1
|
Cagape CMS, Seng R, Saiprom N, Tandhavanant S, Chewapreecha C, Boonyuen U, West TE, Chantratita N. Genetic variation, structural analysis, and virulence implications of BimA and BimC in clinical isolates of Burkholderia pseudomallei in Thailand. Sci Rep 2024; 14:24966. [PMID: 39443499 PMCID: PMC11499645 DOI: 10.1038/s41598-024-74922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Melioidosis is a life-threatening tropical disease caused by an intracellular gram-negative bacterium Burkholderia pseudomallei. B. pseudomallei polymerizes the host cell actin through autotransporters, BimA, and BimC, to facilitate intracellular motility. Two variations of BimA in B. pseudomallei have been reported previously: BimABp and BimA B. mallei-like (BimABm). However, little is known about genetic sequence variations within BimA and BimC, and their potential effect on the virulence of B. pseudomallei. This study analyzed 1,294 genomes from clinical isolates of patients admitted to nine hospitals in northeast Thailand between 2015 and 2018 and performed 3D structural analysis and plaque-forming efficiency assay. The genomic analysis identified 10 BimABp and 5 major BimC types, in the dominant and non-dominant lineages of the B. pseudomallei population structure. Our protein prediction analysis of all BimABp and major BimC variants revealed that their 3D structures were conserved compared to those of B. pseudomallei K96243. Sixteen representative strains of the most distant BimABp types were tested for plaque formation and the development of polar actin tails in A549 epithelial cells. We found that all isolates retained these functions. These findings enhance our understanding of the prevalence of BimABp and BimC variants and their implications for B. pseudomallei virulence.
Collapse
Affiliation(s)
- Charlene Mae Salao Cagape
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - T Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
2
|
McMillan IA, Norris MH, Heacock-Kang Y, Zarzycki-Siek J, Sun Z, Hartney BA, Filipowska LK, Islam MN, Crick DC, Borlee BR, Hoang TT. TetR-like regulator BP1026B_II1561 controls aromatic amino acid biosynthesis and intracellular pathogenesis in Burkholderia pseudomallei. Front Microbiol 2024; 15:1441330. [PMID: 39211319 PMCID: PMC11358695 DOI: 10.3389/fmicb.2024.1441330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Burkholderia pseudomallei (Bp) causes the tropical disease melioidosis that afflicts an estimated 165,000 people each year. Bp is a facultative intracellular pathogen that transits through distinct intracellular stages including attachment to host cells, invasion through the endocytic pathway, escape from the endosome, replication in the cytoplasm, generation of protrusions towards neighboring cells, and host cell fusion allowing Bp infection to spread without exiting the intracellular environment. We have identified a TetR-like transcriptional regulator, BP1026B_II1561, that is up-regulated during the late stages of infection as Bp protrudes toward neighboring cells. We have characterized BP1026B_II1561 and determined that it has a role in pathogenesis. A deletional mutant of BP1026B_II1561 is attenuated in RAW264.7 macrophage and BALB/c mouse models of infection. Using RNA-seq, we found that BP1026B_II1561 controls secondary metabolite biosynthesis, fatty acid degradation, and propanoate metabolism. In addition, we identified that BP1026B_II1561 directly controls expression of an outer membrane porin and genes in the shikimate biosynthetic pathway using ChIP-seq. Transposon mutants of genes within the BP1026B_II1561 regulon show defects during intracellular replication in RAW264.7 cells confirming the role of this transcriptional regulator and the pathways it controls in pathogenesis. BP1026B_II1561 also up-regulates the majority of the enzymes in shikimate and tryptophan biosynthetic pathways, suggesting their importance for Bp physiology. To investigate this, we tested fluorinated analogs of anthranilate and tryptophan, intermediates and products of the shikimate and tryptophan biosynthetic pathways, respectively, and showed inhibition of Bp growth at nanomolar concentrations. The expression of these pathways by BP1026b_II1561 and during intracellular infection combined with the inhibition of Bp growth by fluorotryptophan/anthranilate highlights these pathways as potential targets for therapeutic intervention against melioidosis. In the present study, we have identified BP1026B_II1561 as a critical transcriptional regulator for Bp pathogenesis and partially characterized its role during host cell infection.
Collapse
Affiliation(s)
- Ian A. McMillan
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Michael H. Norris
- Pathogen Analysis and Translational Health Group, School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Yun Heacock-Kang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Zhenxin Sun
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| | - Brooke A. Hartney
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Liliana K. Filipowska
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - M. Nurul Islam
- Department of Chemistry, Biochemistry, and Physics, South Dakota State University, Brookings, SD, United States
| | - Dean C. Crick
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bradley R. Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Tung T. Hoang
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, HI, United States
| |
Collapse
|
3
|
Badten AJ, Torres AG. Burkholderia pseudomallei Complex Subunit and Glycoconjugate Vaccines and Their Potential to Elicit Cross-Protection to Burkholderia cepacia Complex. Vaccines (Basel) 2024; 12:313. [PMID: 38543947 PMCID: PMC10975474 DOI: 10.3390/vaccines12030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
Burkholderia are a group of Gram-negative bacteria that can cause a variety of diseases in at-risk populations. B. pseudomallei and B. mallei, the etiological agents of melioidosis and glanders, respectively, are the two clinically relevant members of the B. pseudomallei complex (Bpc). The development of vaccines against Bpc species has been accelerated in recent years, resulting in numerous promising subunits and glycoconjugate vaccines incorporating a variety of antigens. However, a second group of pathogenic Burkholderia species exists known as the Burkholderia cepacia complex (Bcc), a group of opportunistic bacteria which tend to affect individuals with weakened immunity or cystic fibrosis. To date, there have been few attempts to develop vaccines to Bcc species. Therefore, the primary goal of this review is to provide a broad overview of the various subunit antigens that have been tested in Bpc species, their protective efficacy, study limitations, and known or suspected mechanisms of protection. Then, we assess the reviewed Bpc antigens for their amino acid sequence conservation to homologous proteins found in Bcc species. We propose that protective Bpc antigens with a high degree of Bpc-to-Bcc sequence conservation could serve as components of a pan-Burkholderia vaccine capable of protecting against both disease-causing groups.
Collapse
Affiliation(s)
- Alexander J. Badten
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alfredo G. Torres
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA;
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
4
|
Meumann EM, Limmathurotsakul D, Dunachie SJ, Wiersinga WJ, Currie BJ. Burkholderia pseudomallei and melioidosis. Nat Rev Microbiol 2024; 22:155-169. [PMID: 37794173 DOI: 10.1038/s41579-023-00972-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/06/2023]
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, is found in soil and water of tropical and subtropical regions globally. Modelled estimates of the global burden predict that melioidosis remains vastly under-reported, and a call has been made for it to be recognized as a neglected tropical disease by the World Health Organization. Severe weather events and environmental disturbance are associated with increased case numbers, and it is anticipated that, in some regions, cases will increase in association with climate change. Genomic epidemiological investigations have confirmed B. pseudomallei endemicity in newly recognized regions, including the southern United States. Melioidosis follows environmental exposure to B. pseudomallei and is associated with comorbidities that affect the immune response, such as diabetes, and with socioeconomic disadvantage. Several vaccine candidates are ready for phase I clinical trials. In this Review, we explore the global burden, epidemiology and pathophysiology of B. pseudomallei as well as current diagnostics, treatment recommendations and preventive measures, highlighting research needs and priorities.
Collapse
Affiliation(s)
- Ella M Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia.
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- NDM Centre for Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Willem J Wiersinga
- Division of Infectious Diseases, Center for Experimental Molecular Medicine, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
5
|
Noparatvarakorn C, Jakkul W, Seng R, Tandhavanant S, Ottiwet O, Janon R, Saikong W, Chantratita N. Optimization and prospective evaluation of sensitive real-time PCR assays with an internal control for the diagnosis of melioidosis in Thailand. Microbiol Spectr 2023; 11:e0103923. [PMID: 37819125 PMCID: PMC10715024 DOI: 10.1128/spectrum.01039-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Melioidosis is a serious infectious disease caused by Burkholderia pseudomallei, an environmental Gram-negative bacterium. Early detection of B. pseudomallei infection is crucial for successful antibiotic treatment and reducing mortality rates associated with melioidosis. Bacteria culture is currently used to identify B. pseudomallei in clinical samples, but the method is slow. Therefore, there is a need for more accurate and sensitive molecular-based diagnostic methods that can detect B. pseudomallei in all sample types, including samples from blood. We developed an optimal DNA extraction method for B. pseudomallei from plasma samples and used an internal control for real-time PCR. We evaluated six PCR target genes and identified the most effective target for the early detection of B. pseudomallei infection in patients. To prevent delays in the treatment of melioidosis that can lead to fatal outcomes, we recommend implementing this new approach for routine early detection of B. pseudomallei in clinical settings.
Collapse
Affiliation(s)
- Chawitar Noparatvarakorn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wallop Jakkul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rathanin Seng
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Orawan Ottiwet
- Department of Medical Technology and Clinical Pathology, Mukdahan Hospital, Mukdahan, Thailand
| | - Rachan Janon
- Department of Medicine, Mukdahan Hospital, Mukdahan, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
6
|
Jitprasutwit N, Rungruengkitkun A, Lohitthai S, Reamtong O, Indrawattana N, Sookrung N, Sricharunrat T, Sukphopetch P, Chatratita N, Pumirat P. In Vitro Roles of Burkholderia Intracellular Motility A (BimA) in Infection of Human Neuroblastoma Cell Line. Microbiol Spectr 2023; 11:e0132023. [PMID: 37409935 PMCID: PMC10434047 DOI: 10.1128/spectrum.01320-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023] Open
Abstract
The bacterial pathogen Burkholderia pseudomallei causes human melioidosis, which can infect the brain, leading to encephalitis and brain abscesses. Infection of the nervous system is a rare condition but is associated with an increased risk of mortality. Burkholderia intracellular motility A (BimA) was reported to play an important role in the invasion and infection of the central nervous system in a mouse model. Thus, to gain insight of the cellular mechanisms underlying the pathogenesis of neurological melioidosis, we explored the human neuronal proteomics to identify the host factors that are up- and downregulated during Burkholderia infection. When infected the SH-SY5Y cells with B. pseudomallei K96243 wild-type (WT), 194 host proteins showed a fold change of >2 compared with uninfected cells. Moreover, 123 proteins showed a fold change of >2 when infected with a knockout bimA mutant (ΔbimA) mutant compared with WT. The differentially expressed proteins were mainly associated with metabolic pathways and pathways linked to human diseases. Importantly, we observed the downregulation of proteins in the apoptosis and cytotoxicity pathway, and in vitro investigation with the ΔbimA mutant revealed the association of BimA with the induction of these pathways. Additionally, we disclosed that BimA was not required for invasion into the neuron cell line but was necessary for effective intracellular replication and multinucleated giant cell (MNGC) formation. These findings show the extraordinary capacity of B. pseudomallei in subverting and interfering with host cellular systems to establish infection and extend our understanding of B. pseudomallei BimA involvement in the pathogenesis of neurological melioidosis. IMPORTANCE Neurological melioidosis, caused by Burkholderia pseudomallei, can result in severe neurological damage and enhance the mortality rate of melioidosis patients. We investigate the involvement of the virulent factor BimA, which mediates actin-based motility, in the intracellular infection of neuroblastoma SH-SY5Y cells. Using proteomics-based analysis, we provide a list of host factors exploited by B. pseudomallei. The expression level of selected downregulated proteins in neuron cells infected with the ΔbimA mutant was determined by quantitative reverse transcription-PCR and was consistent with our proteomic data. The role of BimA in the apoptosis and cytotoxicity of SH-SY5Y cells infected by B. pseudomallei was uncovered in this study. Additionally, our research demonstrates that BimA is required for successful intracellular survival and cell fusion upon infection of neuron cells. Our findings have significant implications for understanding the pathogenesis of B. pseudomallei infections and developing novel therapeutic strategies to combat this deadly disease.
Collapse
Affiliation(s)
- Niramol Jitprasutwit
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitat Sookrung
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thaniya Sricharunrat
- Pathology and Forensic Science Department, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Passanesh Sukphopetch
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Narisara Chatratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pornpan Pumirat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
7
|
Ghazali AK, Firdaus-Raih M, Uthaya Kumar A, Lee WK, Hoh CC, Nathan S. Transitioning from Soil to Host: Comparative Transcriptome Analysis Reveals the Burkholderia pseudomallei Response to Different Niches. Microbiol Spectr 2023; 11:e0383522. [PMID: 36856434 PMCID: PMC10100664 DOI: 10.1128/spectrum.03835-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Burkholderia pseudomallei, a soil and water saprophyte, is responsible for the tropical human disease melioidosis. A hundred years since its discovery, there is still much to learn about B. pseudomallei proteins that are essential for the bacterium's survival in and interaction with the infected host, as well as their roles within the bacterium's natural soil habitat. To address this gap, bacteria grown under conditions mimicking the soil environment were subjected to transcriptome sequencing (RNA-seq) analysis. A dual RNA-seq approach was used on total RNA from spleens isolated from a B. pseudomallei mouse infection model at 5 days postinfection. Under these conditions, a total of 1,434 bacterial genes were induced, with 959 induced in the soil environment and 475 induced in bacteria residing within the host. Genes encoding metabolism and transporter proteins were induced when the bacteria were present in soil, while virulence factors, metabolism, and bacterial defense mechanisms were upregulated during active infection of mice. On the other hand, capsular polysaccharide and quorum-sensing pathways were inhibited during infection. In addition to virulence factors, reactive oxygen species, heat shock proteins, siderophores, and secondary metabolites were also induced to assist bacterial adaptation and survival in the host. Overall, this study provides crucial insights into the transcriptome-level adaptations which facilitate infection by soil-dwelling B. pseudomallei. Targeting novel therapeutics toward B. pseudomallei proteins required for adaptation provides an alternative treatment strategy given its intrinsic antimicrobial resistance and the absence of a vaccine. IMPORTANCE Burkholderia pseudomallei, a soil-dwelling bacterium, is the causative agent of melioidosis, a fatal infectious disease of humans and animals. The bacterium has a large genome consisting of two chromosomes carrying genes that encode proteins with important roles for survival in diverse environments as well as in the infected host. While a general mechanism of pathogenesis has been proposed, it is not clear which proteins have major roles when the bacteria are in the soil and whether the same proteins are key to successful infection and spread. To address this question, we grew the bacteria in soil medium and then in infected mice. At 5 days postinfection, bacteria were recovered from infected mouse organs and their gene expression was compared against that of bacteria grown in soil medium. The analysis revealed a list of genes expressed under soil growth conditions and a different set of genes encoding proteins which may be important for survival, replication, and dissemination in an infected host. These proteins are a potential resource for understanding the full adaptation mechanism of this pathogen. In the absence of a vaccine for melioidosis and with treatment being reliant on combinatorial antibiotic therapy, these proteins may be ideal targets for designing antimicrobials to treat melioidosis.
Collapse
Affiliation(s)
- Ahmad-Kamal Ghazali
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Asqwin Uthaya Kumar
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn. Bhd., Seri Kembangan, Selangor, Malaysia
| | - Sheila Nathan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
8
|
Abstract
The soil saprophyte, Burkholderia pseudomallei, is the causative agent of melioidosis, a disease endemic in South East Asia and northern Australia. Exposure to B. pseudomallei by either inhalation or inoculation can lead to severe disease. B. pseudomallei rapidly shifts from an environmental organism to an aggressive intracellular pathogen capable of rapidly spreading around the body. The expression of multiple virulence factors at every stage of intracellular infection allows for rapid progression of infection. Following invasion or phagocytosis, B. pseudomallei resists host-cell killing mechanisms in the phagosome, followed by escape using the type III secretion system. Several secreted virulence factors manipulate the host cell, while bacterial cells undergo a shift in energy metabolism allowing for overwhelming intracellular replication. Polymerisation of host cell actin into “actin tails” propels B. pseudomallei to the membranes of host cells where the type VI secretion system fuses host cells into multinucleated giant cells (MNGCs) to facilitate cell-to-cell dissemination. This review describes the various mechanisms used by B. pseudomallei to survive within cells.
Collapse
Affiliation(s)
- Nicole M Bzdyl
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Clare L Moran
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Justine Bendo
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mitali Sarkar-Tyson
- The Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
9
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
10
|
Kostow N, Welch MD. Plasma membrane protrusions mediate host cell-cell fusion induced by Burkholderia thailandensis. Mol Biol Cell 2022; 33:ar70. [PMID: 35594178 DOI: 10.1091/mbc.e22-02-0056] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell-cell fusion is important for biological processes including fertilization, development, immunity, and microbial pathogenesis. Bacteria in the pseudomallei group of the Burkholderia species, including B. thailandensis, spread between host cells by inducing cell-cell fusion. Previous work showed that B. thailandensis-induced cell-cell fusion requires intracellular bacterial motility and a bacterial protein secretion apparatus called the type VI secretion system-5 (T6SS-5), including the T6SS-5 protein VgrG5. However, the cellular-level mechanism of and T6SS-5 proteins important for bacteria-induced cell-cell fusion remained incompletely described. Using live-cell imaging, we found bacteria used actin-based motility to push on the host cell plasma membrane to form plasma membrane protrusions that extended into neighboring cells. Then, membrane fusion occurred within membrane protrusions either proximal to the bacterium at the tip or elsewhere within protrusions. Expression of VgrG5 by bacteria within membrane protrusions was required to promote cell-cell fusion. Furthermore, a second predicted T6SS-5 protein, TagD5, was also required for cell-cell fusion. In the absence of VgrG5 or TagD5, bacteria in plasma membrane protrusions were engulfed into neighboring cells. Our results suggest that the T6SS-5 effectors VgrG5 and TagD5 are secreted within membrane protrusions and act locally to promote membrane fusion.
Collapse
Affiliation(s)
- Nora Kostow
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
11
|
Clinical Burkholderia pseudomallei isolates from north Queensland carry diverse bimABm genes that are associated with central nervous system disease and are phylogenomically distinct from other Australian strains. PLoS Negl Trop Dis 2022; 16:e0009482. [PMID: 35700198 PMCID: PMC9236262 DOI: 10.1371/journal.pntd.0009482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/27/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022] Open
Abstract
Background Burkholderia pseudomallei is an environmental gram-negative bacterium that causes the disease melioidosis and is endemic in many countries of the Asia-Pacific region. In Australia, the mortality rate remains high at approximately 10%, despite curative antibiotic treatment being available. The bacterium is almost exclusively found in the endemic region, which spans the tropical Northern Territory and North Queensland, with clusters occasionally present in more temperate climates. Despite being endemic to North Queensland, these infections remain understudied compared to those of the Northern Territory. Methodology/Principal findings This study aimed to assess the prevalence of central nervous system (CNS) disease associated variant bimABm, identify circulating antimicrobial resistance mutations and genetically distinct strains from Queensland, via comparative genomics. From 76 clinical isolates, we identified the bimABm variant in 20 (26.3%) isolates and in 9 (45%) of the isolates with documented CNS infection (n = 18). Explorative analysis suggests a significant association between isolates carrying the bimABm variant and CNS disease (OR 2.8, 95% CI 1.3–6.0, P = 0.009) compared with isolates carrying the wildtype bimABp. Furthermore, 50% of isolates were identified as novel multi-locus sequence types, while the bimABm variant was more commonly identified in isolates with novel sequence types, compared to those with previously described. Additionally, mutations associated with acquired antimicrobial resistance were only identified in 14.5% of all genomes. Conclusions/Significance The findings of this research have provided clinically relevant genomic data of B. pseudomallei in Queensland and suggest that the bimABm variant may enable risk stratification for the development CNS complications and be a potential therapeutic target. Melioidosis is a life-threatening infection, caused by the Gram-negative bacterium Burkholderia pseudomallei, which is endemic to tropical regions in Australia. Variants of the bimA gene have been proposed as a virulence factor associated with more severe disease. In a genomic analysis of 76 clinical B. pseudomallei isolates from Queensland, Australia, we identified that the bimABm variant was associated with infection involving the central nervous system (odds ratio 2.8, 95% Confidence Interval: 1.3–6.0, P = 0.009), compared to isolates with the wild-type allele bimABp. Half of the isolates from this region were novel multi-locus sequence types, and bimABm was more commonly seen in these novel sequence types. Early genomic characterisation to identify virulence factors such as bimABm, may be useful as an early marker of more complex disease that could guide further investigation and help determine optimal treatment. Further investigation of a “genomics-guided” approach to the clinical management of this complex infectious disease are warranted.
Collapse
|
12
|
Gora H, Hasan T, Smith S, Wilson I, Mayo M, Woerle C, Webb JR, Currie BJ, Hanson J, Meumann EM. Melioidosis of the central nervous system; impact of the bimABm allele on patient presentation and outcome. Clin Infect Dis 2022:ciac111. [PMID: 35137005 DOI: 10.1093/cid/ciac111] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The autotransporter protein Burkholderia intracellular motility A (BimA) facilitates the entry of Burkholderia pseudomallei into the central nervous system (CNS) in mouse models of melioidosis. Its role in the pathogenesis of human cases of CNS melioidosis is incompletely defined. METHODS Consecutive culture-confirmed cases of melioidosis at two sites in tropical Australia after 1989 were reviewed. Demographic, clinical and radiological data of the patients with CNS melioidosis were recorded. The bimA allele (bimABm or bimABp) of the B. pseudomallei isolated from each patient was determined. RESULTS Of the 1587 cases diagnosed at the two sites during the study period, 52 (3.3%) had confirmed CNS melioidosis; 20 (38.5%) had a brain abscess, 18 (34.6%) had encephalomyelitis, 4 (7.7%) had isolated meningitis and 10 (19.2%) had extra-meningeal disease. Among the 52 patients, there were 8 (15.4%) deaths; 17/44 (38.6%) survivors had residual disability. The bimA allele was characterized in 47/52; 17/47 (36.2%) had the bimABm allele and 30 (63.8%) had the bimABp allele. Patients with a bimABm variant were more likely to have a predominantly neurological presentation (odds ratio (OR) (95% confidence interval (CI)): 5.60 (1.52-20.61), p=0.01), to have brainstem involvement (OR (95%CI): 7.33 (1.92-27.95), p=0.004) and to have encephalomyelitis (OR (95%CI): 4.69 (1.30-16.95), p=0.02. Patients with a bimABm variant were more likely to die or have residual disability (odds ratio (95%CI): 4.88 (1.28-18.57), p=0.01). CONCLUSIONS The bimA allele of B. pseudomallei has a significant impact on the clinical presentation and outcome of patients with CNS melioidosis.
Collapse
Affiliation(s)
- Hannah Gora
- College of Medicine and Dentistry, James Cook University, Cairns, Australia
| | - Tasnim Hasan
- Centre for Disease Control, Northern Territory Top End Health Services, Darwin, Australia
| | - Simon Smith
- Department of Medicine, Cairns Hospital, Cairns, Australia
| | - Ian Wilson
- Department of Medicine, Cairns Hospital, Cairns, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Celeste Woerle
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jessica R Webb
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
| | - Josh Hanson
- Department of Medicine, Cairns Hospital, Cairns, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- The Kirby Institute, University of New South Wales, Kensington, Australia
| | - Ella M Meumann
- Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Department of Infectious Diseases, Royal Darwin Hospital, Darwin, Australia
| |
Collapse
|
13
|
Monoclonal Antibodies Opsonize Burkholderia spp. and Reduce Intracellular Actin Tail Formation in a Macrophage Infection Assay. J Bacteriol 2021; 203:e0024421. [PMID: 34460311 PMCID: PMC8508110 DOI: 10.1128/jb.00244-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Melioidosis is a neglected tropical disease caused by the bacterium Burkholderia pseudomallei. The bacterium is intrinsically resistant to various antibiotics, and melioidosis is therefore difficult to treat successfully without a relapse in infection. B. pseudomallei is an intracellular pathogen and therefore, to eradicate the infection, antimicrobials must be able to access bacteria in an intracellular niche. This study assessed the ability of a panel of monoclonal antibodies (MAbs) to opsonize Burkholderia species and determine the effect that each antibody has on bacterial virulence in vitro. Murine macrophage infection assays demonstrated that monoclonal antibodies against the capsule of B. pseudomallei are opsonizing. Furthermore, one of these monoclonal antibodies reduced bacterial actin tail formation in our in vitro assays, indicating that antibodies could reduce the intracellular spread of Burkholderia thailandensis. The data presented in this paper demonstrate that monoclonal antibodies are opsonizing and can decrease bacterial actin tail formation, thus decreasing their intracellular spread. These data have informed selection of an antibody for development of an antibody-antibiotic conjugate (AAC) for melioidosis. IMPORTANCE Melioidosis is difficult to treat successfully due to the causal bacterium being resistant to many classes of antibiotics, therefore limiting available therapeutic options. New and improved therapies are urgently required to treat this disease. Here, we have investigated the potential of monoclonal antibodies to target this intracellular pathogen. We have demonstrated that monoclonal antibodies can target the bacterium, increase uptake into macrophages, and reduce actin tail formation required by the bacterium for spread between cells. Through targeting the bacterium with antibodies, we hope to disarm the pathogen, reducing the spread of infection. Ultimately, we aim to use an opsonizing antibody to deliver antibiotics intracellularly by developing an antibody-antibiotic conjugate therapeutic for melioidosis.
Collapse
|
14
|
Heacock-Kang Y, McMillan IA, Norris MH, Sun Z, Zarzycki-Siek J, Bluhm AP, Cabanas D, Norton RE, Ketheesan N, Miller JF, Schweizer HP, Hoang TT. The Burkholderia pseudomallei intracellular 'TRANSITome'. Nat Commun 2021; 12:1907. [PMID: 33772012 PMCID: PMC7998038 DOI: 10.1038/s41467-021-22169-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 02/26/2021] [Indexed: 01/01/2023] Open
Abstract
Prokaryotic cell transcriptomics has been limited to mixed or sub-population dynamics and individual cells within heterogeneous populations, which has hampered further understanding of spatiotemporal and stage-specific processes of prokaryotic cells within complex environments. Here we develop a 'TRANSITomic' approach to profile transcriptomes of single Burkholderia pseudomallei cells as they transit through host cell infection at defined stages, yielding pathophysiological insights. We find that B. pseudomallei transits through host cells during infection in three observable stages: vacuole entry; cytoplasmic escape and replication; and membrane protrusion, promoting cell-to-cell spread. The B. pseudomallei 'TRANSITome' reveals dynamic gene-expression flux during transit in host cells and identifies genes that are required for pathogenesis. We find several hypothetical proteins and assign them to virulence mechanisms, including attachment, cytoskeletal modulation, and autophagy evasion. The B. pseudomallei 'TRANSITome' provides prokaryotic single-cell transcriptomics information enabling high-resolution understanding of host-pathogen interactions.
Collapse
Affiliation(s)
- Yun Heacock-Kang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Ian A McMillan
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Michael H Norris
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Zhenxin Sun
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Jan Zarzycki-Siek
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Andrew P Bluhm
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
- Department of Geography and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Darlene Cabanas
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Robert E Norton
- Townsville Hospital, Townsville, QLD, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Natkunam Ketheesan
- Science and Technology, University of New England, New South Wales, Australia
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, and the California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, USA
| | - Tung T Hoang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, HI, USA.
| |
Collapse
|
15
|
Burkholderia pseudomallei OMVs derived from infection mimicking conditions elicit similar protection to a live-attenuated vaccine. NPJ Vaccines 2021; 6:18. [PMID: 33514749 PMCID: PMC7846723 DOI: 10.1038/s41541-021-00281-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative, facultative intracellular bacillus that causes the disease melioidosis. B. pseudomallei expresses a number of proteins that contribute to its intracellular survival in the mammalian host. We previously demonstrated that immunization with OMVs derived from B. pseudomallei grown in nutrient-rich media protects mice against lethal disease. Here, we evaluated if OMVs derived from B. pseudomallei grown under macrophage-mimicking growth conditions could be enriched with intracellular-stage proteins in order to improve the vaccine. We show that OMVs produced in this manner (M9 OMVs) contain proteins associated with intracellular survival yet are non-toxic to living cells. Immunization of mice provides significant protection against pulmonary infection similar to that achieved with a live attenuated vaccine and is associated with increased IgG, CD4+, and CD8+ T cells. OMVs possess inherent adjuvanticity and drive DC activation and maturation. These results indicate that M9 OMVs constitute a new promising vaccine against melioidosis.
Collapse
|
16
|
Chomkatekaew C, Boonklang P, Sangphukieo A, Chewapreecha C. An Evolutionary Arms Race Between Burkholderia pseudomallei and Host Immune System: What Do We Know? Front Microbiol 2021; 11:612568. [PMID: 33552023 PMCID: PMC7858667 DOI: 10.3389/fmicb.2020.612568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
A better understanding of co-evolution between pathogens and hosts holds promise for better prevention and control strategies. This review will explore the interactions between Burkholderia pseudomallei, an environmental and opportunistic pathogen, and the human host immune system. B. pseudomallei causes "Melioidosis," a rapidly fatal tropical infectious disease predicted to affect 165,000 cases annually worldwide, of which 89,000 are fatal. Genetic heterogeneities were reported in both B. pseudomallei and human host population, some of which may, at least in part, contribute to inter-individual differences in disease susceptibility. Here, we review (i) a multi-host-pathogen characteristic of the interaction; (ii) selection pressures acting on B. pseudomallei and human genomes with the former being driven by bacterial adaptation across ranges of ecological niches while the latter are driven by human encounter of broad ranges of pathogens; (iii) the mechanisms that generate genetic diversity in bacterial and host population particularly in sequences encoding proteins functioning in host-pathogen interaction; (iv) reported genetic and structural variations of proteins or molecules observed in B. pseudomallei-human host interactions and their implications in infection outcomes. Together, these predict bacterial and host evolutionary trajectory which continues to generate genetic diversity in bacterium and operates host immune selection at the molecular level.
Collapse
Affiliation(s)
| | | | - Apiwat Sangphukieo
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Bangkok, Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
17
|
Detection and differentiation of Burkholderia species with pathogenic potential in environmental soil samples. PLoS One 2021; 16:e0245175. [PMID: 33411797 PMCID: PMC7790303 DOI: 10.1371/journal.pone.0245175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 01/12/2023] Open
Abstract
The Burkholderia pseudomallei phylogenetic cluster includes B. pseudomallei, B. mallei, B. thailandensis, B. oklahomensis, B. humptydooensis and B. singularis. Regarded as the only pathogenic members of this group, B. pseudomallei and B. mallei cause the diseases melioidosis and glanders, respectively. Additionally, variant strains of B. pseudomallei and B. thailandensis exist that include the geographically restricted B. pseudomallei that express a B. mallei-like BimA protein (BPBM), and B. thailandensis that express a B. pseudomallei-like capsular polysaccharide (BTCV). To establish a PCR-based assay for the detection of pathogenic Burkholderia species or their variants, five PCR primers were designed to amplify species-specific sequences within the bimA (Burkholderiaintracellular motility A) gene. Our multiplex PCR assay could distinguish pathogenic B. pseudomallei and BPBM from the non-pathogenic B. thailandensis and the BTCV strains. A second singleplex PCR successfully discriminated the BTCV from B. thailandensis. Apart from B. humptydooensis, specificity testing against other Burkholderia spp., as well as other Gram-negative and Gram-positive bacteria produced a negative result. The detection limit of the multiplex PCR in soil samples artificially spiked with known quantities of B. pseudomallei and B. thailandensis were 5 and 6 CFU/g soil, respectively. Furthermore, comparison between standard bacterial culture and the multiplex PCR to detect B. pseudomallei from 34 soil samples, collected from an endemic area of melioidosis, showed high sensitivity and specificity. This robust, sensitive, and specific PCR assay will be a useful tool for epidemiological study of B. pseudomallei and closely related members with pathogenic potential in soil.
Collapse
|
18
|
Welkos S, Blanco I, Okaro U, Chua J, DeShazer D. A DUF4148 family protein produced inside RAW264.7 cells is a critical Burkholderia pseudomallei virulence factor. Virulence 2020; 11:1041-1058. [PMID: 32835600 PMCID: PMC7549894 DOI: 10.1080/21505594.2020.1806675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Burkholderia pseudomallei: is the etiological agent of the disease melioidosis and is a Tier 1 select agent. It survives and replicates inside phagocytic cells by escaping from the endocytic vacuole, replicating in the cytosol, spreading to other cells via actin polymerization and promoting the fusion of infected and uninfected host cells to form multinucleated giant cells. In this study, we utilized a proteomics approach to identify bacterial proteins produced inside RAW264.7 murine macrophages and host proteins produced in response to B. pseudomallei infection. Cells infected with B. pseudomallei strain K96243 were lysed and the lysate proteins digested and analyzed using nanoflow reversed-phase liquid chromatography and tandem mass spectrometry. Approximately 160 bacterial proteins were identified in the infected macrophages, including BimA, TssA, TssB, Hcp1 and TssM. Several previously uncharacterized B. pseudomallei proteins were also identified, including BPSS1996 and BPSL2748. Mutations were constructed in the genes encoding these novel proteins and their relative virulence was assessed in BALB/c mice. The 50% lethal dose for the BPSS1996 mutant was approximately 55-fold higher than that of the wild type, suggesting that BPSS1996 is required for full virulence. Sera from B. pseudomallei-infected animals reacted with BPSS1996 and it was found to localize to the bacterial surface using indirect immunofluorescence. Finally, we identified 274 host proteins that were exclusively present or absent in infected RAW264.7 cells, including chemokines and cytokines involved in controlling the initial stages of infection.
Collapse
Affiliation(s)
- Susan Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Irma Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Udoka Okaro
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer Chua
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
19
|
Zhang J, Li Y, Zhao S, Wu X. Identification of A functional region in Bombyx mori nucleopolyhedrovirus VP39 that is essential for nuclear actin polymerization. Virology 2020; 550:37-50. [PMID: 32877775 DOI: 10.1016/j.virol.2020.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 02/03/2023]
Abstract
Nuclear actin polymerization plays an indispensable role in the nuclear assembly of baculovirus nucleocapsid, but the underlying viral infection-mediated mechanism remains unclear. VP39 is the major protein in baculovirus capsid, which builds the skeleton of the capsid tubular structure. VP39 is suggested in previous studies to interact with cellular actin and mediate actin polymerization. However, it is unclear about the role of VP39 in mediating nuclear actin polymerization. Results in this study indicated that vp39 deletion abolished nuclear actin polymerization, which was recovered after vp39 repair, revealing the essential part of VP39 in nuclear actin polymerization. Furthermore, a series of mutants with vp39 deletions were constructed to analyze the important region responsible for nuclear actin polymerization. In addition, intracellular localization analysis demonstrated that the amino acids 192-286 in VP39 C-terminal are responsible for nuclear actin polymerization.
Collapse
Affiliation(s)
- Jianjia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Li
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shudi Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
20
|
Multinucleated Giant Cell Formation as a Portal to Chronic Bacterial Infections. Microorganisms 2020; 8:microorganisms8111637. [PMID: 33113944 PMCID: PMC7690659 DOI: 10.3390/microorganisms8111637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
This review provides a snapshot of chronic bacterial infections through the lens of Burkholderia pseudomallei and detailing its ability to establish multi-nucleated giant cells (MNGC) within the host, potentially leading to the formation of pyogranulomatous lesions. We explore the role of MNGC in melioidosis disease progression and pathology by comparing the similarities and differences of melioidosis to tuberculosis, outline the concerted events in pathogenesis that lead to MNGC formation, discuss the factors that influence MNGC formation, and consider how they fit into clinical findings reported in chronic cases. Finally, we speculate about future models and techniques that can be used to delineate the mechanisms of MNGC formation and function.
Collapse
|
21
|
Berry SB, Haack AJ, Theberge AB, Brighenti S, Svensson M. Host and Pathogen Communication in the Respiratory Tract: Mechanisms and Models of a Complex Signaling Microenvironment. Front Med (Lausanne) 2020; 7:537. [PMID: 33015094 PMCID: PMC7511576 DOI: 10.3389/fmed.2020.00537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 07/29/2020] [Indexed: 01/15/2023] Open
Abstract
Chronic lung diseases are a leading cause of morbidity and mortality across the globe, encompassing a diverse range of conditions from infections with pathogenic microorganisms to underlying genetic disorders. The respiratory tract represents an active interface with the external environment having the primary immune function of resisting pathogen intrusion and maintaining homeostasis in response to the myriad of stimuli encountered within its microenvironment. To perform these vital functions and prevent lung disorders, a chemical and biological cross-talk occurs in the complex milieu of the lung that mediates and regulates the numerous cellular processes contributing to lung health. In this review, we will focus on the role of cross-talk in chronic lung infections, and discuss how different cell types and signaling pathways contribute to the chronicity of infection(s) and prevent effective immune clearance of pathogens. In the lung microenvironment, pathogens have developed the capacity to evade mucosal immunity using different mechanisms or virulence factors, leading to colonization and infection of the host; such mechanisms include the release of soluble and volatile factors, as well as contact dependent (juxtracrine) interactions. We explore the diverse modes of communication between the host and pathogen in the lung tissue milieu in the context of chronic lung infections. Lastly, we review current methods and approaches used to model and study these host-pathogen interactions in vitro, and the role of these technological platforms in advancing our knowledge about chronic lung diseases.
Collapse
Affiliation(s)
- Samuel B. Berry
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | - Amanda J. Haack
- Department of Chemistry, University of Washington, Seattle, WA, United States
| | | | - Susanna Brighenti
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mattias Svensson
- Department of Medicine, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Saiprom N, Sangsri T, Tandhavanant S, Sengyee S, Phunpang R, Preechanukul A, Surin U, Tuanyok A, Lertmemongkolchai G, Chantratita W, West TE, Chantratita N. Genomic loss in environmental and isogenic morphotype isolates of Burkholderia pseudomallei is associated with intracellular survival and plaque-forming efficiency. PLoS Negl Trop Dis 2020; 14:e0008590. [PMID: 32991584 PMCID: PMC7546507 DOI: 10.1371/journal.pntd.0008590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 10/09/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Burkholderia pseudomallei is an environmental bacterium that causes melioidosis. A facultative intracellular pathogen, B. pseudomallei can induce multinucleated giant cells (MNGCs) leading to plaque formation in vitro. B. pseudomallei can switch colony morphotypes under stress conditions. In addition, different isolates have been reported to have varying virulence in vivo, but genomic evolution and the relationship with plaque formation is poorly understood. METHODOLOGY/PRINCIPLE FINDINGS To gain insights into genetic underpinnings of virulence of B. pseudomallei, we screened plaque formation of 52 clinical isolates and 11 environmental isolates as well as 4 isogenic morphotype isolates of B. pseudomallei strains K96243 (types II and III) and 153 (types II and III) from Thailand in A549 and HeLa cells. All isolates except one environmental strain (A4) and K96243 morphotype II were able to induce plaque formation in both cell lines. Intracellular growth assay and confocal microscopy analyses demonstrated that the two plaque-forming-defective isolates were also impaired in intracellular replication, actin polymerization and MNGC formation in infected cells. Whole genome sequencing analysis and PCR revealed that both isolates had a large genomic loss on the same region in chromosome 2, which included Bim cluster, T3SS-3 and T6SS-5 genes. CONCLUSIONS/SIGNIFICANCE Our plaque screening and genomic studies revealed evidence of impairment in plaque formation in environmental isolates of B. pseudomallei that is associated with large genomic loss of genes important for intracellular multiplication and MNGC formation. These findings suggest that the genomic and phenotypic differences of environmental isolates may be associated with clinical infection.
Collapse
Affiliation(s)
- Natnaree Saiprom
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Tanes Sangsri
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Princess of Naradhiwas University, Narathiwat, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sineenart Sengyee
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rungnapa Phunpang
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anucha Preechanukul
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Uriwan Surin
- Department of Medical Laboratory, Nakhon Phanom Hospital, Nakhon Phanom, Thailand
| | - Apichai Tuanyok
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States of America
| | - Ganjana Lertmemongkolchai
- Centre for Research and Development of Medical Diagnostic Laboratories, Department of Clinical Immunology, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen, Thailand
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - T. Eoin West
- Division of Pulmonary, Critical Care & Sleep Medicine, Harborview Medical Center, University of Washington, Seattle, WA, United States of America
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
23
|
Bacterial-induced cell fusion is a danger signal triggering cGAS-STING pathway via micronuclei formation. Proc Natl Acad Sci U S A 2020; 117:15923-15934. [PMID: 32571920 PMCID: PMC7355030 DOI: 10.1073/pnas.2006908117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Burkholderia pseudomallei is a bacterial pathogen that causes melioidosis, an infectious disease in the tropics with high morbidity and mortality. It has a unique property among bacteria: to fuse infected host cells. We found that our immune system detects bacterial- or chemical-induced host cell fusion as a danger signal. Abnormal cell fusion leads to genomic instability and formation of micronuclei. This triggers the host to activate a signaling pathway leading to a form of cell death known as autophagic death, which likely serves to limit abnormal cellular transformation. Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease in the tropics and subtropics with high morbidity and mortality. The facultative intracellular bacterium induces host cell fusion through its type VI secretion system 5 (T6SS5) as an important part of its pathogenesis in mammalian hosts. This allows it to spread intercellularly without encountering extracellular host defenses. We report that bacterial T6SS5-dependent cell fusion triggers type I IFN gene expression in the host and leads to activation of the cGAMP synthase–stimulator of IFN genes (cGAS–STING) pathway, independent of bacterial ligands. Aberrant and abortive mitotic events result in the formation of micronuclei colocalizing with cGAS, which is activated by double-stranded DNA. Surprisingly, cGAS–STING activation leads to type I IFN transcription but not its production. Instead, the activation of cGAS and STING results in autophagic cell death. We also observed type I IFN gene expression, micronuclei formation, and death of chemically induced cell fusions. Therefore, we propose that the cGAS–STING pathway senses unnatural cell fusion through micronuclei formation as a danger signal, and consequently limits aberrant cell division and potential cellular transformation through autophagic death induction.
Collapse
|
24
|
Whelan R, McVicker G, Leo JC. Staying out or Going in? The Interplay between Type 3 and Type 5 Secretion Systems in Adhesion and Invasion of Enterobacterial Pathogens. Int J Mol Sci 2020; 21:E4102. [PMID: 32521829 PMCID: PMC7312957 DOI: 10.3390/ijms21114102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Enteric pathogens rely on a variety of toxins, adhesins and other virulence factors to cause infections. Some of the best studied pathogens belong to the Enterobacterales order; these include enteropathogenic and enterohemorrhagic Escherichia coli, Shigella spp., and the enteropathogenic Yersiniae. The pathogenesis of these organisms involves two different secretion systems, a type 3 secretion system (T3SS) and type 5 secretion systems (T5SSs). The T3SS forms a syringe-like structure spanning both bacterial membranes and the host cell plasma membrane that translocates toxic effector proteins into the cytoplasm of the host cell. T5SSs are also known as autotransporters, and they export part of their own polypeptide to the bacterial cell surface where it exerts its function, such as adhesion to host cell receptors. During infection with these enteropathogens, the T3SS and T5SS act in concert to bring about rearrangements of the host cell cytoskeleton, either to invade the cell, confer intracellular motility, evade phagocytosis or produce novel structures to shelter the bacteria. Thus, in these bacteria, not only the T3SS effectors but also T5SS proteins could be considered "cytoskeletoxins" that bring about profound alterations in host cell cytoskeletal dynamics and lead to pathogenic outcomes.
Collapse
Affiliation(s)
| | | | - Jack C. Leo
- Antimicrobial Resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham NG1 4FQ, UK; (R.W.); (G.M.)
| |
Collapse
|
25
|
Abstract
The causative agent of melioidosis, Burkholderia pseudomallei, a tier 1 select agent, is endemic in Southeast Asia and northern Australia, with increased incidence associated with high levels of rainfall. Increasing reports of this condition have occurred worldwide, with estimates of up to 165,000 cases and 89,000 deaths per year. The ecological niche of the organism has yet to be clearly defined, although the organism is associated with soil and water. The culture of appropriate clinical material remains the mainstay of laboratory diagnosis. Identification is best done by phenotypic methods, although mass spectrometric methods have been described. Serology has a limited diagnostic role. Direct molecular and antigen detection methods have limited availability and sensitivity. Clinical presentations of melioidosis range from acute bacteremic pneumonia to disseminated visceral abscesses and localized infections. Transmission is by direct inoculation, inhalation, or ingestion. Risk factors for melioidosis include male sex, diabetes mellitus, alcohol abuse, and immunosuppression. The organism is well adapted to intracellular survival, with numerous virulence mechanisms. Immunity likely requires innate and adaptive responses. The principles of management of this condition are drainage and debridement of infected material and appropriate antimicrobial therapy. Global mortality rates vary between 9% and 70%. Research into vaccine development is ongoing.
Collapse
Affiliation(s)
- I Gassiep
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - M Armstrong
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
| | - R Norton
- Pathology Queensland, Townsville Hospital, Townsville, Queensland, Australia
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
26
|
Place DE, Briard B, Samir P, Karki R, Bhattacharya A, Guy CS, Peters JL, Frase S, Vogel P, Neale G, Yamamoto M, Kanneganti TD. Interferon inducible GBPs restrict Burkholderia thailandensis motility induced cell-cell fusion. PLoS Pathog 2020; 16:e1008364. [PMID: 32150572 PMCID: PMC7082077 DOI: 10.1371/journal.ppat.1008364] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/19/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Innate immunity responds to pathogens by producing alarm signals and activating pathways that make host cells inhospitable for pathogen replication. The intracellular bacterium Burkholderia thailandensis invades the cytosol, hijacks host actin, and induces cell fusion to spread to adjacent cells, forming multinucleated giant cells (MNGCs) which promote bacterial replication. We show that type I interferon (IFN) restricts macrophage MNGC formation during B. thailandensis infection. Guanylate-binding proteins (GBPs) expressed downstream of type I IFN were required to restrict MNGC formation through inhibition of bacterial Arp2/3-dependent actin motility during infection. GTPase activity and the CAAX prenylation domain were required for GBP2 recruitment to B. thailandensis, which restricted bacterial actin polymerization required for MNGC formation. Consistent with the effects in in vitro macrophages, Gbp2-/-, Gbp5-/-, GbpChr3-KO mice were more susceptible to intranasal infection with B. thailandensis than wildtype mice. Our findings reveal that IFN and GBPs play a critical role in restricting cell-cell fusion and bacteria-induced pathology during infection.
Collapse
Affiliation(s)
- David E. Place
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Benoit Briard
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Parimal Samir
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Rajendra Karki
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Anannya Bhattacharya
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Clifford S. Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Jennifer L. Peters
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Sharon Frase
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter Vogel
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Osaka University, 3–1 Yamadaoka, Suita, Osaka, Japan
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
27
|
Jitprasutwit S, Jitprasutwit N, Hemsley CM, Onlamoon N, Withatanung P, Muangsombut V, Vattanaviboon P, Stevens JM, Ong C, Stevens MP, Titball RW, Korbsrisate S. Identification of Burkholderia pseudomallei Genes Induced During Infection of Macrophages by Differential Fluorescence Induction. Front Microbiol 2020; 11:72. [PMID: 32153515 PMCID: PMC7047822 DOI: 10.3389/fmicb.2020.00072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/14/2020] [Indexed: 12/05/2022] Open
Abstract
Burkholderia pseudomallei, the causative agent of melioidosis, can survive and replicate in macrophages. Little is known about B. pseudomallei genes that are induced during macrophage infection. We constructed a B. pseudomallei K96243 promoter trap library with genomic DNA fragments fused to the 5' end of a plasmid-borne gene encoding enhanced green fluorescent protein (eGFP). Microarray analysis showed that the library spanned 88% of the B. pseudomallei genome. The recombinant plasmids were introduced into Burkholderia thailandensis E264, and promoter fusions active during in vitro culture were removed. J774A.1 murine macrophages were infected with the promoter trap library, and J774A.1 cells containing fluorescent bacteria carrying plasmids with active promoters were isolated using flow cytometric-based cell sorting. Candidate macrophage-induced B. pseudomallei genes were identified from the location of the insertions containing an active promoter activity. A proportion of the 138 genes identified in this way have been previously reported to be involved in metabolism and transport, virulence, or adaptation. Novel macrophage-induced B. pseudomallei genes were also identified. Quantitative reverse-transcription PCR analysis of 13 selected genes confirmed gene induction during macrophage infection. Deletion mutants of two macrophage-induced genes from this study were attenuated in Galleria mellonella larvae, suggesting roles in virulence. B. pseudomallei genes activated during macrophage infection may contribute to intracellular life and pathogenesis and merit further investigation toward control strategies for melioidosis.
Collapse
Affiliation(s)
- Siroj Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Niramol Jitprasutwit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nattawat Onlamoon
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Joanne M. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Catherine Ong
- Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore, Singapore
| | - Mark P. Stevens
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
French CT, Bulterys PL, Woodward CL, Tatters AO, Ng KR, Miller JF. Virulence from the rhizosphere: ecology and evolution of Burkholderia pseudomallei-complex species. Curr Opin Microbiol 2020; 54:18-32. [PMID: 32028234 DOI: 10.1016/j.mib.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Christopher T French
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Northern Arizona University, Department of Biological Sciences, Pathogen and Microbiome Institute 1395 S Knoles Drive, Flagstaff, AZ 86011, United States.
| | - Philip L Bulterys
- Department of Pathology, Stanford University, Lane Building, L235, 300 Pasteur Drive, Stanford, CA, 94305, United States
| | - Cora L Woodward
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Avery O Tatters
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Ken R Ng
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States
| | - Jeff F Miller
- California NanoSystems Institute, UCLA, 570 Westwood Plaza Bldg. 114, 4538 West, Los Angeles, CA 90095, United States; Molecular Biology Institute, UCLA, 611 Charles E. Young Drive East, Los Angeles, CA 90095, United States; Department of Microbiology, Immunology, and Molecular Genetics, UCLA, 609 Charles E. Young Drive East, Los Angeles, CA 90095, United States
| |
Collapse
|
29
|
Walkden H, Delbaz A, Nazareth L, Batzloff M, Shelper T, Beacham IR, Chacko A, Shah M, Beagley KW, Tello Velasquez J, St John JA, Ekberg JAK. Burkholderia pseudomallei invades the olfactory nerve and bulb after epithelial injury in mice and causes the formation of multinucleated giant glial cells in vitro. PLoS Negl Trop Dis 2020; 14:e0008017. [PMID: 31978058 PMCID: PMC7002012 DOI: 10.1371/journal.pntd.0008017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/05/2020] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
The infectious disease melioidosis is caused by the bacterium Burkholderia pseudomallei. Melioidosis is characterised by high mortality and morbidity and can involve the central nervous system (CNS). We have previously discovered that B. pseudomallei can infect the CNS via the olfactory and trigeminal nerves in mice. We have shown that the nerve path is dependent on mouse strain, with outbred mice showing resistance to olfactory nerve infection. Damage to the nasal epithelium by environmental factors is common, and we hypothesised that injury to the olfactory epithelium may increase the vulnerability of the olfactory nerve to microbial insult. We therefore investigated this, using outbred mice that were intranasally inoculated with B. pseudomallei, with or without methimazole-induced injury to the olfactory neuroepithelium. Methimazole-mediated injury resulted in increased B. pseudomallei invasion of the olfactory epithelium, and only in pre-injured animals were bacteria found in the olfactory nerve and bulb. In vitro assays demonstrated that B. pseudomallei readily infected glial cells isolated from the olfactory and trigeminal nerves (olfactory ensheathing cells and trigeminal Schwann cells, respectively). Bacteria were degraded by some cells but persisted in other cells, which led to the formation of multinucleated giant cells (MNGCs), with olfactory ensheathing cells less likely to form MNGCs than Schwann cells. Double Cap mutant bacteria, lacking the protein BimA, did not form MNGCs. These data suggest that injuries to the olfactory epithelium expose the primary olfactory nervous system to bacterial invasion, which can then result in CNS infection with potential pathogenic consequences for the glial cells.
Collapse
Affiliation(s)
- Heidi Walkden
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ali Delbaz
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Todd Shelper
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Ifor R. Beacham
- Institute for Glycomics, Griffith University, Southport, Australia
| | - Anu Chacko
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Megha Shah
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
| | - Kenneth W. Beagley
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | | | - James A. St John
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Jenny A. K. Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, Australia
- Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, Australia
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Australia
| |
Collapse
|
30
|
Rachlin A, Shilton C, Webb JR, Mayo M, Kaestli M, Kleinecke M, Rigas V, Benedict S, Gurry I, Currie BJ. Melioidosis fatalities in captive slender-tailed meerkats (Suricata suricatta): combining epidemiology, pathology and whole-genome sequencing supports variable mechanisms of transmission with one health implications. BMC Vet Res 2019; 15:458. [PMID: 31856823 PMCID: PMC6921467 DOI: 10.1186/s12917-019-2198-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 11/27/2019] [Indexed: 12/29/2022] Open
Abstract
Background Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Infection occurs in humans and animals, typically through direct exposure to soil or water containing the environmental bacterium Burkholderia pseudomallei. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Direct transmission of B. pseudomallei between animals and/or humans has been documented but is considered extremely rare. Between March 2015 and October 2016 eight fatal cases of melioidosis were reported in slender-tailed meerkats (Suricata suricatta) on display at a Wildlife Park in Northern Australia. To further investigate the melioidosis case cluster we sampled the meerkat enclosure and adjacent park areas and performed whole-genome sequencing (WGS) on all culture-positive B. pseudomallei environmental and clinical isolates. Results WGS confirmed that the fatalities were caused by two different B. pseudomallei sequence types (STs) but that seven of the meerkat isolates were highly similar on the whole-genome level. Used concurrently with detailed pathology data, our results demonstrate that the seven cases originated from a single original source, but routes of infection varied amongst meerkats belonging to the clonal outbreak cluster. Moreover, in some instances direct transmission may have transpired through wounds inflicted while fighting. Conclusions Collectively, this study supports the use of high-resolution WGS to enhance epidemiological investigations into transmission modalities and pathogenesis of melioidosis, especially in the instance of a possible clonal outbreak scenario in exotic zoological collections. Such findings from an animal outbreak have important One Health implications.
Collapse
Affiliation(s)
- Audrey Rachlin
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.
| | - Cathy Shilton
- Department of Primary Industry and Resources, Berrimah Veterinary Laboratory, Berrimah Farm, Makagon Road, Berrimah, Northern Territory, 0828, Australia
| | - Jessica R Webb
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Mark Mayo
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Mirjam Kaestli
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.,Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, 0811, Australia
| | - Mariana Kleinecke
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Vanessa Rigas
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia
| | - Suresh Benedict
- Department of Primary Industry and Resources, Berrimah Veterinary Laboratory, Berrimah Farm, Makagon Road, Berrimah, Northern Territory, 0828, Australia
| | - Ian Gurry
- Parap Veterinary Hospital, Parap, Darwin, Northern Territory, 0820, Australia
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University, Darwin, Casuarina NT, 0811, Australia.,Royal Darwin Hospital and Northern Territory Medical Program, Darwin, Northern Territory, 0811, Australia
| |
Collapse
|
31
|
Ferro P, Vaz-Moreira I, Manaia CM. Betaproteobacteria are predominant in drinking water: are there reasons for concern? Crit Rev Microbiol 2019; 45:649-667. [PMID: 31686572 DOI: 10.1080/1040841x.2019.1680602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Betaproteobacteria include some of the most abundant and ubiquitous bacterial genera that can be found in drinking water, including mineral water. The combination of physiology and ecology traits place some Betaproteobacteria in the list of potential, yet sometimes neglected, opportunistic pathogens that can be transmitted by water or aqueous solutions. Indeed, some drinking water Betaproteobacteria with intrinsic and sometimes acquired antibiotic resistance, harbouring virulence factors and often found in biofilm structures, can persist after water disinfection and reach the consumer. This literature review summarises and discusses the current knowledge about the occurrence and implications of Betaproteobacteria in drinking water. Although the sparse knowledge on the ecology and physiology of Betaproteobacteria thriving in tap or bottled natural mineral/spring drinking water (DW) is an evidence of this review, it is demonstrated that DW holds a high diversity of Betaproteobacteria, whose presence may not be innocuous. Frequently belonging to genera also found in humans, DW Betaproteobacteria are ubiquitous in different habitats, have the potential to resist antibiotics either due to intrinsic or acquired mechanisms, and hold different virulence factors. The combination of these factors places DW Betaproteobacteria in the list of candidates of emerging opportunistic pathogens. Improved bacterial identification of clinical isolates associated with opportunistic infections and additional genomic and physiological studies may contribute to elucidate the potential impact of these bacteria.
Collapse
Affiliation(s)
- Pompeyo Ferro
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Ivone Vaz-Moreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| |
Collapse
|
32
|
Evolutionary Perspectives on the Moonlighting Functions of Bacterial Factors That Support Actin-Based Motility. mBio 2019; 10:mBio.01520-19. [PMID: 31455648 PMCID: PMC6712393 DOI: 10.1128/mbio.01520-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display “moonlighting” adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.
Collapse
|
33
|
An in situ high-throughput screen identifies inhibitors of intracellular Burkholderia pseudomallei with therapeutic efficacy. Proc Natl Acad Sci U S A 2019; 116:18597-18606. [PMID: 31439817 PMCID: PMC6744847 DOI: 10.1073/pnas.1906388116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an environmental organism that inhabits tropical soils and kills an estimated 90,000 people each year. Caused by an intracellular and often drug-resistant pathogen, melioidosis is notoriously difficult to treat, with mortality rates approaching 50% in some settings despite appropriate diagnosis and clinical management. Using a high-throughput, cell-based phenotypic screen we have discovered 2 antibiotic candidates with improved in vivo efficacy compared to the current standard of care: a fluoroquinolone analog, burkfloxacin, and an FDA-approved antifungal drug, flucytosine. As a widely used antifungal with a well-known safety profile, the potential to repurpose flucytosine for treating melioidosis may represent a rapid route to clinical translation. Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm. Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell–cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia. In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.
Collapse
|
34
|
Webb JR, Rachlin A, Rigas V, Sarovich DS, Price EP, Kaestli M, Ward LM, Mayo M, Currie BJ. Tracing the environmental footprint of the Burkholderia pseudomallei lipopolysaccharide genotypes in the tropical "Top End" of the Northern Territory, Australia. PLoS Negl Trop Dis 2019; 13:e0007369. [PMID: 31348781 PMCID: PMC6701815 DOI: 10.1371/journal.pntd.0007369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/20/2019] [Accepted: 07/04/2019] [Indexed: 11/18/2022] Open
Abstract
The Tier 1 select agent Burkholderia pseudomallei is an environmental bacterium that causes melioidosis, a high mortality disease. Variably present genetic markers used to elucidate strain origin, relatedness and virulence in B. pseudomallei include the Burkholderia intracellular motility factor A (bimA) and filamentous hemagglutinin 3 (fhaB3) gene variants. Three lipopolysaccharide (LPS) O-antigen types in B. pseudomallei have been described, which vary in proportion between Australian and Asian isolates. However, it remains unknown if these LPS types can be used as genetic markers for geospatial analysis within a contiguous melioidosis-endemic region. Using a combination of whole-genome sequencing (WGS), statistical analysis and geographical mapping, we examined if the LPS types can be used as geographical markers in the Northern Territory, Australia. The clinical isolates revealed that LPS A prevalence was highest in the Darwin and surrounds (n = 660; 96% being LPS A and 4% LPS B) and LPS B in the Katherine and Katherine remote and East Arnhem regions (n = 79; 60% being LPS A and 40% LPS B). Bivariate logistics regression of 999 clinical B. pseudomallei isolates revealed that the odds of getting a clinical isolate with LPS B was highest in East Arnhem in comparison to Darwin and surrounds (OR 19.5, 95% CI 9.1-42.0; p<0.001). This geospatial correlation was subsequently confirmed by geographically mapping the LPS type from 340 environmental Top End strains. We also found that in the Top End, the minority bimA genotype bimABm has a similar remote region geographical footprint to that of LPS B. In addition, correlation of LPS type with multi-locus sequence typing (MLST) was strong, and where multiple LPS types were identified within a single sequence type, WGS confirmed homoplasy of the MLST loci. The clinical, sero-diagnostic and vaccine implications of geographically-based B. pseudomallei LPS types, and their relationships to regional and global dispersal of melioidosis, require global collaborations with further analysis of larger clinically and geospatially-linked datasets.
Collapse
Affiliation(s)
- Jessica R. Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- * E-mail:
| | - Audrey Rachlin
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Vanessa Rigas
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Derek S. Sarovich
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Erin P. Price
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- GeneCology Research Centre, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mirjam Kaestli
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Linda M. Ward
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Mark Mayo
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Northern Territory, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| |
Collapse
|
35
|
Meuskens I, Saragliadis A, Leo JC, Linke D. Type V Secretion Systems: An Overview of Passenger Domain Functions. Front Microbiol 2019; 10:1163. [PMID: 31214135 PMCID: PMC6555100 DOI: 10.3389/fmicb.2019.01163] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria secrete proteins for different purposes such as communication, virulence functions, adhesion to surfaces, nutrient acquisition, or growth inhibition of competing bacteria. For secretion of proteins, Gram-negative bacteria have evolved different secretion systems, classified as secretion systems I through IX to date. While some of these systems consist of multiple proteins building a complex spanning the cell envelope, the type V secretion system, the subject of this review, is rather minimal. Proteins of the Type V secretion system are often called autotransporters (ATs). In the simplest case, a type V secretion system consists of only one polypeptide chain with a β-barrel translocator domain in the membrane, and an extracellular passenger or effector region. Depending on the exact domain architecture of the protein, type V secretion systems can be further separated into sub-groups termed type Va through e, and possibly another recently identified subtype termed Vf. While this classification works well when it comes to the architecture of the proteins, this is not the case for the function(s) of the secreted passenger. In this review, we will give an overview of the functions of the passengers of the different AT classes, shedding more light on the variety of functions carried out by type V secretion systems.
Collapse
Affiliation(s)
| | | | | | - Dirk Linke
- Department of Biosciences, Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, Norway
| |
Collapse
|
36
|
Srinon V, Chaiwattanarungruengpaisan S, Korbsrisate S, Stevens JM. Burkholderia pseudomallei BimC Is Required for Actin-Based Motility, Intracellular Survival, and Virulence. Front Cell Infect Microbiol 2019; 9:63. [PMID: 30968000 PMCID: PMC6439308 DOI: 10.3389/fcimb.2019.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/28/2019] [Indexed: 12/11/2022] Open
Abstract
The intracellular pathogen Burkholderia pseudomallei, the etiological agent of melioidosis in humans and various animals, is capable of survival and movement within the cytoplasm of host cells by a process known as actin-based motility. The bacterial factor BimA is required for actin-based motility through its direct interaction with actin, and by mediating actin polymerization at a single pole of the bacterium to promote movement both within and between cells. However, little is known about the other bacterial proteins required for this process. Here, we have investigated the role of the bimC gene (bpss1491) which lies immediately upstream of the bimA gene (bpss1492) on the B. pseudomallei chromosome 2. Conserved amongst all B. pseudomallei, B. mallei and B. thailandensis strains sequenced to date, this gene encodes an iron-binding protein with homology to a group of proteins known as the bacterial autotransporter heptosyltransferase (BAHT) family. We have constructed a B. pseudomallei bimC deletion mutant and demonstrate that it is defective in intracellular survival in HeLa cells, but not in J774.1 macrophage-like cells. The bimC mutant is defective in cell to cell spread as demonstrated by ablation of plaque formation in HeLa cells, and by the inability to form multi-nucleated giant cells in J774.1 cells. These phenotypes in intracellular survival and cell to cell spread are not due to the loss of expression and polar localization of the BimA protein on the surface of intracellular bacteria, however they do correlate with an inability of the bacteria to recruit and polymerize actin. Furthermore, we also establish a role for bimC in virulence of B. pseudomallei using a Galleria mellonella larvae model of infection. Taken together, our findings indicate that B. pseudomallei BimC plays an important role in intracellular behavior and virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Microbiology Laboratory, Faculty of Veterinary Science, Veterinary Diagnostic Center, Mahidol University, Nakhon Pathom, Thailand
| | - Somjit Chaiwattanarungruengpaisan
- The Monitoring Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, Thailand
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| |
Collapse
|
37
|
Lennings J, Mayer C, Makhlouf M, Brötz-Oesterhelt H, Schwarz S. Polar localization of the ATPase ClpV-5 occurs independent of type VI secretion system apparatus proteins in Burkholderia thailandensis. BMC Res Notes 2019; 12:109. [PMID: 30819219 PMCID: PMC6394029 DOI: 10.1186/s13104-019-4141-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/21/2019] [Indexed: 12/11/2022] Open
Abstract
Objective ClpV, the ATPase of the type VI secretion system (T6SS) recycles cytoplasmic T6SS proteins following effector translocation. Fluorescent protein fusions to ClpV showed that it localizes to discrete and dynamic foci. ClpV-1-sfGFP of the bacterial cell targeting T6SS-1 of Burkholderia thailandensis exhibits a virtually random localization, whereas ClpV-5-sfGFP of the T6SS-5 targeting host cells is located at one or both poles. The mechanisms underlying the differential localization pattern are not known. Previous analysis of T6SSs, which target bacterial cells revealed that ClpV foci formation is dependent on components of the T6SS. Here, we investigated if the T6SS-5 apparatus confers polar localization of ClpV-5. Results ClpV-5-sfGFP foci formation and localization was examined in a B. thailandensis mutant harboring a deletion of the entire T6SS-5 gene cluster. We found that ClpV-5-sfGFP localization to discrete foci was not abolished in the absence of the T6SS-5 apparatus. Furthermore, the number of ClpV-5-sfGFP foci displaying a polar localization was not significantly different from that of ClpV-5-sfGFP expressed in the wild type genetic background. These findings suggest the presence of a T6SS-independent localization mechanism for ClpV-5 of the T6SS-5 targeting host cells. Electronic supplementary material The online version of this article (10.1186/s13104-019-4141-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jan Lennings
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Christian Mayer
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Munira Makhlouf
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Microbial Bioactive Compounds, University of Tübingen, Tübingen, Germany
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
38
|
Aziz A, Sarovich DS, Harris TM, Kaestli M, McRobb E, Mayo M, Currie BJ, Price EP. Suspected cases of intracontinental Burkholderia pseudomallei sequence type homoplasy resolved using whole-genome sequencing. Microb Genom 2019; 3. [PMID: 29208140 PMCID: PMC5729916 DOI: 10.1099/mgen.0.000139] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium that causes melioidosis, a disease of high mortality in humans and animals. Multilocus sequence typing (MLST) is a popular and portable genotyping method that has been used extensively to characterise the genetic diversity of B. pseudomallei populations. MLST has been central to our understanding of the underlying phylogeographical signal present in the B. pseudomallei genome, revealing distinct populations on both the intra- and the inter-continental level. However, due to its high recombination rate, it is possible for B. pseudomallei isolates to share the same multilocus sequence type (ST) despite being genetically and geographically distinct, with two cases of ‘ST homoplasy’ recently reported between Cambodian and Australian B. pseudomallei isolates. This phenomenon can dramatically confound conclusions about melioidosis transmission patterns and source attribution, a critical issue for bacteria such as B. pseudomallei that are of concern due to their potential for use as bioweapons. In this study, we used whole-genome sequencing to identify the first reported instances of intracontinental ST homoplasy, which involved ST-722 and ST-804 B. pseudomallei isolates separated by large geographical distances. In contrast, a third suspected homoplasy case was shown to be a true long-range (460 km) dispersal event between a remote Australian island and the Australian mainland. Our results show that, whilst a highly useful and portable method, MLST can occasionally lead to erroneous conclusions about isolate origin and disease attribution. In cases where a shared ST is identified between geographically distant locales, whole-genome sequencing should be used to resolve strain origin.
Collapse
Affiliation(s)
- Ammar Aziz
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Derek S Sarovich
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,2Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Tegan M Harris
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Mirjam Kaestli
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia.,3Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, Australia
| | - Evan McRobb
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Mark Mayo
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Bart J Currie
- 1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Erin P Price
- 2Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia.,1Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| |
Collapse
|
39
|
Abstract
Spatial organization is a hallmark of all living systems. Even bacteria, the smallest forms of cellular life, display defined shapes and complex internal organization, showcasing a highly structured genome, cytoskeletal filaments, localized scaffolding structures, dynamic spatial patterns, active transport, and occasionally, intracellular organelles. Spatial order is required for faithful and efficient cellular replication and offers a powerful means for the development of unique biological properties. Here, we discuss organizational features of bacterial cells and highlight how bacteria have evolved diverse spatial mechanisms to overcome challenges cells face as self-replicating entities.
Collapse
|
40
|
Lennings J, West TE, Schwarz S. The Burkholderia Type VI Secretion System 5: Composition, Regulation and Role in Virulence. Front Microbiol 2019; 9:3339. [PMID: 30687298 PMCID: PMC6335564 DOI: 10.3389/fmicb.2018.03339] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
The soil saprophyte and Tier I select agent Burkholderia pseudomallei can cause rapidly fatal infections in humans and animals. The capability of switching to an intracellular life cycle during infection appears to be a decisive trait of B. pseudomallei for causing disease. B. pseudomallei harbors multiple type VI secretion systems (T6SSs) orthologs of which are present in the surrogate organism Burkholderia thailandensis. Upon host cell entry and vacuolar escape into the cytoplasm, B. pseudomallei and B. thailandensis manipulate host cells by utilizing the T6SS-5 (also termed T6SS1) to form multinucleated giant cells for intercellular spread. Disruption of the T6SS-5 in B. thailandensis causes a drastic attenuation of virulence in wildtype but not in mice lacking the central innate immune adapter protein MyD88. This result suggests that the T6SS-5 is deployed by the bacteria to overcome innate immune responses. However, important questions in this field remain unsolved including the mechanism underlying T6SS-5 activity and its physiological role during infection. In this review, we summarize the current knowledge on the components and regulation of the T6SS-5 as well as its role in virulence in mammalian hosts.
Collapse
Affiliation(s)
- Jan Lennings
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - T Eoin West
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
41
|
Krakauer T. Living dangerously: Burkholderia pseudomallei modulates phagocyte cell death to survive. Med Hypotheses 2018; 121:64-69. [PMID: 30396496 DOI: 10.1016/j.mehy.2018.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. As a facultative intracellular pathogen, B. pseudomallei produces virulence factors to evade innate host response and survive within host cells. Neutrophils and macrophages are phagocytes that play critical roles in host defense against pathogens by their ability to detect and eliminate microbes. Host defense processes against B. pseudomallei including phagocytosis, oxidative burst, autophagy, apoptosis, and proinflammatory cytokine release are all initiated by these two phagocytes in the fight against this bacterium. In vitro studies with mouse macrophage cell lines revealed multiple evasion strategies used by B. pseudomallei to counteract these innate processes. B. pseudomallei invades and replicates in neutrophils but little is known regarding its evasion mechanisms. The bidirectional interaction of neutrophils and macrophages in controlling B. pseudomallei infection has also been overlooked. Here the hypothesis that B. pseudomallei hijacks neutrophils and uses them to transport and infect new phagocytes is proposed as an evasion strategy to survive and persist in host phagocytes. This two-pronged approach by B. pseudomallei to replicate in two different types of phagocytes and to modulate their cell death modes is effective in promoting persistence and survival of the bacterium.
Collapse
Affiliation(s)
- Teresa Krakauer
- Department of Immunology, Molecular Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, United States.
| |
Collapse
|
42
|
Losada L, Shea AA, DeShazer D. A MarR family transcriptional regulator and subinhibitory antibiotics regulate type VI secretion gene clusters in Burkholderia pseudomallei. MICROBIOLOGY-SGM 2018; 164:1196-1211. [PMID: 30052173 DOI: 10.1099/mic.0.000697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Burkholderia pseudomallei, the aetiological agent of melioidosis, is an inhabitant of soil and water in many tropical and subtropical regions worldwide. It possesses six distinct type VI secretion systems (T6SS-1 to T6SS-6), but little is known about most of them, as they are poorly expressed in laboratory culture media. A genetic screen was devised to locate a putative repressor of the T6SS-2 gene cluster and a MarR family transcriptional regulator, termed TctR, was identified. The inactivation of tctR resulted in a 50-fold increase in the expression of an hcp2-lacZ transcriptional fusion, indicating that TctR is a negative regulator of the T6SS-2 gene cluster. Surprisingly, the tctR mutation resulted in a significant decrease in the expression of an hcp6-lacZ transcriptional fusion. B. pseudomallei K96243 and a tctR mutant were grown to logarithmic phase in rich culture medium and RNA was isolated and sequenced in order to identify other genes regulated by TctR. The results identified seven gene clusters that were repressed by TctR, including T6SS-2, and three gene clusters that were significantly activated. A small molecule library consisting of 1120 structurally defined compounds was screened to identify a putative ligand (or ligands) that might bind TctR and derepress transcription of the T6SS-2 gene cluster. Seven compounds, six fluoroquinolones and one quinolone, activated the expression of hcp2-lacZ. Subinhibitory ciprofloxacin also increased the expression of the T6SS-3, T6SS-4 and T6SS-6 gene clusters. This study highlights the complex layers of regulatory control that B. pseudomallei utilizes to ensure that T6SS expression only occurs under very defined environmental conditions.
Collapse
Affiliation(s)
- Liliana Losada
- 1J. Craig Venter Institute, Rockville, MD, USA.,†Present address: Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - April A Shea
- 2Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA.,‡Present address: National Strategic Research Institute, Annapolis Junction, MD, USA
| | - David DeShazer
- 3Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
43
|
Abstract
Burkholderia pseudomallei is a Gram-negative environmental bacterium and the aetiological agent of melioidosis, a life-threatening infection that is estimated to account for ∼89,000 deaths per year worldwide. Diabetes mellitus is a major risk factor for melioidosis, and the global diabetes pandemic could increase the number of fatalities caused by melioidosis. Melioidosis is endemic across tropical areas, especially in southeast Asia and northern Australia. Disease manifestations can range from acute septicaemia to chronic infection, as the facultative intracellular lifestyle and virulence factors of B. pseudomallei promote survival and persistence of the pathogen within a broad range of cells, and the bacteria can manipulate the host's immune responses and signalling pathways to escape surveillance. The majority of patients present with sepsis, but specific clinical presentations and their severity vary depending on the route of bacterial entry (skin penetration, inhalation or ingestion), host immune function and bacterial strain and load. Diagnosis is based on clinical and epidemiological features as well as bacterial culture. Treatment requires long-term intravenous and oral antibiotic courses. Delays in treatment due to difficulties in clinical recognition and laboratory diagnosis often lead to poor outcomes and mortality can exceed 40% in some regions. Research into B. pseudomallei is increasing, owing to the biothreat potential of this pathogen and increasing awareness of the disease and its burden; however, better diagnostic tests are needed to improve early confirmation of diagnosis, which would enable better therapeutic efficacy and survival.
Collapse
Affiliation(s)
- W Joost Wiersinga
- Department of Medicine, Division of Infectious Diseases, Academic Medical Center, Meibergdreef 9, Rm. G2-132, 1105 AZ Amsterdam, The Netherlands
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Harjeet S Virk
- Centre for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Bart J Currie
- Menzies School of Health Research, Charles Darwin University and Royal Darwin Hospital, Darwin, Australia
| | - Sharon J Peacock
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - David A B Dance
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Lao-Oxford-Mahosot Hospital Wellcome Trust Research Unit, Vientiane, Lao People's Democratic Republic
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Direk Limmathurotsakul
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
- Department of Tropical Hygiene and Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
44
|
Abstract
The coevolution of intracellular bacteria with their eukaryotic hosts has presented these pathogens with numerous challenges for their evolutionary progress and survival. Chief among these is the ability to exit from host cells, an event that is fundamentally linked to pathogen dissemination and transmission. Recent years have witnessed a major expansion of research in this area, and this chapter summarizes our current understanding of the spectrum of exit strategies that are exploited by intracellular pathogens. Clear themes regarding the mechanisms of microbial exit have emerged and are most easily conceptualized as (i) lysis of the host cell, (ii) nonlytic exit of free bacteria, and (iii) release of microorganisms into membrane-encased compartments. The adaptation of particular exit strategies is closely linked with additional themes in microbial pathogenesis, including host cell death, manipulation of host signaling pathways, and coincident activation of proinflammatory responses. This chapter will explore the molecular determinants used by intracellular pathogens to promote host cell escape and the infectious advantages each exit pathway may confer, and it will provide an evolutionary framework for the adaptation of these mechanisms.
Collapse
|
45
|
Titball RW, Burtnick MN, Bancroft GJ, Brett P. Burkholderia pseudomallei and Burkholderia mallei vaccines: Are we close to clinical trials? Vaccine 2017; 35:5981-5989. [DOI: 10.1016/j.vaccine.2017.03.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/17/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
|
46
|
Entry, Intracellular Survival, and Multinucleated-Giant-Cell-Forming Activity of Burkholderia pseudomallei in Human Primary Phagocytic and Nonphagocytic Cells. Infect Immun 2017; 85:IAI.00468-17. [PMID: 28760929 DOI: 10.1128/iai.00468-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/20/2017] [Indexed: 12/21/2022] Open
Abstract
The human pathogen Burkholderia pseudomallei and the related species Burkholderia thailandensis are facultative intracellular bacteria characterized by the ability to escape into the cytosol of the host cell and to stimulate the formation of multinucleated giant cells (MNGCs). MNGC formation is induced via an unknown mechanism by bacterial type VI secretion system 5 (T6SS-5), which is an essential virulence factor in both species. Despite the vital role of the intracellular life cycle in the pathogenesis of the bacteria, the range of host cell types permissive for initiation and completion of the intracellular cycle is poorly defined. In the present study, we used several different types of human primary cells to evaluate bacterial entry, intracellular survival, and MNGC formation. We report the capacity of B. pseudomallei to enter, efficiently replicate in, and mediate MNGC formation of vein endothelial and bronchial epithelial cells, indicating that the T6SS-5 is important in the host-pathogen interaction in these cells. Furthermore, we show that B. pseudomallei invades fibroblasts and keratinocytes and survives inside these cells as well as in monocyte-derived macrophages and neutrophils for at least 17 h postinfection; however, MNGC formation is not induced in these cells. In contrast, infection of mixed neutrophils and RAW264.7 macrophages with B. thailandensis stimulated the formation of heterotypic MNGCs in a T6SS-5-dependent manner. In summary, the ability of the bacteria to enter and survive as well as induce MNGC formation in certain host cells may contribute to the pathogenesis observed in B. pseudomallei infection.
Collapse
|
47
|
Muangsombut V, Withatanung P, Srinon V, Chantratita N, Stevens MP, Blackwell JM, Korbsrisate S. Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression. Front Cell Infect Microbiol 2017; 7:350. [PMID: 28848712 PMCID: PMC5550678 DOI: 10.3389/fcimb.2017.00350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 07/21/2017] [Indexed: 02/02/2023] Open
Abstract
Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+) control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1), the Bsa Type III Secretion System (T3SS-3) and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence-associated genes by pathogenic B pseudomallei is enhanced in macrophages expressing wild-type compared to non-functional Nramp1. B. thailandensis has been proposed as surrogate for B. pseudomallei in the study of melioidosis however our study highlights important differences in the interaction of these bacteria with macrophages.
Collapse
Affiliation(s)
- Veerachat Muangsombut
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Patoo Withatanung
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| | - Varintip Srinon
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand.,Microbiology Laboratory, Veterinary Diagnostic Center, Faculty of Veterinary Science, Mahidol UniversityNakhon Pathom, Thailand
| | - Narisara Chantratita
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol UniversityBangkok, Thailand
| | - Mark P Stevens
- Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghMidlothian, United Kingdom
| | - Jenefer M Blackwell
- Telethon Kids Institute, The University of Western AustraliaSubiaco, WA, Australia.,Department of Pathology, University of CambridgeCambridge, United Kingdom
| | - Sunee Korbsrisate
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol UniversityBangkok, Thailand
| |
Collapse
|
48
|
Vander Broek CW, Zainal Abidin N, Stevens JM. BipC, a Predicted Burkholderia pseudomallei Type 3 Secretion System Translocator Protein with Actin Binding Activity. Front Cell Infect Microbiol 2017; 7:333. [PMID: 28770177 PMCID: PMC5515863 DOI: 10.3389/fcimb.2017.00333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 07/06/2017] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei is an intracellular bacterial pathogen and the causative agent of melioidosis, a severe disease of humans and animals. Like other clinically important Gram-negative bacteria, fundamental to B. pseudomallei pathogenesis is the Bsa Type III Secretion System. The Bsa system injects bacterial effector proteins into the cytoplasm of target host cells subverting cellular pathways for the benefit of the bacteria. It is required for invasion of non-phagocytic host cells, escape from the endocytic compartment into the host cell cytoplasm, and for virulence in murine models of melioidosis. We have recently described the repertoire of effector proteins secreted by the B. pseudomallei Bsa system, however the functions of many of these effector proteins remain an enigma. One such protein is BipC, a homolog of the translocator/effector proteins SipC and IpaC from Salmonella spp. and Shigella flexneri respectively. SipC and IpaC each have separate and distinct roles acting both as translocators, involved in creating a pore in the eukaryotic cell membrane through which effector proteins can transit, and as effectors by interacting with and polymerizing host cell actin. In this study, pull-down assays demonstrate an interaction between BipC and actin. Furthermore, we show that BipC directly interacts with actin, preferentially with actin polymers (F-actin) and has the ability to polymerize actin in a similar manner as that described for SipC. Yet unlike SipC, BipC does not stabilize F-actin filaments, indicating a functionally distinct interaction with actin. Expression of Myc-tagged BipC in HeLa cells induces the formation of pseudopodia similar to that seen for IpaC. This study explores the effector function of BipC and reveals that actin interaction is conserved within the BipC/SipC/IpaC family of translocator/effector proteins.
Collapse
Affiliation(s)
- Charles W Vander Broek
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Nurhamimah Zainal Abidin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| | - Joanne M Stevens
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghScotland, United Kingdom
| |
Collapse
|
49
|
Morris JL, Fane A, Sarovich DS, Price EP, Rush CM, Govan BL, Parker E, Mayo M, Currie BJ, Ketheesan N. Increased Neurotropic Threat from Burkholderia pseudomallei Strains with a B. mallei-like Variation in the bimA Motility Gene, Australia. Emerg Infect Dis 2017; 23. [PMID: 28418830 PMCID: PMC5403032 DOI: 10.3201/eid2305.151417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
These strains have heightened pathogenic potential for rapid dissemination to multiple tissues, including the central nervous system. Neurologic melioidosis is a serious, potentially fatal form of Burkholderia pseudomallei infection. Recently, we reported that a subset of clinical isolates of B. pseudomallei from Australia have heightened virulence and potential for dissemination to the central nervous system. In this study, we demonstrate that this subset has a B. mallei–like sequence variation of the actin-based motility gene, bimA. Compared with B. pseudomallei isolates having typical bimA alleles, isolates that contain the B. mallei–like variation demonstrate increased persistence in phagocytic cells and increased virulence with rapid systemic dissemination and replication within multiple tissues, including the brain and spinal cord, in an experimental model. These findings highlight the implications of bimA variation on disease progression of B. pseudomallei infection and have considerable clinical and public health implications with respect to the degree of neurotropic threat posed to human health.
Collapse
|
50
|
Norris MH, Schweizer HP, Tuanyok A. Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLoS Negl Trop Dis 2017; 11:e0005571. [PMID: 28453531 PMCID: PMC5425228 DOI: 10.1371/journal.pntd.0005571] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/10/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Burkholderia pseudomallei (Bp) causes the disease melioidosis. The main cause of mortality in this disease is septic shock triggered by the host responding to lipopolysaccharide (LPS) components of the Gram-negative outer membrane. Bp LPS is thought to be a weak inducer of the host immune system. LPS from several strains of Bp were purified and their ability to induce the inflammatory mediators TNF-α and iNOS in murine macrophages at low concentrations was investigated. Innate and adaptive immunity qPCR arrays were used to profile expression patterns of 84 gene targets in response to the different LPS types. Additional qPCR validation confirmed large differences in macrophage response. LPS from a high-virulence serotype B strain 576a and a virulent rough central nervous system tropic strain MSHR435 greatly induced the innate immune response indicating that the immunopathogenesis of these strains is different than in infections with strains similar to the prototype strain 1026b. The accumulation of autophagic vesicles was also increased in macrophages challenged with highly immunogenic Bp LPS. Gene induction and concomitant cytokine secretion profiles of human PBMCs in response to the various LPS were also investigated. MALDI-TOF/TOF was used to probe the lipid A portions of the LPS, indicating substantial structural differences that likely play a role in host response to LPS. These findings add to the evolving knowledge of host-response to bacterial LPS, which can be used to better understand septic shock in melioidosis patients and in the rational design of vaccines.
Collapse
Affiliation(s)
- Michael H. Norris
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | - Herbert P. Schweizer
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Apichai Tuanyok
- Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|