1
|
Suda RA, Kubota S, Kumar V, Castric V, Krämer U, Morinaga SI, Tsuchimatsu T. Population Genomics Reveals Demographic History and Climate Adaptation in Japanese Arabidopsis halleri. PLANT & CELL PHYSIOLOGY 2025; 66:529-541. [PMID: 39500340 PMCID: PMC12085087 DOI: 10.1093/pcp/pcae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 09/25/2024] [Indexed: 05/18/2025]
Abstract
Climate oscillations in the Quaternary forced species to major latitudinal or altitudinal range shifts. It has been suggested that adaptation concomitant with range shifts plays key roles in species responses during climate oscillations, but the role of selection for local adaptation to climatic changes remains largely unexplored. Here, we investigated population structure, demographic history and signatures of climate-driven selection based on genome-wide polymorphism data of 141 Japanese Arabidopsis halleri individuals, with European ones as outgroups. Coalescent-based analyses suggested a genetic differentiation between Japanese subpopulations since the Last Glacial Period (LGP), which would have contributed to shaping the current pattern of population structure. Population demographic analysis revealed the population size fluctuations in the LGP, which were particularly prominent since the subpopulations started to diverge (∼50, 000 years ago). The ecological niche modeling predicted the geographic or distribution range shifts from southern coastal regions to northern coastal and mountainous areas, possibly in association with the population size fluctuations. Through genome-wide association analyses of bioclimatic variables and selection scans, we investigated whether climate-associated loci are enriched in the extreme tails of selection scans, and demonstrated the prevailing signatures of selection, particularly toward a warmer climate in southern subpopulations and a drier environment in northern subpopulations, which may have taken place during or after the LGP. Our study highlights the importance of integrating climate associations, selection scans and population demographic analyses for identifying genomic signatures of population-specific adaptation, which would also help us predict the evolutionary responses to future climate changes.
Collapse
Affiliation(s)
- Ryo A Suda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Shosei Kubota
- Fasmac Co., Ltd., 3088 Okada, Atsugi, Kanagawa, 243-0021 Japan
| | - Vinod Kumar
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitaetsstrasse 150, ND3/30, Bochum D-44801, Germany
| | - Vincent Castric
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille F-59000, France
| | - Ute Krämer
- Molecular Genetics and Physiology of Plants, Ruhr University Bochum, Universitaetsstrasse 150, ND3/30, Bochum D-44801, Germany
| | - Shin-Ichi Morinaga
- Department of Natural & Environmental Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo, 120-0045 Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
2
|
Wang R, Deng CH, Cornille A, Marande W, López-Girona E, Foster T, Bowatte D, Chen TH, Chagné D, Schaffer RJ, Ireland HS. Characterisation of the Gillenia S-locus provides insight into evolution of the nonself-recognition self-incompatibility system in apple. Sci Rep 2025; 15:14630. [PMID: 40287537 PMCID: PMC12033343 DOI: 10.1038/s41598-025-99335-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
Self-incompatibility (SI) in plants has evolved independently multiple times and S-RNase-based gametophytic self-incompatibility (GSI) is most common. The Rosaceae family possesses both self-recognition (Prunus) and nonself-recognition (Malus) GSI systems, and the latter is widespread in flowering plants. Gillenia trifoliata is a Rosaceae species related to Prunus and Malus, providing utility for understanding SI evolution. Gillenia is sister taxon to Malus, but unlike Malus, has not undergone polyploidisation. In addition, the common ancestor of Gillenia and Prunus is close to the origin of the subfamily. Using a highly contiguous Gillenia genome, orthologous regions to both Malus and Prunus S-loci were identified. Only the Prunus-like S-locus was highly polymorphic and had signatures of a functional S-locus including positive selection of the S-RNase. This suggests a self-recognition system controls SI in Gillenia, and the common ancestors of Gillenia and Prunus, and Gillenia and the apple tribe, likely had a self-recognition SI system. Comparative genomics between Gillenia and Malus suggest apple lost the self-recognition mechanism, and a nonself-recognition mechanism evolved independently from a rudimentary locus with at least one male S-determinant. Repetitive sequences in the Malus-like S-locus in Gillenia may facilitate illegitimate recombination, suggesting putative mechanisms of evolution of nonself-recognition S-loci.
Collapse
Affiliation(s)
- Ruiling Wang
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | - Amandine Cornille
- Université Paris Saclay, INRAE, CNRS, AgroParisTech, GQE-LeMoulon, 91190, Gif-sur- Yvette, France
- Division of Science, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| | | | - Elena López-Girona
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Toshi Foster
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Lane, Motueka, 7198, New Zealand
| | - Deepa Bowatte
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Ting-Hsuan Chen
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 4704, Christchurch, 8140, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Robert J Schaffer
- The New Zealand Institute for Plant and Food Research Ltd, 55 Old Mill Lane, Motueka, 7198, New Zealand.
- School of Biological Sciences, The University of Auckland, Private bag 91629, Auckland, 1142, New Zealand.
| | - Hilary S Ireland
- The New Zealand Institute for Plant and Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
3
|
Ramanauskas K, Jiménez‐López FJ, Sánchez‐Cabrera M, Escudero M, Ortiz PL, Arista M, Igić B. Rapid detection of RNase-based self-incompatibility in Lysimachia monelli (Primulaceae). AMERICAN JOURNAL OF BOTANY 2025; 112:e16449. [PMID: 39806558 PMCID: PMC11744440 DOI: 10.1002/ajb2.16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Abstract
PREMISE Primroses famously employ a system that simultaneously expresses distyly and filters out self-pollen. Other species in the Primulaceae family, including Lysimachia monelli (blue pimpernel), also express self-incompatibility (SI), but involving a system with distinct features and an unknown molecular genetic basis. METHODS We utilize a candidate-based transcriptome sequencing (RNA-seq) approach, relying on candidate T2/S-RNase Class III and S-linked F-box-motif-containing genes and harnessing the unusual evolutionary and genetic features of SI, to examine whether an RNase-based mechanism underlies SI in L. monelli. We term this approach "SI detection with RNA-seq" (SIDR). RESULTS The results of sequencing, crossing, population genetics, and molecular evolutionary features each support a causal association linking the recovered genotypes with SI phenotypes. The finding of RNase-based SI in Primulaceae (Ericales) all but cements the long-held view that this mechanism was present in the ancestral pentapetal eudicot, whose descendants now comprise two-thirds of angiosperms. It also significantly narrows the plausible maximum age for the heterostyly evolution within the family. CONCLUSIONS SIDR is powerful, flexible, inexpensive, and most critically enables work in often-neglected species. It may be used with or without candidate genes to close enormous gaps in understanding the genetic basis of SI and the history of breeding system evolution.
Collapse
Affiliation(s)
- Karolis Ramanauskas
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| | | | | | - Marcial Escudero
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Pedro L. Ortiz
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaApdo. 1095Sevilla41080Spain
| | - Boris Igić
- Department of Biological SciencesUniversity of Illinois at ChicagoChicago60607ILUSA
| |
Collapse
|
4
|
Maenosono T, Isono K, Kuronuma T, Hatai M, Chimura K, Kubo KI, Kokubun H, Greppi JA, Watanabe H, Uehara K, Tsuchimatsu T. Exploring the Allelic Diversity of the Self-Incompatibility Gene Across Natural Populations in Petunia (Solanaceae). Genome Biol Evol 2024; 16:evae270. [PMID: 39673752 DOI: 10.1093/gbe/evae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Self-incompatibility (SI) is a genetic mechanism to prevent self-fertilization and thereby promote outcrossing in hermaphroditic plant species through discrimination of self and nonself-pollen by pistils. In many SI systems, recognition between pollen and pistils is controlled by a single multiallelic locus (called the S-locus), in which multiple alleles (called S-alleles) are segregating. Because of the extreme level of polymorphism of the S-locus, identification of S-alleles has been a major issue in many SI studies for decades. Here, we report an RNA-seq-based method to explore allelic diversity of the S-locus by employing the long-read sequencing technology of the Oxford Nanopore MinION and applied it for the gametophytic SI system of Petunia (Solanaceae), in which the female determinant is a secreted ribonuclease called S-RNase that inhibits the elongation of self-pollen tubes by degrading RNA. We developed a method to identify S-alleles by the search of S-RNase sequences, using the previously reported sequences as queries, and found in total 62 types of S-RNase including 45 novel types. We validated this method through Sanger sequencing and crossing experiments, confirming the sequencing accuracy and SI phenotypes corresponding to genotypes. Then, using the obtained sequence data together with polymerase chain reaction-based genotyping in a larger sample set of 187 plants, we investigated the diversity, frequency, and the level of shared polymorphism of S-alleles across populations and species. The method and the dataset obtained in Petunia will be an important basis for further studying the evolution of S-RNase-based gametophytic SI systems in natural populations.
Collapse
Affiliation(s)
- Taiga Maenosono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
- Graduate School of Science and Technology, Chiba University, Chiba 263-8522, Japan
| | - Kazuho Isono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Takanori Kuronuma
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Miho Hatai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Kaori Chimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| | - Ken-Ichi Kubo
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan
| | - Hisashi Kokubun
- Graduate School of Horticulture, Chiba University, Matsudo 271-8510, Japan
| | | | - Hitoshi Watanabe
- Center for Environment, Health and Field Sciences, Chiba University, Kashiwa 277-0882, Japan
| | - Koichi Uehara
- College of Liberal Arts and Sciences, Chiba University, Chiba 263-8522, Japan
| | - Takashi Tsuchimatsu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku 113-0033, Tokyo, Japan
| |
Collapse
|
5
|
Siljestam M, Rueffler C. Heterozygote advantage can explain the extraordinary diversity of immune genes. eLife 2024; 13:e94587. [PMID: 39589392 PMCID: PMC11723581 DOI: 10.7554/elife.94587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/11/2024] [Indexed: 11/27/2024] Open
Abstract
The majority of highly polymorphic genes are related to immune functions and with over 100 alleles within a population, genes of the major histocompatibility complex (MHC) are the most polymorphic loci in vertebrates. How such extraordinary polymorphism arose and is maintained is controversial. One possibility is heterozygote advantage (HA), which can in principle maintain any number of alleles, but biologically explicit models based on this mechanism have so far failed to reliably predict the coexistence of significantly more than 10 alleles. We here present an eco-evolutionary model showing that evolution can result in the emergence and maintenance of more than 100 alleles under HA if the following two assumptions are fulfilled: first, pathogens are lethal in the absence of an appropriate immune defence; second, the effect of pathogens depends on host condition, with hosts in poorer condition being affected more strongly. Thus, our results show that HA can be a more potent force in explaining the extraordinary polymorphism found at MHC loci than currently recognised.
Collapse
Affiliation(s)
- Mattias Siljestam
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| | - Claus Rueffler
- Department of Ecology and Genetics, Animal Ecology, Uppsala UniversityUppsalaSweden
| |
Collapse
|
6
|
Le Veve A, Genete M, Lepers-Blassiau C, Ponitzki C, Poux C, Vekemans X, Durand E, Castric V. The genetic architecture of the load linked to dominant and recessive self-incompatibility alleles in Arabidopsis halleri and Arabidopsis lyrata. eLife 2024; 13:RP94972. [PMID: 39222005 PMCID: PMC11368402 DOI: 10.7554/elife.94972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
The long-term balancing selection acting on mating types or sex-determining genes is expected to lead to the accumulation of deleterious mutations in the tightly linked chromosomal segments that are locally 'sheltered' from purifying selection. However, the factors determining the extent of this accumulation are poorly understood. Here, we took advantage of variations in the intensity of balancing selection along a dominance hierarchy formed by alleles at the sporophytic self-incompatibility system of the Brassicaceae to compare the pace at which linked deleterious mutations accumulate among them. We first experimentally measured the phenotypic manifestation of the linked load at three different levels of the dominance hierarchy. We then sequenced and phased polymorphisms in the chromosomal regions linked to 126 distinct copies of S-alleles in two populations of Arabidopsis halleri and three populations of Arabidopsis lyrata. We find that linkage to the S-locus locally distorts phylogenies over about 10-30 kb along the chromosome. The more intense balancing selection on dominant S-alleles results in greater fixation of linked deleterious mutations, while recessive S-alleles accumulate more linked deleterious mutations that are segregating. Hence, the structure rather than the overall magnitude of the linked genetic load differs between dominant and recessive S-alleles. Our results have consequences for the long-term evolution of new S-alleles, the evolution of dominance modifiers between them, and raise the question of why the non-recombining regions of some sex and mating type chromosomes expand over evolutionary times while others, such as the S-locus of the Brassicaceae, remain restricted to small chromosomal regions.
Collapse
Affiliation(s)
| | | | | | | | - Céline Poux
- Univ. Lille, CNRS, UMR 8198 – Evo-Eco-PaleoLilleFrance
| | | | | | | |
Collapse
|
7
|
Braichenko S, Borges R, Kosiol C. Polymorphism-Aware Models in RevBayes: Species Trees, Disentangling Balancing Selection, and GC-Biased Gene Conversion. Mol Biol Evol 2024; 41:msae138. [PMID: 38980178 PMCID: PMC11272101 DOI: 10.1093/molbev/msae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/19/2024] [Accepted: 07/06/2024] [Indexed: 07/10/2024] Open
Abstract
The role of balancing selection is a long-standing evolutionary puzzle. Balancing selection is a crucial evolutionary process that maintains genetic variation (polymorphism) over extended periods of time; however, detecting it poses a significant challenge. Building upon the Polymorphism-aware phylogenetic Models (PoMos) framework rooted in the Moran model, we introduce a PoMoBalance model. This novel approach is designed to disentangle the interplay of mutation, genetic drift, and directional selection (GC-biased gene conversion), along with the previously unexplored balancing selection pressures on ultra-long timescales comparable with species divergence times by analyzing multi-individual genomic and phylogenetic divergence data. Implemented in the open-source RevBayes Bayesian framework, PoMoBalance offers a versatile tool for inferring phylogenetic trees as well as quantifying various selective pressures. The novel aspect of our approach in studying balancing selection lies in polymorphism-aware phylogenetic models' ability to account for ancestral polymorphisms and incorporate parameters that measure frequency-dependent selection, allowing us to determine the strength of the effect and exact frequencies under selection. We implemented validation tests and assessed the model on the data simulated with SLiM and a custom Moran model simulator. Real sequence analysis of Drosophila populations reveals insights into the evolutionary dynamics of regions subject to frequency-dependent balancing selection, particularly in the context of sex-limited color dimorphism in Drosophila erecta.
Collapse
Affiliation(s)
- Svitlana Braichenko
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Rui Borges
- Institut für Populationsgenetik, Vetmeduni Vienna, Wien 1210, Austria
| | - Carolin Kosiol
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
8
|
Soni V, Jensen JD. Temporal challenges in detecting balancing selection from population genomic data. G3 (BETHESDA, MD.) 2024; 14:jkae069. [PMID: 38551137 DOI: 10.1093/g3journal/jkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/28/2024]
Abstract
The role of balancing selection in maintaining genetic variation remains an open question in population genetics. Recent years have seen numerous studies identifying candidate loci potentially experiencing balancing selection, most predominantly in human populations. There are however numerous alternative evolutionary processes that may leave similar patterns of variation, thereby potentially confounding inference, and the expected signatures of balancing selection additionally change in a temporal fashion. Here we use forward-in-time simulations to quantify expected statistical power to detect balancing selection using both site frequency spectrum- and linkage disequilibrium-based methods under a variety of evolutionarily realistic null models. We find that whilst site frequency spectrum-based methods have little power immediately after a balanced mutation begins segregating, power increases with time since the introduction of the balanced allele. Conversely, linkage disequilibrium-based methods have considerable power whilst the allele is young, and power dissipates rapidly as the time since introduction increases. Taken together, this suggests that site frequency spectrum-based methods are most effective at detecting long-term balancing selection (>25N generations since the introduction of the balanced allele) whilst linkage disequilibrium-based methods are effective over much shorter timescales (<1N generations), thereby leaving a large time frame over which current methods have little power to detect the action of balancing selection. Finally, we investigate the extent to which alternative evolutionary processes may mimic these patterns, and demonstrate the need for caution in attempting to distinguish the signatures of balancing selection from those of both neutral processes (e.g. population structure and admixture) as well as of alternative selective processes (e.g. partial selective sweeps).
Collapse
Affiliation(s)
- Vivak Soni
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| | - Jeffrey D Jensen
- School of Life Sciences, Center for Evolution & Medicine, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
9
|
Allendorf FW, Hössjer O, Ryman N. What does effective population size tell us about loss of allelic variation? Evol Appl 2024; 17:e13733. [PMID: 38911263 PMCID: PMC11192967 DOI: 10.1111/eva.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024] Open
Abstract
There are two primary measures of the amount of genetic variation in a population at a locus: heterozygosity and the number of alleles. Effective population size (N e) provides both an expectation of the amount of heterozygosity in a population at drift-mutation equilibrium and the rate of loss of heterozygosity because of genetic drift. In contrast, the number of alleles in a population at drift-mutation equilibrium is a function of both N e and census size (N C). In addition, populations with the same N e can lose allelic variation at very different rates. Allelic variation is generally much more sensitive to bottlenecks than heterozygosity. Expressions used to adjust for the effects of violations of the ideal population on N e do not provide good predictions of the loss of allelic variation. These effects are much greater for loci with many alleles, which are often important for adaptation. We show that there is a linear relationship between the reduction of N C and the corresponding reduction of the expected number of alleles at drift-mutation equilibrium. This makes it possible to predict the expected effect of a bottleneck on allelic variation. Heterozygosity provides good estimates of the rate of adaptive change in the short-term, but allelic variation provides important information about long-term adaptive change. The guideline of long-term N e being greater than 500 is often used as a primary genetic metric for evaluating conservation status. We recommend that this guideline be expanded to take into account allelic variation as well as heterozygosity.
Collapse
Affiliation(s)
- Fred W. Allendorf
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Ola Hössjer
- Department of MathematicsStockholm UniversityStockholmSweden
| | - Nils Ryman
- Department of ZoologyStockholm UniversityStockholmSweden
| |
Collapse
|
10
|
Hu J, Liu C, Du Z, Guo F, Song D, Wang N, Wei Z, Jiang J, Cao Z, Shi C, Zhang S, Zhu C, Chen P, Larkin RM, Lin Z, Xu Q, Ye J, Deng X, Bosch M, Franklin‐Tong VE, Chai L. Transposable elements cause the loss of self-incompatibility in citrus. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1113-1131. [PMID: 38038155 PMCID: PMC11022811 DOI: 10.1111/pbi.14250] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/25/2023] [Accepted: 11/11/2023] [Indexed: 12/02/2023]
Abstract
Self-incompatibility (SI) is a widespread prezygotic mechanism for flowering plants to avoid inbreeding depression and promote genetic diversity. Citrus has an S-RNase-based SI system, which was frequently lost during evolution. We previously identified a single nucleotide mutation in Sm-RNase, which is responsible for the loss of SI in mandarin and its hybrids. However, little is known about other mechanisms responsible for conversion of SI to self-compatibility (SC) and we identify a completely different mechanism widely utilized by citrus. Here, we found a 786-bp miniature inverted-repeat transposable element (MITE) insertion in the promoter region of the FhiS2-RNase in Fortunella hindsii Swingle (a model plant for citrus gene function), which does not contain the Sm-RNase allele but are still SC. We demonstrate that this MITE plays a pivotal role in the loss of SI in citrus, providing evidence that this MITE insertion prevents expression of the S-RNase; moreover, transgenic experiments show that deletion of this 786-bp MITE insertion recovers the expression of FhiS2-RNase and restores SI. This study identifies the first evidence for a role for MITEs at the S-locus affecting the SI phenotype. A family-wide survey of the S-locus revealed that MITE insertions occur frequently adjacent to S-RNase alleles in different citrus genera, but only certain MITEs appear to be responsible for the loss of SI. Our study provides evidence that insertion of MITEs into a promoter region can alter a breeding strategy and suggests that this phenomenon may be broadly responsible for SC in species with the S-RNase system.
Collapse
Affiliation(s)
- Jianbing Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Chenchen Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zezhen Du
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Furong Guo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Dan Song
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Nan Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zhuangmin Wei
- Guangxi Subtropical Crops Research InstituteNanningP. R. China
| | - Jingdong Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Zonghong Cao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Siqi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Chenqiao Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Peng Chen
- Horticultural Institute, Hunan Academy of Agricultural SciencesChangshaChina
| | - Robert M. Larkin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Zongcheng Lin
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanP. R. China
- Hubei Hongshan LaboratoryWuhanP. R. China
| |
Collapse
|
11
|
Lin RC, Rausher MD. Absence of long-term balancing selection on variation in EuMYB3, an R2R3-MYB gene responsible for the anther-color polymorphism in Erythronium umbilicatum. Sci Rep 2024; 14:5364. [PMID: 38438787 PMCID: PMC10912454 DOI: 10.1038/s41598-024-56117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/29/2024] [Indexed: 03/06/2024] Open
Abstract
Balancing selection has been shown to be common in plants for several different types of traits, such as self-incompatibility and heterostyly. Generally, for these traits balancing selection is generated by interactions among individuals or between individuals and other species (e.g., pathogens or pollinators). However, there are phenotypic polymorphisms in plants that do not obviously involve types of interactions that generate balancing selection. Little is known about the extent to which balancing selection also acts to preserve these polymorphisms. Here we ask whether balancing selection preserves an anther-color polymorphism in Erythronium umbilicatum (Liliaceae). We identified a major gene underlying this polymorphism. We then attempted to detect signatures of balancing selection on that gene by developing a new coalescence test for balancing selection. We found that variation in anther color is in large part caused by variation in a paralog of EuMYB3, an anthocyanin-regulating R2R3-MYB transcription factor. However, we found little evidence for balancing selection having acted historically on EuMYB3. Our results thus suggest that plant polymorphisms, especially those not involved in interactions that are likely to generate negative frequency-dependent selection, may reflect a transient state in which one morph will eventually be fixed by either genetic drift or directional selection. Our results also suggest that regulation of the anthocyanin pathway is more evolutionarily labile than is generally believed.
Collapse
Affiliation(s)
- Rong-Chien Lin
- Department of Biology, Duke University, Durham, NC, 27708, USA.
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA.
| | - Mark D Rausher
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
12
|
Ricci NAP, Bento JPSP, Mayer JLS, Singer RB, Koehler S. Gametophytic self-incompatibility in Maxillariinae orchids. PROTOPLASMA 2024; 261:271-279. [PMID: 37787780 DOI: 10.1007/s00709-023-01895-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023]
Abstract
Gametophytic self-incompatibility (GSI) has been mainly described in species-rich clades within Orchidaceae. We report GSI for a genus within Maxillariinae, one of the most conspicuous and diverse subtribes of neotropical orchids. Here, we describe the reproductive system of Brasiliorchis picta, B. phoenicanthera, and B. porphyrostele. Anatomical studies of fruit development showed that pollen tubes of aborted, self-pollinated flowers degenerate half-way in the stylar channel and never reach the ovules. Spontaneous self-pollination and emasculation set no fruits for none of the sampled species, thus supporting the hypothesis that these three species studied rely on the agency of pollinators and pollinator-mediated cross-pollination to set fruit. Fruit set from cross-pollinations ranged from 33.4 to 77.5%. One self-pollinated fruit of B. porphyrostele developed to completion. All other fruits aborted between 10 and 21 days after pollination. These data support previous evidence of variable strength GSI being exhibited in orchid species. Additional studies of self-incompatibility systems are needed to evaluate their role in species diversification and evolution of reproductive strategies in Maxillariinae and to allow for effective conservation strategies of threatened orchid species.
Collapse
Affiliation(s)
| | | | - Juliana Lischka Sampaio Mayer
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Bustos Singer
- Departamento de Botânica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Samantha Koehler
- Programa de Pós-Graduação em Biologia Vegetal, Universidade Estadual de Campinas, Campinas, SP, Brazil.
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
13
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
14
|
Huang G, Wu W, Chen Y, Zhi X, Zou P, Ning Z, Fan Q, Liu Y, Deng S, Zeng K, Zhou R. Balancing selection on an MYB transcription factor maintains the twig trichome color variation in Melastoma normale. BMC Biol 2023; 21:122. [PMID: 37226197 DOI: 10.1186/s12915-023-01611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 05/03/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The factors that maintain phenotypic and genetic variation within a population have received long-term attention in evolutionary biology. Here the genetic basis and evolution of the geographically widespread variation in twig trichome color (from red to white) in a shrub Melastoma normale was investigated using Pool-seq and evolutionary analyses. RESULTS The results show that the twig trichome coloration is under selection in different light environments and that a 6-kb region containing an R2R3 MYB transcription factor gene is the major region of divergence between the extreme red and white morphs. This gene has two highly divergent groups of alleles, one of which likely originated from introgression from another species in this genus and has risen to high frequency (> 0.6) within each of the three populations under investigation. In contrast, polymorphisms in other regions of the genome show no sign of differentiation between the two morphs, suggesting that genomic patterns of diversity have been shaped by homogenizing gene flow. Population genetics analysis reveals signals of balancing selection acting on this gene, and it is suggested that spatially varying selection is the most likely mechanism of balancing selection in this case. CONCLUSIONS This study demonstrate that polymorphisms on a single transcription factor gene largely confer the twig trichome color variation in M. normale, while also explaining how adaptive divergence can occur and be maintained in the face of gene flow.
Collapse
Affiliation(s)
- Guilian Huang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Wei Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yongmei Chen
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan, 643000, China
| | - Xueke Zhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peishan Zou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zulin Ning
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
15
|
Novikova PY, Kolesnikova UK, Scott AD. Ancestral self-compatibility facilitates the establishment of allopolyploids in Brassicaceae. PLANT REPRODUCTION 2023; 36:125-138. [PMID: 36282331 PMCID: PMC9957919 DOI: 10.1007/s00497-022-00451-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Self-incompatibility systems based on self-recognition evolved in hermaphroditic plants to maintain genetic variation of offspring and mitigate inbreeding depression. Despite these benefits in diploid plants, for polyploids who often face a scarcity of mating partners, self-incompatibility can thwart reproduction. In contrast, self-compatibility provides an immediate advantage: a route to reproductive viability. Thus, diploid selfing lineages may facilitate the formation of new allopolyploid species. Here, we describe the mechanism of establishment of at least four allopolyploid species in Brassicaceae (Arabidopsis suecica, Arabidopsis kamchatica, Capsella bursa-pastoris, and Brassica napus), in a manner dependent on the prior loss of the self-incompatibility mechanism in one of the ancestors. In each case, the degraded S-locus from one parental lineage was dominant over the functional S-locus of the outcrossing parental lineage. Such dominant loss-of-function mutations promote an immediate transition to selfing in allopolyploids and may facilitate their establishment.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany.
| | - Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
16
|
Hedhly A, Guerra ME, Grimplet J, Rodrigo J. S-Locus Genotyping in Japanese Plum by High Throughput Sequencing Using a Synthetic S-Loci Reference Sequence. Int J Mol Sci 2023; 24:3932. [PMID: 36835346 PMCID: PMC9960950 DOI: 10.3390/ijms24043932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Self-incompatibility in Prunus species is governed by a single locus consisting of two highly multi-allelic and tightly linked genes, one coding for an F-box protein-i.e., SFB in Prunus- controlling the pollen specificity and one coding for an S-RNase gene controlling the pistil specificity. Genotyping the allelic combination in a fruit tree species is an essential procedure both for cross-based breeding and for establishing pollination requirements. Gel-based PCR techniques using primer pairs designed from conserved regions and spanning polymorphic intronic regions are traditionally used for this task. However, with the great advance of massive sequencing techniques and the lowering of sequencing costs, new genotyping-by-sequencing procedures are emerging. The alignment of resequenced individuals to reference genomes, commonly used for polymorphism detection, yields little or no coverage in the S-locus region due to high polymorphism between different alleles within the same species, and cannot be used for this purpose. Using the available sequences of Japanese plum S-loci concatenated in a rosary-like structure as synthetic reference sequence, we describe a procedure to accurately genotype resequenced individuals that allowed the analysis of the S-genotype in 88 Japanese plum cultivars, 74 of them are reported for the first time. In addition to unraveling two new S-alleles from published reference genomes, we identified at least two S-alleles in 74 cultivars. According to their S-allele composition, they were assigned to 22 incompatibility groups, including nine new incompatibility groups reported here for the first time (XXVII-XXXV).
Collapse
Affiliation(s)
- Afif Hedhly
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
| | - María Engracia Guerra
- Área de Fruticultura Mediterránea, CICYTEX-Centro de Investigación ‘Finca La Orden-Valdesequera’, A-V, KM 372, Guadajira, 06187 Badajoz, Spain
| | - Jerome Grimplet
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| | - Javier Rodrigo
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda Montañana 930, 50059 Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
17
|
Peris D, Lu DS, Kinneberg VB, Methlie IS, Dahl MS, James TY, Kauserud H, Skrede I. Large-scale fungal strain sequencing unravels the molecular diversity in mating loci maintained by long-term balancing selection. PLoS Genet 2022; 18:e1010097. [PMID: 35358178 PMCID: PMC8970355 DOI: 10.1371/journal.pgen.1010097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/14/2022] [Indexed: 11/19/2022] Open
Abstract
Balancing selection, an evolutionary force that retains genetic diversity, has been detected in multiple genes and organisms, such as the sexual mating loci in fungi. However, to quantify the strength of balancing selection and define the mating-related genes require a large number of strains. In tetrapolar basidiomycete fungi, sexual type is determined by two unlinked loci, MATA and MATB. Genes in both loci define mating type identity, control successful mating and completion of the life cycle. These loci are usually highly diverse. Previous studies have speculated, based on culture crosses, that species of the non-model genus Trichaptum (Hymenochaetales, Basidiomycota) possess a tetrapolar mating system, with multiple alleles. Here, we sequenced a hundred and eighty strains of three Trichaptum species. We characterized the chromosomal location of MATA and MATB, the molecular structure of MAT regions and their allelic richness. The sequencing effort was sufficient to molecularly characterize multiple MAT alleles segregating before the speciation event of Trichaptum species. Analyses suggested that long-term balancing selection has generated trans-species polymorphisms. Mating sequences were classified in different allelic classes based on an amino acid identity (AAI) threshold supported by phylogenetics. 17,550 mating types were predicted based on the allelic classes. In vitro crosses allowed us to support the degree of allelic divergence needed for successful mating. Even with the high amount of divergence, key amino acids in functional domains are conserved. We conclude that the genetic diversity of mating loci in Trichaptum is due to long-term balancing selection, with limited recombination and duplication activity. The large number of sequenced strains highlighted the importance of sequencing multiple individuals from different species to detect the mating-related genes, the mechanisms generating diversity and the evolutionary forces maintaining them.
Collapse
Affiliation(s)
- David Peris
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
- Department of Health, Valencian International University (VIU), Valencia, Spain
| | - Dabao Sun Lu
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Vilde Bruhn Kinneberg
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ine-Susanne Methlie
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Malin Stapnes Dahl
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Håvard Kauserud
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Inger Skrede
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
18
|
Suni S, Hall E, Bahu E, Hayes H. Urbanization increases floral specialization of pollinators. Ecol Evol 2022; 12:e8619. [PMID: 35309755 PMCID: PMC8901868 DOI: 10.1002/ece3.8619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 09/19/2021] [Indexed: 11/12/2022] Open
Abstract
Understanding how urbanization alters functional interactions among pollinators and plants is critically important given increasing anthropogenic land use and declines in pollinator populations. Pollinators often exhibit short-term specialization and visit plants of the same species during one foraging trip. This facilitates plant receipt of conspecific pollen-pollen on a pollinator that is the same species as the plant on which the pollinator was foraging. Conspecific pollen receipt facilitates plant reproductive success and is thus important to plant and pollinator persistence. We investigated how urbanization affects short-term specialization of insect pollinators by examining pollen loads on insects' bodies and identifying the number and species of pollen grains on insects caught in urban habitat fragments and natural areas. We assessed possible drivers of differences between urban and natural areas, including frequency dependence in foraging, species richness and diversity of the plant and pollinator communities, floral abundance, and the presence of invasive plant species. Pollinators were more specialized in urban fragments than in natural areas, despite no differences in the species richness of plant communities across site types. These differences were likely driven by higher specialization of common pollinators, which were more abundant in urban sites. In addition, pollinators preferred to forage on invasive plants at urban sites and native plants at natural sites. Our findings reveal indirect effects of urbanization on pollinator fidelity to individual plant species and have implications for the maintenance of plant species diversity in small habitat fragments. Higher preference of pollinators for invasive plants at urban sites suggests that native species may receive fewer visits by pollinators. Therefore, native plant species diversity may decline in urban sites without continued augmentation of urban flora or removal of invasive species.
Collapse
Affiliation(s)
- Sevan Suni
- Department of BiologyUniversity of San FranciscoSan FranciscoCaliforniaUSA
| | - Erin Hall
- Department of BiologyUniversity of San FranciscoSan FranciscoCaliforniaUSA
| | - Evangelina Bahu
- Department of BiologyUniversity of San FranciscoSan FranciscoCaliforniaUSA
| | - Hannah Hayes
- Department of BiologyUniversity of San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
19
|
Chevin L, Gompert Z, Nosil P. Frequency dependence and the predictability of evolution in a changing environment. Evol Lett 2021; 6:21-33. [PMID: 35127135 PMCID: PMC8802243 DOI: 10.1002/evl3.266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
Frequency‐dependent (FD) selection, whereby fitness and selection depend on the genetic or phenotypic composition of the population, arises in numerous ecological contexts (competition, mate choice, crypsis, mimicry, etc.) and can strongly impact evolutionary dynamics. In particular, negative frequency‐dependent selection (NFDS) is well known for its ability to potentially maintain stable polymorphisms, but it has also been invoked as a source of persistent, predictable frequency fluctuations. However, the conditions under which such fluctuations persist are not entirely clear. In particular, previous work rarely considered that FD is unlikely to be the sole driver of evolutionary dynamics when it occurs, because most environments are not static but instead change dynamically over time. Here, we investigate how FD interacts with a temporally fluctuating environment to shape the dynamics of population genetic change. We show that a simple metric introduced by Lewontin, the slope of frequency change against frequency near equilibrium, works as a key criterion for distinguishing microevolutionary outcomes, even in a changing environment. When this slope D is between 0 and –2 (consistent with the empirical examples we review), substantial fluctuations would not persist on their own in a large population occupying a constant environment, but they can still be maintained indefinitely as quasi‐cycles fueled by environmental noise or genetic drift. However, such moderate NFDS buffers and temporally shifts evolutionary responses to periodic environments (e.g., seasonality). Stronger FD, with slope D < –2, can produce self‐sustained cycles that may overwhelm responses to a changing environment, or even chaos that fundamentally limits predictability. This diversity of expected outcomes, together with the empirical evidence for both FD and environment‐dependent selection, suggests that the interplay of internal dynamics with external forcing should be investigated more systematically to reach a better understanding and prediction of evolution.
Collapse
Affiliation(s)
| | | | - Patrik Nosil
- CEFE, Univ Montpellier, CNRS, EPHE, IRD Montpellier 34090 France
- Department of Biology Utah State University Logan Utah 84322 USA
| |
Collapse
|
20
|
De Cauwer I, Vernet P, Billiard S, Godé C, Bourceaux A, Ponitzki C, Saumitou-Laprade P. Widespread coexistence of self-compatible and self-incompatible phenotypes in a diallelic self-incompatibility system in Ligustrum vulgare (Oleaceae). Heredity (Edinb) 2021; 127:384-392. [PMID: 34482370 PMCID: PMC8479060 DOI: 10.1038/s41437-021-00463-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The breakdown of self-incompatibility (SI) in angiosperms is one of the most commonly observed evolutionary transitions. While multiple examples of SI breakdown have been documented in natural populations, there is strikingly little evidence of stable within-population polymorphism with both inbreeding (self-compatible) and outcrossing (self-incompatible) individuals. This absence of breeding system polymorphism corroborates theoretical expectations that predict that in/outbreeding polymorphism is possible only under very restricted conditions. However, theory also predicts that a diallelic sporophytic SI system should facilitate the maintenance of such polymorphism. We tested this prediction by studying the breeding system of Ligustrum vulgare L., an insect-pollinated hermaphroditic species of the Oleaceae family. Using stigma tests with controlled pollination and paternity assignment of open-pollinated progenies, we confirmed the existence of two self-incompatibility groups in this species. We also demonstrated the occurrence of self-compatible individuals in different populations of Western Europe arising from a mutation affecting the functioning of the pollen component of SI. Our results show that the observed low frequency of self-compatible individuals in natural populations is compatible with theoretical predictions only if inbreeding depression is very high.
Collapse
Affiliation(s)
- Isabelle De Cauwer
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Philippe Vernet
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Sylvain Billiard
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Cécile Godé
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Angélique Bourceaux
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Chloé Ponitzki
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| | - Pierre Saumitou-Laprade
- grid.503422.20000 0001 2242 6780Univ. Lille, UMR 8198 – Evo-Eco-Paleo, F-59000 Lille, France ,grid.4444.00000 0001 2112 9282CNRS, UMR 8198, F-59000 Lille, France
| |
Collapse
|
21
|
Vekemans X, Castric V. When the genetic architecture matters: evolutionary and ecological implications of self versus nonself recognition in plant self-incompatibility. THE NEW PHYTOLOGIST 2021; 231:1304-1307. [PMID: 34146416 DOI: 10.1111/nph.17471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, Lille, F-59000, France
| |
Collapse
|
22
|
Camus C, Solas M, Martínez C, Vargas J, Garcés C, Gil-Kodaka P, Ladah LB, Serrão EA, Faugeron S. Mates Matter: Gametophyte Kinship Recognition and Inbreeding in the Giant Kelp, Macrocystis pyrifera (Laminariales, Phaeophyceae). JOURNAL OF PHYCOLOGY 2021; 57:711-725. [PMID: 33583038 DOI: 10.1111/jpy.13146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/22/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Inbreeding, the mating between genetically related individuals, often results in reduced survival and fecundity of offspring, relative to outcrossing. Yet, high inbreeding rates are commonly observed in seaweeds, suggesting compensatory reproductive traits may affect the costs and benefits of the mating system. We experimentally manipulated inbreeding levels in controlled crossing experiments, using gametophytes from 19 populations of Macrocystis pyrifera along its Eastern Pacific coastal distribution (EPC). The objective was to investigate the effects of male-female kinship on female fecundity and fertility, to estimate inbreeding depression in the F1 progeny, and to assess the variability of these effects among different regions and habitats of the EPC. Results revealed that the presence and kinship of males had a significant effect on fecundity and fertility of female gametophytes. Females left alone or in the presence of sibling males express the highest gametophyte size, number, and size of oogonia, suggesting they were able to sense the presence and the identity of their mates before gamete contact. The opposite trend was observed for the production of embryos per female gametes, indicating higher costs of selfing and parthenogenesis than outcrossing on fertility. However, the increased fecundity compensated for the reduced fertility, leading to a stable overall reproductive output. Inbreeding also affected morphological traits of juvenile sporophytes, but not their heatwave tolerance. The male-female kinship effect was stronger in high-latitude populations, suggesting that females from low-latitude marginal populations might have evolved to mate with any male gamete to guarantee reproductive success.
Collapse
Affiliation(s)
- Carolina Camus
- Centro i~mar and CeBiB, Universidad de Los Lagos, Puerto Montt, Chile
| | - Maribel Solas
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Jaime Vargas
- Centro i~mar, Universidad de Los Lagos, Puerto Montt, Chile
| | | | | | - Lydia B Ladah
- Department of Biological Oceanography, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, México
| | | | - Sylvain Faugeron
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- UMI3614 Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Université, Pontificia Universidad Católica de Chile, Universidad Austral de Chile, Roscoff, France
| |
Collapse
|
23
|
Zeng K, Charlesworth B, Hobolth A. Studying models of balancing selection using phase-type theory. Genetics 2021; 218:6237896. [PMID: 33871627 DOI: 10.1093/genetics/iyab055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 11/15/2022] Open
Abstract
Balancing selection (BLS) is the evolutionary force that maintains high levels of genetic variability in many important genes. To further our understanding of its evolutionary significance, we analyze models with BLS acting on a biallelic locus: an equilibrium model with long-term BLS, a model with long-term BLS and recent changes in population size, and a model of recent BLS. Using phase-type theory, a mathematical tool for analyzing continuous time Markov chains with an absorbing state, we examine how BLS affects polymorphism patterns in linked neutral regions, as summarized by nucleotide diversity, the expected number of segregating sites, the site frequency spectrum, and the level of linkage disequilibrium (LD). Long-term BLS affects polymorphism patterns in a relatively small genomic neighborhood, and such selection targets are easier to detect when the equilibrium frequencies of the selected variants are close to 50%, or when there has been a population size reduction. For a new mutation subject to BLS, its initial increase in frequency in the population causes linked neutral regions to have reduced diversity, an excess of both high and low frequency derived variants, and elevated LD with the selected locus. These patterns are similar to those produced by selective sweeps, but the effects of recent BLS are weaker. Nonetheless, compared to selective sweeps, nonequilibrium polymorphism and LD patterns persist for a much longer period under recent BLS, which may increase the chance of detecting such selection targets. An R package for analyzing these models, among others (e.g., isolation with migration), is available.
Collapse
Affiliation(s)
- Kai Zeng
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Brian Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Asger Hobolth
- Department of Mathematics, Aarhus University, Aarhus DK-8000, Denmark
| |
Collapse
|
24
|
Lian X, Zhang S, Huang G, Huang L, Zhang J, Hu F. Confirmation of a Gametophytic Self-Incompatibility in Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2021; 12:576340. [PMID: 33868321 PMCID: PMC8044821 DOI: 10.3389/fpls.2021.576340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/15/2021] [Indexed: 05/28/2023]
Abstract
Oryza longistaminata, a wild species of African origin, has been reported to exhibit self-incompatibility (SI). However, the genetic pattern of its SI remained unknown. In this study, we conducted self-pollination and reciprocal cross-pollination experiments to verify that O. longistaminata is a strictly self-incompatible species. The staining of pollen with aniline blue following self-pollination revealed that although pollen could germinate on the stigma, the pollen tube was unable to enter the style to complete pollination, thereby resulting in gametophytic self-incompatibility (GSI). LpSDUF247, a S-locus male determinant in the gametophytic SI system of perennial ryegrass, is predicted to encode a DUF247 protein. On the basic of chromosome alignment with LpSDUF247, we identified OlSS1 and OlSS2 as Self-Incompatibility Stamen candidate genes in O. longistaminata. Chromosome segment analysis revealed that the Self-Incompatibility Pistil candidate gene of O. longistaminata (OlSP) is a polymorphic gene located in a region flanking OlSS1. OlSS1 was expressed mainly in the stamens, whereas OlSS2 was expressed in both the stamens and pistils. OlSP was specifically highly expressed in the pistils, as revealed by RT-PCR and qRT-PCR analyses. Collectively, our observations indicate the occurrence of GSI in O. longistaminata and that this process is potentially controlled by OlSS1, OlSS2, and OlSP. These findings provide further insights into the genetic mechanisms underlying self-compatibility in plants.
Collapse
|
25
|
Genete M, Castric V, Vekemans X. Genotyping and De Novo Discovery of Allelic Variants at the Brassicaceae Self-Incompatibility Locus from Short-Read Sequencing Data. Mol Biol Evol 2021; 37:1193-1201. [PMID: 31688901 DOI: 10.1093/molbev/msz258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant self-incompatibility (SI) is a genetic system that prevents selfing and enforces outcrossing. Because of strong balancing selection, the genes encoding SI are predicted to maintain extraordinarily high levels of polymorphism, both in terms of the number of functionally distinct S-alleles that segregate in SI species and in terms of their nucleotide sequence divergence. However, because of these two combined features, documenting polymorphism of these genes also presents important methodological challenges that have so far largely prevented the comprehensive analysis of complete allelic series in natural populations, and also precluded the obtention of complete genic sequences for many S-alleles. Here, we develop a powerful methodological approach based on a computationally optimized comparison of short Illumina sequencing reads from genomic DNA to a database of known nucleotide sequences of the extracellular domain of SRK (eSRK). By examining mapping patterns along the reference sequences, we obtain highly reliable predictions of S-genotypes from individuals collected from natural populations of Arabidopsis halleri. Furthermore, using a de novo assembly approach of the filtered short reads, we obtain full-length sequences of eSRK even when the initial sequence in the database was only partial, and we discover putative new SRK alleles that were not initially present in the database. When including those new alleles in the reference database, we were able to resolve the complete diploid SI genotypes of all individuals. Beyond the specific case of Brassicaceae S-alleles, our approach can be readily applied to other polymorphic loci, given reference allelic sequences are available.
Collapse
Affiliation(s)
- Mathieu Genete
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| | - Xavier Vekemans
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000 Lille, France
| |
Collapse
|
26
|
Florez-Rueda AM, Scharmann M, Roth M, Städler T. Population Genomics of the "Arcanum" Species Group in Wild Tomatoes: Evidence for Separate Origins of Two Self-Compatible Lineages. FRONTIERS IN PLANT SCIENCE 2021; 12:624442. [PMID: 33815438 PMCID: PMC8018279 DOI: 10.3389/fpls.2021.624442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/24/2021] [Indexed: 05/07/2023]
Abstract
Given their diverse mating systems and recent divergence, wild tomatoes (Solanum section Lycopersicon) have become an attractive model system to study ecological divergence, the build-up of reproductive barriers, and the causes and consequences of the breakdown of self-incompatibility. Here we report on a lesser-studied group of species known as the "Arcanum" group, comprising the nominal species Solanum arcanum, Solanum chmielewskii, and Solanum neorickii. The latter two taxa are self-compatible but are thought to self-fertilize at different rates, given their distinct manifestations of the morphological "selfing syndrome." Based on experimental crossings and transcriptome sequencing of a total of 39 different genotypes from as many accessions representing each species' geographic range, we provide compelling evidence for deep genealogical divisions within S. arcanum; only the self-incompatible lineage known as "var. marañón" has close genealogical ties to the two self-compatible species. Moreover, there is evidence under multiple inference schemes for different geographic subsets of S. arcanum var. marañón being closest to S. chmielewskii and S. neorickii, respectively. To broadly characterize the population-genomic consequences of these recent mating-system transitions and their associated speciation events, we fit demographic models indicating strong reductions in effective population size, congruent with reduced nucleotide and S-locus diversity in the two independently derived self-compatible species.
Collapse
|
27
|
Abdallah D, Baraket G, Ben Mustapha S, Angeles Moreno MA, Salhi Hannachi A. Molecular and Evolutionary Characterization of Pollen S Determinant (SFB Alleles) in Four Diploid and Hexaploid Plum Species (Prunus spp.). Biochem Genet 2020; 59:42-61. [PMID: 32737642 DOI: 10.1007/s10528-020-09990-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
In more than 60 families of angiosperms, the self- and cross-fertilization is avoided through a complex widespread genetic system called self-incompatibility (SI). One of the major puzzling issues concerning the SI is the evolution of this system in species with complex polyploid genomes. Among plums, one of the first fruits species to attract human interest, polyploid species represent enormous genetic potential, which can be exploited in breeding programs. However, molecular studies in these species are very scarce due to the complexity of their genome. In order to study the SFB gene [the male component of gametophytic self-incompatibility system (GSI)] in plum species, 36 plum accessions belonging to diploid and hexaploid species were used. A total of 19 different alleles were identified; 1 of them was revealed after analyzing sequences. Peptide sequence analysis allowed identifying the five domains features of the SFB gene. Polymorphism analysis showed a subtle difference between domesticated and open pollinated Tunisian accessions and suggested a probable influence of the ploidy level. Divergence analysis between studied sequences showed that a new specificity may appear after 5.3% of divergence at synonymous sites between pairs of sequences in Prunus insititia, 6% in Prunus cerasifera, 8% and 9% in Prunus domestica and Prunus salicina respectively. Furthermore, sites under positive selection, the ones more likely to be responsible for specificity determination, were identified. A positive and significant Pearson correlation was found between the divergence between sequences, divergence time, fixed substitutions (MK test), and PSS number. These results supported the model assuming that functionally distinct proteins have arisen not as a result of chance fixation of neutral variants, but rather as a result of positive Darwinian selection. Further, the role that plays recombination can not be ruled out, since a rate of 0.08 recombination event per polymorphic sites was identified.
Collapse
Affiliation(s)
- Donia Abdallah
- Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar, 2092, Tunis, Tunisia
| | - Ghada Baraket
- Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar, 2092, Tunis, Tunisia
| | - Sana Ben Mustapha
- Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar, 2092, Tunis, Tunisia
| | - Marı A Angeles Moreno
- Departamento de Pomologı́a, Estación Experimental de Aula Dei, CSIC, Apartado 13034, 50080, Saragossa, Spain
| | - Amel Salhi Hannachi
- Département de Biologie, Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
28
|
Encinas-Viso F, Young AG, Pannell JR. The loss of self-incompatibility in a range expansion. J Evol Biol 2020; 33:1235-1244. [PMID: 32557922 DOI: 10.1111/jeb.13665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 11/27/2022]
Abstract
It is commonly observed that plant species' range margins are enriched for increased selfing rates and, in otherwise self-incompatible species, for self-compatibility (SC). This has often been attributed to a response to selection under mate and/or pollinator limitation. However, range expansion can also cause reduced inbreeding depression, and this could facilitate the evolution of selfing in the absence of mate or pollinator limitation. Here, we explore this idea using spatially explicit individual-based simulations of a range expansion, in which inbreeding depression, variation in self-incompatibility (SI), and mate availability evolve. Under a wide range of conditions, the simulated range expansion brought about the evolution of selfing after the loss of SI in range-marginal populations. Under conditions of high recombination between the self-incompatibility locus (S-locus) and viability loci, SC remained marginal in the expanded metapopulation and could not invade the range core, which remained self-incompatible. In contrast, under low recombination and migration rates, SC was frequently able to displace SI in the range core by maintaining its association with a genomic background with purged genetic load. We conclude that the evolution of inbreeding depression during a range expansion promotes the evolution of SC at range margins, especially under high rates of recombination..
Collapse
Affiliation(s)
- Francisco Encinas-Viso
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, Canberra, ACT, Australia
| | - Andrew G Young
- Centre for Australian National Biodiversity Research, CSIRO National Research Collections, Canberra, ACT, Australia.,Centre for Biodiversity Analysis, The Australian National University, Canberra, ACT, Australia
| | - John R Pannell
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
29
|
Durand E, Chantreau M, Le Veve A, Stetsenko R, Dubin M, Genete M, Llaurens V, Poux C, Roux C, Billiard S, Vekemans X, Castric V. Evolution of self-incompatibility in the Brassicaceae: Lessons from a textbook example of natural selection. Evol Appl 2020; 13:1279-1297. [PMID: 32684959 PMCID: PMC7359833 DOI: 10.1111/eva.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/25/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Self-incompatibility (SI) is a self-recognition genetic system enforcing outcrossing in hermaphroditic flowering plants and results in one of the arguably best understood forms of natural (balancing) selection maintaining genetic variation over long evolutionary times. A rich theoretical and empirical population genetics literature has considerably clarified how the distribution of SI phenotypes translates into fitness differences among individuals by a combination of inbreeding avoidance and rare-allele advantage. At the same time, the molecular mechanisms by which self-pollen is specifically recognized and rejected have been described in exquisite details in several model organisms, such that the genotype-to-phenotype map is also pretty well understood, notably in the Brassicaceae. Here, we review recent advances in these two fronts and illustrate how the joint availability of detailed characterization of genotype-to-phenotype and phenotype-to-fitness maps on a single genetic system (plant self-incompatibility) provides the opportunity to understand the evolutionary process in a unique perspective, bringing novel insight on general questions about the emergence, maintenance, and diversification of a complex genetic system.
Collapse
Affiliation(s)
| | | | - Audrey Le Veve
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | - Manu Dubin
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Mathieu Genete
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Violaine Llaurens
- Institut de Systématique, Evolution et Biodiversité (ISYEB)Muséum national d'Histoire naturelleCNRS, Sorbonne Université, EPHE, Université des Antilles CP 5057 rue Cuvier, 75005 ParisFrance
| | - Céline Poux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | - Camille Roux
- CNRSUniv. LilleUMR 8198 ‐ Evo‐Eco‐PaleoF-59000 LilleFrance
| | | | | | | |
Collapse
|
30
|
Base-Pairing Requirements for Small RNA-Mediated Gene Silencing of Recessive Self-Incompatibility Alleles in Arabidopsis halleri. Genetics 2020; 215:653-664. [PMID: 32461267 DOI: 10.1534/genetics.120.303351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/20/2020] [Indexed: 11/18/2022] Open
Abstract
Small noncoding RNAs are central regulators of genome activity and stability. Their regulatory function typically involves sequence similarity with their target sites, but understanding the criteria by which they specifically recognize and regulate their targets across the genome remains a major challenge in the field, especially in the face of the diversity of silencing pathways involved. The dominance hierarchy among self-incompatibility alleles in Brassicaceae is controlled by interactions between a highly diversified set of small noncoding RNAs produced by dominant S-alleles and their corresponding target sites on recessive S-alleles. By controlled crosses, we created numerous heterozygous combinations of S-alleles in Arabidopsis halleri and developed an real-time quantitative PCR assay to compare allele-specific transcript levels for the pollen determinant of self-incompatibility (SCR). This provides the unique opportunity to evaluate the precise base-pairing requirements for effective transcriptional regulation of this target gene. We found strong transcriptional silencing of recessive SCR alleles in all heterozygote combinations examined. A simple threshold model of base pairing for the small RNA-target interaction captures most of the variation in SCR transcript levels. For a subset of S-alleles, we also measured allele-specific transcript levels of the determinant of pistil specificity (SRK), and found sharply distinct expression dynamics throughout flower development between SCR and SRK In contrast to SCR, both SRK alleles were expressed at similar levels in the heterozygote genotypes examined, suggesting no transcriptional control of dominance for this gene. We discuss the implications for the evolutionary processes associated with the origin and maintenance of the dominance hierarchy among self-incompatibility alleles.
Collapse
|
31
|
Kurbalija Novičić Z, Sayadi A, Jelić M, Arnqvist G. Negative frequency dependent selection contributes to the maintenance of a global polymorphism in mitochondrial DNA. BMC Evol Biol 2020; 20:20. [PMID: 32019493 PMCID: PMC7001298 DOI: 10.1186/s12862-020-1581-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 01/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. RESULTS We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. CONCLUSIONS Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.
Collapse
Affiliation(s)
- Zorana Kurbalija Novičić
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.,Department of Neuroscience, Psychiatry, Uppsala University Hospital, Entrance 10, 751 85, Uppsala, Sweden
| | - Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Mihailo Jelić
- Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade, 11000, Serbia
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden.
| |
Collapse
|
32
|
Liang M, Cao Z, Zhu A, Liu Y, Tao M, Yang H, Xu Q, Wang S, Liu J, Li Y, Chen C, Xie Z, Deng C, Ye J, Guo W, Xu Q, Xia R, Larkin RM, Deng X, Bosch M, Franklin-Tong VE, Chai L. Evolution of self-compatibility by a mutant S m-RNase in citrus. NATURE PLANTS 2020; 6:131-142. [PMID: 32055045 PMCID: PMC7030955 DOI: 10.1038/s41477-020-0597-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/08/2020] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) is an important mechanism that prevents self-fertilization and inbreeding in flowering plants. The most widespread SI system utilizes S ribonucleases (S-RNases) and S-locus F-boxes (SLFs) as S determinants. In citrus, SI is ancestral, and Citrus maxima (pummelo) is self-incompatible, while Citrus reticulata (mandarin) and its hybrids are self-compatible (SC). Here, we identify nine highly polymorphic pistil-specific, developmentally expressed S-RNases from pummelo that segregate with S haplotypes in a gametophytic manner and cluster with authentic S-RNases. We provide evidence that these S-RNases function as the female S determinants in citrus. Moreover, we show that each S-RNase is linked to approximately nine SLFs. In an analysis of 117 citrus SLF and SFL-like (SLFL) genes, we reveal that they cluster into 12 types and that the S-RNases and intra-haplotypic SLF and SLFL genes co-evolved. Our data support the notion that citrus have a S locus comprising a S-RNase and several SLFs that fit the non-self-recognition model. We identify a predominant single nucleotide mutation, Sm-RNase, in SC citrus, which provides a 'natural' loss of function. We show that SI-SC transitions due to the Sm-RNase initially arose in mandarin, spreading to its hybrids and became fixed. Identification of an evolutionarily distant new genus utilizing the S-RNase-based SI system, >100 million years separated from the nearest S-RNase family, is a milestone for evolutionary comparative studies.
Collapse
Affiliation(s)
- Mei Liang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Zonghong Cao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Yuanlong Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Mengqin Tao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Huayan Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Shaohua Wang
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Kunming, P. R. China
| | - Junjie Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Chuanwu Chen
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, P. R. China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Chongling Deng
- Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin, P. R. China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, P. R. China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Lijun Chai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, P. R. China.
| |
Collapse
|
33
|
Brom T, Castric V, Billiard S. Breakdown of gametophytic self-incompatibility in subdivided populations. Evolution 2020; 74:270-282. [PMID: 31845323 DOI: 10.1111/evo.13897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 01/11/2023]
Abstract
In many hermaphroditic flowering plants, self-fertilization is prevented by self-incompatibility (SI), often controlled by a single locus, the S-locus. In single isolated populations, the maintenance of SI depends chiefly on inbreeding depression and the number of SI alleles at the S-locus. In subdivided populations, however, population subdivision has complicated effects on both the number of SI alleles and the level of inbreeding depression, rendering the maintenance of SI difficult to predict. Here, we explore the conditions for the invasion of a self-compatible mutant in a structured population. We find that the maintenance of SI is strongly compromised when a population becomes subdivided. We show that this effect is mainly caused by the decrease in the local diversity of SI alleles rather than by a change in the dynamics of inbreeding depression. Strikingly, we also find that the diversity of SI alleles at the whole population level is a poor predictor of the maintenance of SI. We discuss the implications of our results for the interpretation of empirical data on the loss of SI in natural populations.
Collapse
Affiliation(s)
- Thomas Brom
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| | - Vincent Castric
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| | - Sylvain Billiard
- University Lille, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France.,CNRS, UMR 8198, F-59000, Lille, France
| |
Collapse
|
34
|
Chantreau M, Poux C, Lensink MF, Brysbaert G, Vekemans X, Castric V. Asymmetrical diversification of the receptor-ligand interaction controlling self-incompatibility in Arabidopsis. eLife 2019; 8:e50253. [PMID: 31763979 PMCID: PMC6908432 DOI: 10.7554/elife.50253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 11/13/2022] Open
Abstract
How two-component genetic systems accumulate evolutionary novelty and diversify in the course of evolution is a fundamental problem in evolutionary systems biology. In the Brassicaceae, self-incompatibility (SI) is a spectacular example of a diversified allelic series in which numerous highly diverged receptor-ligand combinations are segregating in natural populations. However, the evolutionary mechanisms by which new SI specificities arise have remained elusive. Using in planta ancestral protein reconstruction, we demonstrate that two allelic variants segregating as distinct receptor-ligand combinations diverged through an asymmetrical process whereby one variant has retained the same recognition specificity as their (now extinct) putative ancestor, while the other has functionally diverged and now represents a novel specificity no longer recognized by the ancestor. Examination of the structural determinants of the shift in binding specificity suggests that qualitative rather than quantitative changes of the interaction are an important source of evolutionary novelty in this highly diversified receptor-ligand system.
Collapse
Affiliation(s)
| | - Céline Poux
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| | - Marc F Lensink
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000LilleFrance
| | - Guillaume Brysbaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000LilleFrance
| | - Xavier Vekemans
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| | - Vincent Castric
- CNRS, Univ. Lille, UMR 8198—Evo-Eco-Paléo, F-59000LilleFrance
| |
Collapse
|
35
|
Pickup M, Brandvain Y, Fraïsse C, Yakimowski S, Barton NH, Dixit T, Lexer C, Cereghetti E, Field DL. Mating system variation in hybrid zones: facilitation, barriers and asymmetries to gene flow. THE NEW PHYTOLOGIST 2019; 224:1035-1047. [PMID: 31505037 PMCID: PMC6856794 DOI: 10.1111/nph.16180] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 05/11/2023]
Abstract
Plant mating systems play a key role in structuring genetic variation both within and between species. In hybrid zones, the outcomes and dynamics of hybridization are usually interpreted as the balance between gene flow and selection against hybrids. Yet, mating systems can introduce selective forces that alter these expectations; with diverse outcomes for the level and direction of gene flow depending on variation in outcrossing and whether the mating systems of the species pair are the same or divergent. We present a survey of hybridization in 133 species pairs from 41 plant families and examine how patterns of hybridization vary with mating system. We examine if hybrid zone mode, level of gene flow, asymmetries in gene flow and the frequency of reproductive isolating barriers vary in relation to mating system/s of the species pair. We combine these results with a simulation model and examples from the literature to address two general themes: (1) the two-way interaction between introgression and the evolution of reproductive systems, and (2) how mating system can facilitate or restrict interspecific gene flow. We conclude that examining mating system with hybridization provides unique opportunities to understand divergence and the processes underlying reproductive isolation.
Collapse
Affiliation(s)
- Melinda Pickup
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Yaniv Brandvain
- Department of Plant and Microbial BiologyUniversity of Minnesota1500 Gortner AveSt Paul, MinneapolisMN55108USA
| | - Christelle Fraïsse
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Sarah Yakimowski
- Department of BiologyQueen's University116 Barrie StKingstonONK7L 3N6Canada
| | - Nicholas H. Barton
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Tanmay Dixit
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Christian Lexer
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
| | - Eva Cereghetti
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - David L. Field
- Department of Botany and Biodiversity ResearchFaculty of Life SciencesUniversity of ViennaA‐1030ViennaAustria
- School of ScienceEdith Cowan University270 Joondalup DriveJoondalupWestern Australia6027Australia
| |
Collapse
|
36
|
Bachmann JA, Tedder A, Laenen B, Fracassetti M, Désamoré A, Lafon-Placette C, Steige KA, Callot C, Marande W, Neuffer B, Bergès H, Köhler C, Castric V, Slotte T. Genetic basis and timing of a major mating system shift in Capsella. THE NEW PHYTOLOGIST 2019; 224:505-517. [PMID: 31254395 DOI: 10.1111/nph.16035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/20/2019] [Indexed: 05/23/2023]
Abstract
A crucial step in the transition from outcrossing to self-fertilization is the loss of genetic self-incompatibility (SI). In the Brassicaceae, SI involves the interaction of female and male specificity components, encoded by the genes SRK and SCR at the self-incompatibility locus (S-locus). Theory predicts that S-linked mutations, and especially dominant mutations in SCR, are likely to contribute to loss of SI. However, few studies have investigated the contribution of dominant mutations to loss of SI in wild plant species. Here, we investigate the genetic basis of loss of SI in the self-fertilizing crucifer species Capsella orientalis, by combining genetic mapping, long-read sequencing of complete S-haplotypes, gene expression analyses and controlled crosses. We show that loss of SI in C. orientalis occurred < 2.6 Mya and maps as a dominant trait to the S-locus. We identify a fixed frameshift deletion in the male specificity gene SCR and confirm loss of male SI specificity. We further identify an S-linked small RNA that is predicted to cause dominance of self-compatibility. Our results agree with predictions on the contribution of dominant S-linked mutations to loss of SI, and thus provide new insights into the molecular basis of mating system transitions.
Collapse
Affiliation(s)
- Jörg A Bachmann
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Andrew Tedder
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marco Fracassetti
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Aurélie Désamoré
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Clément Lafon-Placette
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Kim A Steige
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Caroline Callot
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - William Marande
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Barbara Neuffer
- Department of Botany, University of Osnabruck, 49076, Osnabrück, Germany
| | - Hélène Bergès
- Institut National de la Recherche Agronomique, UPR 1258, Centre National des Ressources Génomiques Végétales, 31326, Castanet-Tolosan, France
| | - Claudia Köhler
- Department of Plant Biology, Swedish University of Agricultural Sciences & Linnean Center for Plant Biology, SE-750 07, Uppsala, Sweden
| | - Vincent Castric
- Univ. Lille, CNRS, UMR 8198 - Evo-Eco-Paleo, F-59000, Lille, France
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| |
Collapse
|
37
|
Harmand N, Federico V, Hindré T, Lenormand T. Nonlinear frequency-dependent selection promotes long-term coexistence between bacteria species. Ecol Lett 2019; 22:1192-1202. [PMID: 31099951 DOI: 10.1111/ele.13276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/04/2019] [Accepted: 04/10/2019] [Indexed: 11/29/2022]
Abstract
Negative frequency-dependent selection (NFDS) is an important mechanism for species coexistence and for the maintenance of genetic polymorphism. Long-term coexistence nevertheless requires NFDS interactions to be resilient to further evolution of the interacting species or genotypes. For closely related genotypes, NFDS interactions have been shown to be preserved through successive rounds of evolution in coexisting lineages. On the contrary, the evolution of NFDS interactions between distantly related species has received less attention. Here, we tracked the co-evolution of Escherichia coli and Citrobacter freundii that initially differ in their ecological characteristics. We showed that these two bacterial species engaged in an NFDS interaction particularly resilient to further evolution: despite a very strong asymmetric rate of adaptation, their coexistence was maintained owing to an NFDS pattern where fitness increases steeply as the frequency decreases towards zero. Using a model, we showed how and why such NFDS pattern can emerge. These findings provide a robust explanation for the long-term maintenance of species at very low frequencies.
Collapse
Affiliation(s)
- Noémie Harmand
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| | - Valentine Federico
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| | - Thomas Hindré
- University Grenoble Alpes, Centre National de la Recherche Scientifique (CNRS), Grenoble Institut National Polytechnique (INP), Mathématiques et Applications, Grenoble (TIMC-IMAG), Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, F-38000, Grenoble, France
| | - Thomas Lenormand
- UMR 5175, CEFE, CNRS - Université Montpellier - Université P. Valéry - EPHE, Montpellier, Cedex 5, France
| |
Collapse
|
38
|
Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude. Proc Natl Acad Sci U S A 2019; 116:7137-7146. [PMID: 30894495 PMCID: PMC6452661 DOI: 10.1073/pnas.1817580116] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2 Mya. LTR retrotransposons in C. himalaica proliferated shortly after the dramatic uplift and climatic change of the Himalayas from the Late Pliocene to Pleistocene. Compared with closely related species, C. himalaica showed significant contraction and pseudogenization in gene families associated with disease resistance and also significant expansion in gene families associated with ubiquitin-mediated proteolysis and DNA repair. We identified hundreds of genes involved in DNA repair, ubiquitin-mediated proteolysis, and reproductive processes with signs of positive selection. Gene families showing dramatic changes in size and genes showing signs of positive selection are likely candidates for C. himalaica's adaptation to intense radiation, low temperature, and pathogen-depauperate environments in the QTP. Loss of function at the S-locus, the reason for the transition to self-fertilization of C. himalaica, might have enabled its QTP occupation. Overall, the genome sequence of C. himalaica provides insights into the mechanisms of plant adaptation to extreme environments.
Collapse
|
39
|
Nair A, Nonaka E, van Nouhuys S. Increased fluctuation in a butterfly metapopulation leads to diploid males and decline of a hyperparasitoid. Proc Biol Sci 2018; 285:rspb.2018.0372. [PMID: 30135149 PMCID: PMC6125898 DOI: 10.1098/rspb.2018.0372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
Climate change can increase spatial synchrony of population dynamics, leading to large-scale fluctuation that destabilizes communities. High trophic level species such as parasitoids are disproportionally affected because they depend on unstable resources. Most parasitoid wasps have complementary sex determination, producing sterile males when inbred, which can theoretically lead to population extinction via the diploid male vortex (DMV). We examined this process empirically using a hyperparasitoid population inhabiting a spatially structured host population in a large fragmented landscape. Over four years of high host butterfly metapopulation fluctuation, diploid male production by the wasp increased, and effective population size declined precipitously. Our multitrophic spatially structured model shows that host population fluctuation can cause local extinctions of the hyperparasitoid because of the DMV. However, regionally it persists because spatial structure allows for efficient local genetic rescue via balancing selection for rare alleles carried by immigrants. This is, to our knowledge, the first empirically based study of the possibility of the DMV in a natural host–parasitoid system.
Collapse
Affiliation(s)
- Abhilash Nair
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland
| | - Etsuko Nonaka
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland.,Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, 114 18, Sweden
| | - Saskya van Nouhuys
- Metapopulation Research Centre, Department of Biosciences, University of Helsinki, PO Box 65, 00014 Helsinki, Finland .,Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
40
|
Rosbakh S, Pacini E, Nepi M, Poschlod P. An Unexplored Side of Regeneration Niche: Seed Quantity and Quality Are Determined by the Effect of Temperature on Pollen Performance. FRONTIERS IN PLANT SCIENCE 2018; 9:1036. [PMID: 30073009 PMCID: PMC6058057 DOI: 10.3389/fpls.2018.01036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/26/2018] [Indexed: 05/21/2023]
Abstract
In 1977, Peter Grubb introduced the regeneration niche concept, which assumes that a plant species cannot persist if the environmental conditions are only suitable for adult plant growth and survival, but not for seed production, dispersal, germination, and seedling establishment. During the last decade, this concept has received considerable research attention as it helps to better understand community assembly, population dynamics, and plant responses to environmental changes. Yet, in its present form, it focuses too much on the post-fertilization stages of plant sexual reproduction, neglecting the fact that the environment can operate as a constraint at many points in the chain of processes necessary for successful regeneration. In this review, we draw the attention of the plant ecology research community to the pre-fertilization stages of plant sexual reproduction, an almost ignored but important aspect of the regeneration niche, and their potential consequences for successful seed production. Particularly, we focus on how temperature affects pollen performance and determines plant reproduction success by playing an important role in the temporal and spatial variations in seed quality and quantity. We also review the pollen adaptations to temperature stresses at different levels of plant organization and discuss the plasticity of the performance of pollen under changing temperature conditions. The reviewed literature demonstrates that pre-fertilization stages of seed production, particularly the extreme sensitivity of male gametophyte performance to temperature, are the key determinants of a species' regeneration niche. Thus, we suggest that previous views stating that the regeneration niche begins with the production of seeds should be modified to include the preceding stages. Lastly, we identify several gaps in pollen-related studies revealing a framework of opportunities for future research, particularly how these findings could be used in the field of plant biology and ecology.
Collapse
Affiliation(s)
- Sergey Rosbakh
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| | - Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Peter Poschlod
- Chair of Ecology and Conservation Biology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Evolutionary Pathways for the Generation of New Self-Incompatibility Haplotypes in a Nonself-Recognition System. Genetics 2018; 209:861-883. [PMID: 29716955 DOI: 10.1534/genetics.118.300748] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/28/2018] [Indexed: 11/18/2022] Open
Abstract
Self-incompatibility (SI) is a genetically based recognition system that functions to prevent self-fertilization and mating among related plants. An enduring puzzle in SI is how the high diversity observed in nature arises and is maintained. Based on the underlying recognition mechanism, SI can be classified into two main groups: self-recognition (SR) and nonself-recognition (NSR). Most work has focused on diversification within SR systems despite expected differences between the two groups in the evolutionary pathways and outcomes of diversification. Here, we use a deterministic population genetic model and stochastic simulations to investigate how novel S-haplotypes evolve in a gametophytic NSR [SRNase/S Locus F-box (SLF)] SI system. For this model, the pathways for diversification involve either the maintenance or breakdown of SI and can vary in the order of mutations of the female (SRNase) and male (SLF) components. We show analytically that diversification can occur with high inbreeding depression and self-pollination, but this varies with evolutionary pathway and level of completeness (which determines the number of potential mating partners in the population), and, in general, is more likely for lower haplotype number. The conditions for diversification are broader in stochastic simulations of finite population size. However, the number of haplotypes observed under high inbreeding and moderate-to-high self-pollination is less than that commonly observed in nature. Diversification was observed through pathways that maintain SI as well as through self-compatible intermediates. Yet the lifespan of diversified haplotypes was sensitive to their level of completeness. By examining diversification in a NSR SI system, this model extends our understanding of the evolution and maintenance of haplotype diversity observed in a recognition system common in flowering plants.
Collapse
|
42
|
Abstract
Persistent genetic variation within populations presents an evolutionary problem, as natural selection and genetic drift tend to erode genetic diversity. Models of balancing selection were developed to account for the maintenance of genetic variation observed in natural populations. Negative frequency-dependent selection is a powerful type of balancing selection that maintains many natural polymorphisms, but it is also commonly misinterpreted. This review aims to clarify the processes underlying negative frequency-dependent selection, describe classes of polymorphisms that can and cannot result from these processes, and discuss the empirical data needed to accurately identify processes that generate or maintain diversity in nature. Finally, the importance of accurately describing the processes affecting genetic diversity within populations as it relates to research progress is considered.
Collapse
Affiliation(s)
- Dustin Brisson
- Biology Department, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
Ancient balancing selection on heterocyst function in a cosmopolitan cyanobacterium. Nat Ecol Evol 2018; 2:510-519. [DOI: 10.1038/s41559-017-0435-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/29/2017] [Indexed: 11/08/2022]
|
44
|
Voillemot M, Rougemont Q, Roux C, Pannell JR. The divergence history of the perennial plant Linaria cavanillesii
confirms a recent loss of self-incompatibility. J Evol Biol 2017; 31:136-147. [DOI: 10.1111/jeb.13209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Affiliation(s)
- M. Voillemot
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
| | - Q. Rougemont
- Institut de Biologie Intégrative et des Systèmes (IBIS); University of Laval; Québec City Québec Canada
| | - C. Roux
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
- Unité Evo-Eco-Paléo (EEP) - UMR 8198; CNRS; Université de Lille Sciences et Technologies; Villeneuve d'Ascq Cedex France
| | - J. R. Pannell
- Department of Ecology and Evolution; Biophore/Sorge; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
45
|
Vermeij GJ, Grosberg RK. Rarity and persistence. Ecol Lett 2017; 21:3-8. [PMID: 29110416 DOI: 10.1111/ele.12872] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 09/19/2017] [Indexed: 01/09/2023]
Abstract
Rarity is a population characteristic that is usually associated with a high risk of extinction. We argue here, however, that chronically rare species (those with low population densities over many generations across their entire ranges) may have individual-level traits that make populations more resistant to extinction. The major obstacle to persistence at low density is successful fertilisation (union between egg and sperm), and chronically rare species are more likely to survive when (1) fertilisation occurs inside or close to an adult, (2) mate choice involves long-distance signals, (3) adults or their surrogate gamete dispersers are highly mobile, or (4) the two sexes are combined in a single individual. In contrast, external fertilisation and wind- or water-driven passive dispersal of gametes, or sluggish or sedentary adult life habits in the absence of gamete vectors, appear to be incompatible with sustained rarity. We suggest that the documented increase in frequency of these traits among marine genera over geological time could explain observed secular decreases in rates of background extinction. Unanswered questions remain about how common chronic rarity actually is, which traits are consistently associated with chronic rarity, and how chronically rare species are distributed among taxa, and among the world's ecosystems and regions.
Collapse
Affiliation(s)
- Geerat J Vermeij
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Richard K Grosberg
- Department of Evolution and Ecology, Coastal and Marine Sciences Institute, University of California, Davis, Davis, CA, 95616, USA
| |
Collapse
|
46
|
Bélanger-Lépine F, Leung C, Glémet H, Angers B. Balancing selection on the number of repeats in the ribosomal intergenic spacer present in naturally occurring yellow perch (Perca flavescens) populations. Genome 2017; 61:1-6. [PMID: 28950069 DOI: 10.1139/gen-2017-0061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ribosomal intergenic spacer (IGS), responsible for the rate of transcription of rRNA genes, is associated with the growth and fecundity of individuals. A previous study of IGS length variants in a yellow perch (Perca flavescens) population revealed the presence of two predominant alleles differing by 1 kb due to variation in the number of repeat units. This study aims to assess whether length variation of IGS is the result of selection in natural populations. Length variation of IGS and 11 neutral microsatellite loci were assessed in geographically distant yellow perch populations. Most populations displayed the very same IGS alleles; they did not differ in frequencies among populations and the FST was not significantly different from zero. In contrast, diversity at microsatellite loci was high and differed among populations (FST = 0.18). Selection test based on FST identified IGS as a significant outlier from neutral expectations for population differentiation. Heterozygote excess was also detected in one specific cohort, suggesting temporal variation in the selection regime. While the exact mechanism remains to be specified, together the results of this study support the contention that balancing selection is acting to maintain two distinct IGS alleles in natural fish populations.
Collapse
Affiliation(s)
- Frédérique Bélanger-Lépine
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| | - Christelle Leung
- b Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada; GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| | - Hélène Glémet
- a Département des sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada; GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| | - Bernard Angers
- b Department of Biological Sciences, Université de Montréal, Montréal, QC H3C 3J7, Canada; GRIL - Groupe de recherche interuniversitaire en limnologie et en environnement aquatique
| |
Collapse
|
47
|
Nasrallah JB. Plant mating systems: self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Curr Opin Genet Dev 2017; 47:54-60. [PMID: 28915488 DOI: 10.1016/j.gde.2017.08.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 08/10/2017] [Accepted: 08/28/2017] [Indexed: 10/18/2022]
Abstract
Flowering plants have evolved diverse mechanisms that promote outcrossing. The most widespread of these outbreeding devices are self-incompatibility systems, the highly selective prefertilization mating barriers that prevent self-fertilization by disrupting pollen-pistil interactions. Despite the advantages of outcrossing, loss of self-incompatibility has occurred repeatedly in many plant families. In the mustard family, the highly polymorphic receptors and ligands that mediate the recognition and inhibition of self-pollen in self-incompatibility have been characterized and the 3D structure of the receptor-ligand complex has been solved. Sequence analyses and empirical studies in self-incompatible and self-compatible species are elucidating the genetic basis of switches from the outcrossing to selfing modes of mating and beginning to provide clues to the diversification of the self recognition repertoire.
Collapse
Affiliation(s)
- June B Nasrallah
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, United States of America.
| |
Collapse
|
48
|
Novikova PY, Tsuchimatsu T, Simon S, Nizhynska V, Voronin V, Burns R, Fedorenko OM, Holm S, Säll T, Prat E, Marande W, Castric V, Nordborg M. Genome Sequencing Reveals the Origin of the Allotetraploid Arabidopsis suecica. Mol Biol Evol 2017; 34:957-968. [PMID: 28087777 PMCID: PMC5400380 DOI: 10.1093/molbev/msw299] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polyploidy is an example of instantaneous speciation when it involves the formation of a new cytotype that is incompatible with the parental species. Because new polyploid individuals are likely to be rare, establishment of a new species is unlikely unless polyploids are able to reproduce through self-fertilization (selfing), or asexually. Conversely, selfing (or asexuality) makes it possible for polyploid species to originate from a single individual-a bona fide speciation event. The extent to which this happens is not known. Here, we consider the origin of Arabidopsis suecica, a selfing allopolyploid between Arabidopsis thaliana and Arabidopsis arenosa, which has hitherto been considered to be an example of a unique origin. Based on whole-genome re-sequencing of 15 natural A. suecica accessions, we identify ubiquitous shared polymorphism with the parental species, and hence conclusively reject a unique origin in favor of multiple founding individuals. We further estimate that the species originated after the last glacial maximum in Eastern Europe or central Eurasia (rather than Sweden, as the name might suggest). Finally, annotation of the self-incompatibility loci in A. suecica revealed that both loci carry non-functional alleles. The locus inherited from the selfing A. thaliana is fixed for an ancestral non-functional allele, whereas the locus inherited from the outcrossing A. arenosa is fixed for a novel loss-of-function allele. Furthermore, the allele inherited from A. thaliana is predicted to transcriptionally silence the allele inherited from A. arenosa, suggesting that loss of self-incompatibility may have been instantaneous.
Collapse
Affiliation(s)
- Polina Yu Novikova
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria.,Vienna Graduate School of Population Genetics, Institut für Populationsgenetik, Vetmeduni, Vienna, Austria
| | - Takashi Tsuchimatsu
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Samson Simon
- Université de Lille CNRS, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, France
| | - Viktoria Nizhynska
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Viktor Voronin
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Robin Burns
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Olga M Fedorenko
- Institute of Biology, Karelian Research Center of the Russian Academy of Sciences, Republic of Karelia, Petrozavodsk, Russia
| | - Svante Holm
- Faculty of Science, Technology and Media, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
| | - Torbjörn Säll
- Department of Biology, Lund University, Lund, Sweden
| | - Elisa Prat
- Centre National de Ressources Génomiques Végétales, INRA-CNRGV, Castanet-Tolosan, France
| | - William Marande
- Centre National de Ressources Génomiques Végétales, INRA-CNRGV, Castanet-Tolosan, France
| | - Vincent Castric
- Université de Lille CNRS, UMR 8198 - Evo-Eco-Paleo, Villeneuve d'Ascq, France
| | - Magnus Nordborg
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
49
|
Polymorphism at a mimicry supergene maintained by opposing frequency-dependent selection pressures. Proc Natl Acad Sci U S A 2017; 114:8325-8329. [PMID: 28673971 DOI: 10.1073/pnas.1702482114] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Explaining the maintenance of adaptive diversity within populations is a long-standing goal in evolutionary biology, with important implications for conservation, medicine, and agriculture. Adaptation often leads to the fixation of beneficial alleles, and therefore it erodes local diversity so that understanding the coexistence of multiple adaptive phenotypes requires deciphering the ecological mechanisms that determine their respective benefits. Here, we show how antagonistic frequency-dependent selection (FDS), generated by natural and sexual selection acting on the same trait, maintains mimicry polymorphism in the toxic butterfly Heliconius numata Positive FDS imposed by predators on mimetic signals favors the fixation of the most abundant and best-protected wing-pattern morph, thereby limiting polymorphism. However, by using mate-choice experiments, we reveal disassortative mate preferences of the different wing-pattern morphs. The resulting negative FDS on wing-pattern alleles is consistent with the excess of heterozygote genotypes at the supergene locus controlling wing-pattern variation in natural populations of H. numata The combined effect of positive and negative FDS on visual signals is sufficient to maintain a diversity of morphs displaying accurate mimicry with other local prey, although some of the forms only provide moderate protection against predators. Our findings help understand how alternative adaptive phenotypes can be maintained within populations and emphasize the need to investigate interactions between selective pressures in other cases of puzzling adaptive polymorphism.
Collapse
|
50
|
Identification, genealogical structure and population genetics of S-alleles in Malus sieversii, the wild ancestor of domesticated apple. Heredity (Edinb) 2017. [PMID: 28635965 DOI: 10.1038/hdy.2017.28] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The self-incompatibility (SI) gene that is specifically expressed in pistils encodes the SI-associated ribonuclease (S-RNase), functioning as the female-specificity determinant of a gametophytic SI system. Despite extensive surveys in Malus domestica, the S-alleles have not been fully investigated for Malus sieversii, the primary wild ancestor of the domesticated apple. Here we screened the M. sieversii S-alleles via PCR amplification and sequencing, and identified 14 distinct alleles in this species. By contrast, nearly 40 are present in its close wild relative, Malus sylvestris. We further sequenced 8 nuclear genes to provide a neutral reference, and investigated the evolution of S-alleles via genealogical and population genetic analyses. Both shared ancestral polymorphism and an excess of non-synonymous substitution were detected in the S-RNases of the tribe Maleae in Rosaceae, indicating the action of long-term balancing selection. Approximate Bayesian Computations based on the reference neutral loci revealed a severe bottleneck in four of the six studied M. sieversii populations, suggesting that the low number of S-alleles found in this species is mainly the result of diversity loss due to a drastic population contraction. Such a bottleneck may lead to ambiguous footprints of ongoing balancing selection detected at the S-locus. This study not only elucidates the constituents and number of S-alleles in M. sieversii but also illustrates the potential utility of S-allele number shifts in demographic inference for self-incompatible plant species.
Collapse
|