1
|
Hayashida S, Takada K, Melnikov VG, Komine-Aizawa S, Tsuji NM, Hayakawa S. How were Lactobacillus species selected as single dominant species in the human vaginal microbiota? Coevolution of humans and Lactobacillus. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. Int J Mol Sci 2022; 23:ijms23052499. [PMID: 35269641 PMCID: PMC8910669 DOI: 10.3390/ijms23052499] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
With the growing problem of the emergence of antibiotic-resistant bacteria, the search for alternative ways to combat bacterial infections is extremely urgent. While analyzing the effect of antimicrobial peptides (AMPs) on immunocompetent cells, their effect on all parts of the immune system, and on humoral and cellular immunity, is revealed. AMPs have direct effects on neutrophils, monocytes, dendritic cells, T-lymphocytes, and mast cells, participating in innate immunity. They act on B-lymphocytes indirectly, enhancing the induction of antigen-specific immunity, which ultimately leads to the activation of adaptive immunity. The adjuvant activity of AMPs in relation to bacterial and viral antigens was the reason for their inclusion in vaccines and made it possible to formulate the concept of a “defensin vaccine” as an innovative basis for constructing vaccines. The immunomodulatory function of AMPs involves their influence on cells in the nearest microenvironment, recruitment and activation of other cells, supporting the response to pathogenic microorganisms and completing the inflammatory process, thus exhibiting a systemic effect. For the successful use of AMPs in medical practice, it is necessary to study their immunomodulatory activity in detail, taking into account their pleiotropy. The degree of maturity of the immune system and microenvironment can contribute to the prevention of complications and increase the effectiveness of therapy, since AMPs can suppress inflammation in some circumstances, but aggravate the response and damage of organism in others. It should also be taken into account that the real functions of one or another AMP depend on the types of total regulatory effects on the target cell, and not only on properties of an individual peptide. A wide spectrum of biological activity, including direct effects on pathogens, inactivation of bacterial toxins and influence on immunocompetent cells, has attracted the attention of researchers, however, the cytostatic activity of AMPs against normal cells, as well as their allergenic properties and low stability to host proteases, are serious limitations for the medical use of AMPs. In this connection, the tasks of searching for compounds that selectively affect the target and development of an appropriate method of application become critically important. The scope of this review is to summarize the current concepts and newest advances in research of the immunomodulatory activity of natural and synthetic AMPs, and to examine the prospects and limitations of their medical use.
Collapse
|
3
|
Sato Y, Wang Y, Song Y, Geng W, Yan S, Nakamura K, Kikukawa T, Demura M, Ayabe T, Aizawa T. Potent bactericidal activity of reduced cryptdin-4 derived from its hydrophobicity and mediated by bacterial membrane disruption. Amino Acids 2022; 54:289-297. [PMID: 35037097 DOI: 10.1007/s00726-021-03115-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Defensin is a cysteine-rich antimicrobial peptide with three disulphide bonds under normal oxidative conditions. Cryptdin-4 (Crp4) is a defensin secreted by Paneth cells in the small intestine of mice, and only reduced Crp4 (Crp4red) shows activity against enteric commensal bacteria, although both oxidised Crp4 (Crp4ox) and Crp4red can kill non-commensal bacteria. To investigate the molecular factors that affect the potent antimicrobial activity of Crp4red, the bactericidal activities of Crp4ox and Crp4red, Crp4 with all Cys residues substituted with Ser peptide (6C/S-Crp4), and Crp4 with all thiol groups modified by N-ethylmaleimide (NEM-Crp4) were assessed. All peptides showed bactericidal activity against non-commensal bacteria, whereas Crp4red and NEM-Crp4 showed bactericidal activity against commensal bacteria. These potent peptides exhibited high hydrophobicity, which was strongly correlated with membrane insertion. Intriguingly, Crp4ox formed electrostatic interactions with the membrane surface of bacteria, even without exerting bactericidal activity. Moreover, the bactericidal activity of both oxidised and reduced forms of Crp4 was abolished by inhibition of electrostatic interactions; this finding suggests that Crp4red targets bacterial membranes. Finally, a liposome leakage assay against lipids extracted from commensal bacteria demonstrated a correlation with bactericidal activity. These results suggest that the potent bactericidal activity of Crp4red is derived from its hydrophobicity, and the bactericidal mechanism involves disruption of the bacterial membrane. Findings from this study provide a better understanding of the bactericidal mechanism of both Crp4ox and Crp4red.
Collapse
Affiliation(s)
- Yuji Sato
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yi Wang
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuchi Song
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Weiming Geng
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shaonan Yan
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Demura
- Laboratory of Biological Information Analysis Science, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoyasu Aizawa
- Protein Science Laboratory, Graduate School of Life Science, Hokkaido University, Sapporo, Hokkaido, Japan.
| |
Collapse
|
4
|
Safety Evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a Health-Promoting Bacteria. Probiotics Antimicrob Proteins 2021; 14:816-829. [PMID: 34403080 DOI: 10.1007/s12602-021-09826-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2021] [Indexed: 12/12/2022]
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA is a new potential probiotic strain whose molecular basis attributed to the host's benefit has been reported. This study investigated the safety aspects of Lactobacillus delbrueckii subsp. lactis CIDCA 133 based on whole-genome sequence and phenotypic analysis to avoid future questions about the harmful effects of this strain consumption. Genomic analysis showed that L. delbrueckii subsp. lactis CIDCA 133 harbors virulence, harmful metabolites, and antimicrobial resistance-associated genes. However, none of these genetic elements is flanked or located within prophage regions and plasmid sequence. At a phenotypic level, it was observed L. delbrueckii subsp. lactis CIDCA 133 antimicrobial resistance to aminoglycosides streptomycin and gentamicin antibiotics, but no hemolytic and mucin degradation activity was exhibited by strain. Furthermore, no adverse effects were observed regarding mice clinical and histopathological analysis after the strain consumption (5 × 107 CFU/mL). Overall, these findings reveal the safety of Lactobacillus delbrueckii subsp. lactis CIDCA 133 for consumption and future probiotic applications.
Collapse
|
5
|
de Jesus LCL, Drumond MM, Aburjaile FF, Sousa TDJ, Coelho-Rocha ND, Profeta R, Brenig B, Mancha-Agresti P, Azevedo V. Probiogenomics of Lactobacillus delbrueckii subsp. lactis CIDCA 133: In Silico, In Vitro, and In Vivo Approaches. Microorganisms 2021; 9:microorganisms9040829. [PMID: 33919849 PMCID: PMC8070793 DOI: 10.3390/microorganisms9040829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Lactobacillus delbrueckii subsp. lactis CIDCA 133 (CIDCA 133) has been reported as a potential probiotic strain, presenting immunomodulatory properties. This study investigated the possible genes and molecular mechanism involved with a probiotic profile of CIDCA 133 through a genomic approach associated with in vitro and in vivo analysis. Genomic analysis corroborates the species identification carried out by the classical microbiological method. Phenotypic assays demonstrated that the CIDCA 133 strain could survive acidic, osmotic, and thermic stresses. In addition, this strain shows antibacterial activity against Salmonella Typhimurium and presents immunostimulatory properties capable of upregulating anti-inflammatory cytokines Il10 and Tgfb1 gene expression through inhibition of Nfkb1 gene expression. These reported effects can be associated with secreted, membrane/exposed to the surface and cytoplasmic proteins, and bacteriocins-encoding genes predicted in silico. Furthermore, our results showed the genes and the possible mechanisms used by CIDCA 133 to produce their beneficial host effects and highlight its use as a probiotic microorganism.
Collapse
Affiliation(s)
- Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Mariana Martins Drumond
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil;
| | - Flávia Figueira Aburjaile
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Laboratório de Flavivírus, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Thiago de Jesus Sousa
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Nina Dias Coelho-Rocha
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Rodrigo Profeta
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
| | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, D-37077 Göttingen, Germany;
| | | | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (L.C.L.d.J.); (F.F.A.); (T.d.J.S.); (N.D.C.-R.); (R.P.)
- Correspondence:
| |
Collapse
|
6
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
7
|
Barroso FAL, de Jesus LCL, de Castro CP, Batista VL, Ferreira Ê, Fernandes RS, de Barros ALB, Leclerq SY, Azevedo V, Mancha-Agresti P, Drumond MM. Intake of Lactobacillus delbrueckii (pExu: hsp65) Prevents the Inflammation and the Disorganization of the Intestinal Mucosa in a Mouse Model of Mucositis. Microorganisms 2021; 9:microorganisms9010107. [PMID: 33466324 PMCID: PMC7824804 DOI: 10.3390/microorganisms9010107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
5-Fluorouracil (5-FU) is an antineoplastic drug that causes, as a side effect, intestinal mucositis, acute inflammation in the small bowel. The Heat Shock Protein (Hsp) are highly expressed in inflammatory conditions, developing an important role in immune modulation. Thus, they are potential candidates for the treatment of inflammatory diseases. In the mucositis mouse model, the present study aimed to evaluate the beneficial effect of oral administration of milk fermented by Lactobacillus delbrueckii CIDCA 133 (pExu:hsp65), a recombinant strain. This approach showed increased levels of sIgA in the intestinal fluid, reducing inflammatory infiltrate and intestinal permeability. Additionally, the histological score was improved. Protection was associated with a reduction in the gene expression of pro-inflammatory cytokines such as Tnf, Il6, Il12, and Il1b, and an increase in Il10, Muc2, and claudin 1 (Cldn1) and 2 (Cldn2) gene expression in ileum tissue. These findings are corroborated with the increased number of goblet cells, the electronic microscopy images, and the reduction of intestinal permeability. The administration of milk fermented by this recombinant probiotic strain was also able to reverse the high levels of gene expression of Tlrs caused by the 5-FU. Thus, the rCIDCA 133:Hsp65 strain was revealed to be a promising preventive strategy for small bowel inflammation.
Collapse
Affiliation(s)
- Fernanda Alvarenga Lima Barroso
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Luís Cláudio Lima de Jesus
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Camila Prosperi de Castro
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Viviane Lima Batista
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Renata Salgado Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - André Luís Branco de Barros
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Campus da UFMG, Universidade Federal de Minas Gerais, Cidade Universitária, Belo Horizonte 31270-901, Brazil; (R.S.F.); (A.L.B.d.B.)
| | - Sophie Yvette Leclerq
- Laboratório de Inovação Biotecnológica, Fundação Ezequiel Dias (FUNED), Belo Horizonte 30510-010, Brazil;
| | - Vasco Azevedo
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
| | - Pamela Mancha-Agresti
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Faculdade de Minas-Faminas-BH, Medicina, Belo Horizonte 31744-007, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| | - Mariana Martins Drumond
- Laboratório de Genética Celular e Molecular (LGCM), Departamento de—Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil; (F.A.L.B.); (L.C.L.d.J.); (C.P.d.C.); (V.L.B.); (V.A.)
- Centro Federal de Educação Tecnológica de Minas Gerais (CEFET/MG), Departamento de Ciências Biológicas, Belo Horizonte 31421-169, Brazil
- Correspondence: (P.M.-A.); (M.M.D.); Tel.: +55-31-99817-5004 (P.M.-A.); +55-31-99222-2761 (M.M.D.)
| |
Collapse
|
8
|
Balatti GE, Domene C, Martini MF, Pickholz M. Differential Stability of Aurein 1.2 Pores in Model Membranes of Two Probiotic Strains. J Chem Inf Model 2020; 60:5142-5152. [PMID: 32815723 DOI: 10.1021/acs.jcim.0c00855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aurein 1.2 is an antimicrobial peptide from the skin secretion of an Australian frog. In the previous experimental work, we reported a differential action of aurein 1.2 on two probiotic strains Lactobacillus delbrueckii subsp. bulgaricus (CIDCA 331) and Lactobacillus delbrueckii subsp. lactis (CIDCA 133). The differences found were attributed to the bilayer compositions. Cell cultures and CIDCA 331-derived liposomes showed higher susceptibility than the ones derived from the CIDCA 133 strain, leading to content leakage and structural disruption. Here, we used molecular dynamics simulations to explore these systems at the atomistic level. We hypothesize that if the antimicrobial peptides organized themselves to form a pore, it will be more stable in membranes that emulate the CIDCA 331 strain than in those of the CIDCA 133 strain. To test this hypothesis, we simulated preassembled aurein 1.2 pores embedded into bilayer models that emulate the two probiotic strains. It was found that the general behavior of the systems depends on the composition of the membrane rather than the preassemble system characteristics. Overall, it was observed that aurein 1.2 pores are more stable in the CIDCA 331 model membranes. This fact coincides with the high susceptibility of this strain against antimicrobial peptide. In contrast, in the case of the CIDCA 133 model membranes, peptides migrate to the water-lipid interphase, the pore shrinks, and the transport of water through the pore is reduced. The tendency of glycolipids to make hydrogen bonds with peptides destabilizes the pore structures. This feature is observed to a lesser extent in CIDCA 331 due to the presence of anionic lipids. Glycolipid transverse diffusion (flip-flop) between monolayers occurs in the pore surface region in all the cases considered. These findings expand our understanding of the antimicrobial peptide resistance properties of probiotic strains.
Collapse
Affiliation(s)
- Galo E Balatti
- Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina.,IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina
| | - Carmen Domene
- Department of Chemistry, University of Bath, 1 South Bldg., Claverton Down, Bath BA27AY, The United Kingdom.,Department of Chemistry, University of Oxford, Oxford OX1 3TA, The United Kingdom
| | - M Florencia Martini
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Junín 956, C1113AAD Buenos Aires, Argentina.,Instituto de Química y Metabolismo del Fármaco, Fac. de Farmacia y Bioquímica, (Universidad de Buenos Aires, IQUIMEFA-CONICET), Junín 956, C1113AAD Buenos Aires, Argentina
| | - Monica Pickholz
- Departamento de Física Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina.,IFIBA, CONICET-UBA, Ciudad Universitaria, Pabellón 1, Buenos Aires 1428, Argentina
| |
Collapse
|
9
|
Scornec H, Palud A, Pédron T, Wheeler R, Petitgonnet C, Boneca IG, Cavin JF, Sansonetti PJ, Licandro H. Study of the cwaRS-ldcA Operon Coding a Two-Component System and a Putative L,D-Carboxypeptidase in Lactobacillus paracasei. Front Microbiol 2020; 11:156. [PMID: 32194510 PMCID: PMC7062640 DOI: 10.3389/fmicb.2020.00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 11/22/2022] Open
Abstract
The cell surface is the primary recognition site between the bacterium and the host. An operon of three genes, LSEI_0219 (cwaR), LSEI_0220 (cwaS), and LSEI_0221 (ldcA), has been previously identified as required for the establishment of Lactobacillus paracasei in the gut. The genes cwaR and cwaS encode a predicted two-component system (TCS) and ldcA a predicted D-alanyl-D-alanine carboxypeptidase which is a peptidoglycan (PG) biosynthesis enzyme. We explored the functionality and the physiological role of these three genes, particularly their impact on the bacterial cell wall architecture and on the bacterial adaptation to environmental perturbations in the gut. The functionality of CwaS/R proteins as a TCS has been demonstrated by biochemical analysis. It is involved in the transcriptional regulation of several genes of the PG biosynthesis. Analysis of the muropeptides of PG in mutants allowed us to re-annotate LSEI_0221 as a putative L,D-carboxypeptidase (LdcA). The absence of this protein coincided with a decrease of two surface antigens: LSEI_0020, corresponding to p40 or msp2 whose implication in the host epithelial homeostasis has been recently studied, and LSEI_2029 which has never been functionally characterized. The inactivation of each of these three genes induces susceptibility to antimicrobial peptides (hBD1, hBD2, and CCL20), which could be the main cause of the gut establishment deficiency. Thus, this operon is necessary for the presence of two surface antigens and for a suitable cell wall architecture.
Collapse
Affiliation(s)
- Hélène Scornec
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aurore Palud
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Thierry Pédron
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
| | - Richard Wheeler
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Clément Petitgonnet
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Ivo Gomperts Boneca
- Unité de Biologie et Génétique de la Paroi Bactérienne, Institut Pasteur, Paris, France
- Avenir Group, INSERM, Paris, France
| | - Jean-François Cavin
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Philippe J. Sansonetti
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, Paris, France
- Unité INSERM, Institut Pasteur, Paris, France
- Chaire de Microbiologie et Maladies Infectieuses, Collège de France, Paris, France
| | - Hélène Licandro
- PAM UMR, AgroSup Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
10
|
Szymanowski F, Balatti GE, Ambroggio E, Hugo AA, Martini MF, Fidelio GD, Gómez-Zavaglia A, Pickholz M, Pérez PF. Differential activity of lytic α-helical peptides on lactobacilli and lactobacilli-derived liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1069-1077. [PMID: 30878358 DOI: 10.1016/j.bbamem.2019.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/06/2019] [Accepted: 03/09/2019] [Indexed: 01/13/2023]
Abstract
Eukaryotic antimicrobial peptides (AMPs) interact with plasma membrane of bacteria, fungi and eukaryotic parasites. Noteworthy, Lactobacillus delbrueckii subsp. lactis (CIDCA 133) and L. delbrueckii subsp. bulgaricus (CIDCA 331) show different susceptibility to human beta-defensins (β-sheet peptides). In the present work we extended the study to α-helical peptides from anuran amphibian (Aurein 1.2, Citropin 1.1 and Maculatin 1.1). We studied the effect on whole bacteria and liposomes formulated with bacterial lipids through growth kinetics, flow cytometry, leakage of liposome content and studies of peptide insertion in lipid monolayers. Growth of strain CIDCA 331 was dramatically inhibited in the presence of all three peptides and minimal inhibitory concentrations were lower than those for strain CIDCA 133. Flow cytometry revealed that AMPs lead to the permeabilization of bacteria. In addition, CIDCA 331-derived liposomes showed high susceptibility, leading to content leakage and structural disruption. Accordingly, peptide insertion in lipid monolayers demonstrated spontaneous interaction of AMPs with CIDCA 331 lipids. In contrast, lipids monolayers from strain CIDCA 133 were less susceptible. Summarizing we demonstrate that the high resistance of the probiotic strain CIDCA 133 to AMPs extends to α helix peptides Aurein, Citropin and Maculatin. This behavior could be ascribed in part to differences in membrane composition. These findings, along with the previously demonstrated resistance to β defensins from human origin, suggest that strain CIDCA 133 is well adapted to host innate immune effectors from both mammals and amphibians thus indicating conserved mechanisms of interaction with key components of the innate immune system.
Collapse
Affiliation(s)
- F Szymanowski
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata, CICPBA, UNLP), RA-1900, Argentina
| | - G E Balatti
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires C1428BFA, Argentina.
| | - E Ambroggio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica "Dr. Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X500HUA, Argentina
| | - A A Hugo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata, CICPBA, UNLP), RA-1900, Argentina.
| | - M F Martini
- Departamento de Farmacología, Instituto de la Química y Metabolismo del Fármaco (IQUIMIFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, CONICET-Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - G D Fidelio
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Departamento de Química Biológica "Dr. Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X500HUA, Argentina
| | - A Gómez-Zavaglia
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata, CICPBA, UNLP), RA-1900, Argentina.
| | - M Pickholz
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, CONICET-Universidad de Buenos Aires, IFIBA, Buenos Aires C1428BFA, Argentina; Departamento de Farmacología, Instituto de la Química y Metabolismo del Fármaco (IQUIMIFA), Facultad de Farmacia y Bioquímica, Cátedra de Química Medicinal, CONICET-Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina
| | - P F Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA,-CCT-CONICET La Plata, CICPBA, UNLP), RA-1900, Argentina; Cátedra de Microbiología, Facultad de Ciencias Exactas (FCE), UNLP, La Plata, Argentina.
| |
Collapse
|
11
|
De Jesus LCL, Drumond MM, de Carvalho A, Santos SS, Martins FS, Ferreira Ê, Fernandes RS, de Barros ALB, do Carmo FL, Perez PF, Azevedo V, Mancha-Agresti P. Protective effect of Lactobacillus delbrueckii subsp. Lactis CIDCA 133 in a model of 5 Fluorouracil-Induced intestinal mucositis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
12
|
Antimicrobial proteins: intestinal guards to protect against liver disease. J Gastroenterol 2019; 54:209-217. [PMID: 30392013 PMCID: PMC6391196 DOI: 10.1007/s00535-018-1521-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
Alterations of gut microbes play a role in the pathogenesis and progression of many disorders including liver and gastrointestinal diseases. Both qualitative and quantitative changes in gut microbiota have been associated with liver disease. Intestinal dysbiosis can disrupt the integrity of the intestinal barrier leading to pathological bacterial translocation and the initiation of an inflammatory response in the liver. In order to sustain symbiosis and protect from pathological bacterial translocation, antimicrobial proteins (AMPs) such as a-defensins and C-type lectins are expressed in the gastrointestinal tract. In this review, we provide an overview of the role of AMPs in different chronic liver disease such as alcoholic steatohepatitis, non-alcoholic fatty liver disease, and cirrhosis. In addition, potential approaches to modulate the function of AMPs and prevent bacterial translocation are discussed.
Collapse
|
13
|
Balatti GE, Martini MF, Pickholz M. A coarse-grained approach to studying the interactions of the antimicrobial peptides aurein 1.2 and maculatin 1.1 with POPG/POPE lipid mixtures. J Mol Model 2018; 24:208. [PMID: 30019106 DOI: 10.1007/s00894-018-3747-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023]
Abstract
In the present work we investigated the differential interactions of the antimicrobial peptides (AMPs) aurein 1.2 and maculatin 1.1 with a bilayer composed of a mixture of the lipids 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE). We carried out molecular dynamics (MD) simulations using a coarse-grained approach within the MARTINI force field. The POPE/POPG mixture was used as a simple model of a bacterial (prokaryotic cell) membrane. The results were compared with our previous findings for structures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a representative lipid of mammalian cells. We started the simulations of the peptide-lipid system from two different initial conditions: peptides in water and peptides inside the hydrophobic core of the membrane, employing a pre-assembled lipid bilayer in both cases. Our results show similarities and differences regarding the molecular behavior of the peptides in POPE/POPG in comparison to their behavior in a POPC membrane. For instance, aurein 1.2 molecules can adopt similar pore-like structures on both POPG/POPE and POPC membranes, but the peptides are found deeper in the hydrophobic core in the former. Maculatin 1.1 molecules, in turn, achieve very similar structures in both kinds of bilayers: they have a strong tendency to form clusters and induce curvature. Therefore, the results of this study provide insight into the mechanisms of action of these two peptides in membrane leakage, which allows organisms to protect themselves against potentially harmful bacteria. Graphical Abstract Aurein pore structure (green) in a lipid bilayer composed by POPE (blue) and POPG (red) mixture. It is possible to see water beads (light blue) inside the pore.
Collapse
Affiliation(s)
- G E Balatti
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina
| | - M F Martini
- Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Universidad de Buenos Aires, Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires, IQUIMEFA, C1113AA, Buenos Aires, Argentina
| | - M Pickholz
- Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina. .,CONICET-Universidad de Buenos Aires, IFIBA, C1428BFA, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Bashir T, Patgaonkar M, Kumar C S, Pasi A, Reddy KVR. HbAHP-25, an In-Silico Designed Peptide, Inhibits HIV-1 Entry by Blocking gp120 Binding to CD4 Receptor. PLoS One 2015; 10:e0124839. [PMID: 25915507 PMCID: PMC4411102 DOI: 10.1371/journal.pone.0124839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 03/18/2015] [Indexed: 11/18/2022] Open
Abstract
Human Immunodeficiency Virus (HIV-1) poses a serious threat to the developing world and sexual transmission continues to be the major source of new infections. Therefore, the development of molecules, which prevent new HIV-1 infections, is highly warranted. In the present study, a panel of human hemoglobin (Hb)-α subunit derived peptides and their analogues, with an ability to bind gp120, were designed in-silico and their anti-HIV-1 activity was evaluated. Of these peptides, HbAHP-25, an analogue of Hb-α derived peptide, demonstrated significant anti-HIV-1 activity. HbAHP-25 was found to be active against CCR5-tropic HIV-1 strains (ADA5 and BaL) and CXCR4-tropic HIV-1 strains (IIIB and NL4-3). Surface plasmon resonance (SPR) and ELISA revealed direct interaction between HbAHP-25 and HIV-1 envelope protein, gp120. The peptide prevented binding of CD4 to gp120 and blocked subsequent steps leading to entry and/or fusion or both. Anti-HIV activity of HbAHP-25 appeared to be specific as it failed to inhibit the entry of HIV-1 pseudotyped virus (HIV-1 VSV). Further, HbAHP-25 was found to be non-cytotoxic to TZM-bl cells, VK2/E6E7 cells, CEM-GFP cells and PBMCs, even at higher concentrations. Moreover, HbAHP-25 retained its anti-HIV activity in presence of seminal plasma and vaginal fluid. In brief, the study identified HbAHP-25, a novel anti-HIV peptide, which directly interacts with gp120 and thus has a potential to inhibit early stages of HIV-1 infection.
Collapse
Affiliation(s)
- Tahir Bashir
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute for Fundamental Research, Mumbai, India
| | - Selvaa Kumar C
- Department of Bioinformatics, School of Biotechnology and Bioinformatics, D.Y. Patil University, Navi Mumbai, India
| | - Achhelal Pasi
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
| | - Kudumula Venkata Rami Reddy
- Division of Molecular Immunology and Microbiology, National Institute for Research in Reproductive Health, Indian Council of Medical Research, Mumbai, India
- * E-mail:
| |
Collapse
|
15
|
Bravo-Ferrada B, Gonçalves S, Semorile L, Santos N, Tymczyszyn E, Hollmann A. Study of surface damage on cell envelope assessed by AFM and flow cytometry of Lactobacillus plantarum
exposed to ethanol and dehydration. J Appl Microbiol 2015; 118:1409-17. [DOI: 10.1111/jam.12796] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B.M. Bravo-Ferrada
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - S. Gonçalves
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - L. Semorile
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
| | - N.C. Santos
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
| | - E.E. Tymczyszyn
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
- CONICET; Buenos Aires Argentina
| | - A. Hollmann
- Laboratorio de Microbiología Molecular; Instituto de Microbiología Básica y Aplicada (IMBA); Departamento de Ciencia y Tecnología; Universidad Nacional de Quilmes; Bernal Argentina
- Instituto de Medicina Molecular; Faculdade de Medicina; Universidade de Lisboa; Lisbon Portugal
- Laboratory of Biointerfaces and Biomimetic Systems; CITSE-University of Santiago del Estero-CONICET; Santiago del Estero Argentina
- CONICET; Buenos Aires Argentina
| |
Collapse
|
16
|
Alves P, Hugo A, Szymanowski F, Tymczyszyn E, Pérez P, Coelho J, Simões P, Gómez-Zavaglia A. Stabilization of polymer lipid complexes prepared with lipids of lactic acid bacteria upon preservation and internalization into eukaryotic cells. Colloids Surf B Biointerfaces 2014; 123:446-51. [DOI: 10.1016/j.colsurfb.2014.09.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/17/2014] [Accepted: 09/19/2014] [Indexed: 02/07/2023]
|