1
|
Wang A, Cordova M, Navarre WW. Evolutionary and functional divergence of Sfx, a plasmid-encoded H-NS homolog, underlies the regulation of IncX plasmid conjugation. mBio 2025; 16:e0208924. [PMID: 39714162 PMCID: PMC11796372 DOI: 10.1128/mbio.02089-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/24/2024] Open
Abstract
Conjugative plasmids are widespread among prokaryotes, highlighting their evolutionary success. Conjugation systems on most natural plasmids are repressed by default. The negative regulation of F-plasmid conjugation is partially mediated by the chromosomal nucleoid-structuring protein (H-NS). Recent bioinformatic analyses have revealed that plasmid-encoded H-NS homologs are widespread and exhibit high sequence diversity. However, the functional roles of most of these homologs and the selective forces driving their phylogenetic diversification remain unclear. In this study, we characterized the functionality and evolution of Sfx, a H-NS homolog encoded by the model IncX2 plasmid R6K. We demonstrate that Sfx, but not chromosomal H-NS, can repress R6K conjugation. Notably, we find evidence of positive selection acting on the ancestral Sfx lineage. Positively selected sites are located in the dimerization, oligomerization, and DNA-binding interfaces, many of which contribute to R6K repression activity-indicating that adaptive evolution drove the functional divergence of Sfx. We additionally show that Sfx can physically interact with various chromosomally encoded proteins, including H-NS, StpA, and Hha. Hha enhances the ability of Sfx to regulate R6K conjugation, suggesting that Sfx retained functionally important interactions with chromosomal silencing proteins. Surprisingly, the loss of Sfx does not negatively affect the stability or dissemination of R6K in laboratory conditions, reflecting the complexity of selective pressures favoring conjugation repression. Overall, our study sheds light on the functional and evolutionary divergence of a plasmid-borne H-NS-like protein, highlighting how these loosely specific DNA-binding proteins evolved to specifically regulate different plasmid functions.IMPORTANCEConjugative plasmids play a crucial role in spreading antimicrobial resistance and virulence genes. Most natural conjugative plasmids conjugate only under specific conditions. Therefore, studying the molecular mechanisms underlying conjugation regulation is essential for understanding antimicrobial resistance and pathogen evolution. In this study, we characterized the conjugation regulation of the model IncX plasmid R6K. We discovered that Sfx, a H-NS homolog carried by the plasmid, represses conjugation. Molecular evolutionary analyses combined with gain-of-function experiments indicate that positive selection underlies the conjugation repression activity of Sfx. Additionally, we demonstrate that the loss of Sfx does not adversely affect R6K maintenance under laboratory conditions, suggesting additional selective forces favoring Sfx carriage. Overall, this work underscores the impact of protein diversification on plasmid biology, enhancing our understanding of how molecular evolution affects broader plasmid ecology.
Collapse
Affiliation(s)
- Avril Wang
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Martha Cordova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
2
|
Bancerz-Kisiel A, Lipczyńska-Ilczuk K. Evaluation of the Correlation between the mRNA Expression Levels of ystA and ymoA Genes in Y. enterocolitica Strains with Different Enterotoxic Properties. Pathogens 2021; 10:pathogens10091136. [PMID: 34578168 PMCID: PMC8467024 DOI: 10.3390/pathogens10091136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022] Open
Abstract
Yersinia enterocolitica is one of the main causative agents of human diarrhea. Pigs are a reservoir and the most common source of infection for humans. The aim of this study was to analyze the expression of ystA and ymoA genes in Y. enterocolitica strains with different enterotoxic properties, isolated from humans and pigs. The experiment involved two groups of Y. enterocolitica strains producing and not producing enterotoxin YstA, which were isolated from humans and pigs. All strains were ystA- and ymoA-positive. The expression of ystA and ymoA genes was analyzed by quantitative real-time PCR (qPCR). The relative expression level of the ystA gene was significantly higher than the expression level of the ymoA gene in Y. enterocolitica strains isolated from humans with clinical symptoms of yersiniosis. In other strains, a significant decrease in ystA gene transcription was observed, and the relative expression level of the ymoA gene was significantly higher than the expression level of the ystA gene. Statistically significant differences were not observed in either group of strains isolated from pigs. The results of our study revealed a correlation between mRNA expression levels of ystA and ymoA genes in Y. enterocolitica strains isolated from humans.
Collapse
|
3
|
Solórzano C, Srikumar S, Canals R, Juárez A, Paytubi S, Madrid C. Hha has a defined regulatory role that is not dependent upon H-NS or StpA. Front Microbiol 2015; 6:773. [PMID: 26284052 PMCID: PMC4519777 DOI: 10.3389/fmicb.2015.00773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/14/2015] [Indexed: 11/13/2022] Open
Abstract
The Hha family of proteins is involved in the regulation of gene expression in enterobacteria by forming complexes with H-NS-like proteins. Whereas several amino acid residues of both proteins participate in the interaction, some of them play a key role. Residue D48 of Hha protein is essential for the interaction with H-NS, thus the D48N substitution in Hha protein abrogates H-NS/Hha interaction. Despite being a paralog of H-NS protein, StpA interacts with HhaD48N with higher affinity than with the wild type Hha protein. To analyze whether Hha is capable of acting independently of H-NS and StpA, we conducted transcriptomic analysis on the hha and stpA deletion strains and the hhaD48N substitution strain of Salmonella Typhimurium using a custom microarray. The results obtained allowed the identification of 120 genes regulated by Hha in an H-NS/StpA-independent manner, 38% of which are horizontally acquired genes. A significant number of the identified genes are involved in functions related to cell motility, iron uptake, and pathogenicity. Thus, motility assays, siderophore detection and intra-macrophage replication assays were performed to confirm the transcriptomic data. Our findings point out the importance of Hha protein as an independent regulator in S. Typhimurium, highlighting a regulatory role on virulence.
Collapse
Affiliation(s)
- Carla Solórzano
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | | | - Rocío Canals
- Institute of Integrative Biology, University of Liverpool Liverpool, UK
| | - Antonio Juárez
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain ; Institut de Bioenginyeria de Catalunya, Parc Científic de Barcelona Barcelona, Spain
| | - Sonia Paytubi
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| | - Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
4
|
Plano GV, Schesser K. The Yersinia pestis type III secretion system: expression, assembly and role in the evasion of host defenses. Immunol Res 2014; 57:237-45. [PMID: 24198067 DOI: 10.1007/s12026-013-8454-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Yersinia pestis, the etiologic agent of plague, utilizes a type III secretion system (T3SS) to subvert the defenses of its mammalian hosts. T3SSs are complex nanomachines that allow bacterial pathogens to directly inject effector proteins into eukaryotic cells. The Y. pestis T3SS is not expressed during transit through the flea vector, but T3SS gene expression is rapidly thermoinduced upon entry into a mammalian host. Assembly of the T3S apparatus is a highly coordinated process that requires the homo- and hetero-oligomerization over 20 Yersinia secretion (Ysc) proteins, several assembly intermediates and the T3S process to complete the assembly of the rod and external needle structures. The activation of effector secretion is controlled by the YopN/TyeA/SycN/YscB complex, YscF and LcrG in response to extracellular calcium and/or contact with a eukaryotic cell. Cell contact triggers the T3S process including the secretion and assembly of a pore-forming translocon complex that facilitates the translocation of effector proteins, termed Yersinia outer proteins (Yops), across the eukaryotic membrane. Within the host cell, the Yop effector proteins function to inhibit bacterial phagocytosis and to suppress the production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, Miami, FL, 33136, USA,
| | | |
Collapse
|
5
|
Evidence for moonlighting functions of the θ subunit of Escherichia coli DNA polymerase III. J Bacteriol 2013; 196:1102-12. [PMID: 24375106 DOI: 10.1128/jb.01448-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex.
Collapse
|
6
|
Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog 2012; 8:e1002518. [PMID: 22359501 PMCID: PMC3280987 DOI: 10.1371/journal.ppat.1002518] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 12/19/2011] [Indexed: 11/19/2022] Open
Abstract
Expression of all Yersinia pathogenicity factors encoded on the virulence plasmid, including the yop effector and the ysc type III secretion genes, is controlled by the transcriptional activator LcrF in response to temperature. Here, we show that a protein- and RNA-dependent hierarchy of thermosensors induce LcrF synthesis at body temperature. Thermally regulated transcription of lcrF is modest and mediated by the thermo-sensitive modulator YmoA, which represses transcription from a single promoter located far upstream of the yscW-lcrF operon at moderate temperatures. The transcriptional response is complemented by a second layer of temperature-control induced by a unique cis-acting RNA element located within the intergenic region of the yscW-lcrF transcript. Structure probing demonstrated that this region forms a secondary structure composed of two stemloops at 25°C. The second hairpin sequesters the lcrF ribosomal binding site by a stretch of four uracils. Opening of this structure was favored at 37°C and permitted ribosome binding at host body temperature. Our study further provides experimental evidence for the biological relevance of an RNA thermometer in an animal model. Following oral infections in mice, we found that two different Y. pseudotuberculosis patient isolates expressing a stabilized thermometer variant were strongly reduced in their ability to disseminate into the Peyer's patches, liver and spleen and have fully lost their lethality. Intriguingly, Yersinia strains with a destabilized version of the thermosensor were attenuated or exhibited a similar, but not a higher mortality. This illustrates that the RNA thermometer is the decisive control element providing just the appropriate amounts of LcrF protein for optimal infection efficiency.
Collapse
|
7
|
Abstract
AbstractHorizontal gene transfer (HGT), non-hereditary transfer of genetic material between organisms, accounts for a significant proportion of the genetic variability in bacteria. In Gram negative bacteria, the nucleoid-associated protein H-NS silences unwanted expression of recently acquired foreign DNA. This, in turn, facilitates integration of the incoming genes into the regulatory networks of the recipient cell. Bacteria belonging to the family Enterobacteriaceae express an additional protein, the Hha protein that, by binding to H-NS, potentiates silencing of HGT DNA. We provide here an overview of Hha-like proteins, including their structure and function, as well as their evolutionary relationship. We finally present available information suggesting that, by expressing Hha-like proteins, bacteria such as Escherichia coli facilitate HGT incorporation and hence, the impact of HGT in their genetic diversity.
Collapse
|
8
|
Wang X, Kim Y, Wood TK. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. THE ISME JOURNAL 2009; 3:1164-79. [PMID: 19458652 PMCID: PMC2754048 DOI: 10.1038/ismej.2009.59] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Earlier, we discovered that the global regulator, Hha, is related to cell death in biofilms and regulates cryptic prophage genes. Here, we show that Hha induces excision of prophages, CP4-57 and DLP12, by inducing excision genes and by reducing SsrA synthesis. SsrA is a tmRNA that is important for rescuing stalled ribosomes, contains an attachment site for CP4-57 and is shown here to be required for CP4-57 excision. These prophages impact biofilm development, as the deletion of 35 genes individually of prophages, CP4-57 and DLP12, increase biofilm formation up to 17-fold, and five genes decrease biofilm formation up to sixfold. In addition, CP4-57 excises during early biofilm development but not in planktonic cells, whereas DLP12 excision was detected at all the developmental stages for both biofilm and planktonic cells. CP4-57 excision leads to a chromosome region devoid of prophage and to the formation of a phage circle (which is lost). These results were corroborated by a whole-transcriptome analysis that showed that complete loss of CP4-57 activated the expression of the flg, flh and fli motility operons and repressed expression of key enzymes in the tricarboxylic acid cycle and of enzymes for lactate utilization. Prophage excision also results in the expression of cell lysis genes that reduce cell viability (for example, alpA, intA and intD). Hence, defective prophages are involved in host physiology through Hha and in biofilm formation by generating a diversified population with specialized functions in terms of motility and nutrient metabolism.
Collapse
Affiliation(s)
- Xiaoxue Wang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, USA
| | | | | |
Collapse
|
9
|
Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J Bacteriol 2008; 191:1258-67. [PMID: 19060153 DOI: 10.1128/jb.01465-08] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The roles of toxin-antitoxin (TA) systems in bacteria have been debated. Here, the role of five TA systems in regard to biofilm development was investigated (listed as toxin/antitoxin: MazF/MazE, RelE/RelB, ChpB, YoeB/YefM, and YafQ/DinJ). Although these multiple TA systems were reported previously to not impact bacterial fitness, we found that deletion of the five TA systems decreased biofilm formation initially (8 h) on three different surfaces and then increased biofilm formation (24 h) by decreasing biofilm dispersal. Whole-transcriptome profiling revealed that the deletion of the five TA systems induced expression of a single gene, yjgK, which encodes an uncharacterized protein; quantitative real-time PCR (qRT-PCR) confirmed consistent induction of this gene (at 8, 15, and 24 h). Corroborating the complex phenotype seen upon deleting the TA systems, overexpression of YjgK decreased biofilm formation at 8 h and increased biofilm formation at 24 h; deletion of yjgK also affected biofilm formation in the expected manner by increasing biofilm formation after 8 h and decreasing biofilm formation after 24 h. In addition, YjgK significantly reduced biofilm dispersal. Whole-transcriptome profiling revealed YjgK represses fimbria genes at 8 h (corroborated by qRT-PCR and a yeast agglutination assay), which agrees with the decrease in biofilm formation upon deleting the five TA systems at 8 h, as well as that seen upon overexpressing YjgK. Sand column assays confirmed that deleting the five TA systems reduced cell attachment. Furthermore, deletion of each of the five toxins increased biofilm formation at 8 h, and overexpression of the five toxins repressed biofilm formation at 8 h, a result that is opposite that of deleting all five TA systems; this suggests that complex regulation occurs involving the antitoxins. Also, the ability of the global regulator Hha to reduce biofilm formation was dependent on the presence of these TA systems. Hence, we suggest that one role of TA systems is to influence biofilm formation.
Collapse
|
10
|
Cordeiro TN, Garcia J, Pons JI, Aznar S, Juárez A, Pons M. A single residue mutation in Hha preserving structure and binding to H-NS results in loss of H-NS mediated gene repression properties. FEBS Lett 2008; 582:3139-44. [PMID: 18675805 DOI: 10.1016/j.febslet.2008.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Accepted: 07/23/2008] [Indexed: 01/29/2023]
Abstract
In this study, we report that a single mutation of cysteine 18 to isoleucine (C18I) in Escherichia coli Hha abolishes the repression of the hemolysin operon observed in the wild-type protein. The phenotype also includes a significant decrease in the growth rate of E. coli cells at low ionic strength. Other substitutions at this position (C18A, C18S) have no observable effects in E. coli growth or hemolysin repression. All mutants are stable and well folded and bind H-NS in vitro with similar affinities suggesting that Cys 18 is not directly involved in H-NS binding but this position is essential for the activity of the H-NS/Hha heterocomplexes in the regulation of gene expression.
Collapse
Affiliation(s)
- Tiago N Cordeiro
- Institute for Research in Biomedicine, Parc Cientific de Barcelona, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS One 2008; 3:e2394. [PMID: 18545668 PMCID: PMC2408971 DOI: 10.1371/journal.pone.0002394] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Accepted: 04/28/2008] [Indexed: 01/25/2023] Open
Abstract
We discovered previously that the small Escherichia coli proteins Hha (hemolysin expression modulating protein) and the adjacent, poorly-characterized YbaJ are important for biofilm formation; however, their roles have been nebulous. Biofilms are intricate communities in which cell signaling often converts single cells into primitive tissues. Here we show that Hha decreases biofilm formation dramatically by repressing the transcription of rare codon tRNAs which serves to inhibit fimbriae production and by repressing to some extent transcription of fimbrial genes fimA and ihfA. In vivo binding studies show Hha binds to the rare codon tRNAs argU, ileX, ileY, and proL and to two prophage clusters D1P12 and CP4-57. Real-time PCR corroborated that Hha represses argU and proL, and Hha type I fimbriae repression is abolished by the addition of extra copies of argU, ileY, and proL. The repression of transcription of rare codon tRNAs by Hha also leads to cell lysis and biofilm dispersal due to activation of prophage lytic genes rzpD, yfjZ, appY, and alpA and due to induction of ClpP/ClpX proteases which activate toxins by degrading antitoxins. YbaJ serves to mediate the toxicity of Hha. Hence, we have identified that a single protein (Hha) can control biofilm formation by limiting fimbriae production as well as by controlling cell death. The mechanism used by Hha is the control of translation via the availability of rare codon tRNAs which reduces fimbriae production and activates prophage lytic genes. Therefore, Hha acts as a toxin in conjunction with co-transcribed YbaJ (TomB) that attenuates Hha toxicity.
Collapse
|
12
|
Castellarnau M, Errachid A, Madrid C, Juárez A, Samitier J. Dielectrophoresis as a tool to characterize and differentiate isogenic mutants of Escherichia coli. Biophys J 2006; 91:3937-45. [PMID: 16950844 PMCID: PMC1630483 DOI: 10.1529/biophysj.106.088534] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/17/2006] [Indexed: 11/18/2022] Open
Abstract
In this study we report on an experimental method based on dielectrophoretic analysis to identify changes in four Escherichia coli isogenic strains that differed exclusively in one mutant allele. The dielectrophoretic properties of wild-type cells were compared to those of hns, hha, and hha hns mutant derivatives. The hns and hha genes code respectively for the global regulators Hha and H-NS. The Hha and H-NS proteins modulate gene expression in Escherichia coli and other Gram negative bacteria. Mutations in either hha or hns genes result in a pleiotropic phenotype. A two-shell prolate ellipsoidal model has been used to fit the experimental data, obtained from dielectrophoresis measurements, and to study the differences in the dielectric properties of the bacterial strains. The experimental results show that the mutant genotype can be predicted from the dielectrophoretic analysis of the corresponding cultures, opening the way to the development of microdevices for specific identification. Therefore, this study shows that dielectrophoresis can be a valuable tool to study bacterial populations which, although apparently homogeneous, may present phenotypic variability.
Collapse
Affiliation(s)
- M Castellarnau
- Nanobioengineering Research Laboratory, Institut de BioEnginyeria de Catalunya (IBEC), Barcelona, Spain.
| | | | | | | | | |
Collapse
|
13
|
Madrid C, Balsalobre C, García J, Juárez A. The novel Hha/YmoA family of nucleoid-associated proteins: use of structural mimicry to modulate the activity of the H-NS family of proteins. Mol Microbiol 2006; 63:7-14. [PMID: 17116239 DOI: 10.1111/j.1365-2958.2006.05497.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hha/YmoA family of proteins is a group of conserved, low-molecular-weight proteins involved in the regulation of gene expression. Studies performed in Escherichia coli, Salmonella sp. and Yersinia sp. highlight the contribution of these proteins in regulating bacterial virulence, horizontal gene transfer and cell physiology. Genes encoding such proteins are located on chromosomes and plasmids in different genera of Gram-negative bacteria. Their mode of action is currently being analysed by studying direct binding of Hha to DNA and as a component of protein complexes with regulatory functions. Recent data on the interaction of Hha with the H-NS family of proteins and structural information suggest a physiological role for such protein complexes in many aspects of gene regulation.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
14
|
Rodríguez S, Nieto JM, Madrid C, Juárez A. Functional Replacement of the Oligomerization Domain of H-NS by the Hha Protein of
Escherichia coli. J Bacteriol 2005; 187:5452-9. [PMID: 16030239 PMCID: PMC1196020 DOI: 10.1128/jb.187.15.5452-5459.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
ABSTRACT
Members of the H-NS family of proteins play a relevant role as modulators of gene expression in gram-negative bacteria. Interaction of these proteins with members of the Hha/YmoA family of proteins has been previously reported. It has been hypothesized that the latter proteins are functionally equivalent to the N-terminal domain of H-NS-like proteins. In this report we test this assumption by replacing the N-terminal domain of
Escherichia coli
H-NS by Hha. It has been possible to obtain a functional protein that can compensate for some of the
hns-
induced phenotypes. These results highlight the relevance of H-NS-Hha interactions to generate heterooligomeric complexes that modulate gene expression in gram-negative bacteria.
Collapse
Affiliation(s)
- Sonia Rodríguez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
15
|
Jackson MW, Silva-Herzog E, Plano GV. The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol 2005; 54:1364-78. [PMID: 15554975 DOI: 10.1111/j.1365-2958.2004.04353.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Yersinia pestis plasmid pCD1-encoded type III secretion system (T3SS) is essential for the pathogenicity of Y. pestis in mammalian hosts. T3SS-associated genes are maximally expressed at 37 degrees C in the absence of extracellular calcium. Expression of T3SS genes requires LcrF, an AraC-like transcriptional activator, and is repressed by YmoA, a small histone-like protein. The mechanism by which temperature regulates T3SS gene expression has not been determined; however, changes in DNA topology have been implicated in this process. We report here that a Y. pestis strain deficient in production of the ClpXP and Lon proteases does not express a functional T3SS partly because of high cytosolic levels of YmoA. YmoA is rapidly degraded at 37 degrees C in wild-type Y. pestis, but remains stable in a clpXPlon deletion mutant. The stability of YmoA in wild-type Y. pestis increased as the growth temperature of the culture decreased; in contrast, YmoA was stable at all temperatures examined in the clpXPlon deletion mutant. These results indicate that the ClpXP and Lon proteases contribute to the environmental regulation of the Y. pestis T3SS system through regulated proteolysis of YmoA.
Collapse
Affiliation(s)
- Michael W Jackson
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | |
Collapse
|
16
|
Sharma VK, Zuerner RL. Role of hha and ler in transcriptional regulation of the esp operon of enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2004; 186:7290-301. [PMID: 15489441 PMCID: PMC523200 DOI: 10.1128/jb.186.21.7290-7301.2004] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The locus of enterocyte effacement (LEE), which includes five major operons (LEE1 through LEE4 and tir), enables enterohemorrhagic Escherichia coli (EHEC) O157:H7 to produce attaching and effacing lesions on host cells. Expression of LEE2, LEE3, and tir is positively regulated by ler, a gene located in LEE1. Transcriptional regulation of the esp operon (LEE4), however, is not well defined. Transposon mutagenesis was used to identify transcriptional regulators of the esp operon by screening for mutants with increased beta-galactosidase activity in an EHEC O157:H7 strain harboring an esp::lac transcriptional fusion. All mutants with significant increases in beta-galactosidase activity had transposon insertions in hha (hha::Tn). Specific complementation of the hha::Tn mutation with a plasmid-encoded copy of hha reduced beta-galactosidase activity to the level expressed in the parental esp::lac strain. Purified Hha, however, bound poorly to the esp promoter, suggesting that Hha might repress the transcription of a positive regulator of esp. Transposon mutagenesis of a Deltahha esp::lac strain expressing elevated levels of beta-galactosidase resulted in ler mutants with reduced beta-galactosidase activity. Purified Hha bound to the ler promoter with a higher affinity, and complementation of a Deltahha mutation in a Deltahha ler::lac strain repressed beta-galactosidase activity to the level expressed in a ler::lac strain. A positive regulatory role of ler in esp expression was demonstrated by specific binding of Ler to the esp promoter, reduced expression of beta-galactosidase in Deltaler esp::lac strains with and without hha, and severalfold-increased transcription of ler and espA in strains lacking hha. These results indicate that hha-mediated repression of ler causes reduced expression of the esp operon.
Collapse
Affiliation(s)
- Vijay K Sharma
- National Animal Disease Center, USDA/ARS, P.O. Box 70, Ames, IA 50010, USA.
| | | |
Collapse
|
17
|
Alverson J, Bundle SF, Sohaskey CD, Lybecker MC, Samuels DS. Transcriptional regulation of the ospAB and ospC promoters from Borrelia burgdorferi. Mol Microbiol 2003; 48:1665-77. [PMID: 12791146 DOI: 10.1046/j.1365-2958.2003.03537.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OspA, OspB and OspC are the major outer surface proteins of Borrelia burgdorferi that are differentially synthesized in response to environmental conditions, including culture temperature. We found that DNA was more negatively supercoiled in B. burgdorferi cultures grown at 23 degrees C compared with cultures grown at 35-37 degrees C. We examined the regulation of ospAB and ospC transcription by temperature and DNA supercoiling. DNA supercoiling was relaxed by adding coumermycin A1, an antibiotic that inhibits DNA gyrase. Syntheses of the major outer surface proteins, expression of the ospA and ospC genes and the activities of the ospAB operon and ospC gene promoters were assayed. ospA product levels decreased, whereas ospC product levels increased after shifting from 23 degrees C to 35 degrees C or after adding coumermycin A1. In addition, OspC synthesis was higher in a gyrB mutant than in wild-type B. burgdorferi. Promoter activity was quantified using cat reporter fusions. Increasing temperature or relaxing supercoiled DNA resulted in a decrease in ospAB promoter activity in B. burgdorferi, but not in Escherichia coli, as well as an increase in ospC promoter activity in both bacteria. ospC promoter activity was increased in an E. coli gyrB mutant with an attenuated DNA supercoiling phenotype. These results suggest that B. burgdorferi senses environmental changes in temperature by altering the level of DNA supercoiling, which then affects the expression of the ospAB operon and the ospC gene. This implies that DNA supercoiling acts as a signal transducer for environmental regulation of outer surface protein synthesis.
Collapse
Affiliation(s)
- Janet Alverson
- Division of Biological Sciences, The University of Montana, 32 Campus Dr. # 4824, Missoula 59812-4824, USA
| | | | | | | | | |
Collapse
|
18
|
Madrid C, Nieto JM, Paytubi S, Falconi M, Gualerzi CO, Juárez A. Temperature- and H-NS-dependent regulation of a plasmid-encoded virulence operon expressing Escherichia coli hemolysin. J Bacteriol 2002; 184:5058-66. [PMID: 12193622 PMCID: PMC135304 DOI: 10.1128/jb.184.18.5058-5066.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Accepted: 06/18/2002] [Indexed: 11/20/2022] Open
Abstract
Proteins H-NS and Hha form a nucleoprotein complex that modulates expression of the thermoregulated hly operon of Escherichia coli. We have been able to identify two H-NS binding sites in the hly regulatory region. One of them partially overlaps the promoter region (site II), and the other is located about 2 kbp upstream (site I). In contrast, Hha protein did not show any preference for specific sequences. In vitro, temperature influences the affinity of H-NS for a DNA fragment containing both binding sites and H-NS-mediated repression of hly operon transcription. Deletion analysis of the hly regulatory region confirms the relevance of site I for thermoregulation of this operon. We present a model to explain the temperature-modulated repression of the hly operon, based on the experiments reported here and other, preexisting data.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
19
|
Nieto JM, Madrid C, Miquelay E, Parra JL, Rodríguez S, Juárez A. Evidence for direct protein-protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J Bacteriol 2002; 184:629-35. [PMID: 11790731 PMCID: PMC139531 DOI: 10.1128/jb.184.3.629-635.2002] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli nucleoid-associated H-NS protein interacts with the Hha protein, a member of a new family of global modulators that also includes the YmoA protein from Yersinia enterocolitica. This interaction has been found to be involved in the regulation of the expression of the toxin alpha-hemolysin. In this study, we further characterize the interaction between H-NS and Hha. We show that the presence of DNA in preparations of copurified His-Hha and H-NS is not directly implicated in the interaction between the proteins. The precise molecular mass of the H-NS protein retained by Hha, obtained by mass spectrometry analysis, does not show any posttranslational modification other than removal of the N-terminal Met residue. We constructed an H-NS-His recombinant protein and found that, as expected, it interacts with Hha. We used a Ni(2+)-nitrilotriacetic acid agarose method for affinity chromatography copurification of proteins to identify the H-NS protein of Y. enterocolitica. We constructed a six-His-YmoA recombinant protein derived from YmoA, the homologue of Hha in Y. enterocolitica, and found that it interacts with Y. enterocolitica H-NS. We also cloned and sequenced the hns gene of this microorganism. In the course of these experiments we found that His-YmoA can also retain H-NS from E. coli. We also found that the hns gene of Y. enterocolitica can complement an hns mutation of E. coli. Finally, we describe for the first time systematic characterization of missense mutant alleles of hha and truncated Hha' proteins, and we report a striking and previously unnoticed similarity of the Hha family of proteins to the oligomerization domain of the H-NS proteins.
Collapse
Affiliation(s)
- J M Nieto
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
20
|
Madrid C, Nieto JM, Juárez A. Role of the Hha/YmoA family of proteins in the thermoregulation of the expression of virulence factors. Int J Med Microbiol 2002; 291:425-32. [PMID: 11890540 DOI: 10.1078/1438-4221-00149] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Virulent bacteria are able to sense temperature changes and respond by modifying the expression of--among others--genes that code for virulence factors. The chromatin-associated protein H-NS has been shown to play a role in the thermomodulation of virulence factor expression. In addition to H-NS, proteins of the Hha/YmoA family have also been identified in different enterobacteria as participating in the thermoregulation of some virulence factors. For one of these proteins, the Hha protein, it has been shown that it interacts with H-NS, and both proteins form a nucleoid-protein complex responsible for the thermoregulation of, at least, E. coli hemolysin. The presence of genes coding for homologues of both proteins on some conjugative plasmids and their relation to thermoregulation suggests that this complex could also play a role in the regulation of plasmid transfer.
Collapse
Affiliation(s)
- Cristina Madrid
- Departament de Microbiologia, Universitat de Barcelona, Spain
| | | | | |
Collapse
|
21
|
Juárez A, Nieto JM, Prenafeta A, Miquelay E, Balsalobre C, Carrascal M, Madrid C. Interaction of the nucleoid-associated proteins Hha and H-NS to modulate expression of the hemolysin operon in Escherichia coli. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 485:127-31. [PMID: 11109097 DOI: 10.1007/0-306-46840-9_17] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- A Juárez
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
22
|
White-Ziegler CA, Villapakkam A, Ronaszeki K, Young S. H-NS controls pap and daa fimbrial transcription in Escherichia coli in response to multiple environmental cues. J Bacteriol 2000; 182:6391-400. [PMID: 11053383 PMCID: PMC94785 DOI: 10.1128/jb.182.22.6391-6400.2000] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A comparative study was completed to determine the influence of various environmental stimuli on the transcription of three different fimbrial operons in Escherichia coli and to determine the role of the histone-like protein H-NS in this environmental regulation. The fimbrial operons studied included the pap operon, which encodes pyelonephritis-associated pili (P pili), the daa operon, which encodes F1845 fimbriae, and the fan operon, which encodes K99 fimbriae. Using lacZYA transcriptional fusions within each of the fimbrial operons, we tested temperature, osmolarity, carbon source, rich medium, oxygen levels, pH, amino acids, solid medium, and iron concentration for their effects on fimbrial gene expression. Low temperature, high osmolarity, glucose as a carbon source, and rich medium repressed transcription of all three operons. High iron did not alter transcription of any of the operons tested, whereas the remaining stimuli had effects on individual operons. For the pap and daa operons, introduction of the hns651 mutation relieved the repression, either fully or partially, due to low temperature, glucose as a carbon source, rich medium, and high osmolarity. Taken together, these data indicate that there are common environmental cues that regulate fimbrial transcription in E. coli and that H-NS is an important environmental regulator for fimbrial transcription in response to several stimuli.
Collapse
Affiliation(s)
- C A White-Ziegler
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063, USA.
| | | | | | | |
Collapse
|
23
|
Rohde JR, Luan XS, Rohde H, Fox JM, Minnich SA. The Yersinia enterocolitica pYV virulence plasmid contains multiple intrinsic DNA bends which melt at 37 degrees C. J Bacteriol 1999; 181:4198-204. [PMID: 10400576 PMCID: PMC93920 DOI: 10.1128/jb.181.14.4198-4204.1999] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Temperature has a pleiotropic effect on Yersinia enterocolitica gene expression. Temperature-dependent phenotypes include the switching between two type III protein secretion systems, flagellum biosynthesis (</=30 degrees C) and virulence plasmid-encoded Yop secretion (37 degrees C). The mechanism by which temperature exerts this change in genetic programming is unclear; however, altered gene expression by temperature-dependent changes in DNA topology has been implicated. Here, we present evidence that the Y. enterocolitica virulence plasmid, pYV, undergoes a conformational transition between 30 and 37 degrees C. Using a simplified two-dimensional, single-gel assay, we show that pYV contains multiple regions of intrinsic curvature, including virF, the positive activator of virulence genes. These bends are detectable at 30 degrees C but melt at 37 degrees C, the temperature at which the cells undergo phenotypic switching. We also show that pACYC184, a plasmid used as a reporter of temperature-induced changes in DNA supercoiling, has a single region of intrinsic bending detected by our assay. Topoisomers of pACYC184, with and without this bend, isolated from Y. enterocolitica were resolved by using chloroquine gels. The single bend has a dramatic influence on temperature-dependent DNA supercoiling. These data suggest that the Y. enterocolitica pYV plasmid may undergo a conformational change at the host temperature due to melting of DNA bends followed by compensatory adjustments in superhelical density. Hence, changes in DNA topology may be the temperature-sensing mechanism for virulence gene expression in Y. enterocolitica and other enteric pathogens.
Collapse
Affiliation(s)
- J R Rohde
- Department of Microbiology, Molecular Biology, and Biochemistry, University of Idaho, Moscow, Idaho 83843, USA
| | | | | | | | | |
Collapse
|
24
|
Schechter LM, Damrauer SM, Lee CA. Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol Microbiol 1999; 32:629-42. [PMID: 10320584 DOI: 10.1046/j.1365-2958.1999.01381.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
During infection of its hosts, Salmonella enterica serovar Typhimurium (S. typhimurium) enters the epithelial cells of the small intestine. This process requires a number of invasion genes encoded on Salmonella pathogenicity island 1 (SPI1), a 40 kb stretch of DNA located near minute 63 of the S. typhimurium chromosome. Expression of S. typhimurium SPI1 invasion genes is activated by the transcription factor HilA. hilA is tightly regulated in response to many environmental conditions, including oxygen, osmolarity and pH. Regulation of hilA expression may serve to limit invasion gene expression to the appropriate times during Salmonella infection. We have mapped the transcription start site of hilA and identified regions of the promoter that are required for the repression of hilA expression by conditions unfavourable for Salmonella invasion. We have also identified two SPI1-encoded genes, hilC and hilD, that can independently derepress hilA expression. HilC and HilD are both members of the AraC/XylS family of transcriptional regulators. A mutation in hilD significantly reduces the ability of S. typhimurium to enter tissue culture cells, whereas a mutation in hilC only modestly affects Salmonella invasion. Based on these results, we have updated our model of Salmonella SPI1 invasion gene regulation. We also speculate on the possible significance of this model for Salmonella pathogenesis.
Collapse
Affiliation(s)
- L M Schechter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
25
|
Balsalobre C, Johansson J, Uhlin BE, Juárez A, Muñoa FJ. Alterations in protein expression caused by the hha mutation in Escherichia coli: influence of growth medium osmolarity. J Bacteriol 1999; 181:3018-24. [PMID: 10322001 PMCID: PMC93755 DOI: 10.1128/jb.181.10.3018-3024.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 03/01/1999] [Indexed: 11/20/2022] Open
Abstract
The Hha protein belongs to a new family of regulators involved in the environmental regulation of virulence factors. The aim of this work was to study the effect of the hha mutation on the overall protein pattern of Escherichia coli cells by two-dimensional polyacrylamide gel electrophoresis. The growth medium osmolarity clearly influenced the effect of the hha mutation. The number of proteins whose expression was altered in hha cells, compared with wild-type cells, was three times larger at a high osmolarity than at a low osmolarity. Among the proteins whose expression was modified by the hha allele, both OmpA and protein IIAGlc of the phosphotransferase system could be identified. As this latter enzyme participates in the regulation of the synthesis of cyclic AMP and hence influences the catabolite repression system, we tested whether the expression of the lacZ gene was also modified in hha mutants. This was the case, suggesting that at least some of the pleiotropic effects of the hha mutation could be caused by its effect on the catabolite repression system.
Collapse
Affiliation(s)
- C Balsalobre
- Departamento de Microbiología, Universidad de Barcelona, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
26
|
Nieto JM, Prenafeta A, Miquelay E, Torrades S, Juárez A. Sequence, identification and effect on conjugation of the rmoA gene of plasmid R100-1. FEMS Microbiol Lett 1998; 169:59-66. [PMID: 9851035 DOI: 10.1111/j.1574-6968.1998.tb13299.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The rmoA gene was recently identified from two partially overlapping sequences corresponding to a region close to the end of the tra operon of plasmid R100. Its putative amino acid sequence showed strong homology to the Hha protein of Escherichia coli and YmoA protein of Yersinia enterocolitica, which are modulators of gene expression in response to environmental stimuli. We have cloned the rmoA gene from plasmid R100-1 in pUC19 and obtained the complete nucleotide sequence, which was previously published only partially and may have contained some mistakes. The rmoA gene product has been identified in radiolabelled minicells as a protein of the predicted molecular mass. The wild-type rmoA gene of plasmid R100-1 has been mutated by gene replacement and its effect on the efficiency of conjugation has been analysed. When grown in LB medium, cells harbouring R100-1 plasmid with a disrupted copy of rmoA showed a five-fold increase in conjugation frequency compared to cells harbouring R100-1 plasmid with the wild-type rmoA gene, grown in the same conditions. When cells were grown in NaCl-free LB medium they showed a 50-fold increase in conjugation frequency.
Collapse
Affiliation(s)
- J M Nieto
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Mouriño M, Balsalobre C, Madrid C, Nieto JM, Prenafeta A, Muñoa FJ, Juárez A. Osmolarity modulates the expression of the Hha protein from Escherichia coli. FEMS Microbiol Lett 1998; 160:225-9. [PMID: 9580219 DOI: 10.1111/j.1574-6968.1998.tb12915.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The effect of the osmolarity of the culture medium on the expression of the hha gene of Escherichia coli was investigated. When cells were grown in LB medium, expression reached a maximum in the exponential phase of growth and decreased in the stationary phase. Increasing the osmolarity of the LB medium had no significant effect on the expression of the hha gene, but depletion of NaCl led to a significant decrease in expression. Expression of the hha gene is thus sensitive to the osmolarity of the growth medium. High levels of expression of the hha gene when cells are grown at medium to high osmolarity are consistent with the finding that the Hha protein appears to play its main modulatory role when cells grow under these conditions.
Collapse
Affiliation(s)
- M Mouriño
- Departamento de Microbiología, Universidad de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Nieto JM, Mouriño M, Balsalobre C, Madrid C, Prenafeta A, Muñoa FJ, Juárez A. Construction of a double hha hns mutant of Escherichia coli: effect on DNA supercoiling and alpha-haemolysin production. FEMS Microbiol Lett 1997; 155:39-44. [PMID: 9345762 DOI: 10.1111/j.1574-6968.1997.tb12683.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A double hha hns Escherichia coli mutant was constructed. The effect of the single hns mutation and of the double hha hns mutation on the expression of the alpha-haemolysin determinant of plasmid pANN202-312 was assessed. Whereas the hns mutant moderately increased expression of the toxin, the double hha hns mutant strongly enhanced transcription of the hly operon and hence expression of the toxin. This suggests that both Hha and H-NS proteins participate in the modulation of the expression of the toxin. The enhancement of haemolysin expression in the double mutant could not be correlated to a global alteration of DNA topology: DNA preparations of a reporter plasmid isolated from this mutant gave a topoisomer distribution similar to that of the parental strain.
Collapse
Affiliation(s)
- J M Nieto
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Mouriño M, Madrid C, Balsalobre C, Prenafeta A, Muñoa F, Blanco J, Blanco M, Blanco JE, Juarez A. The Hha protein as a modulator of expression of virulence factors in Escherichia coli. Infect Immun 1996; 64:2881-4. [PMID: 8698530 PMCID: PMC174161 DOI: 10.1128/iai.64.7.2881-2884.1996] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We constructed hha derivatives from both a clinical uropathogenic Escherichia coli isolate (strain FVL4) and a wild E. coli strain causing bovine diarrhea (strain CCB21) and analyzed the effect of the hha allele on the expression of the different virulence factors exhibited by these strains. Expression of hemolysin and of the Vir antigen was altered in hha mutants. Whereas production of hemolysin by strain FVL4 was repressed both at a low temperature and at high osmolarity, the hha allele accounted for a significant increase of hemolysin production under these conditions. Also, the low temperature-sensitive expression of the Vir adhesin was modified in hha mutants, which were able to express this adhesin at a low temperature. Expression of other virulence factors, such as cytotoxic necrotizing factor type 1 and 2 toxins, remained unmodified in hha derivatives of strains FVL4 and CCB21.
Collapse
Affiliation(s)
- M Mouriño
- Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
van Workum M, van Dooren SJ, Oldenburg N, Molenaar D, Jensen PR, Snoep JL, Westerhoff HV. DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 1996; 20:351-60. [PMID: 8733233 DOI: 10.1111/j.1365-2958.1996.tb02622.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
ATP/ADP ratios were varied in different ways and the degree of negative supercoiling was determined in Escherichia coli. Independent of whether the ATP/ ADP ratio was reduced by a shift to anaerobic conditions, by addition of a protonophore (dinitrophenol) or by potassium cyanide addition, DNA supercoiling decreased similarly with the ATP/ADP ratio. The experiments were performed under well-defined conditions, where oxidative phosphorylation was the dominant route for ATP synthesis, i.e. using a minimal salts medium with succinate as the sole free-energy and carbon source, and in the presence or absence of ammonia as the nitrogen source. The results of the different experiments were consistent with a single linear relationship between the log(ATP/ADP) and the change in linking number. The dependence of DNA supercoiling on the ATP/ADP ratio was not influenced by inhibitors of transcription or translation. Because the ATP/ADP ratio was modulated in different ways, the unique relationship suggests coupling between the phosphorylation potential and DNA supercoiling. This was most probably mediated by the DNA gyrase, independent of topoisomerase I or transcription.
Collapse
Affiliation(s)
- M van Workum
- Division of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
31
|
Blight MA, Menichi B, Holland IB. Evidence for post-transcriptional regulation of the synthesis of the Escherichia coli HlyB haemolysin translocator and production of polyclonal anti-HlyB antibody. MOLECULAR & GENERAL GENETICS : MGG 1995; 247:73-85. [PMID: 7536296 DOI: 10.1007/bf00425823] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Extensive attempts were made to overexpress the Escherichia coli haemolysin translocator protein HlyB, and HlyB fragments, utilising high copy number plasmids or hlyB expressed from strong promoters including lambda PR, ptrp and the T7 promoter. Analysis of both cytoplasmic and membrane fractions failed to detect any overexpression of the protein, although all the constructs showed biological activity and there was no evidence of HlyB-induced toxicity. In some constructs, the effect of removing a stem-loop structure, immediately upstream of the start codon and implicated in rho-independent termination of transcription, was tested but this did not lead to over-expression. Nevertheless, analysis of hlyB specific mRNA synthesis revealed that some constructs showed at least a 50-fold increase in mRNA levels, indicating that expression of HlyB may be limited at the translational level. When HlyB was expressed as a hybrid, downstream of LacZ, extremely high level overproduction was then detected in total cell extracts. When the expression of HlyB or HlyB fragments expressed from a T7 promoter was examined, the C-terminal ATPase domain was dramatically overexpressed but the production of fragments encompassing the N-terminal membrane domain, was reduced at least 1000-fold. These results indicate that mRNA structures corresponding to the membrane domain of HlyB greatly limit the post-transcriptional expression of HlyB. When such structures are deleted, or disrupted when part of a larger mRNA, HlyB or the HlyB ATPase domain can be overproduced in milligram quantities and this has facilitated the production of high titre antibodies to HlyB.
Collapse
Affiliation(s)
- M A Blight
- Institut de Génétique et Microbiologie, Université de Paris XI, Orsay, France
| | | | | |
Collapse
|
32
|
Jubete Y, Zabala JC, Juárez A, de la Cruz F. hlyM, a transcriptional silencer downstream of the promoter in the hly operon of Escherichia coli. J Bacteriol 1995; 177:242-6. [PMID: 7798139 PMCID: PMC176580 DOI: 10.1128/jb.177.1.242-246.1995] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transcription of the hly operon of transmissible plasmids in Escherichia coli is subject to a tight regulation which also involves various chromosomal genes, such as hha. We have identified a 200-bp region within the hlyC gene, designated hlyM, which modulates hemolysin expression. The deletion of hlyM increased the activity of hly::galK fusion 20-fold. hlyM does not contain any internal promoter, nor is it capable of acting in trans. Our data suggest that the chromosomal Hha protein interacts with hlyM in order to silence the hly promoter. In addition, hlyR, a positive activator of hemolysin expression, seems to suppress the modulatory effect dictated by the Hha protein on the hlyM region.
Collapse
Affiliation(s)
- Y Jubete
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | | | |
Collapse
|
33
|
Abstract
YmoA and Hha are highly similar bacterial proteins downregulating gene expression in Yersinia enterocolitica and Escherichia coli, respectively. The phenotype of ymoA mutants evokes that of mutants affected in some histone-like proteins. This paper describes complementation of a ymoA mutation in Y. enterocolitica by the hha gene from E. coli. We show that YmoA and Hha are not only very similar proteins but that they are functionally interchangeable. Genetic experiments indicate that Hha can also stimulate transposition events in vivo. By Southern blot analysis we detected hha-homologous genes at least in Citrobacter diversus, Shigella flexneri, Shigella dysenteriae, Klebsiella pneumoniae and Salmonella typhimurium. We suggest that both YmoA and Hha belong to a new family of proteins downregulating gene expression in different enterobacteria.
Collapse
Affiliation(s)
- A V Mikulskis
- Microbial Pathogenesis Unit, Université Catholique de Louvain, UCL 54.90, Brussels, Belgium
| | | |
Collapse
|