pim kinase modulates the immune microenvironment and regulates immune cells, as well as the effects of Pim kinase inhibitors on immunity, have not been systematically described. This review comprehensively focuses on the current research status of Pim kinase pathways and the immune regulation.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Mei Han
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Kai Ding
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital Tianjin 300052, P. R. China
| |
Collapse
|
16
|
Ha YJ, Choi YS, Han DW, Kang EH, Yoo IS, Kim JH, Kang SW, Lee EY, Song YW, Lee YJ. PIM-1 kinase is a novel regulator of proinflammatory cytokine-mediated responses in rheumatoid arthritis fibroblast-like synoviocytes. Rheumatology (Oxford) 2018; 58:154-164. [DOI: 10.1093/rheumatology/key261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- You-Jung Ha
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yong Seok Choi
- Medical Science Research Institute, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Woo Han
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
| | - Eun Ha Kang
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - In Seol Yoo
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Jin Hyun Kim
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Seong Wook Kang
- Daejeon Rheumatoid & Degenerative Arthritis Center, Chungnam National University Hospital, Daejeon, Korea
| | - Eun Young Lee
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yeong Wook Song
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Yun Jong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Translational Medicine, College of Medicine, Seoul National University, Seoul, Korea
- Department of Internal Medicine, Medical Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Shen Y, Xie Y, Zhao Y, Long Y, Li L, Zeng Y. Pim-1 inhibitor attenuates trinitrobenzene sulphonic acid induced colitis in the mice. Clin Res Hepatol Gastroenterol 2018; 42:382-386. [PMID: 29551611 DOI: 10.1016/j.clinre.2018.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/04/2023]
Abstract
Pim-1 kinase has been implicated in inflammatory bowel disease (IBD). This study aimed to evaluate the application of Pim-1 inhibitor (PIM-Inh) for the treatment of IBD. Mouse model of IBD was established by the treatment with trinitrobenzene sulphonic acid (TNBS). The results showed that disease activity index score was significantly decreased, colon length was significantly increased while Wallace score and pathological score were significantly decreased after PIM-Inh treatment compared to TNBS model group. In addition, GATA3 and ROR-γt mRNA and protein levels significantly increased but Foxp3 mRNA and protein levels significantly decreased in mice with TNBS treatment compared to mice without TNBS treatment. Administration of PIM-Inh caused significant decreases in GATA3, T-bet and ROR-γt mRNA and protein levels as well as significant increases in FOXP3 mRNA and protein levels. In conclusion, our data suggest that Pim-1 kinase inhibitor could attenuate IBD by promoting T-cell differentiation into Foxp3+ regulatory T-cells and is a promising agent for IBD therapy.
Collapse
Affiliation(s)
- Yueming Shen
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Yuanhong Xie
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, No. 145, Shandong Zhonglu, Shanghai 200001, China
| | - Yan Zhao
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China.
| | - Yan Long
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Lingqian Li
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| | - Ya Zeng
- Department of Digestive Diseases, Changsha Central Hospital, No. 163, Shaoshan Nanlu, Changsha 410004, China
| |
Collapse
|
18
|
Białopiotrowicz E, Górniak P, Noyszewska-Kania M, Puła B, Makuch-Łasica H, Nowak G, Bluszcz A, Szydłowski M, Jabłonska E, Piechna K, Sewastianik T, Polak A, Lech-Marańda E, Budziszewska BK, Wasylecka-Juszczyńska M, Borg K, Warzocha K, Czardybon W, Gałęzowski M, Windak R, Brzózka K, Juszczyński P. Microenvironment-induced PIM kinases promote CXCR4-triggered mTOR pathway required for chronic lymphocytic leukaemia cell migration. J Cell Mol Med 2018; 22:3548-3559. [PMID: 29665227 PMCID: PMC6010703 DOI: 10.1111/jcmm.13632] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/14/2018] [Indexed: 02/06/2023] Open
Abstract
Lymph node microenvironment provides chronic lymphocytic leukaemia (CLL) cells with signals promoting their survival and granting resistance to chemotherapeutics. CLL cells overexpress PIM kinases, which regulate apoptosis, cell cycle and migration. We demonstrate that BCR crosslinking, CD40 stimulation, and coculture with stromal cells increases PIMs expression in CLL cells, indicating microenvironment‐dependent PIMs regulation. PIM1 and PIM2 expression at diagnosis was higher in patients with advanced disease (Binet C vs. Binet A/B) and in those, who progressed after first‐line treatment. In primary CLL cells, inhibition of PIM kinases with a pan‐PIM inhibitor, SEL24‐B489, decreased PIM‐specific substrate phosphorylation and induced dose‐dependent apoptosis in leukaemic, but not in normal B cells. Cytotoxicity of SEL24‐B489 was similar in TP53‐mutant and TP53 wild‐type cells. Finally, inhibition of PIM kinases decreased CXCR4‐mediated cell chemotaxis in two related mechanisms‐by decreasing CXCR4 phosphorylation and surface expression, and by limiting CXCR4‐triggered mTOR pathway activity. Importantly, PIM and mTOR inhibitors similarly impaired migration, indicating that CXCL12‐triggered mTOR is required for CLL cell chemotaxis. Given the microenvironment‐modulated PIM expression, their pro‐survival function and a role of PIMs in CXCR4‐induced migration, inhibition of these kinases might override microenvironmental protection and be an attractive therapeutic strategy in this disease.
Collapse
Affiliation(s)
- Emilia Białopiotrowicz
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Monika Noyszewska-Kania
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Bartosz Puła
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Hanna Makuch-Łasica
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Grażyna Nowak
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Aleksandra Bluszcz
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłonska
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Karolina Piechna
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Polak
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Lech-Marańda
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Bożena K Budziszewska
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland.,Department of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | | | - Katarzyna Borg
- Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Krzysztof Warzocha
- Department of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | | | | | | | - Przemysław Juszczyński
- Department of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| |
Collapse
|
19
|
Santio NM, Koskinen PJ. PIM kinases: From survival factors to regulators of cell motility. Int J Biochem Cell Biol 2017; 93:74-85. [DOI: 10.1016/j.biocel.2017.10.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 01/01/2023]
|
20
|
Jiménez-García MP, Lucena-Cacace A, Robles-Frías MJ, Ferrer I, Narlik-Grassow M, Blanco-Aparicio C, Carnero A. Inflammation and stem markers association to PIM1/PIM2 kinase-induced tumors in breast and uterus. Oncotarget 2017; 8:58872-58886. [PMID: 28938604 PMCID: PMC5601700 DOI: 10.18632/oncotarget.19438] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
The PIM family of Ser/Thr kinase proteins has been implicated in tumorigenesis at different levels. PIM proteins are overexpressed in several tumor types and have been associated with chemoresistance. However, their role in hormone-dependent female tissues has not been explored, especially in the uterus, breast and ovary. We generated conditional transgenic mice with confined expression of human PIM1 or PIM2 genes in these tissues. We characterized the tumoral response to these genetic alterations corroborating their role as oncogenes since they induce hyperproliferation in all tissues and tumors in mammary gland and uterus. Furthermore, we observed a high degree of inflammatory infiltration in these tissues of transgenic mice accompanied by NFAT and mTOR activation and IL6 expression. Moreover, PIM1/2 were overexpressed in human breast, uterine and ovarian tumors, correlating with inflammatory features and stem cell markers. Our data suggest that PIM1/2 kinase overexpression provoke tissue alterations and a large IL6-dependent inflammatory response that may act synergistically during the process of tumorigenesis. The possible end-point is an increased percentage of cancer stem cells, which may be partly responsible for the therapy resistance found in tumors overexpressing PIM kinases.
Collapse
Affiliation(s)
- Manuel-Pedro Jiménez-García
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Antonio Lucena-Cacace
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - María-José Robles-Frías
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Irene Ferrer
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain
| | - Maja Narlik-Grassow
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Consejo Superior de Investigaciones Científicas, Seville, Spain.,CIBER de Cáncer, Instituto de Salud Carlos III, Pabellón 11, Planta 0, Madrid, Spain
| |
Collapse
|
21
|
Abstract
Combined with TCR stimuli, extracellular cytokine signals initiate the differentiation of naive CD4(+) T cells into specialized effector T-helper (Th) and regulatory T (Treg) cell subsets. The lineage specification and commitment process occurs through the combinatorial action of multiple transcription factors (TFs) and epigenetic mechanisms that drive lineage-specific gene expression programs. In this article, we review recent studies on the transcriptional and epigenetic regulation of distinct Th cell lineages. Moreover, we review current study linking immune disease-associated single-nucleotide polymorphisms with distal regulatory elements and their potential role in the disease etiology.
Collapse
Affiliation(s)
- Subhash K Tripathi
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
- National Doctoral Programme in Informational and
Structural BiologyTurku, Finland
- Turku Doctoral Programme of Molecular Medicine (TuDMM),
University of TurkuTurku, Finland
| | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and
Åbo Akademi UniversityTurku, Finland
| |
Collapse
|
22
|
Guo Q, Lan P, Yu X, Han Q, Zhang J, Tian Z, Zhang C. Immunotherapy for hepatoma using a dual-function vector with both immunostimulatory and pim-3-silencing effects. Mol Cancer Ther 2014; 13:1503-13. [PMID: 24723452 DOI: 10.1158/1535-7163.mct-13-0722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tumorigenesis is an immortalization process in which the growth of normal cells is uncontrolled and programmed cell death is suppressed. Molecular biologic and immunologic studies have revealed that the aberrant expression of some proto-oncogenes boosts proliferation and inhibits apoptosis, which is vital for tumor development. The hypofunction of the host immune system also drives the development and metastasis of malignant tumors. Pim-3, a member of the Pim family, is aberrantly expressed in several cancers. Data suggest that Pim-3 inhibits apoptosis by phosphorylating the proapoptotic BH3-only protein Bad. Here, we constructed a dual-function small hairpin RNA (shRNA) vector containing an shRNA targeting Pim-3 and a TLR7-stimulating ssRNA. Stimulation with this bi-functional vector in vitro promoted significant apoptosis of Hepa1-6 cells by regulating the expression of apoptosis-related proteins and induced secretion of type I IFNs. Most importantly, this bi-functional vector more effectively inhibited subcutaneous Hepa1-6 cell growth than did single shRNA and ssRNA treatment in vivo. Natural killer (NK), CD4(+) T, and CD8(+) T cells and macrophages were required for effective tumor suppression, and CD4(+) T cells were shown to play a helper role in the activation of NK cells, possibly by regulating the secretion of Th1 or Th2 cytokines. This ssRNA-shRNA bi-functional vector may represent a promising approach for tumor therapy.
Collapse
Affiliation(s)
- Qie Guo
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Peixiang Lan
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xin Yu
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Qiuju Han
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhigang Tian
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, ChinaAuthors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Cai Zhang
- Authors' Affiliations: Institute of Immunopharmacology & Immunotherapy, School of Pharmaceutical Sciences, Shandong University, Jinan; Department of Pharmacy, The Affiliated Hospital of Medical College, Qingdao University, Qingdao, Shandong; and Department of Microbiology and Immunology, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
23
|
Wang M, Gelfand EW. Targeting Pim1 kinase in the treatment of peanut allergy. Expert Opin Ther Targets 2013; 18:177-83. [DOI: 10.1517/14728222.2014.855721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Narlik-Grassow M, Blanco-Aparicio C, Cecilia Y, Perez M, Muñoz-Galvan S, Cañamero M, Carnero A. Conditional transgenic expression of PIM1 kinase in prostate induces inflammation-dependent neoplasia. PLoS One 2013; 8:e60277. [PMID: 23565217 PMCID: PMC3614961 DOI: 10.1371/journal.pone.0060277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
The Pim proteins are a family of highly homologous protein serine/threonine kinases that have been found to be overexpressed in cancer. Elevated levels of Pim1 kinase were first discovered in human leukemia and lymphomas. However, more recently Pim1 was found to be increased in solid tumors, including pancreatic and prostate cancers, and has been proposed as a prognostic marker. Although the Pim kinases have been identified as oncogenes in transgenic models, they have weak transforming abilities on their own. However, they have been shown to greatly enhance the ability of other genes or chemical carcinogens to induce tumors. To explore the role of Pim1 in prostate cancer, we generated conditional Pim1 transgenic mice, expressed Pim1 in prostate epithelium, and analyzed the contribution of PIM1 to neoplastic initiation and progression. Accordingly, we explored the effect of PIM1 overexpression in 3 different settings: upon hormone treatment, during aging, and in combination with the absence of one Pten allele. We have found that Pim1 overexpression increased the severity of mouse prostate intraepithelial neoplasias (mPIN) moderately in all three settings. Furthermore, Pim1 overexpression, in combination with the hormone treatment, increased inflammation surrounding target tissues leading to pyelonephritis in transgenic animals. Analysis of senescence induced in these prostatic lesions showed that the lesions induced in the presence of inflammation exhibited different behavior than those induced in the absence of inflammation. While high grade prostate preneoplastic lesions, mPIN grades III and IV, in the presence of inflammation did not show any senescence markers and demonstrated high levels of Ki67 staining, untreated animals without inflammation showed senescence markers and had low levels of Ki67 staining in similar high grade lesions. Our data suggest that Pim1 might contribute to progression rather than initiation in prostate neoplasia.
Collapse
Affiliation(s)
- Maja Narlik-Grassow
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Yolanda Cecilia
- Experimental Therapeutics programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Marco Perez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Sandra Muñoz-Galvan
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| | - Marta Cañamero
- Biotechnology programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio, Consejo Superior de Investigaciones Cientificas, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
25
|
Antolín AA, Jalencas X, Yélamos J, Mestres J. Identification of pim kinases as novel targets for PJ34 with confounding effects in PARP biology. ACS Chem Biol 2012; 7:1962-7. [PMID: 23025350 DOI: 10.1021/cb300317y] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Small molecules are widely used in chemical biology without complete knowledge of their target profile, at risk of deriving conclusions that ignore potential confounding effects from unknown off-target interactions. The prediction and further experimental confirmation of novel affinities for PJ34 on Pim1 (IC(50) = 3.7 μM) and Pim2 (IC(50) = 16 μM) serine/threonine kinases, together with their involvement in many of the processes relevant to PARP biology, questions the appropriateness of using PJ34 as a chemical tool to probe the biological role of PARP1 and PARP2 at the high micromolar concentrations applied in most studies.
Collapse
Affiliation(s)
- Albert A. Antolín
- Chemogenomics
Laboratory, Research Program on Biomedical Informatics and ‡Department of
Immunology, Research Program on Cancer, IMIM Hospital del Mar Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Xavier Jalencas
- Chemogenomics
Laboratory, Research Program on Biomedical Informatics and ‡Department of
Immunology, Research Program on Cancer, IMIM Hospital del Mar Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - José Yélamos
- Chemogenomics
Laboratory, Research Program on Biomedical Informatics and ‡Department of
Immunology, Research Program on Cancer, IMIM Hospital del Mar Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| | - Jordi Mestres
- Chemogenomics
Laboratory, Research Program on Biomedical Informatics and ‡Department of
Immunology, Research Program on Cancer, IMIM Hospital del Mar Research Institute and Universitat Pompeu Fabra, Doctor Aiguader 88, 08003 Barcelona, Catalonia, Spain
| |
Collapse
|
26
|
Tahvanainen J, Kyläniemi MK, Kanduri K, Gupta B, Lähteenmäki H, Kallonen T, Rajavuori A, Rasool O, Koskinen PJ, Rao KVS, Lähdesmäki H, Lahesmaa R. Proviral integration site for Moloney murine leukemia virus (PIM) kinases promote human T helper 1 cell differentiation. J Biol Chem 2012; 288:3048-58. [PMID: 23209281 PMCID: PMC3561529 DOI: 10.1074/jbc.m112.361709] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The differentiation of human primary T helper 1 (Th1) cells from naïve precursor cells is regulated by a complex, interrelated signaling network. The identification of factors regulating the early steps of Th1 cell polarization can provide important insight in the development of therapeutics for many inflammatory and autoimmune diseases. The serine/threonine-specific proviral integration site for Moloney murine leukemia virus (PIM) kinases PIM1 and PIM2 have been implicated in the cytokine-dependent proliferation and survival of lymphocytes. We have established that the third member of this family, PIM3, is also expressed in human primary Th cells and identified a new function for the entire PIM kinase family in T lymphocytes. Although PIM kinases are expressed more in Th1 than Th2 cells, we demonstrate here that these kinases positively influence Th1 cell differentiation. Our RNA interference results from human primary Th cells also suggest that PIM kinases promote the production of IFNγ, the hallmark cytokine produced by Th1 cells. Consistent with this, they also seem to be important for the up-regulation of the critical Th1-driving factor, T box expressed in T cells (T-BET), and the IL-12/STAT4 signaling pathway during the early Th1 differentiation process. In summary, we have identified PIM kinases as new regulators of human primary Th1 cell differentiation, thus providing new insights into the mechanisms controlling the selective development of human Th cell subsets.
Collapse
Affiliation(s)
- Johanna Tahvanainen
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi, 20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Inhibition of Pim2-prolonged skin allograft survival through the apoptosis regulation pathway. Cell Mol Immunol 2012; 9:503-10. [PMID: 23085945 DOI: 10.1038/cmi.2012.41] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recently, apoptosis has been considered to be an important regulator for allograft survival. The serine/threonine kinase Pim2 has been implicated in many apoptotic pathways. In a previous study, we found that pim2 was highly expressed in CD4(+) T cells in an allograft model. Here, we further investigated the effects of Pim2 on allograft survival and the underlying mechanisms associated with apoptosis. The results showed that pim2 was overexpressed in grafts and spleens, particularly in spleen CD4(+) T cells when acute allorejection occurred, and correlated positively with the extent of rejection. In T cells from the spleens of naive BALB/c mice treated with 5 µM 4a (a specific inhibitor of Pim2) for 24 h, the apoptosis rate increased and the phosphorylation of BAD was decreased. Furthermore, adoptive transfer of CD4(+) T cells treated with 4a in vitro to allografted severe combined immunodeficiency (SCID) mice effectively prolonged allograft survival from 19.5±1.7 days to 31±2.3 days. Moreover, the results demonstrated that the CD4(+)CD25(-) effector T-cell subset was the predominate expresser of the pim2 gene as compared with the CD4(+)CD25(+) regulatory T (Treg) cell subset. Alloantigen-induced CD4(+)CD25(+) T cells displayed less Foxp3 expression and a low suppression of apoptosis compared with effector CD4(+)CD25(-) T cells treated with 4a. Collectively, these data revealed that Pim2 facilitated allograft rejection primarily by modulating the apoptosis of effector T cells and the function of Treg cells. These data suggested that Pim2 may be an important target for in vivo anti-rejection therapies and for the ex vivo expansion of CD4(+)CD25(+) T cells.
Collapse
|
28
|
Inhibition of Pim1 kinase prevents peanut allergy by enhancing Runx3 expression and suppressing T(H)2 and T(H)17 T-cell differentiation. J Allergy Clin Immunol 2012; 130:932-44.e12. [PMID: 22944483 DOI: 10.1016/j.jaci.2012.07.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 12/31/2022]
Abstract
BACKGROUND The provirus integration site for Moloney murine leukemia virus (Pim) 1 kinase is an oncogenic serine/threonine kinase implicated in cytokine-induced cell signaling, whereas Runt-related transcription factor (Runx) has been implicated in the regulation of T-cell differentiation. The interaction of Pim1 kinase and Runx3 in the pathogenesis of peanut allergy has not been defined. OBJECTIVES We sought to determine the effects of Pim1 kinase modulation on Runx3 expression and T(H)2 and T(H)17 cell function in an experimental model of peanut allergy. METHODS A Pim1 kinase inhibitor was administered to peanut-sensitized and challenged wild-type and Runx3(+/-) mice. Symptoms, intestinal inflammation, and Pim1 kinase and Runx3 mRNA expression and protein levels were assessed. The effects of Pim1 kinase inhibition on T(H)1, T(H)2, and T(H)17 differentiation in vivo and in vitro were also determined. RESULTS Peanut sensitization and challenge resulted in accumulation of inflammatory cells and goblet cell metaplasia and increased levels of Pim1 kinase and T(H)2 and T(H)17 cytokine production but decreased levels of Runx3 mRNA and protein in the small intestines of wild-type mice. All of these findings were normalized with Pim1 kinase inhibition. In sensitized and challenged Runx3(+/-) mice, inhibition of Pim1 kinase had less effect on the development of the full spectrum of intestinal allergic responses. In vitro inhibition of Pim1 kinase attenuated T(H)2 and T(H)17 cell differentiation and expansion while maintaining Runx3 expression in T-cell cultures from wild-type mice; these effects were reduced in T-cell cultures from Runx3(+/-) mice. CONCLUSION These data support a novel regulatory axis involving Pim1 kinase and Runx3 in the control of food-induced allergic reactions through the regulation of T(H)2 and T(H)17 differentiation.
Collapse
|
29
|
Shen YM, Zhao Y, Zeng Y, Yan L, Chen BL, Leng AM, Mu YB, Zhang GY. Inhibition of Pim-1 kinase ameliorates dextran sodium sulfate-induced colitis in mice. Dig Dis Sci 2012; 57:1822-31. [PMID: 22466098 DOI: 10.1007/s10620-012-2106-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 02/21/2012] [Indexed: 01/26/2023]
Abstract
BACKGROUND Pim-1 kinase is involved in the control of cell growth, differentiation and apoptosis. Recent evidence suggests that Pim kinases play a role in immune regulation and inflammation. However, the role of Pim-1 kinase in inflammatory bowel diseases (IBD) remains unclear. AIMS The aims of this study were to explore the role of Pim-1 kinase in the pathology of IBD and to assess whether inhibiting Pim-1 kinase may be of therapeutic benefit as a treatment regimen for IBD. METHODS Colitic mouse model was established by the induction of dextran sodium sulfate. The expression of Pim-1 in the colonic samples of control and colitic mice was examined. Furthermore, the mice were treated with Pim-1inhibitor (PIM-Inh), then the body weight and colon inflammation were evaluated, and the production of cytokines including IFN-γ, IL-4, TGF-β and IL-17 in colon tissues was determined by ELISA. The expression of T cell master transcription factors T-bet, ROR-γt, GATA-3 and Foxp3 and Nuclear factor κB (NF-κB) and inducible nitric oxide synthase in colon tissues was detected by real-time PCR and western blot. Finally, the effect of LPS on Pim-1 expression and the effects of PIM-Inh on LPS-induced upregualtion of p65 and TNF-α in RAW264.7 cells were examined by real-time PCR and western blot. RESULTS Pim-1 expression was correlated with the degree of mucosal inflammation in vivo, and it was significantly induced by LPS in vitro. PIM-Inh had protective effects on acute colitis in vivo. Mechanistically, PIM-Inh reduced the proinflammatory immune response through the inhibition of the overactivation of macrophages and the down-regulation of excessive Th1- and Th17-type immune responses. Furthermore, PIM-Inh could skew T cell differentiation towards a Treg phenotype. CONCLUSIONS Pim-1 kinase is involved in mucosal injury/inflammation and Pim-1 kinase inhibitor may provide a novel therapeutic approach for IBD.
Collapse
Affiliation(s)
- Yue-Ming Shen
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hsu JL, Leong PK, Ho YF, Hsu LC, Lu PH, Chen CS, Guh JH. Pim-1 knockdown potentiates paclitaxel-induced apoptosis in human hormone-refractory prostate cancers through inhibition of NHEJ DNA repair. Cancer Lett 2012; 319:214-222. [PMID: 22261337 DOI: 10.1016/j.canlet.2012.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/26/2011] [Accepted: 01/10/2012] [Indexed: 01/08/2023]
Abstract
The knockdown of Pim-1 or inhibition of Pim-1 activity significantly increased γ-H2A.X expression. The effect was correlated to apoptosis and was attributed to the inhibition of nonhomologous DNA-end-joining (NHEJ) repair activity supported by the following observations: (1) inhibition of ATM and DNA-PKcs activities, (2) down-regulation of Ku expression and nuclear localization and (3) decrease of DNA end-binding of both Ku70 and Ku80. The data suggest that Pim-1 plays a crucial role in the regulation of NHEJ repair. In the absence of Pim-1, the ability of DNA repair significantly decreases when exposed to paclitaxel, leading to severe DNA damage and apoptosis.
Collapse
Affiliation(s)
- Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Pui-Kei Leong
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Yunn-Fang Ho
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Pin-Hsuan Lu
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Ching-Shih Chen
- Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 1, Sect. 1, Jen-Ai Road, Taipei 100, Taiwan.
| |
Collapse
|
31
|
Yang J, Li X, Hanidu A, Htut TM, Sellati R, Wang L, Jiang H, Li J. Proviral integration site 2 is required for interleukin-6 expression induced by interleukin-1, tumour necrosis factor-α and lipopolysaccharide. Immunology 2011; 131:174-82. [PMID: 20465571 DOI: 10.1111/j.1365-2567.2010.03286.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PIM (proviral integration site) kinases are a distinct class of serine/threonine-specific kinases consisting of PIM1, PIM2 and PIM3. PIM2 is known to function in apoptosis pathways. Expression of PIM2 is highly induced by pro-inflammatory stimuli but the role of PIM2 in the expression of pro-inflammatory cytokines is unclear. In this study, we showed that over-expression of PIM2 in HeLa cells as well as in human umbilical vein endothelial cells enhanced interleukin-1β (IL-1β) -induced and tumour necrosis factor-α-induced IL-6 expression, whereas over-expression of a kinase-dead PIM2 mutant had the opposite effect. Studies with small interfering RNA specific to PIM2 further confirmed that IL-6 expression in HeLa cells requires PIM2. To investigate the function of PIM2 further, we generated PIM2-deficient mice. It was found that IL-6 production was significantly decreased from PIM2-deficient spleen cells after stimulation with lipopolysaccharide. Taken together, we demonstrated an important function of PIM2 in controlling the expression of the pro-inflammatory cytokine IL-6. PIM2 inhibitors may be beneficial for IL-6-mediated diseases such as rheumatoid arthritis.
Collapse
Affiliation(s)
- Jianfei Yang
- Department of Immunology and Inflammation, Boehringer Ingelheim Pharmaceuticals, Inc, Ridgefield, CT 06877, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tao ZF, Hasvold LA, Leverson JD, Han EK, Guan R, Johnson EF, Stoll VS, Stewart KD, Stamper G, Soni N, Bouska JJ, Luo Y, Sowin TJ, Lin NH, Giranda VS, Rosenberg SH, Penning TD. Discovery of 3H-benzo[4,5]thieno[3,2-d]pyrimidin-4-ones as potent, highly selective, and orally bioavailable inhibitors of the human protooncogene proviral insertion site in moloney murine leukemia virus (PIM) kinases. J Med Chem 2009; 52:6621-36. [PMID: 19842661 DOI: 10.1021/jm900943h] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pim-1, Pim-2, and Pim-3 are a family of serine/threonine kinases which have been found to be overexpressed in a variety of hematopoietic malignancies and solid tumors. Benzothienopyrimidinones were discovered as a novel class of Pim inhibitors that potently inhibit all three Pim kinases with subnanomolar to low single-digit nanomolar K(i) values and exhibit excellent selectivity against a panel of diverse kinases. Protein crystal structures of the bound Pim-1 complexes of benzothienopyrimidinones 3b (PDB code 3JYA), 6e (PDB code 3JYO), and 12b (PDB code 3JXW) were determined and used to guide SAR studies. Multiple compounds exhibited potent antiproliferative activity in K562 and MV4-11 cells with submicromolar EC(50) values. For example, compound 14j inhibited the growth of K562 cells with an EC(50) value of 1.7 muM and showed K(i) values of 2, 3, and 0.5 nM against Pim-1, Pim-2, and Pim-3, respectively. These novel Pim kinase inhibitors efficiently interrupted the phosphorylation of Bad in both K562 and LnCaP-Bad cell lines, indicating that their potent biological activities are mechanism-based. The pharmacokinetics of 14j was studied in CD-1 mice and shown to exhibit bioavailability of 76% after oral dosing. ADME profiling of 14j suggested a long half-life in both human and mouse liver microsomes, good permeability, modest protein binding, and no CYP inhibition below 20 muM concentration.
Collapse
Affiliation(s)
- Zhi-Fu Tao
- Cancer Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Willert M, Augstein A, Poitz DM, Schmeisser A, Strasser RH, Braun-Dullaeus RC. Transcriptional regulation of Pim-1 kinase in vascular smooth muscle cells and its role for proliferation. Basic Res Cardiol 2009; 105:267-77. [PMID: 19711112 DOI: 10.1007/s00395-009-0055-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 07/22/2009] [Accepted: 08/18/2009] [Indexed: 12/24/2022]
Abstract
The Ser/Thr-protein kinase Pim-1 has been discovered as a novel transducer of survival- and cell cycle promoting signals in the hematopoietic cell system. Although its significance for proliferation of vascular smooth muscle cells (VSMC) in vitro and neointima formation in vivo has been suggested recently, the mechanism has barely been characterized. This study aimed to foster the understanding of Pim-1 expression and regulation in murine VSMC in response to factors typically present within the atherosclerotic plaque. While oxidative stress, VEGF-A165 and angiotensin II did not have any effect on Pim-1 expression, VSMC strongly increased (3-fold) Pim-1 mRNA upon stimulation with PDGF(bb), followed by its protein upregulation. Half life of Pim-1 RNA and protein were determined to be 25 min and 6 h, respectively. PDGF(bb) induced a strong, 10-fold increase in BrdU-uptake, a marker of proliferation. This was effectively blocked by either Pim-1-specific inhibitor quercetagetin or adenovirally introduced Pim-1 shRNA. We further identified the signaling pathways linking PDGF(bb) to Pim-1 in VSMC: as expected, we determined transcriptional stimulation of Pim-1 via Janus-activated kinase (Jak), but also an additional pathway involving protein kinase C (PKC) and the mitogen-activated protein kinase Mek1/2. Blockade of Akt signaling did, however, not interfere with Pim-1 upregulation, suggesting an independence of either survival system. PDGF(bb)-induced proliferation of VSMC is partly attributed to transcriptionally upregulated Pim-1 and was assigned to distinct cell signaling. Our findings help to understand the fundamental processes of vasculoproliferative diseases thus opening avenues for its prevention and treatment.
Collapse
Affiliation(s)
- Manuela Willert
- Internal Medicine, Department of Cardiology and Intensive Care, University of Technology Dresden, Dresden, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Biological actions resulting from phosphoinositide synthesis trigger multiple downstream signalling cascades by recruiting proteins with pleckstrin homology domains, including phosphoinositide-dependent kinase-1 and protein kinase B (also known as Akt). Retrospectively, more attention has been focused on the plasma membrane-associated interactions of these molecules and resulting cytoplasmic target activation. The complex biological activities exerted by Akt activation suggest, however, that more subtle and complex subcellular control mechanisms are involved. This review examines the regulation of Akt activity from the perspective of subcellular compartmentalization and focuses specifically upon the actions of Akt activation downstream from phosphoinositide synthesis that influence cell biology by altering nuclear signalling leading to Pim-1 kinase induction as well as hexokinase phosphorylation that, together with Akt, serves to preserve mitochondrial integrity.
Collapse
Affiliation(s)
- Shigeki Miyamoto
- Department of Pharmacology, University of California, La Jolla, San Diego, CA 92093-0636, USA
| | - Marta Rubio
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
| | - Mark A. Sussman
- Department of Biology, SDSU Heart Institute, San Diego State University, NLS 426, 5500 Campanile Drive, San Diego, CA 92182, USA
- Corresponding author. Tel: +1 619 594 2983; +1 619 594 2610. E-mail address:
| |
Collapse
|
35
|
Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB, Salto-Tellez M. Potential roles for the PIM1 kinase in human cancer - a molecular and therapeutic appraisal. Eur J Cancer 2008; 44:2144-51. [PMID: 18715779 DOI: 10.1016/j.ejca.2008.06.044] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 06/17/2008] [Accepted: 06/30/2008] [Indexed: 12/25/2022]
Abstract
In vitro experiments have shown the PIM1 kinase to have diverse biological roles in cell survival, proliferation and differentiation. In humans, PIM1 is often expressed in both normal and transformed cells. The PIM1 kinase is a true oncogene implicated in early transformation and tumour progression in haematopoietic malignancies and prostate carcinomas. It is associated with aggressive subgroups of lymphoma, is a marker of poor prognosis in prostate carcinomas and has been suggested to have a role in hormone insensitivity of prostate malignancies. PIM1 has a possible role in other carcinomas with 6p21 genomic alterations. On one hand, PIM1 (due to its role in malignancy) appears to be a promising target for drug development programmes but, on the other hand, the complexity of its molecular structure has posed challenges in the development of PIM1 inhibitors. In this review we discuss PIM1 expression in human tissues (including some new data from our laboratory), its role in human malignancies, as well as the possibilities and challenges in the development of target therapy for PIM1.
Collapse
Affiliation(s)
- Nilesh Shah
- Oncology Research Institute, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
36
|
Basu S, Golovina T, Mikheeva T, June CH, Riley JL. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. THE JOURNAL OF IMMUNOLOGY 2008; 180:5794-8. [PMID: 18424697 DOI: 10.4049/jimmunol.180.9.5794] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Addition of rapamycin to cultures of expanding natural CD4+CD25+Foxp3+ T regulatory cells (Tregs) helps maintain their suppressive activity, but the underlying mechanism is unclear. Pim 2 is a serine/threonine kinase that can confer rapamycin resistance. Unexpectedly, pim 2 was found to be constitutively expressed in freshly isolated, resting Tregs, but not in CD4+CD25- T effector cells. Introduction of Foxp3, but not Foxp3Delta2, into effector T cells induced pim 2 expression and conferred preferential expansion in the presence of rapamycin, indicating that Foxp3 can regulate pim 2 expression. Finally, we determined there is a positive correlation between Treg expansion and Foxp3 expression in the presence of rapamycin. Together, these results indicate that Tregs are programmed to be resistant to rapamycin, providing further rationale for why this immunosuppressive drug should be used in conjunction with expanded Tregs.
Collapse
Affiliation(s)
- Samik Basu
- Abramson Family Cancer Research Institute and Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
37
|
Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol 2008; 83:1230-9. [PMID: 18270248 DOI: 10.1189/jlb.1207851] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Although regulatory CD4+CD25+ forkhead box p3+ (Foxp3+) T cells (Tregs) are generally thought to arise in the thymus as a separate lineage of CD4 T cells, they can also be induced de novo in the periphery. Peripheral development of Tregs from naïve T cells is favored by low-intensity activation and absence of inflammation. We show here that absence of CD28 costimulation results in a modest decrease in activation of naïve, antigen-specific CD4 T cells under noninflammatory conditions and benefits their initial Foxp3 induction. However, expression of Foxp3 following T cell activation without CD28 costimulation remains sensitive to the antigen dose. Furthermore, basal CD28 costimulation is critical for survival of the induced Foxp3+ CD4 T cells, and their accumulation is abrogated in the absence of CD28. In contrast, pharmacologic blockade of mammalian target of rapamycin enhances lasting induction of Tregs, irrespective of the initial antigen dose used to activate the antigen-specific T cells. This finding may have important practical, clinical implication in development of tolerance protocols.
Collapse
Affiliation(s)
- Johnthomas Kang
- Center for Immunology and Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
38
|
Sedaghat AR, German J, Teslovich TM, Cofrancesco J, Jie CC, Talbot CC, Siliciano RF. Chronic CD4+ T-cell activation and depletion in human immunodeficiency virus type 1 infection: type I interferon-mediated disruption of T-cell dynamics. J Virol 2008; 82:1870-83. [PMID: 18077723 PMCID: PMC2258719 DOI: 10.1128/jvi.02228-07] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2007] [Accepted: 11/27/2007] [Indexed: 11/20/2022] Open
Abstract
The mechanism of CD4(+) T-cell depletion during chronic human immunodeficiency virus type 1 (HIV-1) infection remains unknown. Many studies suggest a significant role for chronic CD4(+) T-cell activation. We assumed that the pathogenic process of excessive CD4(+) T-cell activation would be reflected in the transcriptional profiles of activated CD4(+) T cells. Here we demonstrate that the transcriptional programs of in vivo-activated CD4(+) T cells from untreated HIV-positive (HIV(+)) individuals are clearly different from those of activated CD4(+) T cells from HIV-negative (HIV(-)) individuals. We observed a dramatic up-regulation of cell cycle-associated and interferon-stimulated transcripts in activated CD4(+) T cells of untreated HIV(+) individuals. Furthermore, we find an enrichment of proliferative and type I interferon-responsive transcription factor binding sites in the promoters of genes that are differentially expressed in activated CD4(+) T cells of untreated HIV(+) individuals compared to those of HIV(-) individuals. We confirm these findings by examination of in vivo-activated CD4(+) T cells. Taken together, these results suggest that activated CD4(+) T cells from untreated HIV(+) individuals are in a hyperproliferative state that is modulated by type I interferons. From these results, we propose a new model for CD4(+) T-cell depletion during chronic HIV-1 infection.
Collapse
Affiliation(s)
- Ahmad R Sedaghat
- Johns Hopkins University School of Medicine, Department of Medicine, 879 BRB, 733 N. Broadway, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|