1
|
Gentile I, Vezzoli V, Martone S, Totaro MG, Bonomi M, Persani L, Marelli F. Short-Term Exposure to Benzo(a)Pyrene Causes Disruption of GnRH Network in Zebrafish Embryos. Int J Mol Sci 2023; 24:ijms24086913. [PMID: 37108076 PMCID: PMC10138490 DOI: 10.3390/ijms24086913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon, is considered a common endocrine disrupting chemical (EDC) with mutagenic and carcinogenic effects. In this work, we evaluated the effects of BaP on the hypothalamo-pituitary-gonadal axis (HPG) of zebrafish embryos. The embryos were treated with 5 and 50 nM BaP from 2.5 to 72 hours post-fertilization (hpf) and obtained data were compared with those from controls. We followed the entire development of gonadotropin releasing hormone (GnRH3) neurons that start to proliferate from the olfactory region at 36 hpf, migrate at 48 hpf and then reach the pre-optic area and the hypothalamus at 72 hpf. Interestingly, we observed a compromised neuronal architecture of the GnRH3 network after the administration of 5 and 50 nM BaP. Given the toxicity of this compound, we evaluated the expression of genes involved in antioxidant activity, oxidative DNA damage and apoptosis and we found an upregulation of these pathways. Consequently, we performed a TUNEL assay and we confirmed an increment of cell death in brain of embryos treated with BaP. In conclusion our data reveal that short-term exposure of zebrafish embryos to BaP affects GnRH3 development likely through a neurotoxic mechanism.
Collapse
Affiliation(s)
- Ilaria Gentile
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
| | - Valeria Vezzoli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Sara Martone
- IFOM-FIRC, Institute of Molecular Oncology, 20139 Milan, Italy
| | | | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20133 Milan, Italy
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Federica Marelli
- Division of Endocrine and Metabolic Diseases, Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, 20149 Milan, Italy
| |
Collapse
|
2
|
Cotellessa L, Marelli F, Duminuco P, Adamo M, Papadakis GE, Bartoloni L, Sato N, Lang-Muritano M, Troendle A, Dhillo WS, Morelli A, Guarnieri G, Pitteloud N, Persani L, Bonomi M, Giacobini P, Vezzoli V. Defective jagged-1 signaling affects GnRH development and contributes to congenital hypogonadotropic hypogonadism. JCI Insight 2023; 8:161998. [PMID: 36729644 PMCID: PMC10077483 DOI: 10.1172/jci.insight.161998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
In vertebrate species, fertility is controlled by gonadotropin-releasing hormone (GnRH) neurons. GnRH cells arise outside the central nervous system, in the developing olfactory pit, and migrate along olfactory/vomeronasal/terminal nerve axons into the forebrain during embryonic development. Congenital hypogonadotropic hypogonadism (CHH) and Kallmann syndrome are rare genetic disorders characterized by infertility, and they are associated with defects in GnRH neuron migration and/or altered GnRH secretion and signaling. Here, we documented the expression of the jagged-1/Notch signaling pathway in GnRH neurons and along the GnRH neuron migratory route both in zebrafish embryos and in human fetuses. Genetic knockdown of the zebrafish ortholog of JAG1 (jag1b) resulted in altered GnRH migration and olfactory axonal projections to the olfactory bulbs. Next-generation sequencing was performed in 467 CHH unrelated probands, leading to the identification of heterozygous rare variants in JAG1. Functional in vitro validation of JAG1 mutants revealed that 7 out of the 9 studied variants exhibited reduced protein levels and altered subcellular localization. Together our data provide compelling evidence that Jag1/Notch signaling plays a prominent role in the development of GnRH neurons, and we propose that JAG1 insufficiency may contribute to the pathogenesis of CHH in humans.
Collapse
Affiliation(s)
- Ludovica Cotellessa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Federica Marelli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Duminuco
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Michela Adamo
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Georgios E Papadakis
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lucia Bartoloni
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Naoko Sato
- Department of Pediatrics, University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Mariarosaria Lang-Muritano
- Department of Pediatric Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland
| | - Amineh Troendle
- Department of Endocrinology, Diabetology, and Metabolism, Lindenhofspital, Bern, Switzerland
| | - Waljit S Dhillo
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Italy
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology, and Metabolism, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Marco Bonomi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.,Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Paolo Giacobini
- University Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, FHU 1000 days for health, Lille, France
| | - Valeria Vezzoli
- Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Chemogenetic Depletion of Hypophysiotropic GnRH Neurons Does Not Affect Fertility in Mature Female Zebrafish. Int J Mol Sci 2022; 23:ijms23105596. [PMID: 35628411 PMCID: PMC9143870 DOI: 10.3390/ijms23105596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 02/01/2023] Open
Abstract
The hypophysiotropic gonadotropin-releasing hormone (GnRH) and its neurons are crucial for vertebrate reproduction, primarily in regulating luteinizing hormone (LH) secretion and ovulation. However, in zebrafish, which lack GnRH1, and instead possess GnRH3 as the hypophysiotropic form, GnRH3 gene knockout did not affect reproduction. However, early-stage ablation of all GnRH3 neurons causes infertility in females, implicating GnRH3 neurons, rather than GnRH3 peptides in female reproduction. To determine the role of GnRH3 neurons in the reproduction of adult females, a Tg(gnrh3:Gal4ff; UAS:nfsb-mCherry) line was generated to facilitate a chemogenetic conditional ablation of GnRH3 neurons. Following ablation, there was a reduction of preoptic area GnRH3 neurons by an average of 85.3%, which was associated with reduced pituitary projections and gnrh3 mRNA levels. However, plasma LH levels were unaffected, and the ablated females displayed normal reproductive capacity. There was no correlation between the number of remaining GnRH3 neurons and reproductive performance. Though it is possible that the few remaining GnRH3 neurons can still induce an LH surge, our findings are consistent with the idea that GnRH and its neurons are likely dispensable for LH surge in zebrafish. Altogether, our results resurrected questions regarding the functional homology of the hypophysiotropic GnRH1 and GnRH3 in controlling ovulation.
Collapse
Affiliation(s)
- Sakura Tanaka
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel;
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA; (S.T.); (N.Z.)
- Correspondence:
| |
Collapse
|
4
|
Zohar Y, Zmora N, Trudeau VL, Muñoz-Cueto JA, Golan M. A half century of fish gonadotropin-releasing hormones: Breaking paradigms. J Neuroendocrinol 2022; 34:e13069. [PMID: 34913529 DOI: 10.1111/jne.13069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/11/2022]
Abstract
The field of fish gonadotropin-releasing hormones (GnRHs) is also celebrating its 50th anniversary this year. This review provides a chronological history of fish GnRH biology over the past five decades. It demonstrates how discoveries in fish regarding GnRH and GnRH receptor multiplicity, dynamic interactions between GnRH neurons, and additional neuroendocrine factors acting alongside GnRH, amongst others, have driven a paradigm shift in our understanding of GnRH systems and functions in vertebrates, including mammals. The role of technological innovations in enabling scientific discoveries is portrayed, as well as how fundamental research in fish GnRH led to translational outcomes in aquaculture. The interchange between fish and mammalian GnRH research is discussed, as is the value and utility of using fish models for advancing GnRH biology. Current challenges and future perspectives are presented, with the hope of expanding the dialogue and collaborations within the neuroendocrinology scientific community at large, capitalizing on diversifying model animals and the use of comparative strategies.
Collapse
Affiliation(s)
- Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and University Institute of Marine Research (INMAR), University of Cádiz and European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Matan Golan
- Institute of Animal Science, Agricultural Research Organization, Rishon Letziyon, Israel
| |
Collapse
|
5
|
Duittoz AH, Forni PE, Giacobini P, Golan M, Mollard P, Negrón AL, Radovick S, Wray S. Development of the gonadotropin-releasing hormone system. J Neuroendocrinol 2022; 34:e13087. [PMID: 35067985 PMCID: PMC9286803 DOI: 10.1111/jne.13087] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 11/29/2022]
Abstract
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
Collapse
Affiliation(s)
| | - Paolo E. Forni
- Department of Biological SciencesUniversity at AlbanyAlbanyNYUSA
- The RNA InstituteUniversity at AlbanyAlbanyNYUSA
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Postnatal BrainLille Neuroscience & Cognition, UMR‐S1172, Inserm, CHU LilleUniversity of LilleLilleFrance
| | - Matan Golan
- Institute of Animal SciencesAgricultural Research Organization – Volcani CenterRishon LetziyonIsrael
| | - Patrice Mollard
- Institute of Functional GenomicsCNRS, InsermMontpellier UniversityMontpellierFrance
| | - Ariel L. Negrón
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Sally Radovick
- Clinical and Translational ResearchRutgers Robert Wood Johnson Medical SchoolNew BrunswickNJUSA
| | - Susan Wray
- Cellular and Developmental Neurobiology SectionNational Institute of Neurological Disorders and Stroke/National Institutes of HealthBethesdaMDUSA
| |
Collapse
|
6
|
Di Schiavi E, Vistoli G, Moretti RM, Corrado I, Zuccarini G, Gervasoni S, Casati L, Bottai D, Merlo GR, Maggi R. Anosmin-1-Like Effect of UMODL1/Olfactorin on the Chemomigration of Mouse GnRH Neurons and Zebrafish Olfactory Axons Development. Front Cell Dev Biol 2022; 10:836179. [PMID: 35223856 PMCID: PMC8874799 DOI: 10.3389/fcell.2022.836179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
The impairment of development/migration of hypothalamic gonadotropin-releasing hormone (GnRH) neurons is the main cause of Kallmann's syndrome (KS), an inherited disorder characterized by hypogonadism, anosmia, and other developmental defects. Olfactorin is an extracellular matrix protein encoded by the UMODL1 (uromodulin-like 1) gene expressed in the mouse olfactory region along the migratory route of GnRH neurons. It shares a combination of WAP and FNIII repeats, expressed in complementary domains, with anosmin-1, the product of the ANOS1 gene, identified as the causative of KS. In the present study, we have investigated the effects of olfactorin in vitro and in vivo models. The results show that olfactorin exerts an anosmin-1-like strong chemoattractant effect on mouse-immortalized GnRH neurons (GN11 cells) through the activation of the FGFR and MAPK pathways. In silico analysis of olfactorin and anosmin-1 reveals a satisfactory similarity at the N-terminal region for the overall arrangement of corresponding WAP and FNIII domains and marked similarities between WAP domains’ binding modes of interaction with the resolved FGFR1–FGF2 complex. Finally, in vivo experiments show that the down-modulation of the zebrafish z-umodl1 gene (orthologous of UMODL1) in both GnRH3:GFP and omp2k:gap-CFPrw034 transgenic zebrafish strains leads to a clear disorganization and altered fasciculation of the neurites of GnRH3:GFP neurons crossing at the anterior commissure and a significant increase in olfactory CFP + fibers with altered trajectory. Thus, our study shows olfactorin as an additional factor involved in the development of olfactory and GnRH systems and proposes UMODL1 as a gene worthy of diagnostic investigation in KS.
Collapse
Affiliation(s)
- Elia Di Schiavi
- Institute of Biosciences and Bioresources, National Research Council of Italy, Naples, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences DISFEB, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Corrado
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Giulia Zuccarini
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Silvia Gervasoni
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Lavinia Casati
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Daniele Bottai
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
| | - Giorgio Roberto Merlo
- Department Molecular Biotechnology and Health Science, University of Torino, Torino, Italy
| | - Roberto Maggi
- Department of Pharmaceutical Sciences DISFARM, Università degli Studi di Milano, Milano, Italy
- *Correspondence: Roberto Maggi,
| |
Collapse
|
7
|
Tanaka S, Zmora N, Levavi-Sivan B, Zohar Y. Vasoactive Intestinal Peptide Indirectly Elicits Pituitary LH Secretion Independent of GnRH in Female Zebrafish. Endocrinology 2022; 163:6492622. [PMID: 34978328 DOI: 10.1210/endocr/bqab264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 02/08/2023]
Abstract
Vasoactive intestinal peptide (Vip) regulates luteinizing hormone (LH) release through the direct regulation of gonadotropin-releasing hormone (GnRH) neurons at the level of the brain in female rodents. However, little is known regarding the roles of Vip in teleost reproduction. Although GnRH is critical for fertility through the regulation of LH secretion in vertebrates, the exact role of the hypophysiotropic GnRH (GnRH3) in zebrafish is unclear since GnRH3 null fish are reproductively fertile. This phenomenon raises the possibility of a redundant regulatory pathway(s) for LH secretion in zebrafish. Here, we demonstrate that VipA (homologues of mammalian Vip) both inhibits and induces LH secretion in zebrafish. Despite the observation that VipA axons may reach the pituitary proximal pars distalis including LH cells, pituitary incubation with VipA in vitro, and intraperitoneal injection of VipA, did not induce LH secretion and lhβ mRNA expression in sexually mature females, respectively. On the other hand, intracerebroventricular administration of VipA augmented plasma LH levels in both wild-type and gnrh3-/- females at 1 hour posttreatment, with no observed changes in pituitary GnRH2 and GnRH3 contents and gnrh3 mRNA levels in the brains. While VipA's manner of inhibition of LH secretion has yet to be explored, the stimulation seems to occur via a different pathway than GnRH3, dopamine, and 17β-estradiol in regulating LH secretion. The results indicate that VipA induces LH release possibly by acting with or through a non-GnRH factor(s), providing proof for the existence of functional redundancy of LH release in sexually mature female zebrafish.
Collapse
Affiliation(s)
- Sakura Tanaka
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Nilli Zmora
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Yonathan Zohar
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| |
Collapse
|
8
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
9
|
Ma H, Yang MS, Zhang YT, Qiu HT, You XX, Chen SX, Hong WS. Expressions of melanopsins in telencephalon imply their function in synchronizing semilunar spawning rhythm in the mudskipper Boleophthalmus pectinirostris. Gen Comp Endocrinol 2022; 315:113926. [PMID: 34653434 DOI: 10.1016/j.ygcen.2021.113926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 11/04/2022]
Abstract
The mudskipper Boleophthalmus pectinirostris inhabits intertidal mudflats, exhibiting semilunar reproductive rhythms. To investigate whether melanopsin is possibly involved in the synchronization of the semilunar spawning rhythm in the female mudskipper, we first cloned all four melanopsin subtypes (opn4m1, opn4m3, opn4x1, opn4x2) in B. pectinirostris. Results from RTq-PCR showed that significantly higher transcription levels of all four melanopsin subtypes were observed in the eyes rather than other tissues. In brain, all four melanopsin subtypes were also detectable in different regions, including the telencephalon, in which the expression of melanopsin has not been reported in other teleosts. The transcription levels of opn4m3 and opn4x1 in the telencephalon exhibited a daily fluctuation pattern. When females entered the spawning season, opn4m1 and opn4x1 transcript levels increased significantly in the telencephalon. During the spawning season, the transcript levels of opn4m3 and opn4x1 in the telencephalon appeared to have a cyclic pattern associated with semilunar periodicity, exhibiting two cycles with a peak around the first or the last lunar quarters. Results from ISH showed that, opn4x1 mRNA was localized in the medial of dorsal telencephalic area, dorsal nucleus of ventral telencephalic area (Vd), ventral nucleus of ventral telencephalic area (Vv), anterior part of parvocellular preoptic nucleus, magnocellular part of the magnocellular preoptic nucleus (PMmc), habenular and ventral zone of hypothalamus. Intriguingly, gnrh3 mRNA was also located in Vd, Vv and PMmc. Taken together, our results suggested that melanopsins, e.g. opn4x1, expressed in the telencephalon might mediate semilunar spawning activity in the female mudskipper.
Collapse
Affiliation(s)
- He Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ming Shu Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yu Ting Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Heng Tong Qiu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Xin You
- Shenzhen Key Laboratory of Marine Genomics, Marine and Fisheries Institute, BGI-Shenzhen, Shenzhen 518083, China
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China.
| | - Wan Shu Hong
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Trudeau VL. Neuroendocrine Control of Reproduction in Teleost Fish: Concepts and Controversies. Annu Rev Anim Biosci 2021; 10:107-130. [PMID: 34788545 DOI: 10.1146/annurev-animal-020420-042015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
During the teleost radiation, extensive development of the direct innervation mode of hypothalamo-pituitary communication was accompanied by loss of the median eminence typical of mammals. Cells secreting follicle-stimulating hormone and luteinizing hormone cells are directly innervated, distinct populations in the anterior pituitary. So far, ∼20 stimulatory and ∼10 inhibitory neuropeptides, 3 amines, and 3 amino acid neurotransmitters are implicated in the control of reproduction. Positive and negative sex steroid feedback loops operate in both sexes. Gene mutation models in zebrafish and medaka now challenge our general understanding of vertebrate neuropeptidergic control. New reproductive neuropeptides are emerging. These include but are not limited to nesfatin 1, neurokinin B, and the secretoneurins. A generalized model for the neuroendocrine control of reproduction is proposed. Hopefully, this will serve as a research framework on diverse species to help explain the evolution of neuroendocrine control and lead to the discovery of new hormones with novel applications. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada; ,
| |
Collapse
|
11
|
Vissio PG, Di Yorio MP, Pérez-Sirkin DI, Somoza GM, Tsutsui K, Sallemi JE. Developmental aspects of the hypothalamic-pituitary network related to reproduction in teleost fish. Front Neuroendocrinol 2021; 63:100948. [PMID: 34678303 DOI: 10.1016/j.yfrne.2021.100948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/27/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-gonadal axis is the main system that regulates reproduction in vertebrates through a complex network that involves different neuropeptides, neurotransmitters, and pituitary hormones. Considering that this axis is established early on life, the main goal of the present work is to gather information on its development and the actions of its components during early life stages. This review focuses on fish because their neuroanatomical characteristics make them excellent models to study neuroendocrine systems. The following points are discussed: i) developmental functions of the neuroendocrine components of this network, and ii) developmental disruptions that may impact adult reproduction. The importance of the components of this network and their susceptibility to external/internal signals that can alter their specific early functions and/or even the establishment of the reproductive axis, indicate that more studies are necessary to understand this complex and dynamic network.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez-Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Shinjuku-ku, Tokyo 162-8480, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Julieta E Sallemi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
12
|
Davis EE, Balasubramanian R, Kupchinsky ZA, Keefe DL, Plummer L, Khan K, Meczekalski B, Heath KE, Lopez-Gonzalez V, Ballesta-Martinez MJ, Margabanthu G, Price S, Greening J, Brauner R, Valenzuela I, Cusco I, Fernandez-Alvarez P, Wierman ME, Li T, Lage K, Barroso PS, Chan YM, Crowley WF, Katsanis N. TCF12 haploinsufficiency causes autosomal dominant Kallmann syndrome and reveals network-level interactions between causal loci. Hum Mol Genet 2021; 29:2435-2450. [PMID: 32620954 DOI: 10.1093/hmg/ddaa120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Dysfunction of the gonadotropin-releasing hormone (GnRH) axis causes a range of reproductive phenotypes resulting from defects in the specification, migration and/or function of GnRH neurons. To identify additional molecular components of this system, we initiated a systematic genetic interrogation of families with isolated GnRH deficiency (IGD). Here, we report 13 families (12 autosomal dominant and one autosomal recessive) with an anosmic form of IGD (Kallmann syndrome) with loss-of-function mutations in TCF12, a locus also known to cause syndromic and non-syndromic craniosynostosis. We show that loss of tcf12 in zebrafish larvae perturbs GnRH neuronal patterning with concomitant attenuation of the orthologous expression of tcf3a/b, encoding a binding partner of TCF12, and stub1, a gene that is both mutated in other syndromic forms of IGD and maps to a TCF12 affinity network. Finally, we report that restored STUB1 mRNA rescues loss of tcf12 in vivo. Our data extend the mutational landscape of IGD, highlight the genetic links between craniofacial patterning and GnRH dysfunction and begin to assemble the functional network that regulates the development of the GnRH axis.
Collapse
Affiliation(s)
- Erica E Davis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ravikumar Balasubramanian
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | | | - David L Keefe
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Lacey Plummer
- Harvard Reproductive Endocrine Science Center, Massachusetts General Hospital (MGH), Boston, MA 02114, USA
| | - Kamal Khan
- Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Blazej Meczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-512 Poznan, Poland
| | - Karen E Heath
- Institute of Medical and Molecular Genetics (INGEMM) Hospital Universitario La Paz, Universidad Autonoma de Madrid, IdiPAZ, Madrid, Spain and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, 28046 Madrid, Spain
| | - Vanesa Lopez-Gonzalez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | - Mary J Ballesta-Martinez
- Medical Genetics Unit, Department of Pediatrics, Hospital Clinico, Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain and CIBERER, ISCIII, 28046 Madrid, Spain
| | | | - Susan Price
- Northampton General Hospital, Northampton NN1 5BD, UK
| | - James Greening
- University Hospitals of Leicester, Leicester LE3 9QP, UK
| | - Raja Brauner
- Pediatric Endocrinology Unit, Fondation Ophtalmologique Adolphe de Rothschild and Université Paris Descartes, 75019 Paris, France
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ivon Cusco
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Paula Fernandez-Alvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.,Medicine Genetics Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Taibo Li
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kasper Lage
- Harvard Medical School, Boston, MA 02115, USA.,Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Priscila Sales Barroso
- Divisao de Endocrinologia e Metabologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, Sao Paulo, 05403-900 Brazil
| | - Yee-Ming Chan
- Division of Endocrinology, Department of Pediatrics, Boston Children's Hospital, Boston, MA 02115, USA
| | - William F Crowley
- Harvard Medical School, Boston, MA 02115, USA.,MGH Center for Human Genetics & The Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Boston MA 02114, USA
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, NC 27701, USA.,Advanced Center for Translational and Genetic Medicine (ACT-GeM), Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA.,Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
13
|
Song Y, Peng W, Luo J, Zhu Z, Hu W. Organization of the gonadotropin-inhibitory hormone (Lpxrfa) system in the brain of zebrafish (Danio rerio). Gen Comp Endocrinol 2021; 304:113722. [PMID: 33485851 DOI: 10.1016/j.ygcen.2021.113722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022]
Abstract
Gonadotropin-inhibitory hormone (GnIH) is a hypothalamic neuropeptide that inhibits gonadotropin secretion in birds and mammals. However, the role of GnIH (Lpxrfa) in teleosts is unknown. In this study, a transgenic zebrafish (Danio rerio) line Tg(gnih:mCherry) was developed to determine the organization of GnIH neurons in the brain. Another transgenic line, Tg(gnih:mCherry; gnrh3:eGFP), was established to determine the positional relationships between GnIH and GnRH3 neurons. In these transgenic lines, the mCherry protein was specifically expressed in GnIH neurons, and eGFP was expressed exclusively in GnRH3 neurons. We found that GnIH cell somata were restricted to the posterior periventricular nucleus (NPPv). Most GnIH neuronal processes projected to the hypothalamus, but a few extended to the posterior tuberculum, telencephalon, and olfactory bulb. GnIH neuronal processes were in close apposition with GnRH3 cell somata and processes in the preoptic-hypothalamic area but were seldom in direct contact. However, in the olfactory bulb, GnIH neuronal processes were in proximity to the terminal nerve GnRH3 cell somata. Neither GnIH cell soma nor neuronal processes were detected in the pituitary, although GnIH receptor mRNAs (npffr1l1, npffr1l2, and npffr1l3) were detected. Intraperitoneal administration of GnIH-3 peptides promoted the transcription of brain gnrh3 as well as pituitary fshβ but not lhβ. Thus, GnIH cell somata were specifically distributed in the NPPv, and their fibers extended to the hypothalamus and advanced to the telencephalon and olfactory bulb. We conclude that GnIH may directly stimulate terminal nerve GnRH3 neurons in the zebrafish brain.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Life and Environmental Sciences, Hunan University of Arts and Science, Changde 415000, China
| | - Junzhi Luo
- Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
14
|
Marvel M, Levavi-Sivan B, Wong TT, Zmora N, Zohar Y. Gnrh2 maintains reproduction in fasting zebrafish through dynamic neuronal projection changes and regulation of gonadotropin synthesis, oogenesis, and reproductive behaviors. Sci Rep 2021; 11:6657. [PMID: 33758252 PMCID: PMC7987954 DOI: 10.1038/s41598-021-86018-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
Restricted food intake, either from lack of food sources or endogenous fasting, during reproductive periods is a widespread phenomenon across the animal kingdom. Considering previous studies show the canonical upstream regulator of reproduction in vertebrates, the hypothalamic Gonadotropin-releasing hormone (Gnrh), is inhibited in some fasting animals, we sought to understand the neuroendocrine control of reproduction in fasted states. Here, we explore the roles of the midbrain neuropeptide, Gnrh2, in inducing reproduction via its pituitary prevalence, gonadotropin synthesis, gametogenesis, and reproductive outputs in the zebrafish model undergoing different feeding regimes. We discovered a fasting-induced four-fold increase in length and abundance of Gnrh2 neuronal projections to the pituitary and in close proximity to gonadotropes, whereas the hypothalamic Gnrh3 neurons are reduced by six-fold in length. Subsequently, we analyzed the functional roles of Gnrh2 by comparing reproductive parameters of a Gnrh2-depleted model, gnrh2-/-, to wild-type zebrafish undergoing different feeding conditions. We found that Gnrh2 depletion in fasted states compromises spawning success, with associated decreases in gonadotropin production, oogenesis, fecundity, and male courting behavior. Gnrh2 neurons do not compensate in other circumstances by which Gnrh3 is depleted, such as in gnrh3-/- zebrafish, implying that Gnrh2 acts to induce reproduction specifically in fasted zebrafish.
Collapse
Affiliation(s)
- Miranda Marvel
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Berta Levavi-Sivan
- grid.9619.70000 0004 1937 0538Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Ten-Tsao Wong
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Nilli Zmora
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| | - Yonathan Zohar
- grid.266673.00000 0001 2177 1144Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202 USA
| |
Collapse
|
15
|
Golan M, Boulanger-Weill J, Pinot A, Fontanaud P, Faucherre A, Gajbhiye DS, Hollander-Cohen L, Fiordelisio-Coll T, Martin AO, Mollard P. Synaptic communication mediates the assembly of a self-organizing circuit that controls reproduction. SCIENCE ADVANCES 2021; 7:eabc8475. [PMID: 33608269 PMCID: PMC7895442 DOI: 10.1126/sciadv.abc8475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Migration of gonadotropin-releasing hormone (GnRH) neurons from their birthplace in the nasal placode to their hypothalamic destination is critical for vertebrate reproduction and species persistence. While their migration mode as individual GnRH neurons has been extensively studied, the role of GnRH-GnRH cell communication during migration remains largely unexplored. Here, we show in awake zebrafish larvae that migrating GnRH neurons pause at the nasal-forebrain junction and form clusters that act as interhemisphere neuronal ensembles. Within the ensembles, GnRH neurons create an isolated, spontaneously active circuit that is internally wired through monosynaptic glutamatergic synapses into which newborn GnRH neurons integrate before entering the brain. This initial phase of integration drives a phenotypic switch, which is essential for GnRH neurons to properly migrate toward their hypothalamic destination. Together, these experiments reveal a critical step for reproduction, which depends on synaptic communication between migrating GnRH neurons.
Collapse
Affiliation(s)
- M Golan
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - J Boulanger-Weill
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - A Pinot
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - P Fontanaud
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| | - A Faucherre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - D S Gajbhiye
- Institute of Animal Science, Agricultural Research Organization, P.O. Box 15159, Rishon Letziyon, 7505101, Israel
| | - L Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - T Fiordelisio-Coll
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
- Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México
| | - A O Martin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France
| | - P Mollard
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, France.
- BioCampus Montpellier, University of Montpellier, CNRS, INSERM, F-34094 Montpellier, France
| |
Collapse
|
16
|
Cellular identity and Ca 2+ signaling activity of the non-reproductive GnRH system in the Ciona intestinalis type A (Ciona robusta) larva. Sci Rep 2020; 10:18590. [PMID: 33122709 PMCID: PMC7596717 DOI: 10.1038/s41598-020-75344-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
Tunicate larvae have a non-reproductive gonadotropin-releasing hormone (GnRH) system with multiple ligands and receptor heterodimerization enabling complex regulation. In Ciona intestinalis type A larvae, one of the gnrh genes, gnrh2, is conspicuously expressed in the motor ganglion and nerve cord, which are homologous structures to the hindbrain and spinal cord, respectively, of vertebrates. The gnrh2 gene is also expressed in the proto-placodal sensory neurons, which are the proposed homologue of vertebrate olfactory neurons. Tunicate larvae occupy a non-reproductive dispersal stage, yet the role of their GnRH system remains elusive. In this study, we investigated neuronal types of gnrh2-expressing cells in Ciona larvae and visualized the activity of these cells by fluorescence imaging using a calcium sensor protein. Some cholinergic neurons and dopaminergic cells express gnrh2, suggesting that GnRH plays a role in controlling swimming behavior. However, none of the gnrh2-expressing cells overlap with glycinergic or GABAergic neurons. A role in motor control is also suggested by a relationship between the activity of gnrh2-expressing cells and tail movements. Interestingly, gnrh2-positive ependymal cells in the nerve cord, known as a kind of glia cells, actively produced Ca2+ transients, suggesting that active intercellular signaling occurs in the glia cells of the nerve cord.
Collapse
|
17
|
Mancini A, Howard SR, Marelli F, Cabrera CP, Barnes MR, Sternberg MJ, Leprovots M, Hadjidemetriou I, Monti E, David A, Wehkalampi K, Oleari R, Lettieri A, Vezzoli V, Vassart G, Cariboni A, Bonomi M, Garcia MI, Guasti L, Dunkel L. LGR4 deficiency results in delayed puberty through impaired Wnt/β-catenin signaling. JCI Insight 2020; 5:133434. [PMID: 32493844 PMCID: PMC7308048 DOI: 10.1172/jci.insight.133434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The initiation of puberty is driven by an upsurge in hypothalamic gonadotropin-releasing hormone (GnRH) secretion. In turn, GnRH secretion upsurge depends on the development of a complex GnRH neuroendocrine network during embryonic life. Although delayed puberty (DP) affects up to 2% of the population, is highly heritable, and is associated with adverse health outcomes, the genes underlying DP remain largely unknown. We aimed to discover regulators by whole-exome sequencing of 160 individuals of 67 multigenerational families in our large, accurately phenotyped DP cohort. LGR4 was the only gene remaining after analysis that was significantly enriched for potentially pathogenic, rare variants in 6 probands. Expression analysis identified specific Lgr4 expression at the site of GnRH neuron development. LGR4 mutant proteins showed impaired Wnt/β-catenin signaling, owing to defective protein expression, trafficking, and degradation. Mice deficient in Lgr4 had significantly delayed onset of puberty and fewer GnRH neurons compared with WT, whereas lgr4 knockdown in zebrafish embryos prevented formation and migration of GnRH neurons. Further, genetic lineage tracing showed strong Lgr4-mediated Wnt/β-catenin signaling pathway activation during GnRH neuron development. In conclusion, our results show that LGR4 deficiency impairs Wnt/β-catenin signaling with observed defects in GnRH neuron development, resulting in a DP phenotype. Defects of LGR4/Wnt-β-catenin activity compromise the development of the GnRH neuroendocrine network, resulting in delayed onset of puberty in humans and mice.
Collapse
Affiliation(s)
- Alessandra Mancini
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,IRCCS Istituto Auxologico Italiano, Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, and.,NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, and.,NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Michael Je Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | | | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Elena Monti
- St George's NHS Foundation Trust, London, United Kingdom
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Karoliina Wehkalampi
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Valeria Vezzoli
- IRCCS Istituto Auxologico Italiano, Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy
| | | | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Marco Bonomi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,IRCCS Istituto Auxologico Italiano, Department of Endocrine and Metabolic Diseases and Lab of Endocrine and Metabolic Research, Milan, Italy
| | | | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
18
|
Duan C, Allard J. Gonadotropin-releasing hormone neuron development in vertebrates. Gen Comp Endocrinol 2020; 292:113465. [PMID: 32184073 DOI: 10.1016/j.ygcen.2020.113465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 11/21/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) neurons are master regulators of the reproductive axis in vertebrates. During early mammalian embryogenesis, GnRH1 neurons emerge in the nasal/olfactory placode. These neurons undertake a long-distance migration, moving from the nose to the preoptic area and hypothalamus. While significant advances have been made in understanding the functional importance of the GnRH1 neurons in reproduction, where GnRH1 neurons come from and how are they specified during early development is still under debate. In addition to the GnRH1 gene, most vertebrate species including humans have one or two additional GnRH genes. Compared to the GnRH1 neurons, much less is known about the development and regulation of GnRH2 neuron and GnRH3 neurons. The objective of this article is to review what is currently known about GnRH neuron development. We will survey various cell autonomous and non-autonomous factors implicated in the regulation of GnRH neuron development. Finally, we will discuss emerging tools and new approaches to resolve open questions pertaining to GnRH neuron development.
Collapse
Affiliation(s)
- Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| | - John Allard
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
19
|
Muñoz-Cueto JA, Zmora N, Paullada-Salmerón JA, Marvel M, Mañanos E, Zohar Y. The gonadotropin-releasing hormones: Lessons from fish. Gen Comp Endocrinol 2020; 291:113422. [PMID: 32032603 DOI: 10.1016/j.ygcen.2020.113422] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/02/2020] [Accepted: 02/03/2020] [Indexed: 12/26/2022]
Abstract
Fish have been of paramount importance to our understanding of vertebrate comparative neuroendocrinology and the mechanisms underlying the physiology and evolution of gonadotropin-releasing hormones (GnRH) and their genes. This review integrates past and recent knowledge on the Gnrh system in the fish model. Multiple Gnrh isoforms (two or three forms) are present in all teleosts, as well as multiple Gnrh receptors (up to five types), which differ in neuroanatomical localization, pattern of projections, ontogeny and functions. The role of the different Gnrh forms in reproduction seems to also differ in teleost models possessing two versus three Gnrh forms, Gnrh3 being the main hypophysiotropic hormone in the former and Gnrh1 in the latter. Functions of the non-hypothalamic Gnrh isoforms are still unclear, although under suboptimal physiological conditions (e.g. fasting), Gnrh2 may increase in the pituitary to ensure the integrity of reproduction under these conditions. Recent developments in transgenesis and mutagenesis in fish models have permitted the generation of fish lines expressing fluorophores in Gnrh neurons and to elucidate the dynamics of the elaborate innervations of the different neuronal populations, thus enabling a more accurate delineation of their reproductive roles and regulations. Moreover, in combination with neuronal electrophysiology, these lines have clarified the Gnrh mode of actions in modulating Lh and Fsh activities. While loss of function and genome editing studies had the premise to elucidate the exact roles of the multiple Gnrhs in reproduction and other processes, they have instead evoked an ongoing debate about these roles and opened new avenues of research that will no doubt lead to new discoveries regarding the not-yet-fully-understood Gnrh system.
Collapse
Affiliation(s)
- José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain.
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences and INMAR, University of Cádiz, CEIMAR, The European University of the Seas (SEA-EU), Puerto Real (Cádiz), Spain
| | - Miranda Marvel
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC, Castellón, Spain
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
20
|
Knocking-down of the Prokineticin receptor 2 affects reveals its complex role in the regulation of the hypothalamus-pituitary-gonadal axis in the zebrafish model. Sci Rep 2020; 10:7632. [PMID: 32376893 PMCID: PMC7203128 DOI: 10.1038/s41598-020-64077-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 04/07/2020] [Indexed: 11/26/2022] Open
Abstract
Prokineticin receptors (PROKR1 and PROKR2) are G protein-coupled receptors which control human central and peripheral reproductive processes. Importantly, allelic variants of PROKR2 in humans are associated with altered migration of GnRH neurons, resulting in congenital hypogonadotropic hypogonadism (CHH), a heterogeneous disease characterized by delayed/absent puberty and/or infertility. Although this association is established in humans, murine models failed to fully recapitulate the reproductive and olfactory phenotypes observed in patients harboring PROKR2 mutations. Here, taking advantage of zebrafish model we investigated the role of prokr1b (ortholog of human PROKR2) during early stages of GnRH neuronal migration. Real-Time PCR and whole mount in situ hybridization assays indicate that prokr1b spatial-temporal expression is consistent with gnrh3. Moreover, knockdown and knockout of prokr1b altered the correct development of GnRH3 fibers, a phenotype that is rescued by injection of prokr1b mRNA. These results suggest that prokr1b regulates the development of the GnRH3 system in zebrafish. Analysis of gonads development and mating experiments indicate that prokr1b is not required for fertility in zebrafish, although its loss determine changes also at the testis level. Altogether, our results support the thesis of a divergent evolution in the control of vertebrate reproduction and provide a useful in vivo model for deciphering the mechanisms underlying the effect of PROKR2 allelic variants on CHH.
Collapse
|
21
|
Ogawa S, Parhar I. Morphological Evidence for Functional Crosstalk Between Multiple GnRH Systems in the Male Tilapia, Oreochromis niloticus. Front Endocrinol (Lausanne) 2020; 11:586. [PMID: 32982977 PMCID: PMC7492274 DOI: 10.3389/fendo.2020.00586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a reproductive neuropeptide, which controls vertebrate reproduction. In most vertebrates, there are more than two GnRH orthologs in the brain. In cichlid fish, the Nile tilapia (Oreochromis niloticus), GnRH1 is the primary hypophysiotropic hormone, while GnRH2 and GnRH3 are non-hypophysiotropic but neuromodulatory in function. Hypophysiotropic GnRH neurons are thought to inter-communicate, while it remains unknown if hypophysiotropic and non-hypophysiotropic GnRH systems communicate with each other. In the present study, we examined interrelationship between three GnRH types using specific antibodies raised against their respective GnRH associated peptide (GAP) sequence. Double-immunofluorescence labeling coupled with confocal microscopy revealed that in sexually mature males, GnRH-GAP1-immunoreactive (-ir) processes are in proximities of GnRH-GAP3-ir cell somata in the terminal nerve, while GnRH-GAP1-ir cell somata were also accompanied by GnRH-GAP3-ir processes in the preoptic area. However, such interaction was not seen in immature males. Further, there was no interaction between GnRH-GAP2 and GnRH-GAP1 or GnRH-GAP3 neurons. Single cell gene expression analysis revealed co-expression of multiple GnRH receptor genes (gnrhr1 and gnrhr2) in three GnRH-GAP cell types. In mature males, high levels of gnrhr2 mRNA were expressed in GnRH-GAP1-ir cells. In immature males, gnrhr1 and gnrhr2 mRNAs are highly expressed in GnRH-GAP3-ir cells. These results suggest heterologous interactions between the three GnRH-GAP cell types and their potential functional interaction during different reproductive stages.
Collapse
|
22
|
Interference with the Cannabinoid Receptor CB1R Results in Miswiring of GnRH3 and AgRP1 Axons in Zebrafish Embryos. Int J Mol Sci 2019; 21:ijms21010168. [PMID: 31881740 PMCID: PMC6982252 DOI: 10.3390/ijms21010168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and their endocannabinoid (eCBs) ligands, have been implicated in several aspects of brain wiring during development. Here we aim to assess whether interfering with CB1R affects development, neuritogenesis and pathfinding of GnRH and AgRP neurons, forebrain neurons that control respectively reproduction and appetite. We pharmacologically and genetically interfered with CB1R in zebrafish strains with fluorescently labeled GnRH3 and the AgRP1 neurons. By applying CB1R antagonists we observed a reduced number of GnRH3 neurons, fiber misrouting and altered fasciculation. Similar phenotypes were observed by CB1R knockdown. Interfering with CB1R also resulted in a reduced number, misrouting and poor fasciculation of the AgRP1 neuron’s axonal projections. Using a bioinformatic approach followed by qPCR validation, we have attempted to link CB1R functions with known guidance and fasciculation proteins. The search identified stathmin-2, a protein controlling microtubule dynamics, previously demonstrated to be coexpressed with CB1R and now shown to be downregulated upon interference with CB1R in zebrafish. Together, these results raise the likely possibility that embryonic exposure to low doses of CB1R-interfering compounds could impact on the development of the neuroendocrine systems controlling sexual maturation, reproduction and food intake.
Collapse
|
23
|
Kanda S. Evolution of the regulatory mechanisms for the hypothalamic-pituitary-gonadal axis in vertebrates-hypothesis from a comparative view. Gen Comp Endocrinol 2019; 284:113075. [PMID: 30500374 DOI: 10.1016/j.ygcen.2018.11.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. In addition to wealth of knowledge in mammals, recent studies in non-mammalian species, especially teleosts, have provided evidence that some of the components in the HPG axis are conserved in bony vertebrates. On the other hand, from the comparisons of the recent accumulating knowledge between mammals and teleosts, unique characteristics of the regulatory system in each group have been unveiled. A hypophysiotropic neurotransmitter/hormone, gonadotropin releasing hormone (GnRH), pituitary gonadotropins, follicle stimulating hormone (FSH), and luteinizing hormone (LH) were proven to be common important elements of the HPG axis in teleosts and mammals, although the roles of each vary. Conversely, there are some modulators of GnRH or gonadotropins that are not common to all vertebrates. In this review, I will introduce the mechanism for HPG axis regulation in mammals and teleosts, and describe their evolution from a hypothetical common ancestor.
Collapse
Affiliation(s)
- Shinji Kanda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
24
|
Distribution of Kiss2 receptor in the brain and its localization in neuroendocrine cells in the zebrafish. Cell Tissue Res 2019; 379:349-372. [PMID: 31471710 DOI: 10.1007/s00441-019-03089-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 12/14/2022]
Abstract
Kisspeptin is a hypothalamic neuropeptide, which acts directly on gonadotropin-releasing hormone (GnRH)-secreting neurons via its cognate receptor (GPR54 or Kiss-R) to stimulate GnRH secretion in mammals. In non-mammalian vertebrates, there are multiple kisspeptins (Kiss1 and Kiss2) and Kiss-R types. Recent gene knockout studies have demonstrated that fish kisspeptin systems are not essential in the regulation of reproduction. Studying the detailed distribution of kisspeptin receptor in the brain and pituitary is important for understanding the multiple action sites and potential functions of the kisspeptin system. In the present study, we generated a specific antibody against zebrafish Kiss2-R (=Kiss1Ra/GPR54-1/Kiss-R2/KissR3) and examined its distribution in the brain and pituitary. Kiss2-R-immunoreactive cell bodies are widely distributed in the brain including in the dorsal telencephalon, preoptic area, hypothalamus, optic tectum, and in the hindbrain regions. Double-labeling showed that not all but a subset of preoptic GnRH3 neurons expresses Kiss2-R, while Kiss2-R is expressed in most of the olfactory GnRH3 neurons. In the posterior preoptic region, Kiss2-R immunoreactivity was seen in vasotocin cells. In the pituitary, Kiss2-R immunoreactivity was seen in corticotropes, but not in gonadotropes. The results in this study suggest that Kiss2 and Kiss2-R signaling directly serve non-reproductive functions and indirectly subserve reproductive functions in teleosts.
Collapse
|
25
|
Koide T, Yabuki Y, Yoshihara Y. Terminal Nerve GnRH3 Neurons Mediate Slow Avoidance of Carbon Dioxide in Larval Zebrafish. Cell Rep 2019; 22:1115-1123. [PMID: 29386100 DOI: 10.1016/j.celrep.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 12/01/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Escape responses to threatening stimuli are vital for survival in all animal species. Larval zebrafish display fast escape responses when exposed to tactile, acoustic, and visual stimuli. However, their behavioral responses to chemosensory stimuli remain unknown. In this study, we found that carbon dioxide (CO2) induced a slow avoidance response, which was distinct from the touch-evoked fast escape response. We identified the gonadotropin-releasing hormone 3-expressing terminal nerve as the CO2 sensor in the nose. Wide-field calcium imaging revealed downstream CO2-activated ensembles of neurons along three distinct neural pathways, olfactory, trigeminal, and habenulo-interpeduncular, further reaching the reticulospinal neurons in the hindbrain. Ablation of the nose, terminal nerve, or trigeminal ganglion resulted in a dramatic decrease in CO2-evoked avoidance responses. These findings demonstrate that the terminal nerve-trigeminal system plays a pivotal role in triggering a slow chemosensory avoidance behavior in the larval zebrafish.
Collapse
Affiliation(s)
- Tetsuya Koide
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan.
| | - Yoichi Yabuki
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | - Yoshihiro Yoshihara
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan; RIKEN BSI-KAO Collaboration Center, RIKEN Brain Science Institute, Saitama 351-0198, Japan; ERATO Touhara Chemosensory Signal Project, JST, The University of Tokyo, Tokyo 113-8657, Japan.
| |
Collapse
|
26
|
Whitlock KE, Postlethwait J, Ewer J. Neuroendocrinology of reproduction: Is gonadotropin-releasing hormone (GnRH) dispensable? Front Neuroendocrinol 2019; 53:100738. [PMID: 30797802 PMCID: PMC7216701 DOI: 10.1016/j.yfrne.2019.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 02/06/2023]
Abstract
Gonadotropin releasing hormone (GnRH) is a highly conserved neuroendocrine decapeptide that is essential for the onset of puberty and the maintenance of the reproductive state. First identified in mammals, the GnRH signaling pathway is found in all classes of vertebrates; homologues of GnRH have also been identified in invertebrates. In addition to its role as a hypothalamic releasing hormone, GnRH has multiple functions including modulating neural activity within specific regions of the brain. These various functions are mediated by multiple isoforms, which are expressed at diverse locations within the central nervous system. Here we discuss the GnRH signaling pathways in light of new reports that reveal that some vertebrate genomes lack GnRH1. Not only do other isoforms of GnRH not compensate for this gene loss, but elements upstream of GnRH1, including kisspeptins, appear to also be dispensable. We discuss routes that may compensate for the loss of the GnRH1 pathway.
Collapse
Affiliation(s)
- Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile.
| | - John Postlethwait
- Institute of Neuroscience, 324 Huestis Hall, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Instituto de Neurociencia, Universidad de Valparaiso, Avenida Gran Bretaña 1111, Valparaiso, Chile
| |
Collapse
|
27
|
Leinonen JT, Chen YC, Tukiainen T, Panula P, Widén E. Transient modification of lin28b expression - Permanent effects on zebrafish growth. Mol Cell Endocrinol 2019; 479:61-70. [PMID: 30196135 DOI: 10.1016/j.mce.2018.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 08/09/2018] [Accepted: 09/01/2018] [Indexed: 11/24/2022]
Abstract
Recent genome-wide association studies and mouse models have identified LIN28B as a gene affecting several pubertal timing-related traits and vertebrate growth. However, the exact biological mechanisms underlying the associations remain unknown. We have explored the mechanisms linking LIN28B with growth regulation by combining human gene expression data with functional models. Specifically, we show that 1) pubertal timing-associated genetic variation correlates with LIN28B expression in the pituitary and hypothalamus, 2) downregulating lin28b in zebrafish embryos associates with aberrant development of kiss2-neurons, and 3) increasing lin28b expression transiently by synthetic mRNA injections during embryogenesis results in sustained enhancement of zebrafish growth. Unexpectedly, the mRNA injections resulted in advanced sexual maturation of female fish, suggesting that lin28b may influence pubertal timing through multiple developmental mechanisms. Overall, these results provide novel insight into LIN28B function in vertebrate growth regulation, emphasizing the importance of the gene and related genetic pathways for embryonic and juvenile development.
Collapse
Affiliation(s)
- Jaakko T Leinonen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Yu-Chia Chen
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Taru Tukiainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, P.O. Box 63, (Haartmaninkatu 8), Helsinki, 00014, Finland
| | - Elisabeth Widén
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, P.O. Box 20 (Tukholmankatu 8), Helsinki, 00014, Finland.
| |
Collapse
|
28
|
Feng K, Luo H, Hou M, Li Y, Chen J, Zhu Z, Hu W. Alternative splicing of GnRH2 and GnRH2-associated peptide plays roles in gonadal differentiation of the rice field eel, Monopterus albus. Gen Comp Endocrinol 2018; 267:9-17. [PMID: 29782841 DOI: 10.1016/j.ygcen.2018.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 01/21/2023]
Abstract
The rice field eel, Monopterus albus, is a protogynous hermaphrodite fish, in which the gonads are initially female ovaries which then transform into male testes. The exact mechanisms governing sex reversal in the rice field eel are unknown. In this study, a novel alternative splicing variant of GnRH2 (GnRH2-SV), retaining the second intron, was discovered in the gonad of the rice field eel. Compared to GnRH2, GnRH2-SV may give rise to a novel truncated GnRH2-associated peptide (New GAP2). The normal transcript of GnRH2 was primarily expressed in the brain, and could also be detected in the liver, spleen, ovary, and testis. However, GnRH2-SV was only expressed in the ovary and testis. During sex reversal, GnRH2 expression levels increased significantly at late stages; however, expression levels of GnRH2-SV were lower in ovary than in ovotestis and testis. We also examined the effect of three peptides (GnRHa, GAP2, and New GAP2) on gonadal sex differentiation during the third stage of ovarian development of the rice field eel. Compared to the control group, the expression of amh increased significantly following incubation with each of the three peptides. However, only New GAP2 stimulated the expression of sox9a1 mRNA in vitro. After intraperitoneal injection of GAP2, the expression of amh, foxl2, and cyp19a1a increased significantly after 12 h; the concentration of serum 11-KT was also significantly increased at the 12 h time point. Treatment with New GAP2 significantly increased the expression of amh, dmrt1a, and sox9a1, and also increased the concentration of serum 11-KT. After treated with GnRHa, the expression of amh, dmrt1a, sox9a1, cyp19a1a, and foxl2 increased significantly, as did the level of serum E2. These results indicated that both GAP2 and New GAP2 play a crucial role in inducing expression changes of sex-differentiation related genes, and may be involved in the gonadal development and sex reversal in the rice field eel.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongrui Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingxi Hou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongming Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
29
|
Spicer OS, Zmora N, Wong TT, Golan M, Levavi-Sivan B, Gothilf Y, Zohar Y. The gonadotropin-inhibitory hormone (Lpxrfa) system's regulation of reproduction in the brain-pituitary axis of the zebrafish (Danio rerio). Biol Reprod 2018; 96:1031-1042. [PMID: 28430864 DOI: 10.1093/biolre/iox032] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/17/2017] [Indexed: 11/14/2022] Open
Abstract
Gonadotropin-inhibitory hormone (GNIH) was discovered in quail with the ability to reduce gonadotropin expression/secretion in the pituitary. There have been few studies on GNIH orthologs in teleosts (LPXRFamide (Lpxrfa) peptides), which have provided inconsistent results. Therefore, the goal of this study was to determine the roles and modes of action by which Lpxrfa exerts its functions in the brain-pituitary axis of zebrafish (Danio rerio). We localized Lpxrfa soma to the ventral hypothalamus, with fibers extending throughout the brain and to the pituitary. In the preoptic area, Lpxrfa fibers interact with gonadotropin-releasing hormone 3 (Gnrh3) soma. In pituitary explants, zebrafish peptide Lpxrfa-3 downregulated luteinizing hormone beta subunit and common alpha subunit expression. In addition, Lpxrfa-3 reduced gnrh3 expression in brain slices, offering another pathway for Lpxrfa to exert its effects on reproduction. Receptor activation studies, in a heterologous cell-based system, revealed that all three zebrafish Lpxrfa peptides activate Lpxrf-R2 and Lpxrf-R3 via the PKA/cAMP pathway. Receptor activation studies demonstrated that, in addition to activating Lpxrf receptors, zebrafish Lpxrfa-2 and Lpxrfa-3 antagonize Kisspeptin-2 (Kiss2) activation of Kisspeptin receptor-1a (Kiss1ra). The fact that kiss1ra-expressing neurons in the preoptic area are innervated by Lpxrfa-ir fibers suggests an additional pathway for Lpxrfa action. Therefore, our results suggest that Lpxrfa may act as a reproductive inhibitory neuropeptide in the zebrafish that interacts with Gnrh3 neurons in the brain and with gonadotropes in the pituitary, while also potentially utilizing the Kiss2/Kiss1ra pathway.
Collapse
Affiliation(s)
- Olivia Smith Spicer
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ten-Tsao Wong
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Matan Golan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Berta Levavi-Sivan
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoav Gothilf
- Department of Neurobiology, George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Trudeau VL. Facing the Challenges of Neuropeptide Gene Knockouts: Why Do They Not Inhibit Reproduction in Adult Teleost Fish? Front Neurosci 2018; 12:302. [PMID: 29773976 PMCID: PMC5943551 DOI: 10.3389/fnins.2018.00302] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/18/2018] [Indexed: 12/05/2022] Open
Abstract
Genetic manipulation of teleost endocrine systems started with transgenic overexpression of pituitary growth hormone. Such strategies enhance growth and reduce fertility, but the fish still breed. Genome editing using transcription activator-like effector nuclease in zebrafish and medaka has established the role of follicle stimulating hormone for gonadal development and luteinizing hormone for ovulation. Attempts to genetically manipulate the hypophysiotropic neuropeptidergic systems have been less successful. Overexpression of a gonadotropin-releasing hormone (gnrh) antisense in common carp delays puberty but does not block reproduction. Knockout of Gnrh in zebrafish does not impact either sex, while in medaka this blocks ovulation in females without affecting males. Spawning success is not reduced by knockout of the kisspeptins and receptors, agouti-related protein, agouti signaling peptide or spexin. Hypotheses for the lack of effect of these genome edits are presented. Over evolutionary time, teleosts have lost the median eminence typical of mammals. There is consequently direct innervation of gonadotrophs, with the possibility of independent regulation by >20 neurohormones. Removal of a few may have minimal impact. Neuropeptide knockout could leave co-expressed stimulators of gonadotropins functionally intact. Genetic compensation in response to loss of protein function may maintain sufficient reproduction. The species differences in hypothalamo-hypophysial anatomy could be an example of compensation over the evolutionary timescale as teleosts diversified and adapted to new ecological niches. The key neuropeptidergic systems controlling teleost reproduction remain to be uncovered. Classical neurotransmitters are also regulators of luteinizing hormone release, but have yet to be targeted by genome editing. Their essentiality for reproduction should also be explored.
Collapse
Affiliation(s)
- Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
31
|
Aguillon R, Batut J, Subramanian A, Madelaine R, Dufourcq P, Schilling TF, Blader P. Cell-type heterogeneity in the early zebrafish olfactory epithelium is generated from progenitors within preplacodal ectoderm. eLife 2018; 7. [PMID: 29292696 PMCID: PMC5749950 DOI: 10.7554/elife.32041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/15/2017] [Indexed: 12/25/2022] Open
Abstract
The zebrafish olfactory epithelium comprises a variety of neuronal populations, which are thought to have distinct embryonic origins. For instance, while ciliated sensory neurons arise from preplacodal ectoderm (PPE), previous lineage tracing studies suggest that both Gonadotropin releasing hormone 3 (Gnrh3) and microvillous sensory neurons derive from cranial neural crest (CNC). We find that the expression of Islet1/2 is restricted to Gnrh3 neurons associated with the olfactory epithelium. Unexpectedly, however, we find no change in Islet1/2+ cell numbers in sox10 mutant embryos, calling into question their CNC origin. Lineage reconstruction based on backtracking in time-lapse confocal datasets, and confirmed by photoconversion experiments, reveals that Gnrh3 neurons derive from the anterior PPE. Similarly, all of the microvillous sensory neurons we have traced arise from preplacodal progenitors. Our results suggest that rather than originating from separate ectodermal populations, cell-type heterogeneity is generated from overlapping pools of progenitors within the preplacodal ectoderm.
Collapse
Affiliation(s)
- Raphaël Aguillon
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Julie Batut
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Romain Madelaine
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Pascale Dufourcq
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, United States
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| |
Collapse
|
32
|
Song Y, Tao B, Chen J, Jia S, Zhu Z, Trudeau VL, Hu W. GABAergic Neurons and Their Modulatory Effects on GnRH3 in Zebrafish. Endocrinology 2017; 158:874-886. [PMID: 28324056 DOI: 10.1210/en.2016-1776] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/17/2017] [Indexed: 01/11/2023]
Abstract
γ-Aminobutyric acid (GABA) is a major amino acid neurotransmitter in the vertebrate brain. To provide detailed information on the distribution of the GABA in zebrafish (Danio rerio), neurons were labeled with mCherry driven by the glutamic acid decarboxylase 67 (gad67) promoter. In the transgenic line Tg(gad67:mCherry), mCherry-positive gad67 cell bodies were predominantly localized to the olfactory bulb, pallial zones, subpallium zones, parvocellular preoptic nucleus, periventricular gray zone of optic tectum, torus semicircularis, posterior tuberculum, medial longitudinal fascicle, caudal zone of periventricular hypothalamus, and oculomotor nucleus. mCherry-positive fibers were widely distributed in the olfactory bulbs, subpallium, thalamus, ventral hypothalamic zone, tectum opticum, mesencephalon, and rhombencephalon. mCherry-positive neurons were also observed in the retina and the spinal cord. The anatomical relationships between GABAergic and gonadotrophin-releasing hormone 3 (GnRH3) neurons were investigated by crossing Tg(gad67:mCherry) fish with the previously established Tg(gnrh3:EGFP) transgenic line. GnRH3 cell bodies and fibers were contacted by GABAergic fibers directly in the ventral telencephalon and anterior tuberal nucleus. A subpopulation of GnRH3 neurons in the ventral telencephalic area was also labeled with mCherry, so some GnRH3 neurons are also GABAergic. GABAB receptor agonist (baclofen) and antagonist (CGP55845) treatments indicated that GABAB receptor signaling inhibited gnrh3 expression in larval fish but was stimulatory in adult fish. The expression of pituitary lhβ and fshβ was stimulated by intraperitoneal injection of baclofen in adult fish. We conclude that GABA via GABAB receptors regulates GnRH3 neurons in a developmentally dependent manner in zebrafish.
Collapse
Affiliation(s)
- Yanlong Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Shaoting Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
33
|
Li L, Wojtowicz JL, Malin JH, Huang T, Lee EB, Chen Z. GnRH-mediated olfactory and visual inputs promote mating-like behaviors in male zebrafish. PLoS One 2017; 12:e0174143. [PMID: 28329004 PMCID: PMC5362193 DOI: 10.1371/journal.pone.0174143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/03/2017] [Indexed: 01/13/2023] Open
Abstract
The engagement of sexual behaviors is regulated by a number of factors which include gene expression, hormone circulation, and multi-sensory information integration. In zebrafish, when a male and a female are placed in the same container, they show mating-like behaviors regardless of whether they are kept together or separated by a net. No mating-like behaviors are observed when same-sex animals are put together. Through the olfacto-visual centrifugal pathway, activation of the terminalis nerve in the olfactory bulb increases GnRH signaling in the brain and triggers mating-like behaviors between males. In zebrafish mutants or wild-type fish in which the olfacto-visual centrifugal pathway is impaired or chemically ablated, in response to odor stimulation the mating-like behaviors between males are no longer evident. Together, the data suggest that the combination of olfactory and visual signals alter male zebrafish's mating-like behaviors via GnRH signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| | - Jennifer L. Wojtowicz
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - John H. Malin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan,China
| | - Eric B. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
| | - Zijiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan,China
| |
Collapse
|
34
|
Inagaki T, Smith NL, Sherva KM, Ramakrishnan S. Cross-generational effects of parental low dose BPA exposure on the Gonadotropin-Releasing Hormone3 system and larval behavior in medaka (Oryzias latipes). Neurotoxicology 2016; 57:163-173. [PMID: 27713093 DOI: 10.1016/j.neuro.2016.09.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/02/2016] [Accepted: 09/29/2016] [Indexed: 11/18/2022]
Abstract
Growing evidence indicates that chronic exposure to Bisphenol A (BPA) may disrupt normal brain function and behavior mediated by gonadotropin-releasing hormone (GnRH) pathways. Previous studies have shown that low dose BPA (200ng/ml) exposure during embryogenesis altered development of extra-hypothalamic GnRH3 systems and non-reproductive locomotor behavior in medaka. Effects of parental low-dose BPA exposure on the development of GnRH3 systems and locomotor behavior of offspring are not well known. This study examines whether the neurophysiological and behavioral effects of BPA in parents (F0 generation) are carried over to their offspring (F1 generation) using stable transgenic medaka embryos/larvae with GnRH3 neurons tagged with green fluorescent protein (GFP). Parental fish were exposed to BPA (200ng/ml) for either life-long or different developmental time windows. Fertilized F1 eggs were collected and raised in egg/fish water with no environmental exposure to BPA. All experiments were performed on F1 embryos/larvae, which were grouped based on the following parental (F0) BPA exposure conditions - (i) Group 1 (G1): through life; (ii) G2: during embryogenesis and early larval development [1-14days post fertilization (dpf)]; (iii) G3: during neurogenesis (1-5dpf); and (iv) G4: during sex differentiation (5-14dpf). Embryos from unexposed vehicle treated parents served as controls (G0). G1 embryos showed significantly reduced survival rates and delayed hatching time compared to other groups, while G4 embryos hatched significantly earlier than all other groups. At 3 dpf, the GnRH3-GFP intensity was increased by 47% in G3 embryos and decreased in G4 embryos by 59% compared to controls. At 4dpf, G1 fish showed 42% increased intensity, while GFP intensity was reduced by 44% in G3 subjects. In addition, the mean brain size of G1, G3 and G4 embryos were smaller than that of control at 4dpf. At 20dpf, all larvae from BPA-treated parents showed significantly decreased total movement (distance covered) compared with controls, with G2 and G3 fish showing reduced velocity of movement. While at 20 dpf no group differences were seen in the soma diameter of GnRH3-GFP neurons, a 34% decrease in SV2 expression, a marker for synaptic transmission, in G1 larvae was observed. These data suggest that parental BPA exposure during critical windows of embryonic development or chronic treatment affects next-generation offspring both in embryonic and larval brain development as well as larval behavior.
Collapse
Affiliation(s)
- T Inagaki
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA
| | - N L Smith
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - K M Sherva
- Department of Chemistry/Biochemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - S Ramakrishnan
- Department of Biology, University of Puget Sound, Tacoma, WA, USA; Neuroscience Program, University of Puget Sound, Tacoma, WA, USA.
| |
Collapse
|
35
|
Zhao Y, Singh C, Prober DA, Wayne NL. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio). Endocrinology 2016; 157:4012-4020. [PMID: 27533887 PMCID: PMC5045510 DOI: 10.1210/en.2016-1381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/11/2016] [Indexed: 01/11/2023]
Abstract
GnRH neurons integrate internal and external cues to control sexual maturation and fertility. Homeostasis of energy balance and food intake correlates strongly with the status of reproduction. Neuropeptides secreted by the hypothalamus involved in modulating energy balance and feeding may play additional roles in the regulation of reproduction. Hypocretin (Hcrt) (also known as orexin) is one such peptide, primarily controlling sleep/wakefulness, food intake, and reward processing. There is a growing body of evidence indicating that Hcrt/orexin (Hcrt) modulates reproduction through interacting with the hypothalamo-pituitary-gonadal axis in mammals. To explore potential morphological and functional interactions between the GnRH and Hcrt neuronal systems, we employed a variety of experimental approaches including confocal imaging, immunohistochemistry, and electrophysiology in transgenic zebrafish, in which fluorescent proteins are genetically expressed in GnRH3 and Hcrt neurons. Our imaging data revealed close apposition and direct connection between GnRH3 and Hcrt neuronal systems in the hypothalamus during larval development through adulthood. Furthermore, the Hcrt receptor (HcrtR) is expressed in GnRH3 neurons. Electrophysiological data revealed a reversible inhibitory effect of Hcrt on GnRH3 neuron electrical activity, which was blocked by the HcrtR antagonist almorexant. In addition, Hcrt had no effect on the electrical activity of GnRH3 neurons in the HcrtR null mutant zebrafish (HcrtR-/-). Our findings demonstrate a close anatomical and functional relationship between Hcrt and GnRH neuronal systems in zebrafish. It is the first demonstration of a link between neuronal circuits controlling sleeping/arousal/feeding and reproduction in zebrafish, an important animal model for investigating the molecular genetics of development.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - Chanpreet Singh
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - David A Prober
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| | - Nancy L Wayne
- Department of Physiology (Y.Z., N.L.W.), David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California 90095; and Division of Biology and Biological Engineering (C.S., D.P.), California Institute of Technology, Pasadena, California 91125
| |
Collapse
|
36
|
Spicer OS, Wong TT, Zmora N, Zohar Y. Targeted Mutagenesis of the Hypophysiotropic Gnrh3 in Zebrafish (Danio rerio) Reveals No Effects on Reproductive Performance. PLoS One 2016; 11:e0158141. [PMID: 27355207 PMCID: PMC4927163 DOI: 10.1371/journal.pone.0158141] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/11/2016] [Indexed: 11/25/2022] Open
Abstract
Gnrh is the major neuropeptide regulator of vertebrate reproduction, triggering a cascade of events in the pituitary-gonadal axis that result in reproductive competence. Previous research in mice and humans has demonstrated that Gnrh/GNRH null mutations result in hypogonadotropic hypogonadism and infertility. The goal of this study was to eliminate gnrh3 (the hypophysiotropic Gnrh form) function in zebrafish (Danio rerio) to determine how ontogeny and reproductive performance are affected, as well as factors downstream of Gnrh3 along the reproductive axis. Using the TALEN technology, we developed a gnrh3-/- zebrafish line that harbors a 62 bp deletion in the gnrh3 gene. Our gnrh3-/- zebrafish line represents the first targeted and heritable mutation of a Gnrh isoform in any organism. Using immunohistochemistry, we verified that gnrh3-/- fish do not possess Gnrh3 peptide in any regions of the brain. However, other than changes in mRNA levels of pituitary gonadotropin genes (fshb, lhb, and cga) during early development, which are corrected by adulthood, there were no changes in ontogeny and reproduction in gnrh3-/- fish. The gnrh3-/- zebrafish are fertile, displaying normal gametogenesis and reproductive performance in males and females. Together with our previous results that Gnrh3 cell ablation causes infertility, these results indicate that a compensatory mechanism is being activated, which is probably primed early on upon Gnrh3 neuron differentiation and possibly confined to Gnrh3 neurons. Potential compensation factors and sensitive windows of time for compensation during development and puberty should be explored.
Collapse
Affiliation(s)
- Olivia Smith Spicer
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Ten-Tsao Wong
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Nilli Zmora
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Yonathan Zohar
- Department of Marine Biotechnology and Institute of Marine and Environmental Technology, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Howard SR, Guasti L, Ruiz-Babot G, Mancini A, David A, Storr HL, Metherell LA, Sternberg MJ, Cabrera CP, Warren HR, Barnes MR, Quinton R, de Roux N, Young J, Guiochon-Mantel A, Wehkalampi K, André V, Gothilf Y, Cariboni A, Dunkel L. IGSF10 mutations dysregulate gonadotropin-releasing hormone neuronal migration resulting in delayed puberty. EMBO Mol Med 2016; 8:626-42. [PMID: 27137492 PMCID: PMC4888853 DOI: 10.15252/emmm.201606250] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Early or late pubertal onset affects up to 5% of adolescents and is associated with adverse health and psychosocial outcomes. Self‐limited delayed puberty (DP) segregates predominantly in an autosomal dominant pattern, but the underlying genetic background is unknown. Using exome and candidate gene sequencing, we have identified rare mutations in IGSF10 in 6 unrelated families, which resulted in intracellular retention with failure in the secretion of mutant proteins. IGSF10 mRNA was strongly expressed in embryonic nasal mesenchyme, during gonadotropin‐releasing hormone (GnRH) neuronal migration to the hypothalamus. IGSF10 knockdown caused a reduced migration of immature GnRH neurons in vitro, and perturbed migration and extension of GnRH neurons in a gnrh3:EGFP zebrafish model. Additionally, loss‐of‐function mutations in IGSF10 were identified in hypothalamic amenorrhea patients. Our evidence strongly suggests that mutations in IGSF10 cause DP in humans, and points to a common genetic basis for conditions of functional hypogonadotropic hypogonadism (HH). While dysregulation of GnRH neuronal migration is known to cause permanent HH, this is the first time that this has been demonstrated as a causal mechanism in DP.‡
Collapse
Affiliation(s)
- Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gerard Ruiz-Babot
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Mancini
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessia David
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Helen L Storr
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Lousie A Metherell
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Michael Je Sternberg
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, UK
| | - Claudia P Cabrera
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Helen R Warren
- NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, London, UK
| | - Michael R Barnes
- Centre for Translational Bioinformatics, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK NIHR Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Richard Quinton
- Institute of Genetic Medicine University of Newcastle-upon-Tyne, Newcastle-upon-Tyne, UK
| | - Nicolas de Roux
- Unité Mixte de Recherche 1141, Institut National de la Santé et de la Recherche Médicale, Paris, France Université Paris Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France Laboratoire de Biochimie, Assistance Publique-Hôpitaux de Paris, Hôpital Robert Debré, Paris, France
| | - Jacques Young
- Univ Paris-Sud, Le Kremlin Bicêtre, France INSERM UMR-1185, Le Kremlin Bicêtre, France Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France Department of Reproductive Endocrinology, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Univ Paris-Sud, Le Kremlin Bicêtre, France INSERM UMR-1185, Le Kremlin Bicêtre, France Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Karoliina Wehkalampi
- Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Yoav Gothilf
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy Institute of Ophthalmology, University College London (UCL), London, UK
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
38
|
Inagaki T, Smith N, Lee EK, Ramakrishnan S. Low dose exposure to Bisphenol A alters development of gonadotropin-releasing hormone 3 neurons and larval locomotor behavior in Japanese Medaka. Neurotoxicology 2015; 52:188-97. [PMID: 26687398 DOI: 10.1016/j.neuro.2015.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 11/24/2015] [Accepted: 12/04/2015] [Indexed: 11/30/2022]
Abstract
Accumulating evidence indicates that chronic low dose exposure to Bisphenol A (BPA), an endocrine disruptor, may disrupt normal brain development and behavior mediated by the gonadotropin-releasing hormone (GnRH) pathways. While it is known that GnRH neurons in the hypothalamus regulate reproductive physiology and behavior, functional roles of extra-hypothalamic GnRH neurons remain unclear. Furthermore, little is known whether BPA interacts with extra-hypothalamic GnRH3 neural systems in vulnerable developing brains. Here we examined the impact of low dose BPA exposure on the developing GnRH3 neural system, eye and brain growth, and locomotor activity in transgenic medaka embryos and larvae with GnRH3 neurons tagged with GFP. Fertilized eggs were collected daily and embryos/larvae were chronically exposed to 200ng/ml of BPA, starting at 1 day post fertilization (dpf). BPA significantly increased fluorescence intensity of the GnRH3-GFP neural population in the terminal nerve (TN) of the forebrain at 3dpf, but decreased the intensity at 5dpf, compared with controls. BPA advanced eye pigmentation without affecting eye and brain size development, and accelerated times to hatch. Following chronic BPA exposure, 20dpf larvae showed suppression of locomotion, both in distance covered and speed of movement (47% and 43% reduction, respectively). BPA-induced hypoactivity was accompanied by decreased cell body sizes of individual TN-GnRH3 neurons (14% smaller than those of controls), but not of non-GnRH3 neurons. These novel data demonstrate complex neurobehavioral effects of BPA on the development of extra-hypothalamic GnRH3 neurons in teleost fish.
Collapse
Affiliation(s)
- T Inagaki
- Department of Biology, Neuroscience program, University of Puget Sound, Tacoma, WA 98416, USA
| | - N Smith
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - E K Lee
- Department of Chemistry, University of Puget Sound, Tacoma, WA 98416, USA
| | - S Ramakrishnan
- Department of Biology, Neuroscience program, University of Puget Sound, Tacoma, WA 98416, USA.
| |
Collapse
|
39
|
Golan M, Zelinger E, Zohar Y, Levavi-Sivan B. Architecture of GnRH-Gonadotrope-Vasculature Reveals a Dual Mode of Gonadotropin Regulation in Fish. Endocrinology 2015; 156:4163-73. [PMID: 26261873 DOI: 10.1210/en.2015-1150] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The function and components of the hypothalamic-pituitary axis are conserved among vertebrates; however, in fish, a neuroglandular mode of delivery (direct contact between axons and endocrine cells) was considered dominant, whereas in tetrapods hypothalamic signals are relayed to their targets via the hypophysial portal blood system (neurovascular delivery mode). By using a transgenic zebrafish model we studied the functional and anatomical aspects of gonadotrope regulation thus revisiting the existing model. FSH cells were found to be situated close to the vasculature whereas the compact organization of LH cells prevented direct contact of all cells with the circulation. GnRH3 fibers formed multiple boutons upon reaching the pituitary, but most of these structures were located in the neurohypophysis rather than adjacent to gonadotropes. A close association was observed between FSH cells and GnRH3 boutons, but only a fifth of the LH cells were in direct contact with GnRH3 axons, suggesting that FSH cells are more directly regulated than LH cells. GnRH3 fibers closely followed the vasculature in the neurohypophysis and formed numerous boutons along these tracts. These vessels were found to be permeable to relatively large molecules, suggesting the uptake of GnRH3 peptides. Our findings have important implications regarding the differential regulation of LH and FSH and contradict the accepted notion that fish pituitary cells are mostly regulated directly by hypothalamic fibers. Instead, we provide evidence that zebrafish apply a dual mode of gonadotrope regulation by GnRH3 that combines both neuroglandular and neurovascular components.
Collapse
Affiliation(s)
- Matan Golan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Einat Zelinger
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Yonathan Zohar
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| | - Berta Levavi-Sivan
- Department of Animal Sciences (M.G., B.L.-S.) and The Interdepartmental Equipment Unit (E.Z.), The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel; and Department of Marine Biotechnology (Y.Z.), University of Maryland Baltimore County and Institute of Marine and Environmental Technology, Baltimore, Maryland 21202
| |
Collapse
|
40
|
Pfister D, Yu C, Kim DS, Li J, Drewing A, Li L. Zebrafish Olfacto-Retinal Centrifugal Axon Projection and Distribution: Effects of Gonadotropin-Releasing Hormone and Dopaminergic Signaling. Dev Neurosci 2015; 38:27-33. [PMID: 26505192 DOI: 10.1159/000439524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
The terminalis neurons (TNs) have been described in teleost species. In zebrafish, the TNs are located in the olfactory bulb. The TNs synthesize and release gonadotropin-releasing hormone (GnRH) as one of the major neurotransmitters. The TNs project axons to many brain areas, which include the neural retina. In the retina, the TN axons synapse with dopaminergic interplexiform cells (DA-IPCs) and retinal ganglion cells (RGCs). In this research, we examine the role of GnRH and dopaminergic signaling in TN axon projection to the retina using the transgenic zebrafish Tg(GnRH-3::GFP). While the TNs developed at 34 h postfertilization (hpf), the first TN axons were not detected in the retina until 48-50 hpf, when the first DA-IPCs were differentiated. In developing embryos, inhibition of retinal GnRH signaling pathways severely interrupted the projection of TN axons to the retina. However, inhibition of retinal dopaminergic signaling produced little effect on TN axon projection. In adult retinas, inactivation of GnRH receptors disrupted the patterns of TN axon distribution, and depletion of DA-IPCs abolished the TN axons. When DA-IPCs regenerated, the TN axons reappeared. Together, the data suggest that in developing zebrafish retinas GnRH signaling is required for TN axon projection, whereas in adult retinas activation of GnRH and dopaminergic signaling transduction is required for normal distribution of the TN axons.
Collapse
Affiliation(s)
- Delaney Pfister
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Ind., USA
| | | | | | | | | | | |
Collapse
|
41
|
Huang W, Zhang J, Liao Z, Lv Z, Wu H, Zhu A, Wu C. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea). Gene 2015; 576:458-65. [PMID: 26519998 DOI: 10.1016/j.gene.2015.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023]
Abstract
Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Huifei Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| |
Collapse
|
42
|
Palstra AP, Fukaya K, Chiba H, Dirks RP, Planas JV, Ueda H. The Olfactory Transcriptome and Progression of Sexual Maturation in Homing Chum Salmon Oncorhynchus keta. PLoS One 2015; 10:e0137404. [PMID: 26397372 PMCID: PMC4580453 DOI: 10.1371/journal.pone.0137404] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022] Open
Abstract
Reproductive homing migration of salmonids requires accurate interaction between the reception of external olfactory cues for navigation to the spawning grounds and the regulation of sexual maturation processes. This study aimed at providing insights into the hypothesized functional link between olfactory sensing of the spawning ground and final sexual maturation. We have therefore assessed the presence and expression levels of olfactory genes by RNA sequencing (RNAseq) of the olfactory rosettes in homing chum salmon Oncorhynchus keta Walbaum from the coastal sea to 75 km upstream the rivers at the pre-spawning ground. The progression of sexual maturation along the brain-pituitary-gonadal axis was assessed through determination of plasma steroid levels by time-resolved fluoroimmunoassays (TR-FIA), pituitary gonadotropin subunit expression and salmon gonadotropin-releasing hormone (sgnrh) expression in the brain by quantitative real-time PCR. RNAseq revealed the expression of 75 known and 27 unknown salmonid olfactory genes of which 13 genes were differentially expressed between fish from the pre-spawning area and from the coastal area, suggesting an important role of these genes in homing. A clear progression towards final maturation was characterised by higher plasma 17α,20β-dihydroxy-4-pregnen-3-one (DHP) levels, increased pituitary luteinizing hormone β subunit (lhβ) expression and sgnrh expression in the post brain, and lower plasma testosterone (T) and 17β-estradiol (E2) levels. Olfactomedins and ependymin are candidates among the differentially expressed genes that may connect olfactory reception to the expression of sgnrh to regulate final maturation.
Collapse
Affiliation(s)
- Arjan P. Palstra
- Institute for Marine Resources and Ecosystem Studies (IMARES), Wageningen University and Research Centre, Korringaweg 5, 4401 NT Yerseke, The Netherlands
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, PO Box 338, 6700 AH Wageningen, The Netherlands
- * E-mail:
| | - Kosuke Fukaya
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| | - Hiroaki Chiba
- School of Marine Biosciences, Kitasato University, Kitasato 1-15-1, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ron P. Dirks
- ZF-screens BV, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Josep V. Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Hiroshi Ueda
- Laboratory of Aquatic Bioresources and Ecosystem, Section of Ecosystem Conservation, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, 060-0809 Hokkaido, Japan
| |
Collapse
|
43
|
Takahashi A, Islam MS, Abe H, Okubo K, Akazome Y, Kaneko T, Hioki H, Oka Y. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines. J Comp Neurol 2015; 524:896-913. [DOI: 10.1002/cne.23883] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
Affiliation(s)
- Akiko Takahashi
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - M. Sadiqul Islam
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Hideki Abe
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Kataaki Okubo
- Department of Aquatic Bioscience; Graduate School of Agricultural and Life Sciences, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Yasuhisa Akazome
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science; Graduate School of Medicine, Kyoto University; Kyoto Japan
| | - Yoshitaka Oka
- Department of Biological Science; Graduate School of Science, The University of Tokyo; Bunkyo-ku Tokyo Japan
| |
Collapse
|
44
|
Cortés-Campos C, Letelier J, Ceriani R, Whitlock KE. Zebrafish adult-derived hypothalamic neurospheres generate gonadotropin-releasing hormone (GnRH) neurons. Biol Open 2015. [PMID: 26209533 PMCID: PMC4582115 DOI: 10.1242/bio.010447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a hypothalamic decapeptide essential for fertility in vertebrates. Human male patients lacking GnRH and treated with hormone therapy can remain fertile after cessation of treatment suggesting that new GnRH neurons can be generated during adult life. We used zebrafish to investigate the neurogenic potential of the adult hypothalamus. Previously we have characterized the development of GnRH cells in the zebrafish linking genetic pathways to the differentiation of neuromodulatory and endocrine GnRH cells in specific regions of the brain. Here, we developed a new method to obtain neural progenitors from the adult hypothalamus in vitro. Using this system, we show that neurospheres derived from the adult hypothalamus can be maintained in culture and subsequently differentiate glia and neurons. Importantly, the adult derived progenitors differentiate into neurons containing GnRH and the number of cells is increased through exposure to either testosterone or GnRH, hormones used in therapeutic treatment in humans. Finally, we show in vivo that a neurogenic niche in the hypothalamus contains GnRH positive neurons. Thus, we demonstrated for the first time that neurospheres can be derived from the hypothalamus of the adult zebrafish and that these neural progenitors are capable of producing GnRH containing neurons.
Collapse
Affiliation(s)
- Christian Cortés-Campos
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile Whitehead Institute for Biomedical Research (WIBR), 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Joaquín Letelier
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Carretera de Utera km 1, Sevilla 41013, España
| | - Ricardo Ceriani
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile
| | - Kathleen E Whitlock
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Facultad de Ciencias, Universidad de Valparaíso, Pasaje Harrington 269, Valparaíso 2340000, Chile
| |
Collapse
|
45
|
Garaffo G, Conte D, Provero P, Tomaiuolo D, Luo Z, Pinciroli P, Peano C, D'Atri I, Gitton Y, Etzion T, Gothilf Y, Gays D, Santoro MM, Merlo GR. The Dlx5 and Foxg1 transcription factors, linked via miRNA-9 and -200, are required for the development of the olfactory and GnRH system. Mol Cell Neurosci 2015; 68:103-19. [PMID: 25937343 PMCID: PMC4604252 DOI: 10.1016/j.mcn.2015.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 01/26/2023] Open
Abstract
During neuronal development and maturation, microRNAs (miRs) play diverse functions ranging from early patterning, proliferation and commitment to differentiation, survival, homeostasis, activity and plasticity of more mature and adult neurons. The role of miRs in the differentiation of olfactory receptor neurons (ORNs) is emerging from the conditional inactivation of Dicer in immature ORN, and the depletion of all mature miRs in this system. Here, we identify specific miRs involved in olfactory development, by focusing on mice null for Dlx5, a homeogene essential for both ORN differentiation and axon guidance and connectivity. Analysis of miR expression in Dlx5−/− olfactory epithelium pointed to reduced levels of miR-9, miR-376a and four miRs of the -200 class in the absence of Dlx5. To functionally examine the role of these miRs, we depleted miR-9 and miR-200 class in reporter zebrafish embryos and observed delayed ORN differentiation, altered axonal trajectory/targeting, and altered genesis and position of olfactory-associated GnRH neurons, i.e. a phenotype known as Kallmann syndrome in humans. miR-9 and miR-200-class negatively control Foxg1 mRNA, a fork-head transcription factor essential for development of the olfactory epithelium and of the forebrain, known to maintain progenitors in a stem state. Increased levels of z-foxg1 mRNA resulted in delayed ORN differentiation and altered axon trajectory, in zebrafish embryos. This work describes for the first time the role of specific miR (-9 and -200) in olfactory/GnRH development, and uncovers a Dlx5–Foxg1 regulation whose alteration affects receptor neuron differentiation, axonal targeting, GnRH neuron development, the hallmarks of the Kallmann syndrome. Dlx5 controls the expressions of miR9 and miR-200, which target the Foxg1 mRNA miR-9 and -200 are needed for olfactory neurons differentiation and axon extension miR-9 and -200 are required for the genesis and position of GnRH neurons. Altered expression of miR-9 and -200 might contribute to the Kallmann disease.
Collapse
Affiliation(s)
- Giulia Garaffo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniele Conte
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Paolo Provero
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Daniela Tomaiuolo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Zheng Luo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Patrizia Pinciroli
- Doctorate School in Molecular Medicine, Dept. Medical Biotechnology Translational Medicine (BIOMETRA), University of Milano, Italy
| | - Clelia Peano
- Inst. of Biomedical Technology, National Research Council, ITB-CNR Segrate (MI) Italy
| | - Ilaria D'Atri
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Yorick Gitton
- UMR7221 CNRS/MNHN - Evolution des régulations endocriniennes - Paris, France
| | - Talya Etzion
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Yoav Gothilf
- Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Dafne Gays
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy
| | - Massimo M Santoro
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy; Dept. Neurobiology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel; VIB, Vesalius Research Center, KU Leuven, Belgium
| | - Giorgio R Merlo
- Dept. Molecular Biotechnology and Health Sciences, University of Torino, Italy.
| |
Collapse
|
46
|
Song Y, Duan X, Chen J, Huang W, Zhu Z, Hu W. The distribution of kisspeptin (Kiss)1- and Kiss2-positive neurones and their connections with gonadotrophin-releasing hormone-3 neurones in the zebrafish brain. J Neuroendocrinol 2015; 27:198-211. [PMID: 25529211 DOI: 10.1111/jne.12251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 11/30/2014] [Accepted: 12/16/2014] [Indexed: 12/01/2022]
Abstract
Kisspeptin is a neuroendocrine hormone with a critical role in the activation of gonadotrophin-releasing hormone (GnRH) neurones, which is vital for the onset of puberty in mammals. However, the functions of kisspeptin neurones in non-mammalian vertebrates are not well understood. We have used transgenics to labell kisspeptin neurones (Kiss1 and Kiss2) with mCherry in zebrafish (Danio rerio). In kiss1:mCherry transgenic zebrafish, Kiss1 cells were located in the dorsomedial and ventromedial habenula, with their nerve fibres contributing to the fasciculus retroflexus and projecting to the ventral parts of the interpeduncular and raphe nuclei. In kiss2:mCherry zebrafish, Kiss2 cells were primarily located in the dorsal zone of the periventricular hypothalamus and, to a lesser extent, in the periventricular nucleus of the posterior tuberculum and the preoptic area. Kiss2 fibres formed a wide network projecting into the telencephalon, the mesencephalon, the hypothalamus and the pituitary. To study the relationship of kisspeptin neurones and GnRH3 neurones, these fish were crossed with gnrh3:EGFP zebrafish to obtain kiss1:mCherry/gnrh3:EGFP and kiss2:mCherry/gnrh3:EGFP double transgenic zebrafish. The GnRH3 fibres ascending to the habenula were closely associated with Kiss1 fibres projecting from the ventral habenula. On the other hand, GnRH3 fibres and Kiss2 fibres were adjacent but scarcely in contact with each other in the telencephalon and the hypothalamus. The Kiss2 and GnRH3 fibres in the ventral hypothalamus projected into the pituitary via the pituitary stalk. In the pituitary, Kiss2 fibres were directly in contact with GnRH3 fibres in the pars distalis. These results reveal the pattern of kisspeptin neurones and their connections with GnRH3 neurones in the brain, suggesting distinct mechanisms for Kiss1 and Kiss2 in regulating reproductive events in zebrafish.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
47
|
Quintana-Urzainqui I, Anadón R, Candal E, Rodríguez-Moldes I. Development of the terminal nerve system in the shark Scyliorhinus canicula. BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:277-87. [PMID: 25402659 DOI: 10.1159/000367839] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 08/23/2014] [Indexed: 11/19/2022]
Abstract
The nervus terminalis (or terminal nerve) system was discovered in an elasmobranch species more than a century ago. Over the past century, it has also been recognized in other vertebrate groups, from agnathans to mammals. However, its origin, functions or relationship with the olfactory system are still under debate. Despite the abundant literature about the nervus terminalis system in adult elasmobranchs, its development has been overlooked. Studies in other vertebrates have reported newly differentiated neurons of the terminal nerve system migrating from the olfactory epithelium to the telencephalon as part of a 'migratory mass' of cells associated with the olfactory nerve. Whether the same occurs in developing elasmobranchs (adults showing anatomically separated nervus terminalis and olfactory systems) has not yet been determined. In this work we characterized for the first time the development of the terminal nerve and ganglia in an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula), by means of tract-tracing techniques combined with immunohistochemical markers for the terminal nerve (such as FMRF-amide peptide), for the developing components of the olfactory system (Gα0 protein, GFAP, Pax6), and markers for early postmitotic neurons (HuC/D) and migrating immature neurons (DCX). We discriminated between embryonic olfactory and terminal nerve systems and determined that both components may share a common origin in the migratory mass. We also localized the exact point where they split off near the olfactory nerve-olfactory bulb junction. The study of the development of the terminal nerve system in a basal gnathostome contributes to the knowledge of the ancestral features of this system in vertebrates, shedding light on its evolution and highlighting the importance of elasmobranchs for developmental and evolutionary studies.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Departamento de Bioloxía Celular e Ecoloxía, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
48
|
Kamiya C, Ohta N, Ogura Y, Yoshida K, Horie T, Kusakabe TG, Satake H, Sasakura Y. Nonreproductive role of gonadotropin-releasing hormone in the control of ascidian metamorphosis. Dev Dyn 2014; 243:1524-35. [PMID: 25130398 DOI: 10.1002/dvdy.24176] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Gonadotropin-releasing hormones (GnRHs) are neuropeptides that play central roles in the reproduction of vertebrates. In the ascidian Ciona intestinalis, GnRHs and their receptors are expressed in the nervous systems at the larval stage, when animals are not yet capable of reproduction, suggesting that the hormones have non-reproductive roles. RESULTS We showed that GnRHs in Ciona are involved in the animal's metamorphosis by regulating tail absorption and adult organ growth. Absorption of the larval tail and growth of the adult organs are two major events in the metamorphosis of ascidians. When larvae were treated with GnRHs, they completed tail absorption more frequently than control larvae. cAMP was suggested to be a second messenger for the induction of tail absorption by GnRHs. tGnRH-3 and tGnRH-5 (the "t" indicates "tunicate") inhibited the growth of adult organs by arresting cell cycle progression in parallel with the promotion of tail absorption. CONCLUSIONS This study provides new insights into the molecular mechanisms of ascidian metamorphosis conducted by non-reproductive GnRHs.
Collapse
Affiliation(s)
- Chisato Kamiya
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhao Y, Lin MCA, Mock A, Yang M, Wayne NL. Kisspeptins modulate the biology of multiple populations of gonadotropin-releasing hormone neurons during embryogenesis and adulthood in zebrafish (Danio rerio). PLoS One 2014; 9:e104330. [PMID: 25093675 PMCID: PMC4122407 DOI: 10.1371/journal.pone.0104330] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/12/2014] [Indexed: 11/19/2022] Open
Abstract
Kisspeptin1 (product of the Kiss1 gene) is the key neuropeptide that gates puberty and maintains fertility by regulating the gonadotropin-releasing hormone (GnRH) neuronal system in mammals. Inactivating mutations in Kiss1 and the kisspeptin receptor (GPR54/Kiss1r) are associated with pubertal failure and infertility. Kiss2, a paralogous gene for kiss1, has been recently identified in several vertebrates including zebrafish. Using our transgenic zebrafish model system in which the GnRH3 promoter drives expression of emerald green fluorescent protein, we investigated the effects of kisspeptins on development of the GnRH neuronal system during embryogenesis and on electrical activity during adulthood. Quantitative PCR showed detectable levels of kiss1 and kiss2 mRNA by 1 day post fertilization, increasing throughout embryonic and larval development. Early treatment with Kiss1 or Kiss2 showed that both kisspeptins stimulated proliferation of trigeminal GnRH3 neurons located in the peripheral nervous system. However, only Kiss1, but not Kiss2, stimulated proliferation of terminal nerve and hypothalamic populations of GnRH3 neurons in the central nervous system. Immunohistochemical analysis of synaptic vesicle protein 2 suggested that Kiss1, but not Kiss2, increased synaptic contacts on the cell body and along the terminal nerve-GnRH3 neuronal processes during embryogenesis. In intact brain of adult zebrafish, whole-cell patch clamp recordings of GnRH3 neurons from the preoptic area and hypothalamus revealed opposite effects of Kiss1 and Kiss2 on spontaneous action potential firing frequency and membrane potential. Kiss1 increased spike frequency and depolarized membrane potential, whereas Kiss2 suppressed spike frequency and hyperpolarized membrane potential. We conclude that in zebrafish, Kiss1 is the primary stimulator of GnRH3 neuronal development in the embryo and an activator of stimulating hypophysiotropic neuron activities in the adult, while Kiss2 plays an additional role in stimulating embryonic development of the trigeminal neuronal population, but is an RFamide that inhibits electrical activity of hypophysiotropic GnRH3 neurons in the adult.
Collapse
Affiliation(s)
- Yali Zhao
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Meng-Chin A. Lin
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Allan Mock
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Nancy L. Wayne
- Department of Physiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Makantasi P, Dermon CR. Estradiol treatment decreases cell proliferation in the neurogenic zones of adult female zebrafish (Danio rerio) brain. Neuroscience 2014; 277:306-20. [PMID: 25034512 DOI: 10.1016/j.neuroscience.2014.06.071] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 06/20/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
While estrogens are known to play a crucial role in the neurogenesis of the mammalian and avian brain, their role in teleost adult proliferation pattern is not yet fully understood. The present study aimed to determine the estrogen effects in adult brain proliferation zones, using zebrafish, as a model organism. Indeed, teleost fish brain provides a unique adult neurogenesis model, based on its extensive proliferation, contrasting the restricted adult telencephalic neurogenesis observed in birds and mammals. To determine the effect of estrogens, 17-β estradiol was administrated for 7 days in adult female zebrafish, followed by bromodeoxyuridine (BrdU)-immunohistochemistry and double immunofluorescence. Stereological analyses of the BrdU-positive cells within the neurogenic zones, showed region-specific decreases of actively proliferating cells in the estrogen-treated animals, compared to matched controls. Interestingly, the most prominent estradiol effects were found in the number of cycling cells of the ventral nucleus of ventral telencephalic area (Vv) and cerebellar areas. Significant decreases were also determined in the dorso-lateral telencephalic, preoptic and dorsal hypothalamic areas. In contrast, medial dorsal telencephalic, caudal (Hc) and ventral (Hv) hypothalamic areas were unaffected by estrogen treatment. The majority of the BrdU-labeled cells were found to co-express PCNA proliferating marker in Hc, Hv and Vv. Additionally, a population of proliferating cells co-expressed the early neuronal marker TOAD in all areas studied. These results provide significant evidence on the 17-β estradiol impact on adult neurogenesis, down-regulating the fast-cycling and post-mitotic cells within the female zebrafish brain neurogenetic zones.
Collapse
Affiliation(s)
- P Makantasi
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece
| | - C R Dermon
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 26500 Rion, Greece.
| |
Collapse
|